In Print
Deformation of crystallites, creep at intergranular boundaries and surface roughness enhancement of polycrystalline copper irradiated by UV nanosecond laser pulse when heated to temperatures below the melting point
18 April in 11:30
N.A. Inogamov
The mechanisms of surface relief formation on bulk copper samples under the influence of UV laser pulses (duration 10 ns, wavelength 355 nm) in the mode of heating to temperatures below the melting temperature have been investigated. It has been experimentally established that during irradiation at energy densities of 0.60-1.05 J/cm2 a characteristic system of protrusions/depressions, the height/depth of which reaches up to 500 nm, is formed on the surface of the samples in local areas near grain boundaries. By methods of optical profilometry, confocal scanning laser microscopy and transmission electron microscopy the deformation nature of the formed relief was established. The thin near-surface layer near grain boundaries shows traces of plastic deformation development: nanoscale twin plates, dislocations and low-angle dislocation boundaries. Molecular dynamic modeling has shown that the main physical reason for the development of the considered relief is the anisotropy of thermal expansion of differently oriented grains (crystallites) during cyclic heating to pre-melt temperatures. It is established that thermomechanical stresses arising in the near-surface layer exceed the yield strength of the material, which leads to irreversible plastic deformation. The amplification of structural changes is shown to increase with both the energy density and the number of pulses. The results obtained are important for understanding the mechanisms of metal structure degradation under cyclic pulse thermomechanical loading and can be used, in particular, to develop methods for increasing the operational durability of metal optics.
Неласов И.В., Манохин С.С., Колобов Ю.Р., Жаховский В.В., Перов Е.А., Петров Ю.В., Хомич Ю.В., Малинский Т.В., Иногамов Н.А., Рогалин В.Е. // ЖЭТФ. – 2025. – Т. 167. – № 6.
Zhurnal Experimentalnoi i Teoreticheskoi Fiziki Vol. 167 (6) (2025).
Spatially-resolved dynamics of the amplitude Schmid-Higgs mode in disordered superconductors
21 March in 11:30
I.S. Burmistrov
We investigate the spatially-resolved dynamics of the collective amplitude Schmid-Higgs (SH) mode in disordered s-wave superconductors and fermionic superfluids. By analyzing the analytic structure of the zero-temperature SH susceptibility in the complex frequency plane, we find that when the coherence length greatly exceeds the mean free path: (i) the SH response at fixed wave vectors exhibits late-time oscillations decaying as 1/t2 with frequency 2Δ, where Δ is the superconducting gap; (ii) sub-diffusive oscillations with a dynamical exponent z=4 emerge at late times and large distances; and (iii) spatial oscillations at fixed frequency decay exponentially, with a period that diverges as the frequency approaches 2Δ from above. When the coherence length is comparable to the mean free path, additional exponentially-decaying oscillations at fixed wave vectors appear with frequency above 2Δ. Furthermore, we show that the SH mode induces an extra peak in the third-harmonic generation current at finite wave-vectors. The frequency of this peak is shifted from the conventional resonance at Δ, thereby providing an unambiguous signature of order parameter amplitude dynamics.
Constructing efficient strategies for the random process optimization by restart
7 March in 12:30 (short)
S. Belan
Optimization of the mean completion time of random processes by restart is a subject of active theoretical research in statistical physics and has long found practical application in computer science. Meanwhile, one of the key issues remains largely unsolved: how to construct a restart strategy for a process whose detailed statistics are unknown to ensure that the expected completion time will reduce? Addressing this query here we propose several constructive criteria for the effectiveness of various protocols of non-instantaneous restart in the mean completion time problem and in the success probability problem. Being expressed in terms of a small number of easily estimated statistical characteristics of the original process (MAD, median completion time, low-order statistical moments of completion time), these criteria allow informed restart decision based on partial information.
On the Waiting Time Statistics for the First Occurrence of a Specific Pattern of States of a Random Process
7 March in 11:30
S. Belan
Both Markovian and arbitrary residence time distributions are considered. The comparison of analytical predictions with the case of a time-decorrelated process shows that correlations can both decrease and increase the corresponding expected waiting time. Besides, the comparison of exponential, subexponential, and heavy-tailed models characterized by equal probabilities to observe the event of interest demonstrates that a
faster decrease in the residence time probability density implies a shorter expected waiting time. Interestingly, irrespective of the details of a particular model for both discrete- and continuous-time jump processes considered here, the random waiting time becomes exponentially distributed in the long-time limit, thus, showing
remarkable universality.
