Russian Academy of Sciences

Landau Institute for Theoretical Physics

Andrei G. Lebed’

Senior researcher (associated)

Doctor of science

Work phone: (+1 520) 626-10-31
Email:
Homepage: http://www.physics.arizona.edu/physics/people.php?page=faculty&group=l

Publications

    1. A.G. Lebed, Response to: Comment on “Does the Equivalence between Gravitational Mass and Energy Survive for a Composite Quantum Body?”, Adv. High Energy Physics, 2017, 1683075 (2017), WoS: 000413592500001.
    2. A.G. Lebed, Inequivalence between gravitational mass and energy due to quantum effects at microscopic and macroscopic levels, Int. J. Mod. Phys. D 26, 1730022 (2017); arXiv:1711.00116, WoS: 000413445300001, Scopus: 2-s2.0-85020196026.
    3. A.G. Lebed, Quantum limit in a quasi-one-dimensional conductor in a high tilted magnetic field, Pis’ma v ZhETF, 106 (8), 491-492 (2017) [JETP Lett., 106(8), 509-513 (2017)], WoS: 000418569400005, Scopus: 2-s2.0-85031939569.
    4. A.G. Lebed, Possible existence of superconductivity in the quasi-one-dimensional conductor Li0.9Mo6O17 at ultrahigh magnetic fields (H ≥ 45 T), Phys. Rev. B 93, 094523 (2016), WoS: 000372798800004, Scopus: 2-s2.0-84961905512.
    5. A.G. Lebed, Non-Fermi-liquid magic angle effects in high magnetic fields, Phys. Rev. B 94, 035162 (2016), WoS: 000381483800002, Scopus: 2-s2.0-84982698630.
    6. A.G. Lebed, Breakdown of the equivalence between active gravitational mass and energy for a quantum body, J. Phys.: Conf. Ser. 738, 012036 (2016) [Proc. 5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016), 23–26 May 2016, Athens, Greece]; arXiv:1609.06358, Scopus: 2-s2.0-84988697467.
    7. A.G. Lebed, Breakdown of the equivalence between gravitational mass and energy for a quantum body: Theory and suggested experiments, Int. J. Mod. Phys. D 24(11), 1530027 (2015); arXiv:1608.08656, WoS: 000360981100003.
    8. A.G. Lebed, Non-Fermi-Liquid Crossovers in a Quasi-One-Dimensional Conductor in a Tilted Magnetic Field, Phys. Rev. Lett. 115, 157001 (2015), WoS: 000362449800005.
    9. O. Sepper, A.G. Lebed, Quantum limit and reentrant superconducting phases in the Q1D conductor Li0.9Mo6O17, Physica B 460, 231-235 (2015), WoS: 000350808300050, Scopus: 2-s2.0-84923875579.
    10. A.G. Lebed, Breakdown of the Equivalence between Passive Gravitational Mass and Energy for a Quantum Body, Proc. 13th Marcel Grossman Meeting on General Relativity, Stockholm University, Sweden, 1-7 July 2012, p.1953-1955 (2014). Edited by K. Rosquist, R.T. Jantzen, R. Ruffini ,World Scientific, Singapore, 2014, lxi,2618 pp. (In 3 Volumes). ISBN: 978-981-4623-99-5; arXiv:1208.5756.
    11. A.G. Lebed, Does the equivalence between gravitational mass and energy survive for a composite quantum body?, Adv. High Energy Phys., 2014, 678087 (2014); arXiv:1404.3765, WoS: 000333270200001, Scopus: 2-s2.0-84897545915.
    12. A.G. Lebed, O. Sepper, Quantum limit in a magnetic field for triplet superconductivity in a quasi-one-dimensional conductor, Phys. Rev. B 90, 024510 (2014); arXiv:1410.7420, WoS: 000341660100004.
    13. O. Sepper, A.G. Lebed, Possible restoration of superconductivity in the quasi-one-dimensional conductor Li0.9Mo6O17 in pulsed high magnetic fields H≃100T, Phys. Rev. B 90, 094509 (2014); arXiv:1411.0019, WoS: 000342135200002.
