Russian Academy of Sciences

Landau Institute for Theoretical Physics

Vladimir V. Sokolov

Leading researcher

Doctor of science

Professor

Email:

Publications

    1. A.G. Meshkov, V.V. Sokolov, On third order integrable vector Hamiltonian equations, J. Geom. Phys., 113, 206-214 (2017), WoS: 000394078200017, Scopus: 2-s2.0-85008599127.
    2. V.V. Sokolov, A.S. Sorin, Integrable cosmological potentials, Lett. Math. Phys., 107(9), 1741-1768 (2017); arXiv:1608.08511, WoS: 000408007900007, Scopus: 2-s2.0-85019048669.
    3. M.G. Matushko, V.V. Sokolov, Polinomial’nye formy dlya kvantovykh ellipticheskikh gamil’tonianov Kalodzhero–Mozera, TMF, 191(1), 14-24 (2017) [M.G. Matushko, V.V. Sokolov, Polynomial forms for quantum elliptic Calogero–Moser Hamiltonians, Theor. Math. Phys., 191(1), 480-490 (2017)], WoS: 000400773000002, Scopus: 2-s2.0-85018786052.
    4. V.V. Sokolov, A.B. Shabat, O ratsional’nykh resheniyakh uravneniya Rikkati, UMN, 71:4(430), 189-190 (2016) [V.V. Sokolov, A.B. Shabat, Rational solutions of a Riccati equation, Russ. Math. Surveys, 71(4), 787–789 (2016)], Scopus: 2-s2.0-84997173251.
    5. V.V. Sokolov, A.V. Turbiner, Quasi-exact-solvability of the A2/G2 Elliptic model: algebraic form, sl(3)/g(2) hidden algebra, polynomial eigenfunctions, J. Phys. A: Math. Theor. 48, 155201 (2015); arXiv:1409.7439, WoS: 000352113800002, Scopus: 2-s2.0-84925811124.
    6. A.M. Kamchatnov, V.V. Sokolov, Nonlinear waves in two-component Bose-Einstein condensates: Manakov system and Kowalevski equations, Phys. Rev. A 91, 043621 (2015); arXiv:1501.01229, WoS: 000352845900006, Scopus: 2-s2.0-84929497573.
    7. A.G. Meshkov, V.V. Sokolov, Integrable Hamiltonian equations of fifth order with the Hamiltonian operator Dx, Russ. J. Math. Phys., 22(2), 201-214 (2015); arXiv:1406.5916, WoS: 000357595000007.
    8. V.V. Sokolov, Algebraicheskie kvantovye gamil’toniany na ploskosti, TMF, 184(1), 57-70 (2015) [V.V. Sokolov, Algebraic quantum Hamiltonians on the plane, Theor. Math. Phys., 184(1), 940-952 (2015)]; arXiv:1503.05185, WoS: 000360193700003, Scopus: 2-s2.0-84940201846.
    9. A. Odesskii, V. Rubtsov, V. Sokolov, Parameter-dependent associative Yang-Baxter equations and Poisson brackets, Int. J. Geom. Methods Mod. Phys. 11(9), 1460036 (2014) [18 pages]; arXiv:1311.4321, WoS: 000344230400013, Scopus: 2-s2.0-84908628170.
    10. A.G. Meshkov, V.V. Sokolov, Integrable evolution Hamiltonian equations of the third order with the Hamiltonian operator Dx, J. Geom. Phys., 85, 245-251 (2014); arXiv:1401.6844, WoS: 000342540500021, Scopus: 2-s2.0-84900943349.
    11. A. Meshkov, V. Sokolov, Vector hyperbolic equations on quadrics possessing integrable third-order symmetries, Lett. Math. Phys., 104(3), 341-360 (2014); arXiv:1211.0681, WoS: 000331644500005, Scopus: 2-s2.0-84893951279.
    12. A.V. Odesskii, V.V. Sokolov, Non-homogeneous systems of hydrodynamic type possessing Lax representations, Commun. Math. Phys., 324(1), 47-62 (2013); arXiv:1206.5230, WoS: 000325626900002, Scopus: 2-s2.0-84885579087.
    13. A. Odesskii, V. Rubtsov, V. Sokolov, Double Poisson brackets on free associative algebras, Contemp. Math., 592, 225-239 (2013) [Noncommutative Birational Geometry, Representations and Combinatorics, Ed. by A. and V. Retakh, AMS, 2013. ISBNs: 978-0-8218-8980-0 (print); 978-1-4704-0971-5 (online)]; arXiv:1208.2935.