Zerkal’naya simmetriya mnogoobrazii Kalabi-Yau i N=2 superkonformnye dvumernye teorii polya (na osnove kandidatskoi dissertatsii)
28 February in 12:30 (short)
Boris Eremin (MFTI, Skoltekh, IPPI)
Изучается зеркальная симметрия многообразий Калаби-Яу, построение моделей N=2 суперконформной теории поля, необходимых для суперструны, а также вычисление специальной Кэлеровой геометрии на пространстве модулей Калаби-Яу при помощи некоторой дуальности с калибровочными линейными сигма моделями.
Доказана эквивалентность конструкций зеркальной симметрии Батырева и Берглунда-Хубша-Кравица для орбифолдов Калаби-Яу, заданных нулями полинома во взвешенном проективном пространстве. Получены уравнения определяющие мономы-деформации зеркального полинома. Рассмотрены зеркальные пары орбифолдов квинтики.
Установлена дуальная калибровочная линейная сигма модель (GLSM) для Калаби-Яу типа Берглунда-Хубша. В рамках этой дуальности проверена так называемая зеркальная версия гипотезы Джокерса о равенстве экспоненты Кэлерова потенциала на пространстве модулей Калаби-Яу и статсуммы GLSM.
Построены N=2 суперконформные теории поля с центральным зарядом равным 9. Левые и правые примарные поля в этих теориях связаны согласно A-D-E классификации модулярно-инвариантных статсумм. Рассмотренны орбифолды произведений минимальных моделей соответствующие многообразиям Калаби-Яу типа Ферма. Получены уравнения взаимной локальности твистованных полей.
Konstruktsiya 4-mernoi geteroticheskoi struny, kompaktifitsirovannoi na mnogoobraziya Kalabi-Yau tipa Berglunda-Khubsha
28 February in 11:30
Aleksandr Belavin
Модели Гетеротических струны в 4-х измерениях, полученные ранее Гепнером, представляют собой гибридные теории.
В левом секторе этих теорий исходно имеется 10-мерная N=1 Суперконформная теория поля, дополнительные к четырем 6 измерений которой компактифицированы на произведение N=2 минимальных моделей.
В правом секторе есть 26-мерная бозонная струна, 6 измерений которой также компактифицированы на произведения N=2 Минимальных моделей, а остальные 13 измерений компактифицированы на тор
алгебры Ли E(8)xSO(10).
Будет показано, как использовать аксиомы Конформного бутстрапа, включая требование взаимной локальности полей, для построения таких моделей в общем случае.
А именно, будет показано, что модели, построенные из требований одновременного выполнения взаимной локальности левых вертексов с генераторами N=1 Пространственно-Временной Суперсимметрии, и выполнение взаимной локальности правых вертексов с генераторами Калибровочной симметрии, а также из дополнительного требования взаимной локальности левых-правых вершин между собой, следует, что такие модели, чтобы быть самосогласованными, обязательно должны обладать калибровочной симметрией, алгебра Ли которой есть E(8)xE(6).
Как известно, наличие N=1 Суперсимметрии Пространства-Времени, а также E(8)xE(6) Калибровочной симметрии является необходимым из феноменологических соображений.
Рассмотренный ранее класс моделей Гетеротической струнны ограничен тем, что компактификация 6 из 10 измерений пространства-времени в их конструкциях в основном осуществляется на многообразиях Калаби-Яу, соответствующих произведениям $N=2$ Минимальных моделей.
Такие многообразия представляют собой специальный подкласс многообразий Калаби-Яу типа Берглунда-Хубша.
Будет показано, как, используя подходы Фейгина-Фукса и Батырева-Борисова, распространить нашу конструкцию на общий случай на многообразий Калаби-Яу этого типа.
On well-posedness of a modeling of a kinetic equation for capillary waves.
21 February in 12:00 (short)
A.O. Korotkevich
In recent literature there is an active discussion on well-posedness of description of waves' interaction by a kinetic equation for different models. In this work kinetic equation for capillary waves on a surface of the fluid is considered. While it is clear, that proof of well-posedness of a problem through numerical experiment is impossible, results of a series of numerical experiments, similar to ones from a recent work arXiv:2109.02477 (Phys. Rev. Lett., vol. 129, p. 034101 (2022)) are considered. It is shown, that if one takes into account scaling with respect to parameters of a kinetic equation, results coincide. It means, that a least in the range of parameters used for experiments, kinetic equation qualitatively, though most probably qualitatively as well, describes interaction of capillary waves.