    14. A.G. Lebed, Non-Fermi-liquid magic angle effects in high magnetic fields, Phys. Rev. B 94, 035162 (2016).
    15. A.G. Lebed, Breakdown of the equivalence between gravitational mass and energy for a composite quantum body, J. Phys. Conf. Ser., 490, 012154 (2014); arXiv:1404.4044, Scopus: 2-s2.0-84896930067.
    16. A.G. Lebed, Is gravitational mass of a composite quantum body equivalent to its energy?, Centr. Eur. J. Phys., 11 (8), 969-976 (2013), WoS: 000326049400001, Scopus: 2-s2.0-84886289656.
    17. A.G. Lebed, O. Sepper, Possible triplet superconductivity in the quasi-one-dimensional conductor Li0.9Mo6O17, Phys. Rev. B 87, 100511(R) (2013) [5 pages]; arXiv:1211.1961, WoS: 000316792300001.
    18. O. Sepper, A.G. Lebed, Nodeless versus nodal scenarios of possible triplet superconductivity in the quasi-one-dimensional layered conductor Li0.9Mo6O17, Phys. Rev. B 88, 094520 (2013) [7 pages]; arXiv:1310.0059, WoS: 000325172900006.
    19. A.G. Lebed, Equivalence between Gravitational Mass and Energy for a Quantum Body at a Macroscopic Level, arXiv:1304.6106.
    20. A.G. Lebed, d-Wave-like nodal superconductivity in the organic conductor (TMTSF)2ClO4, Physica B 407(11), 1803-1805 (2012); arXiv:1208.6553, WoS: 000303415000031, Scopus: 2-s2.0-84859532298.
    21. A.G. Lebed, O. Sepper, Non-analytical angular dependence of the upper critical magnetic field in a quasi-one-dimensional superconductor, Pis’ma v ZhETF, 96 (3), 189-193 (2012) [JETP Lett., 96(3), 176-180 (2012)]; arXiv:1209.4672, WoS: 000309679900006, Scopus: 2-s2.0-84867304705.
    22. A. Lebed, Breakdown of the Equivalence between Energy Content and Weight in a Weak Gravitational Field for a Quantum Body, arXiv:1205.3134.
    23. A.G. Lebed, Hidden Reentrant and Larkin-Ovchinnikov-Fulde-Ferrell Superconducting Phases in a Magnetic Field in a (TMTSF)2ClO4, Phys. Rev. Lett. 107, 087004 (2011) [5 pages]; arXiv:1108.6085, WoS: 000294067500012, Scopus: 2-s2.0-80051945720.
    24. A.G. Lebed, Hidden reentrant superconducting phase in a magnetic field in (TMTSF)2ClO4, Pis’ma v ZhETF, 94 (5), 414-417 (2011) [JETP Lett., 94(5), 382-385 (2011)], WoS: 000297157000011, Scopus: 2-s2.0-80955141061.
    25. A.G. Lebed, Ginzburg-Landau slopes of the anisotropic upper critical magnetic field and band parameters in the superconductor (TMTSF)2ClO4, Pis’ma v ZhETF, 94 (9), 748-751 (2011) [JETP Lett., 94(9), 689-692 (2011)]; arXiv:1201.3882, WoS: 000300146100005, Scopus: 2-s2.0-84855566042.
    26. A.G. Lebed, Is Gravitational Mass of a Composite Quantum Body Equivalent to its Energy?, arXiv:1111.5365.
    27. S. Wu, A.G. Lebed, Unification theory of angular magnetoresistance oscillations in quasi-one-dimensional conductors, Phys. Rev. B 82, 075123 (2010) [6 pages]; arXiv:1008.4810, Scopus: 2-s2.0-77957552162.
    28. A.G. Lebed, S. Wu, Larkin-Ovchinnikov-Fulde-Ferrell phase in the superconductor (TMTSF)2ClO4: Theory versus experiment, Phys. Rev. B 82, 172504 (2010) [4 pages]; arXiv:1011.4497, Scopus: 2-s2.0-78649666103.