    14. V.V. Sokolov, Klassifikatsiya postoyannykh reshenii assotsiativnogo uravneniya Yanga–Bakstera na algebre Mat3, TMF, 176(3), 385–392 (2013) [V.V. Sokolov, Classification of constant solutions of the associative Yang-Baxter equation on Mat3, Theor. Math. Phys., 176(3), 1156-1162 (2013)]; arXiv:1212.6421, WoS: 000325707900004, Scopus: 2-s2.0-84885574569.
    15. A.V. Odesskii, V.N. Rubtsov, V.V. Sokolov, Bigamil’tonovy ODU s matrichnymi peremennymi, TMF, 171(1), 26-32 (2012) [A. Odesskii, V. Rubtsov, V. Sokolov, Bi-Hamiltonian ordinary differential equations with matrix variables, Theor. Math. Phys., 171(1), 442–447 (2012)]; arXiv:1105.1740, WoS: 000303876200003, Scopus: 2-s2.0-84860628977.
    16. A.G. Meshkov, V.V. Sokolov, Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi, Ufimsk. matem. zhurn., 4(3), 104-154 (2012); arXiv:1302.6010.
    17. M. Dunajski, V. Sokolov, On the 7th order ODE with submaximal symmetry, J. Geom. Phys., 61(8), 1258-1262 (2011); arXiv:1002.1620, WoS: 000291901200002, Scopus: 2-s2.0-79952722963.
    18. A.G. Meshkov, V.V. Sokolov, Giperbolicheskie uravneniya s simmetriyami tret’ego poryadka, TMF, 166(1), 51-67 (2011) [A.G. Meshkov, V.V. Sokolov, Hyperbolic equations with third-order symmetries, Theor. Math. Phys., 166(1), 43-57 (2011)], WoS: 000287245500004, Scopus: 2-s2.0-79951482832.
    19. A. Odesskii, V. Sokolov, Classification of integrable hydrodynamic chains, J. Phys. A: Math. Theor. 43, 434027, 15 p. (2010); arXiv:1001.0020, Scopus: 2-s2.0-78649662354.
    20. V.G. Marikhin, V.V. Sokolov, Transformation of a pair of commuting Hamiltonians quadratic in momenta to a canonical form and on a partial real separation of variables for the Clebsch top, Regul. Chaotic Dyn., 15 (6), 652-658 (2010), Scopus: 2-s2.0-78650414402.
    21. A. Odesskii, V. Sokolov, Integrable pseudopotentials related to generalized hypergeometric functions, Sel. Math. New Ser., 16(1), 145-172 (2010); arXiv:0803.0086, Scopus: 2-s2.0-77950020760.
    22. A.V. Odesskii, V.V. Sokolov, Integriruemye (2+1)-mernye sistemy gidrodinamicheskogo tipa, TMF, 163(2), 179–221 (2010) [A.V. Odesskii, V.V. Sokolov, Integrable (2+1)-dimensional systems of hydrodynamic type, Theor. Math. Phys., 163(2), 549-586 (2010)]; arXiv:1009.2778, Scopus: 2-s2.0-77953508429.
    23. V.G. Marikhin, V.V. Sokolov, O nekotorykh integral’nykh uravneniyakh, svyazannykh so sluchainymi gaussovskimi protsessami, TMF, 164(2), 196–206 (2010) [V.G. Marikhin, V.V. Sokolov, Some integral equations related to random Gaussian processes, Theor. Math. Phys., 164(2), 992–1001 (2010)], Scopus: 2-s2.0-77956439368.
    24. E.V. Ferapontov, A. Moro, V.V. Sokolov, Hamiltonian systems of hydrodynamic type in 2+1 dimensions, Commun. Math. Phys., 285(1), 31-65 (2009); arXiv:0710.2012.
    25. A.V. Odesskii, V.V. Sokolov, Integriruemye ellipticheskie psevdopotentsialy, TMF, 161(1), 21–36 (2009) [A.V. Odesskii, V.V. Sokolov, Integrable elliptic pseudopotentials, Theor. Math. Phys., 161(1), 1340–1352 (2009)]; arXiv:0810.3879.
    26. A.V. Mikhailov, V.V. Sokolov, Symmetries of Differential Equations and the Problem of Integrability, Lect. Notes Phys., 767, 19-88 (2009) [Integrability, ed A.V. Mikhailov, Springer, xiii, 339 pp., ISBN 978-3-540-88110-0].
