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Предисловие
Посвящаю моим родителям

Наталье Владимировне и

Сергею Станиславовичу

Данная работа посвящена построению, реализации и использованию эффективных методов

моделирования невырожденных кулоновских систем с периодическими граничными условиями,

учитывающих кулоновское дальнодействие методом суммирования Эвальда. Основными парамет­

рами таких систем являются параметр неидеальности Γ и вырождения 𝜒; таким образом, под

невырожденными системами понимается малость параметра 𝜒, а свойства необходимо получить

в широком диапазоне Γ. Малость параметра вырождения позволяет избежать проблемы знаков,

которая значительно ограничивает возможности атомистических методов моделирования ферми–

систем.

В работе приводится подробный вывод усредненного по углам потенциала Эвальда, который

является основой для всех дальнейших построений в случае одно- и двухкомпонентных куло­

новских систем. Также выводится выражение для высокотемпературной кулоновской матрицы

плотности, учитывающее кулоновское дальнодействие. Рассчитываются энергия и давление одно­

компонентной и невырожденной водородной плазмы, а также радиальные функции распределения

в достаточно широком диапазоне параметра неидеальности. Расчеты производятся путем модели­

рования этих систем методами Монте–Карло и молекулярной динамики.

Работа состоит из списка сокращений и обозначений, введения, пяти глав, заключения, спис­

ка литературы и приложения. Введение содержит необходимые формальные пункты диссертации.

Главы 1 и 2 содержат теоретическое описание кулоновских систем; при этом первая глава посвя­

щена классическим системам, а вторая — квантовым. В главе 3 изложены детали реализации ме­

тодов расчета, представленных в предыдущих главах, применительно к моделированию методами

Монте-Карло и молекулярной динамики. Наконец, в главе 4 приводятся результаты моделирова­

ния однокомпонентной плазмы (ОКП), а в главе 5 результаты расчетов свойств невырожденной

водородной плазмы. В приложении А содержится описание программы KelbgLIP, которая явля­

ется одним из практических результатов данной работы. Каждая глава начинается с вступления,

в котором, в том числе, перечисляются основные ссылки на литературу, имеющие отношение к

представленным в главе материалам.

В главе 1 рассматривается несколько способов суммирования условно сходящегося ряда для

энергии кулоновских систем и получения потенциала Эвальда. Также выводится энергия одноком­

понентной плазмы с учетом периодических граничных условий в случае усеченного кулоновского

потенциала. Отдельное внимание уделено выводу усредненного по углам потенциала Эвальда в

случае одно- и двухкомпонентной плазмы несколькими способами. Далее рассматриваются термо­
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динамические функции однокомпонентной плазмы, в том числе поправки к вириальному давлению

для термодинамической согласованности и предел Дебая–Хюккеля.

В главе 2 рассматриваются термодинамические свойства двухкомпонентных систем с помо­

щью матрицы плотности для учета квантовых свойств. Кратко рассматривается вывод решения

уравнения Блоха, представленный впервые в 1963 году Г. Кельбгом, а именно выражения для вы­

сокотемпературной матрицы плотности для кулоновского потенциала. Далее дальнодействие учи­

тывается с помощью усредненного по углам потенциала Эвальда подстановкой этого потенциала в

решение Кельбга. С помощью полученной матрицы плотности рассматриваются термодинамиче­

ские свойства в представлении интегралов по траекториям. В частном случае водородной плазмы

рассматриваются псевдопотенциалы взаимодействия и сил, где отдельное внимание уделено пра­

вильному учету связанных состояний, эффектов дальнодействия, а также квантовых обменных

эффектов электронов для удовлетворения принципу запрета Паули.

В главе 3 рассматривается численная реализация описанных выше методов расчета термоди­

намических свойств однокомпонентной и невырожденной водородной плазмы. Сначала описывает­

ся метод моделирования Монте–Карло, в том числе с интегралами по траекториям, и особенности

расчета потенциальной энергии в случае усредненного по углам потенциала Эвальда (УУПЭ) для

классических и квантовых систем. Далее кратко рассматривается метод молекулярной динамики

в каноническом ансамбле для моделирования невырожденных систем. Отдельное внимание уде­

лено методам поиска термодинамического предела и анализу погрешностей усреднения. Также

обсуждаются параметры моделирования водородной плазмы и алгоритм расчета ее состава.

В главе 4 представлены рассчитанные свойства однокомпонентной плазмы с помощью ме­

тода Монте–Карло, в том числе новое уравнение состояния. В первую очередь алгоритм расчета

энергии с УУПЭ проверяется с помощью расчета постоянных Маделунга, а также радиальных

функций распределения для ОКП в сравнении с потенциалом Эвальда. Производится подробное

обсуждение влияния дальнодействия на сходимость энергии по числу частиц и расчету термодина­

мического предела, на основании которых строится новое уравнение состояния ОКП. Также особо

обсуждаются некоторые результаты моделирования с усеченным кулоновским потенциалом.

В главе 5 приводятся результаты моделирования невырожденной водородной плазмы. Рас­

сматривается поведение слабонеидеальной плазмы с помощью метода Монте–Карло с интегра­

лами по траекториям и анализируется образование связанных состояний. Далее представляются

результаты моделирования методом молекулярной динамики. Сначала производится верификация

метода; далее рассматриваются структурные свойства невырожденной водородной плазмы, в том

числе ее состав и степень ионизации, в зависимости от параметра неидеальности. В конце главы

приводится зависимость энергии и давления от числа частиц, рассчитывается термодинамический
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предел этих свойств.

В заключении приводится список основных результатов вместе со списком опубликованных

работ.