    29. A.G. Lebed, Universal field-induced spin-density-wave phases: Theory versus experiment, Physica B, 405(11, Suppl.1), S106-S107 (2010), Scopus: 2-s2.0-84855537664.
    30. Si Wu, A.G. Lebed, Soliton wall superlattice charge-density-wave phase in the quasi-one-dimensional conductor (Per)2Pt(mnt)2, Phys. Rev. B 80, 035128 (2009) [7 pages]; arXiv:0903.4018.
    31. A.G. Lebed, Universal Field-Induced Charge-Density-Wave Phase Diagram: Theory versus Experiment, Phys. Rev. Lett., 103, 046401 (2009) [4 pages]; arXiv:0904.2591.
    32. A.G. Lebed, S. Wu, Super-crystalline phase in quasi-one-dimensional conductors, Physica B 404(3-4), 347-349 (2009).
    33. A.G. Lebed, Paramagnetic intrinsic Meissner effect in layered superconductors, Phys. Rev. B 78, 012506 (2008); arXiv:0802.3710.
    34. O. Dutta, A.G. Lebed, Cooper pairs with broken time-reversal, parity, and spin-rotational symmetries in singlet type-II superconductors, Phys. Rev. B 78, 224504 (2008); arXiv:0805.1749.
    35. A.G. Lebed, Paramagnetic Intrinsic Meissner Effect in a Bulk, Pis’ma v ZhETF, 88 (3), 234-237 (2008) [JETP Lett., 88(3), 201-204 (2008)].
    36. A.G. Lebed (ed.), The Physics of Organic Superconductors and Conductors, Springer Series in Materials Science, Vol. 110, 2008, xvi,772 p. 343 ill., ISBN: 978-3-540-76667-4.
    37. A. Lebed, Field-Induced Spin–Density Waves and Dimensional Crossovers, Springer Series in Materials Science, Vol. 110, 25-40 (2008) [The Physics of Organic Superconductors and Conductor, Ed. A.G. Lebed. ISBN 978-3-540-76667-4].
    38. A. Lebed, S. Wu, Magnetic Properties of Organic Conductors and Superconductors as Dimensional Crossovers, Springer Series in Materials Science, Vol. 110, 127-184 (2008) [The Physics of Organic Superconductors and Conductor, Ed. A.G. Lebed. ISBN 978-3-540-76667-4].
    39. A. Lebed, S. Wu, Triplet Scenario of Superconductivity vs. Singlet One in (TMTSF)2X Materials, Springer Series in Materials Science, Vol. 110, 643-660 (2008) [The Physics of Organic Superconductors and Conductor, Ed. A.G. Lebed. ISBN 978-3-540-76667-4].
    40. A.G. Lebed, S. Wu, Soliton Wall Superlattice in the Quasi-One-Dimensional Conductor (Per)2Pt(mnt)2, Phys. Rev. Lett. 99, 026402 (2007); cond-mat/0702500.
    41. A.G. Lebed, S. Wu, Soliton wall superlattice charge-density-wave phase in a magnetic field, Pis’ma v ZhETF, 86 (2), 144-147 (2007) [JETP Letters, 86(2), 135-138 (2007)].
    42. A.G. Lebed, Type-IV Superconductivity: Can Superconductivity be more Exotic than Unconventional, J. Low Temp. Phys., 142(3-4), 173-178 (2006).
    43. H. Yoshino, Z. Bayindir, J. Roy, B. Shaw, H.-i. Ha, A. Lebed, M.J. Naughton, Unconventional Field Dependence of Magnetoresistance of (TMTSF)2ClO4 Studied by 46-T Pulsed Magnetic Field System, J. Low Temp. Phys., 142(3-4), 319-322 (2006).
    44. A.G. Lebed, N.N. Bagmet, Quantum (Nano-scale) Limit in a Parallel Magnetic Field in Layered Q1D Conductor, J. Low Temp. Phys., 142(3-4), 495-498 (2006) [J. Low Temp. Phys., 142(3-4), 499-502 (2006)].