    27. A.V. Odesskii, V.V. Sokolov, Systems of Gibbons-Tsarev type and integrable 3-dimensional models, arXiv:0906.3509.
    28. A.G. Meshkov, V.V. Sokolov, Integrable hyperbolic equations of sin-Gordon type, arXiv:0912.5092.
    29. A. Odesskii, V. Sokolov, Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, Commun. Math. Phys., 278 (1), 83-99 (2008); math/0611200.
    30. D.K. Demskoi, V.V. Sokolov, On recursion operators for elliptic models, Nonlinearity, 21 (6), 1253-1264 (2008); nlin/0607071.
    31. V.G. Marikhin, V.V. Sokolov, O privedenii pary kvadratichnykh po impul’sam gamil’tonianov k kanonicheskoi forme i o veshchestvennom chastichnom razdelenii peremennykh dlya volchka Klebsha, Nelineinaya dinamika, 4(3), 313-322 (2008).
    32. A.V. Odesskii, M.V. Pavlov, V.V. Sokolov, Klassifikatsiya integriruemykh uravnenii tipa uravneniya Vlasova, TMF, 154(2), 249-260 (2008) [A.V. Odesskii, M.V. Pavlov, V.V. Sokolov, Classification of integrable Vlasov-type equations, Theor. Math. Phys, 154(2), 209–219 (2008)]; arXiv:0710.5655.
    33. V.V. Sokolov, S.Ya. Startsev, Simmetrii nelineinykh giperbolicheskikh sistem tipa tsepochek Tody, TMF, 155(2), 344-355 (2008) [V.V. Sokolov, S.Y. Startsev, Symmetries of nonlinear hyperbolic systems of the Toda chain type, Theor. Math. Phys., 155(2), 802-811 (2008)].
    34. A.V. Odesskii, V.V. Sokolov, O (2+1)-mernykh sistemakh gidrodinamicheskogo tipa, obladayushchikh psevdopotentsialom s podvizhnymi osobennostyami, Funkts. analiz i ego pril., 42(3), 53-62 (2008) [A.V. Odesskii, V.V. Sokolov, On (2+1)-dimensional hydrodynamic type systems possessing a pseudopotential with movable singularities, Func. Anal. and Its Appl, 42(3), 205-212 (2008)]; math-ph/0702026.
    35. A. Odesskii, V. Sokolov, Integrable pseudopotentials related to elliptic curves, arXiv:0810.3879.
    36. V.G. Marikhin, V.V. Sokolov, Pairs of Hamiltonians, quadratic in momenta, arXiv:0710.4035.
    37. A.B. Shabat, V.E. Adler, V.G. Marikhin, V.V. Sokolov (eds.), Encyclopedia of Integrable Systems, L.D. Landau Institute for Theoretical Physics - Research Institute for Symbolic Computations, J. Kepler Universität (2007) [on-line].
    38. A. Odesskii, V. Sokolov, Algebraic structures connected with pairs of compatible associative algebras, Int. Math. Res. Notices, 2006, 43734 (2006); math/0512499.
    39. A.V. Odesskii, V.V. Sokolov, Compatible Lie brackets related to elliptic curve, J. Math. Phys., 47, 013506 (2006); math/0506503.
    40. V.V. Sokolov, T. Wolf, Integrable quadratic classical Hamiltonians on so(4) and so(3,1), J. Phys. A 39 (8), 1915-1926 (2006); nlin/0405066.
    41. A.V. Odesskii, V.V. Sokolov, Integrable matrix equations related to pairs of compatible associative algebras, J. Phys. A 39(40), 12447-12456 (2006); math/0604574.
    42. I.Z. Golubchik, V.V. Sokolov, Soglasovannye skobki Li i uravnenie Yanga-Bakstera, TMF, 146 (2), 195-207 (2006) [I.Z. Golubchik, V.V. Sokolov, Compatible Lie brackets and the Yang-Baxter equation, Theor. Math. Phys., 146 (2), 159-169 (2006)].
    43. V.G. Marikhin, V.V. Sokolov, Pary kommutiruyushchikh gamil’tonianov, kvadratichnykh po impul’sam, TMF, 149(2), 147-160 (2006) [V.G. Marikhin, V.V. Sokolov, Pairs of commuting Hamiltonians quadratic in the momenta, Theor. Math. Phys., 149(2), 1425-1436 (2006)].
    44. I.Z. Golubchik, V.V. Sokolov, Factorization of the current algebra and integrable top-like systems, J. Nonlinear Math. Phys., 12, Suppl.1, 343-350 (2005).