Effect of loop extrusion on the two-contact correlations in the interphase chromosome
21 February in 11:30 (short)
S. Belan
The population-averaged contact maps generated by the chromosome conformation capture technique provide important information about the average frequency of contact between pairs of chromatin loci as a function of the genetic distance between them. However, these datasets do not tell us anything about the joint statistics of simultaneous contacts between genomic loci in individual cells. This kind of statistical information can be extracted using the single-cell Hi-C method, which is capable of detecting a large fraction of simultaneous contacts within a single cell, as well as through modern methods of fluorescent labeling and super-resolution imaging. Motivated by the prospect of the imminent availability of relevant experimental data, in this work, we theoretically model the joint statistics of pairs of contacts located along a line perpendicular to the main diagonal of the single-cell contact map. The analysis is performed within the framework of an ideal polymer model with quenched disorder of random loops, which, as previous studies have shown, allows us to take into account the influence of the loop extrusion process on the conformational properties of interphase chromatin.
Instanton analysis for the spin quantum Hall symmetry class. Crossovers between topological classes
7 February in 11:30
Parfenov M.V., Burmistrov I. S.
Recently, there has been renewed interest in studies of criticality in the spin quantum Hall ef-
fect, realized in the Altland-Zirnbauer symmetry class C of disordered, noninteracting fermions in
two spatial dimensions. In our study, we develop a nonperturbative analysis of the replica two-
dimensional nonlinear sigma model in class C. We explicitly construct the instanton solution with
a unit topological charge. By treating fluctuations around the instanton at the Gaussian level, we
calculate the instanton correction to the disorder-averaged logarithm of the partition function. We
compute non-perturbative corrections to the anomalous dimensions of pure power-law scaling local
operators, which determine the spectrum of generalized multifractality. We also calculate instanton
corrections to the renormalized longitudinal and Hall spin conductivities and determine the topol-
ogy of the phase diagram for class C. Our results demonstrate that the spin quantum Hall effect is
indeed a close cousin of the integer quantum Hall effect. In this talk the crossover between class A and class C will be described.
Effect of color randomization on p_T broadening of fast partons in turbulent quark-gluon plasma
31 January in 11:30
B.G. Zakharov
We analyze the effect of the parton color randomization on p_T broadening
in the quark-gluon plasma with turbulent color fields. We calculate the
transport coefficient qhat for a simplified model of fluctuating color
fields in the form of alternating sequential transverse layers with homogenous
transverse chromomagnetic fields with random orientation in the
SU(3) group and gaussian distribution in the magnitude. Our numerical
results show that the color randomization can lead to a sizable reduction of
the turbulent contribution to qhat. The magnitude of the effect grows
with increasing ratio of the electric and magnetic screening masses.
Jet quenching for hadron-tagged jets in pA collisions
31 January in 11:30 (short)
B.G. Zakharov
We calculate the medium modification factor I_pA
for 5.02 TeV p+Pb collisions. We use the Monte-Carlo Glauber model to
determine the parameters of the quark-gluon plasma fireball in pA
jet events. Our calculations show that the jet quenching effect for I_pA
turns out to be rather small. We have found that the theoretical I_pA as
a function of the underlying event charged multiplicity density, within errors,
agrees with data from ALICE for 5.02 TeV p+Pb collisions. However,
the experimental errors are too large to draw a firm conclusion on the possible presence of jet quenching.
Altermagnetic and Noncentrosymmetric Metals
24 January in 11:30
V.P. Mineev
A theoretical description of altermagnets in the normal and superconducting states is presented. It was made in comparison with metals that do not have spatial inversion symmetry. Having a formally similar mathematical description, these two classes of metals have qualitatively different physical properties.
Submitted to JETP Letters.
Semiclassical Scattering by Edge Imperfections in Topological Insulators in a Magnetic Field
24 January in 11:30 (short)
P.D. Grigoriev, A. S. Dotdaev, Ya. I. Rodionov, A.V. Rozhkov
We study the scattering of edge states of 2D topological insulator in the uniform external magnetic field due to edge imperfections, common in realistic 2D topological insulator samples. The external magnetic field breaks time-reversal symmetry, opening the possibility of the scattering of otherwise topologically protected fermionic edge states. The scattering happens to be always an over-barrier event, irrespective of the shape of the edge deformation and magnitude of the magnetic field. We use the advanced Pokrovsky–Khalatnikov semiclassical approach, which allows us to obtain analytically both the main exponential and pre-exponential factors of the scattering amplitude for wide classes of analytic deformation profiles.