    45. H. Yoshino, Z. Bayindir, J. Roy, B. Show, H.-I. Ha, A.G. Lebed, M.J. Naughton, K. Kikuchi, H. Nishikawa, K. Murata, Pulsed magnetic field study of unconventional magnetoresistance of Q1D superconductors (TMTSF)2ClO4 and (DMET)2I3, J. Phys.: Conf. Ser., 51, 339-342 (2006).
    46. H.I. Ha, A.G. Lebed, M.J. Naughton, Interference effects due to commensurate electron trajectories and topological crossovers in (TMTSF)2ClO4, Phys. Rev. B 73, 033107 (2006) [4 pages]; cond-mat/0503649.
    47. A.G. Lebed, Cooper Pairs with Broken Parity and Spin-Rotational Symmetries in d-Wave Superconductors, Phys. Rev. Lett. 96, 037002 (2006); cond-mat/0507692.
    48. H. Yoshino, Z. Bayindir, J. Roy, B. Shaw, H.-i. Ha, A.G. Lebed, M.J. Naughton, Pulsed Field Studies of Angular Dependence of Unconventional Magnetoresistance in (TMTSF)2ClO4 , AIP Conf. Proc., 850,1542-1543 (2006). Ed. by Y. Takano, S.P. Hershfield, S.O. Hill, P.J. Hirschfeld, A.M. Goldman. ISBN: 0-7354-0347-3.
    49. A.G. Lebed, H.-I. Ha, M.J. Naughton, Angular magnetoresistance oscillations in organic conductors, Phys. Rev. B 71, 132504 (2005) (4 pages); cond-mat/0411206.
    50. A.G. Lebed, Quantum Limit in a Parallel Magnetic Field in Layered Conductors, Phys. Rev. Lett. 95, 247003 (2005); cond-mat/0411496.
    51. A.G. Lebed, Type-IV superconductivity: Cooper pairs with broken inversion and time-reversal symmetries in conventional superconductors, Pis’ma v ZhETF, 82 (4), 223-227 (2005) [JETP Lett., 82(4), 204-209 (2005)]; cond-mat/0507691.
    52. A.G. Lebed, N.N. Bagmet, M.J. Naughton, Magic angles, AMRO and interference effects in layered conductors, J. Phys. IV France, 114, 77-80 (2004).
    53. A.G. Lebed, N.N. Bagmet, M.J. Naughton, Magic angle effects and angular magnetoresistance oscillations as dimensional crossovers, Phys. Rev. Lett. 93, 157006 (2004); cond-mat/0404042.
    54. A.G. Lebed, M.J. Naughton, Interference commensurate oscillations in quasi-one-dimensional conductors, Phys. Rev. Lett. 91, 187003 (2003); cond-mat/0304591.
    55. A.G. Lebed, Theory of magnetic field-induced charge-density-wave phases, Pis’ma v ZhETF, 78 (3), 170-174 (2003) [JETP Lett., 78 (3), 138-142 (2003)].
    56. A.G. Lebed, Magnetic tests to reveal triplet supeconductivity in (TMTSF)2PF6 and a possible breaking of a time reversal symmetry in Sr2RuO4, LBCO, and YBCO, Int. J. Mod. Phys. B 16(20-22), 3198 (2002).
    57. A.G. Lebed, Triplet superconductivity order parameter in an organic superconductor (TMTSF)2PF6, Int. J. Mod. Phys. B 16(20-22), 3271 (2002).
    58. A.G. Lebed, M.J. Naughton, Fermi surface interference effects and angular magnetic oscillations in Q1D conductors, J. Phys. IV France, 12(PR9), 369-372 (2002).
    59. A.G. Lebed, Field-induced spin-density-wave phases in quasi-one-dimensional conductors: Theory versus experiments, Phys. Rev. Lett. 88, 177001 (2002); cond-mat/0304406.
    60. A.G. Lebed, Magnetic tests to reveal triplet supeconductivity in (TMTSF)2PF6 and a possible breaking of a time reversal symmetry in Sr2RuO2, LBCO, and YBCO, Proc. of Physical Phenomena at High Magnetic Fields IV. Santa Fe, NM, USA, 19 Oct. 2001. World Scientific, 2002, pp. 302, xxi+518 pp.