    45. V.G. Marikhin, V.V. Sokolov, Separation of variables on a non-hyperelliptic curve, Regul. Chaotic Dyn., 10(1), 59-70 (2005); nlin/0412065.
    46. V.G. Marikhin. V.V. Sokolov, Razdelenie peremennykh na negiperellipticheskoi krivoi, Nelineinaya dinamika, 1(1), 53-67 (2005).
    47. V.G. Marikhin, V.V. Sokolov, O kvazishtekkelevykh gamil’tonianakh, Uspekhi mat. nauk, 60:5(365), 175-176 (2005) [V.G. Marikhin, V.V. Sokolov, On quasi-Stäckel Hamiltonians, Russ. Math. Surv., 60(5), 981-983 (2005)].
    48. V.V. Sokolov, Ob odnom klasse kvadratichnykh gamil’tonianov na so(4), Dokl. Akad. nauk, 394 (5), 602-605 (2004) [V.V. Sokolov, One class of quadratic so(4) Hamiltonians, Dokl. Math., 69 (1), 108-111 (2004)].
    49. V.V. Sokolov, O razlozheniyakh algebry petel’ nad so(3) v pryamuyu summu dvukh podalgebr, Dokl. Akad. nauk, 397 (3), 321-324 (2004) [V.V. Sokolov, On decompositions of the loop algebra over so(3) into a sum of two subalgebras, Dokl. Math., 70 (1), 568-570 (2004)].
    50. A.G. Meshkov, V.V. Sokolov, Klassifikatsiya integriruemykh divergentnykh N-komponentnykh evolyutsionnykh sistem, TMF, 139(2), 192–208 (2004) [A.G. Meshkov, V.V. Sokolov, Classification of integrable divergent N-component evolution systems, Theor. Math. Phys., 139(2), 609-622 (2004)].
    51. I.Z. Golubchik, V.V. Sokolov, Faktorizatsiya algebry petel’ i integriruemye sistemy tipa volchkov, TMF, 141(1), 3-23 (2004) [I.Z. Golubchik, V.V. Sokolov, Factorization of the loop algebra and integrable toplike systems, Theor. Math. Phys., 141 (1), 1329-1347 (2004)]; nlin/0403023.
    52. O.V. Efimovskaya, V.V. Sokolov, Razlozheniya algebry petel’ nad so(4) i integriruemye modeli tipa uravneniya kiral’nogo polya, Fundament. i prikl. matem., 10(1), 39-47 (2004) [O.V. Efimovskaya, V.V. Sokolov, Decompositions of the loop algebra over so(4) and integrable models of the chiral equation type, J. Math. Sci., 136(6), 4385–4391 (2006)].
    53. I.V. Komarov, V.V. Sokolov, A.V. Tsiganov, Poisson maps and integrable deformations of the Kowalevski top, J. Phys. A 36(29), 8035-8048 (2003); nlin/0304033.
    54. R.H. Heredero, A. Shabat, V. Sokolov, A new class of linearizable equations, J. Phys. A 36(47), L605-L614 (2003); nlin/0301001.
    55. A.G. Meshkov, V.V. Sokolov, Integrable evolution equations on the N-dimensional sphere, Commun. Math. Phys., 232 (1), 1-18 (2002).
    56. V.V. Sokolov, A.V. Tsyganov, Pary Laksa dlya deformirovanykh volchkov Kovalevskoi i Goryacheva-Chaplygina, TMF, 131(1), 118-125 (2002) [V.V. Sokolov, A.V. Tsiganov, Lax pairs for the deformed Kowalevski and Goryachev-Chaplygin tops, Theor. Math. Phys., 131(1), 543-549 (2002)]; nlin/0111035.
    57. V.V. Sokolov, A.V. Tsyganov, Kommutativnye puassonovy podalgebry dlya skobok Sklyanina i deformatsii izvestnykh integriruemykh modelei, TMF, 133(3), 485-500 (2002) [V.V. Sokolov, A.V. Tsiganov, Commutative Poisson subalgebras for Sklyanin brackets and deformations of some known integrable models, Theor. Math. Phys., 133(3), 1730-1743 (2002)]; nlin/0112011.
    58. I.Z. Golubchik, V.V. Sokolov, Soglasovannye skobki Li i integriruemye uravneniya tipa modeli glavnogo kiral’nogo polya, Funkts. analiz i ego pril., 36(3), 9-19 (2002) [I.Z. Golubchik, V.V. Sokolov, Compatible Lie brackets and integrable equations of the principal chiral model type, Funct. Anal. Appl., 36(3), 172-181 (2002)].
    59. V.V. Sokolov, Generalized Kowalewski Top: new integrable cases on e(3) and so(4), CRM Proceedings and Lecture Notes, 32, 307-313 (2002) [The Kowalevski Property. Edited by: Vadim B. Kuznetsov, ISBN 978-0-8218-2885-4]; nlin/0110022.
    60. V.V. Sokolov, T. Wolf, Classification of integrable polynomial vector evolution equations, J. Phys. A 34(49), 11139-11148 (2001); nlin/0611038.
    61. A.V. Borisov, I.S. Mamaev, V.V. Sokolov, Novyi integriruemyi sluchai na so(4), Dokl. Akad. nauk, 381(5), 614–615 (2001) [A.V. Borisov, I.S. Mamaev, V.V. Sokolov, A new integrable case on so(4), Dokl. Phys., 46(12), 888-889 (2001)].
    62. V.V. Sokolov, Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa, TMF, 129(1), 31-37 (2001) [V.V. Sokolov, A new integrable case for the Kirchhoff equation, Theor. Math. Phys., 129(1), 1335-1340 (2001)].
    63. A.V. Zhiber, V.V. Sokolov, Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa, Uspekhi mat. nauk, 56:1(337), 63–106 (2001) [A.V. Zhiber, V.V. Sokolov, Exactly integrable hyperbolic equations of Liouville type, Russ. Math. Surv., 56(1), 61-101 (2001)].
    64. A.V. Mikhailov, V.V. Sokolov, Integrable ODEs on associative algebras, Commun. Math. Phys., 211 (1), 231-251 (2000); solv-int/9908004.
    65. I.Z. Golubchik, V.V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys., 7 (2), 184-197 (2000); nlin/0003034.
    66. A.V. Mikhailov, V.V. Sokolov, Integriruemye obyknovennye differentsial’nye uravneniya na svobodnykh assotsiativnykh algebrakh, TMF, 122(1), 88-101 (2000) [A.V. Mikhailov, V.V. Sokolov, Integrable ordinary differential equations on free associative algebras, Theor. Math. Phys., 122(1), 72-83 (2000)].
    67. I.Z. Golubchik, V.V. Sokolov, Mnogokomponentnoe obobshchenie ierarkhii uravneniya Landau–Lifshitsa, TMF, 124(1), 62–71 (2000) [I.Z. Golubchik, V.V. Sokolov, Multicomponent generalization of the hierarchy of the Landau-Lifshitz equation, Theor. Math. Phys., 124(1), 909-917 (2000)].
    68. I.Z. Golubchik, V.V. Sokolov, Eshche odna raznovidnost’ klassicheskogo uravneniya Yanga–Bakstera, Funkts. analiz i ego pril., 34(4), 75–78 (2000) [I.Z. Golubchik, V.V. Sokolov, One more kind of the classical Yang-Baxter equation, Funct. Anal. Appl., 34(4), 296-298 (2000)].
    69. V.V. Sokolov, T. Wolf, A symmetry test for quasilinear coupled systems, Inverse Problems, 15(2), L5-L11 (1999); nlin/0611037.
    70. M. Gürses, A. Karasu, V.V. Sokolov, On construction of recursion operators from Lax representation, J. Math. Phys., 40(12), 6473-6490 (1999); solv-int/9909003.
    71. A.V. Zhiber, V.V. Sokolov, Novyi primer giperbolicheskogo nelineinogo uravneniya, obladayushchego integralami, TMF, 120(1), 20–26 (1999) [A.V. Zhiber, V.V. Sokolov, New example of a nonlinear hyperbolic equation possessing integrals, Theor. Math. Phys., 120(1), 834-839 (1999)].
    72. I.Z. Golubchik, V.V. Sokolov, Obobshchennye uravneniya Gaizenberga na ℤ-graduirovannykh algebrakh Li, TMF, 120(2), 248–255 (1999) [I.Z. Golubchik, V.V. Sokolov, Generalized Heisenberg equations on ℤ-graded Lie algebras, Theor. Math. Phys., 120(2), 1019-1025 (1999)].
    73. P.J. Olver, V.V. Sokolov, Integrable evolution equations on associative algebras, Commun. Math. Phys., 193 (2), 245-268 (1998).
    74. P.J. Olver, V.V. Sokolov, Non-abelian integrable systems of the derivative nonlinear Schrödinger type, Inverse Problems, 14(6), L5-L8 (1998).