    61. A.G. Lebed, Triplet superconductivity order parameter in an organic superconductor (TMTSF)2PF6, Proc. of Physical Phenomena at High Magnetic Fields IV. Santa Fe, NM, USA, 19 Oct. 2001. World Scientific, 2002, pp. 377, xxi+518 pp.
    62. A.G. Lebed, K. Machida, M. Ozaki, Triplet electron pairing and anisotropic spin susceptibility in organic superconductors (TMTSF)2X, Phys. Rev. B 62 (2), R795-R798 (2000); cond-mat/0005039.
    63. A.G. Lebed, N. Hayashi, Paramagnetic-like destructive mechanism against superconductivity in Sr2RuO4: a triplet scenario versus a singlet one, Physica C 341-348 (Pt.3), 1677-1678 (2000).
    64. A.G. Lebed, Possible triplet order parameter in a Q1D organic superconductor (TMTSF)2PF6, Physica C 341-348 (Pt.3), 1699-1700 (2000).
    65. A.G. Lebed, Does the "quantized nesting model" properly describe the magnetic-field-induced spin-density-wave transitions?, Pis’ma v ZhETF, 72 (3), 205-209 (2000) [JETP Lett., 72 (3), 141-143 (2000)].
    66. A.G. Lebed, Gap symmetry and a revival of superconductivity in high parallel magnetic fields in Q2D and Q1D organic, high-Tc, and Sr2RuO4 compounds, J. Superconductivity, 12 (3), 453-458 (1999).
    67. A.G. Lebed, Revival of superconductivity in high magnetic fields and a possible p-wave pairing in (TMTSF)2PF6, Phys. Rev. B 59 (2), R721-R724 (1999), WoS: 000078111600011.
    68. A.G. Lebed, K. Yamaji, Restoration of superconductivity in high parallel magnetic fields in layered superconductors, Phys. Rev. Lett. 80(12), 2697-2700 (1998), WoS: 000072659200050.
    69. A.G. Lebed, Ground state of (TMTSF)2ClO4 in high magnetic fields: The creation of Su-Schrieffer-Heeger solitons, Phys. Rev. B 55 (3), 1299-1302 (1997).
    70. A.G. Lebed, N.N. Bagmet, Nonanalytical magnetoresistance, the third angular effect, and a method to investigate Fermi surfaces in quasi-two-dimensional conductors, Phys. Rev. B 55(14), R8654-R8657 (1997).
    71. A.G. Lebed, K. Yamaji, Restoration of superconductivity at high magnetic fields in layered high-Tc and organic superconductors, Physica C 282-287 (Pt.4), 1859-1860 (1997).
    72. A.G. Lebed, N.N. Bagmet, Non-analytical magnetoresistance and a new method of investigation of Fermi surfaces in Q2D and Q1D conductors, Synth. Met., 85 (1-3), 1493-1494 (1997).
    73. A.G. Lebed, New aspects of non-Fermi-liquid behaviour in Q1D metals, Synth. Met., 85 (1-3), 1615-1616 (1997).
    74. T. Sasaki, A.G. Lebed, T. Fukase, N. Toyota, Magnetic field response of the spin density wave in α-(BEDT-TTF)2KHg(SCN)4, Synth. Met., 86 (1-3), 2063-2064 (1997).
    75. A.G. Lebed, Magnetic oscillations in a normal state of organic conductors: Many-body approach, J. Phys. I France, 6(12), 1819-1836 (1996).
    76. T. Sasaki, A.G. Lebed, T. Fukase, N. Toyota, Interplay of the spin-density-wave state and magnetic field in the organic conductor α-(BEDT-TTF)2KHg(SCN)4, Phys. Rev. B 54(18), 12969–12978 (1996).
    77. A.G. Lebed, Su-Schrieffer-Heeger solitons as a ground state of organic superconductors in a magnetic field, Proc. of Physical Phenomena at High Magnetic Fields II. Tallahassee, FL, USA, 6 May 1995. Ed. by Z. Fisk, L. Gor'kov, D. Meltzer, R. Schrieffer, World Scientific, 1996, pp. 346-349, xviii+787 pp.
    78. L.P. Gor’kov, A.G. Lebed, Fast oscillations in the surface impedance of (TMTSF)2ClO4 in a magnetic field, Phys. Rev. B 51 (2), 1362-1365 (1995).
    79. L.P. Gor’kov, A.G. Lebed, Metal-phase stability of (TMTSF)2ClO4 in high magnetic fields, where TMTSF is tetramethyltetraselenafulvalene, Phys. Rev. B 51 (5), 3285-3288 (1995).
    80. A.G. Lebed, New type of quantum magnetic resistance oscillations in quasi-one-dimensional conductors, Phys. Rev. Lett. 74(24), 4903-4906 (1995).
    81. L.P. Gor’kov, A.G. Lebed, Anion gap and stability of the metallic phase for (TMTSF)2ClO4, Synth. Met., 70 (1-3), 727-730 (1995).
    82. A.G. Lebed, Magic angles effects and rapid magnetic oscillations in organic superconductors, Synth. Met., 70 (1-3), 993-996 (1995).
    83. A.G. Lebed, Commensurability resonance in quasi-one-dimensional conductors, J. Phys. I France, 4 (3), 351-355 (1994).
    84. L.P. Gor’kov, A.G. Lebed’, Cyclotron resonance on open orbits in organic materials, Phys. Rev. Lett. 71(23), 3874-3877 (1993).
    85. A.G. Lebed, New type of magnetic resonance and giant quasi-one-dimensional fluctuations in organic superconductors, Synth. Met., 57 (2-3), 4691-4696 (1993).
    86. A.G. Lebed, New type of resonance and giant fluctuations in organic superconductors, J. Phys. I France, 2(11), 2005-2009 (1992).
    87. A.G. Lebed, New phases and quantum Hall effect in organic superconductors, Physica B 169 (1-4), 368-371 (1991).
    88. A.G. Lebed, Spin Density Waves and Fast Oscillations in Organic Superconductors, Physica Scripta, T39, 386-388 (1991).
    89. A.G. Lebed, New phase transitions in the organic superconductor (TMTSF)2ClO4, Synth. Met., 42 (1-2), 1938-1938 (1991).
    90. A.G. Lebed’, Volny spinovoi plotnosti i kvantovyi effekt Kholla v organicheskikh sverkhprovodnikakh, ZhETF, 99 (6), 1849-1852 (1991) [A.G. Lebed’, Spin density waves and the quantum Hall effect in organic superconductors, Sov. Phys. JETP 72(6), 1035-1036 (1991)].
    91. A.G. Lebed’, Novye fazy v organicheskikh sverkhprovodnikakh, Pis’ma v ZhETF, 51(11), 583-585 (1990) [A.G. Lebed’, New phases in organic superconductors, JETP Lett., 51(11), 663-666 (1990)].
    92. A.G. Lebed, P. Bak, Theory of reentrance of spin-density-wave transitions in bis-tetramethyltetraselenafulvalenium perchlorate [(TMTSF)2ClO4], Phys. Rev. B 40(16), 11433-11436 (1989).
    93. A.G. Lebed, P. Bak, Theory of unusual anisotropy of magnetoresistance in organic superconductors, Phys. Rev. Lett. 63(12), 1315-1317 (1989), WoS: A1989AQ05200032.
    94. A.G. Lebed, Josephson junctions in single-crystal YBa2Cu3O7, Int. J. Mod. Phys. B 2 (5), 1113-1120 (1988).
    95. L.I. Glazman, A.E. Koshelev, A.G. Lebed’, Rezistivnyi perekhod i kriticheskie polya sverkhprovodyashchikh keramik, ZhETF, 94 (6), 259-269 (1988) [L.I. Glazman, A.E. Koshelev, A.G. Lebed’, Resistive transition and critical fields of superconducting ceramics, Sov. Phys. JETP 67(6), 1235-1241 (1988)].