    75. S.P. Balandin, V.V. Sokolov, On the Painlevé test for non-Abelian equations, Phys. Lett. A 246 (3-4), 267-272 (1998).
    76. I.Z. Golubchik, V.V. Sokolov, O nekotorykh obobshcheniyakh metoda faktorizatsii, TMF, 110(3), 339–350 (1997) [I.Z. Golubchik, V.V. Sokolov, On some generalizations of the factorization method, Theor. Math. Phys., 110(3), 267–276 (1997)].
    77. I.Z. Golubchik, V.V. Sokolov, Integriruemye uravneniya na ℤ-graduirovannykh algebrakh Li, TMF, 112(3), 375–383 (1997) [I.Z. Golubchik, V.V. Sokolov, Integrable equations on ℤ-graded Lie algebras, Theor. Math. Phys., 112(3), 1097–1103 (1997)].
    78. S.I. Svinolupov, V.V. Sokolov, Deformatsii iordanovykh troinykh sistem i integriruemye uravneniya, TMF, 108(3), 388–392 (1996) [S.I. Svinolupov, V.V. Sokolov, Deformations of triple-Jordan systems and integrable equations, Theor. Math. Phys., 108(3), 1160–1163 (1996)].
    79. I.Z. Golubchik, V.V. Sokolov, Ob integriruemykh sistemakh, porozhdennykh postoyannym resheniem uravneniya Yanga–Bakstera, Funkts. analiz i ego pril., 30(4), 68–71 (1996) [I.Z. Golubchik, V.V. Sokolov, Integrable systems generated by a constant solution of the Yang-Baxter equation, Funct. Anal. Appl., 30(4), 275–277 (1996)].
    80. I.T. Habibullin, V.V. Sokolov, R.I. Yamilov, Multi-component integrable systems and nonassociative structures, In: Nonlinear Physics: theory and experiment. Nature, structure and properties of nonlinear phenomena. Proc. workshop, Lecce, Italy, June 29-July 7, 1995. Alfinito, E. (ed.) et al., Singapore:, World Scientific Publishing, 1996, 139-168.
    81. V.V. Sokolov, S.I. Svinolupov, Deformations of nonassociative algebras and integrable differential equations, Acta Appl. Math., 41 (1-3), 323-339 (1995).
    82. V.V. Sokolov, S.I. Svinolupov, On nonclassical invertible transformations of hyperbolic equations, Eur. J. Appl. Math., 6(2), 145-156 (1995).
    83. V.V. Sokolov, A.V. Zhiber, On the Darboux integrable hyperbolic equations, Phys. Lett. A 208 (4-6), 303-308 (1995).
    84. R.H. Heredero, V.V. Sokolov, S.I. Svinolupov, Classification of third order integrable evolution equations, Physica D 87 (1-4), 32-36 (1995).
    85. A.V. Zhiber, V.V. Sokolov, S.Ya. Startsev, O nelineinykh giperbolicheskikh uravneniyakh, integriruemykh po Darbu, Dokl. Akad. nauk, 343 (6), 746-748 (1995) [A.V. Zhiber, V.V. Sokolov, S.Ya. Startsev, Darboux integrable nonlinear hyperbolic equations, Dokl. Math., 52 (1), 128-130 (1995)].
    86. V. Drinfel’d, V. Sokolov, Lie algebras and equation of Korteweg-de Vries type, Adv. Ser. Math. Phys., 22, 25-88 (1995) [W-Symmetry. Ed. by P. Bouwknegt & K. Schoutens. World Sci. Publ., River Edge, NJ. ISBN: 978-981-02-1762-4].
    87. R.H. Heredero, V.V. Sokolov, S.I. Svinolupov, Why are there so many integrable evolution equations of third order?, In: Nonlinear evolution equations and dynamical systems. NEEDS '94. Proc. 10th Int. Workshop, Los Alamos, NM, USA, September 11-18, 1994. Ed. by V.G. Makhanov et al., Singapore: World Scientific. 42-53 (1995). ISBN 981-02-2219-X.
    88. R.H. Heredero, V.V. Sokolov, S.I. Svinolupov, Toward the classification of third-order integrable evolution equations, J. Phys. A 27(13), 4557-4568 (1994).
    89. S.I. Svinolupov, V.V. Sokolov, Vektorno-matrichnye obobshcheniya klassicheskikh integriruemykh uravnenii, TMF, 100(2), 214–218 (1994) [S.I. Svinolupov, V.V. Sokolov, Vector-matrix generalizations of classical integrable equations, Theor. Math. Phys., 100(2), 959–962 (1994)].
    90. S.I. Svinolupov, V.V. Sokolov, Obobshchenie teoremy Li i iordanovy volchki, Matem. zametki, 53(2), 122–125 (1993) [S.I. Svinolupov, V.V. Sokolov, A generalization of a theorem of Lie, and Jordan tops, Math. Notes, 53(2), 201–203 (1993)].
    91. V.V. Sokolov, S.I. Svinolupov, T. Wolf, On linearizable evolution equations of second order, Phys. Lett. A 163 (5-6), 415-418 (1992).
    92. S.I. Svinolupov, V.V. Sokolov, Faktorizatsiya evolyutsionnykh uravnenii, Uspekhi mat. nauk, 47:3(285), 115–146 (1992) [S.I. Svinolupov, V.V. Sokolov, Factorization of evolution equations, Russ. Math. Surv., 47(3), 127-162 (1992)].
    93. S.I. Svinolupov, V.V. Sokolov, O predstavleniyakh kontrgradientnykh algebr Li v kontaktnykh vektornykh polyakh, Funkts. analiz i ego pril., 25(2), 76–78 (1991) [S.I. Svinolupov, V.V. Sokolov, Representations of contragradient Lie algebras in contact vector fields, Funct. Anal. Appl., 25(2), 146–147 (1991)].
    94. A.V. Mikhailov, A.B. Shabat, V.V. Sokolov, The symmetry approach to classification of integrable equations, In: What is integrability?, Springer Ser. Nonlinear Dyn., 115-184 (1991) [Ed. by V.E. Zakharov, Berlin etc., Springer-Verlag, 1991. xiv, 321 pp. ISBN 3-540-51964-5].
    95. S.I. Svinolupov, V.V. Sokolov, Slabye nelokal’nosti v evolyutsionnykh uravneniyakh, Matem. zametki, 48(6), 91–97 (1990) [S.I. Svinolupov, V.V. Sokolov, Weak nonlocalities in evolution equations, Math. Notes, 48(6), 1234-1239 (1990)].
    96. A.V. Mikhailov, A.B. Shabat, V.V. Sokolov, Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii, V kn: “Integriruemost’ i kineticheskie uravneniya dlya solitonov”, Kiev: Naukova dumka, 1990, s.213-279.
    97. V.V. Sokolov, S.I. Svinolupov, T. Wolf, On the generation of nonlinear integrable evolution equations from linear second order equations, Rechnergestutzte Problemlosung/Computeranalytik (Weibig, 1988), 152 - 163, Studientexte, Bd.105, Tech. Univ. Dresden, 1989.
    98. V.V. Sokolov, O simmetriyakh evolyutsionnykh uravnenii, Uspekhi mat. nauk, 43:5(263), 133–163 (1988) [V.V. Sokolov, On the symmetries of evolution equations, Russ. Math. Surv., 43(5), 165-204 (1988)].
    99. V.V. Sokolov, Psevdosimmetrii i differentsial’nye podstanovki, Funkts. analiz i ego pril., 22(2), 47–56 (1988) [V.V. Sokolov, Pseudosymmetries and differential substitutions, Funct. Anal. Appl., 22(2), 121-129 (1988)].
    100. V.V. Sokolov, O strukture algebry simmetrii dlya odnopolevogo evolyutsionnogo uravneniya, Dokl. Akad. nauk SSSR, 294 (5), 1065-1069 (1987) [V.V. Sokolov, On the structure of the algebra of symmetries for a one-field evolution equation, Sov. Math., Dokl. 35 (3), 635-638 (1987)].
    101. F.Kh. Mukminov, V.V. Sokolov, Integriruemye evolyutsionnye uravneniya so svyazyami, Matem. sb., 133(175), № 3(7), 392–414 (1987) [F.Kh. Mukminov, V.V. Sokolov, Integrable evolution equations with constraints, Math. USSR Sb., 61(2), 389-410 (1988)].
    102. V.V. Sokolov, Finite-dimensional subalgebras in K3 and evolution equations, Reports of Stocholm University, 1986, 74-89.
    103. V.G. Drinfel’d, V.V. Sokolov, Ob uravneniyakh, rodstvennykh uravneniyu Kortevega-de Friza, Dokl. Akad. nauk SSSR, 284 (1), 29-33 (1985) [V.G. Drinfel'd, V.V. Sokolov, On equations related to the Korteweg-de Vries equation, Sov. Math., Dokl. 32, 361-365 (1985)].