    96. L.I. Burlachkov, L.P. Gor’kov, A.G. Lebed’, Identification of the Superconductivity Type in Organic Superconductors, Europhys. Lett., 4 (8), 941-946 (1987); Erratum — ibid, 5(7), 669 (1988).
    97. L.I. Burlachkov, L.P. Gor’kov, A.G. Lebed’, On the superconductivity type in the Bechgaard salts, Physica B+C 148 (1-3), 500-502 (1987).
    98. L.I. Glazman, A.E. Koshelev, A.G. Lebed’, Crystal anisotropy and superconductivity of ceramics (in Russian), Pis’ma v ZhETF, 46, Suppl.1, 148-151 (1987) [L.I. Glazman, A.E. Koshelev, A.G. Lebed’, Crystalline anisotropy and superconductivity of ceramics, JETP Lett., 46(S1), S123-S125 (1987)].
    99. A.G. Lebed’, Anizotropiya neustoichivosti dlya volny spinovoi plotnosti, indutsirovannoi magnitnym polem v Q1D provodnikakh, Pis’ma v ZhETF, 43 (3), 137-139 (1986) [A.G. Lebed’, Anisotropy of an instability for a spin density wave induced by a magnetic field in a Q1D conductor, JETP Lett., 43 (3), 174-177 (1986)], WoS: A1986C796300009.
    100. A.G. Lebed’, Obratimyi kharakter orbital’nogo mekhanizma podavleniya sverkhprovodimosti, Pis’ma v ZhETF, 44 (2), 89-92 (1986) [A.G. Lebed’, Reversible nature of the orbital mechanism for the suppression of superconductivity, JETP Lett., 44 (2), 114-117 (1986)], WoS: A1986F079100012.
    101. L.P. Gor’kov, A.G. Lebed, Instability of Metal Phase of the Q1D-Conductor in Magnetic Field, Mol. Cryst. Liq. Cryst., 119 (1-4), 73-77 (1985).
    102. A.G. Lebed’, Fazovaya diagramma sloistykh kvaziodnomernykh provodnikov v magnitnom pole, ZhETF, 89 (3), 1034-1049 (1985) [A.G. Lebed’, Phase diagram of layered quasi-one-dimensional conductors in a magnetic field, Sov. Phys. JETP 62(3), 595-604 (1985)].
    103. L.P. Gor’kov, A.G. Lebed’, On the stability of the quasi-onedimensional metallic phase in magnetic fields against the spin density wave formation, J. Physique Lett., 45 (9), 433-440 (1984), WoS: A1984ST58500006.
    104. A.G. Lebed’, Domennaya struktura v elektricheskom pole v soizmerimykh kvaziodnomernykh provodnikakh, ZhETF, 86 (4), 1553-1567 (1984) [A.G. Lebed’, Domain structure in an electric field in commensurate quasi-one-dimensional conductors, Sov. Phys. JETP, 59(4), 909-916 (1984)].
    105. L.P. Gorkov, A.G. Lebed, Domain-walls and their properties in quasi-one-dimensional crystals, J. Phys. France, 44 (NC-3), 1531-1537 (1983).
    106. L.P. Gor’kov, E.N. Dolgov, A.G. Lebed’, Uvlechenie fononov i osobennosti provodimosti v odnomernykh metallakh, ZhETF, 82 (2), 613-630 (1982) [L.P. Gor’kov, E.N. Dolgov, A.G. Lebed, Phonon drag and the characteristics of the conductivity in one-dimensional metals, Sov. Phys. JETP, 55(2), 365-375 (1982)].
    107. S.A. Brazovskii, L.P. Gor’kov, A.G. Lebed’, Nesoizmerimye sverkhstruktury v organicheskikh provodnikakh s trekhmernym elektronnym spektrom, ZhETF, 83 (3), 1198-1211 (1982) [S.A. Brazovskii, L.P. Gor’kov, A.G. Lebed’, Incommensurate superstructures in organic conductors with three-dimensional electronic spectra, Sov. Phys. JETP, 56(3), 683-690 (1982)].