    104. V.G. Drinfel’d, S.I. Svinolupov, V.V. Sokolov, Klassifikatsiya evolyutsionnykh uravnenii pyatogo poryadka, obladayushchikh beskonechnoi seriei zakonov sokhraneniya, Dokl. AN USSR, ser. A, №10, 7-10 (1985).
    105. V.V. Sokolov, O gamil’tonovosti uravneniya Krichevera - Novikova, Dokl. Akad. nauk SSSR, 277 (1), 48-50 (1984) [V.V. Sokolov, On the Hamiltonian property of the Krichever-Novikov equation, Sov. Math., Dokl. 30, 44-46 (1984)].
    106. V.V. Sokolov, A.B. Shabat, Classification of integrable evolution equations, Sov. Sci. Rev., Sect. C, Math. Phys. Rev. 4, 221-280 (1984) [Edited by S. P. Novikov. Harwood Academic Publishers, Chur, 1984. ix+280 pp. ISBN: 3-7186-0146-X 58-06].
    107. V.G. Drinfel’d, V.V. Sokolov, Algebry Li i uravneniya tipa Kortevega–de Friza, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., t. 24, 81–180 (1984) ) [V.G. Drinfel'd and V.V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math., 30(2), 1975-2036 (1984)].
    108. S.I. Svinolupov, V.V. Sokolov, R.I. Yamilov, O preobrazovaniyakh Bek-lunda dlya integriruemykh evolyutsionnykh uravnenii, Dokl. Akad. nauk SSSR, 271 (4), 802-805 (1983) [S.I. Svinolupov, V.V. Sokolov, R.I. Yamilov, On Bäcklund transformations for integrable evolution equations, Sov. Math., Dokl. 28, 165-168 (1983)].
    109. V.G. Drinfel’d, V.V. Sokolov, Simmetrii v uravneniyakh Laksa, V sb: Integriruemye sistemy, pod red. A.B. Shabata, Ufa, s. 3-22 (1982).
    110. S.I. Svinolupov, V.V. Sokolov, O zakonakh sokhraneniya dlya uravnenii s netrivial’noi algebroi Li-Beklunda, V sb: Integriruemye sistemy, pod red. A.B. Shabata, Ufa, s.53-67 (1982).
    111. S.I. Svinolupov, V.V. Sokolov, Ob evolyutsionnykh uravneniyakh s netrivial’nymi zakonami sokhraneniya, Funkts. analiz i ego pril., 16(4), 86-87 (1982) [S.I. Svinolupov, V.V. Sokolov, Evolution equations with nontrivial conservative laws, Funct. Anal. Appl., 16(4), 317-319 (1983)].
    112. V.G. Drinfel’d, V.V. Sokolov, Uravneniya tipa Kortevega-de Friza i prostye algebry Li, Dokl. Akad. nauk SSSR, 258 (1), 11-16 (1981) [V.G. Drinfel'd, V.V. Sokolov, Equations of Korteweg-de Vries type and simple Lie algebras, Sov. Math., Dokl. 23, 457-462 (1981)].
    113. B.A. Magadaev, V.V. Sokolov, O polnoi algebre Li-Beklunda uravneniya Kortevega-de Friza, Mekhanika neodnorodnykh sploshnykh sred, Dinamika sploshnoi sredy, 52, 48-55 (1981).
    114. V.G. Drinfel’d, V.V. Sokolov, Novye evolyutsionnye uravneniya, obladayushchie (L,A) - paroi, Trudy seminara S.L. Soboleva, Inst. matem. Novosibirsk, 2, 5-9 (1981).
    115. V.V. Sokolov, A.B. Shabat, L,A-pary i zamena tipa Rikatti, Funkts. analiz i ego pril., 14(2), 79-80 (1980) [V.V. Sokolov, A.B. Shabat, (L,A)-Pairs and a Ricatti type substitution, Funct. Anal. Appl., 14(2), 148-150 (1980)].
    116. V.V. Sokolov, Primery kommutativnykh kolets differentsial’nykh operatorov, Funkts. analiz i ego pril., 12(1), 82–83 (1978) [V.V. Sokolov, Examples of commutative rings of differential operators, Funct. Anal. Appl., 12(1), 65-66 (1978)].
    117. V.V. Sokolov, O biratsional’no izomorfnykh kommutativnykh kol’tsakh differentsial’nykh operatorov, Funkts. analiz i ego pril., 12(3), 88–89 (1978) [V.V. Sokolov, Birationally isomorphic commutative rings of differential operators, Funct. Anal. Appl., 12(3), 234-236 (1978)].