Приложение А содержит описание использования написанной автором данной работы про­

граммы KelbgLIP для расчета парной матрицы плотности, псевдопотенциала Кельбга, а также

действия и энергии с учетом дальнодействия.
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Список сокращений и обозначений

Сокращения:

УУПЭ и AAEP — усредненный по углам потенциал Эвальда

ОКП и OCP — однокомпонентная плазма

ЮОКП и YOCP — юкавовская ОКП

ДКП и TCP — двухкомпонентная плазма

ПГУ и PBC — периодические граничные условия

Правило БИ — правило ближайшего изображения (minimum image convention)

МК и MC—Монте–Карло

МД и MD— молекулярная динамика

LAMMPS — Large-scale Atomic/Molecular Massively Parallel Simulator

МКИТ и PIMC —Монте–Карло с интегралами по траекториям

Кельбг-УУЭ и Kelbg-AAE псевдопотенциал — псевдопотенциал Кельбга, полученный из

УУПЭ

п/п — псевдопотенциал

РФР — радиальная функция распределения

ОЦК решетка — объемноцентрированная кубическая решетка

ГЦК решетка — гранецентрированная кубическая решетка

ТДП — термодинамический предел

ГЦП и HNC— гиперцепное приближение

УРС — уравнение состояния

Обозначения:

Γ — параметр неидеальности

𝜒— параметр вырождения

𝑟𝑠 — параметр Бракнера

𝜃— температура, деленная на энергию Ферми

𝜑(r)— некоторый парный потенциал взаимодействия между частицами

𝜑(k)—Фурье-образ 𝜑(r)
𝜑(r) — некоторый парный потенциал взаимодействия между частицами с учетом фонового

заряда

𝑇 — температура

𝑘𝐵 — постоянная Больцмана

𝛽 = (𝑘𝐵𝑇 )−1 — обратная температура
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𝑛𝑒 — концентрация электронов

Λ — тепловая длина волны де Бройля

𝜆𝑖𝑗 — приведенная тепловая длина волны де Бройля для частиц 𝑖 и 𝑗

𝑟𝑎 — радиус ионной сферы

𝐸𝐻 — энергия Хартри (≈ 27.2 эВ)
𝑎𝐵 — радиус Бора (≈ 0.529 Å)
R = (r1, . . . , r𝑁)— координаты 𝑁 точечных частиц

𝜙(𝑟)—УУПЭ в случае двухкомпонентной системы

𝜙OCP(𝑟)—УУПЭ в случае однокомпонентной системы

𝜙(𝑟)— сдвинутый УУПЭ

𝜓(r, . . .)— потенциал с учетом суммирования по периодическим изображениям

𝛿 — параметр в потенциале Эвальда

𝑣(r)— потенциал Эвальда

𝑈𝑦
𝑥(R), 𝑈𝑦

0,𝑥 и 𝑀𝑦
𝑥 — потенциальная энергия, постоянный вклад в энергию и постоянная

Маделунга, где 𝑥— система, а 𝑦 — потенциал взаимодействия:

1. 𝑥 = TCP — двухкомпонентная кулоновская система точек

2. 𝑥 = OCP — однокомпонентная кулоновская система

3. 𝑦 = E — потенциал Эвальда

4. 𝑦 = E𝛿≫1 — потенциал Эвальда при 𝛿 ≫ 1

5. 𝑦 = C— потенциал Кулона

6. 𝑦 = C, 𝒮 — потенциал Кулона с суммированием по шаровой области

7. 𝑦 = C, 𝒞 — потенциал Кулона с суммированием по кубической области

8. 𝑦 = a — усредненный по углам потенциал Эвальда

9. 𝑦 отсутствует — потенциал взаимодействия может быть любым

10. 𝑥 отсутствует — выражение справедливо для одно- и двухкомпонентной системы одновре­

менно

𝑈TCP(R, 𝜅)—потенциальная энергия двухкомпонентной системы точек, взаимодействующих

через потенциал Юкавы с параметром 𝜅

𝑢(r𝑖, . . .)— потенциал, создаваемый всеми частицами в точке r𝑖
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𝑇𝐻 = 157.8 кК — энергия ионизации атома водорода, выраженная в К

𝑇𝐻2 = 52.4 кК — энергия диссоциации молекулы водорода, выраженная в К

𝑞𝑖 — заряд 𝑖-ой частицы

𝐿— длина кубической ячейки

𝑉 = 𝐿3 — объем ячейки

𝑟𝑚 — радиус сферы объема 𝑉

𝒞(r)— куб объема 𝑉 с центром в точке r

𝒮(r)—шар объема 𝑉 с центром в точке r

Φ0(r𝑖𝑗, r′𝑖𝑗;𝛽)— недиагональный псевдопотенциал Кельбга для кулоновского потенциала

Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽)—недиагональный псевдопотенциал Кельбга с учетом дальнодействия (псев­

допотенциал Кельбга-УУЭ)

ℛ— набор координат всех высокотемпературных разбиений (бусин) всех частиц

𝑆(ℛ; 𝑟𝑚, 𝛽)— безразмерное действие с учетом кулоновского дальнодействия

𝛽𝐸(ℛ, 𝛽)—полная энергия двухкомпонентной квантовой кулоновской системы (водородной

плазмы) для некоторогоℛ, деленная на температуру

𝛼𝑒 — степень ионизации водородной плазмы

(. . .)∞ — означает некоторую величину под скобками в термодинамическом пределе

𝐸⇑𝑁𝑒 —полная энергия водородной плазмы на один электрон, усредненная по равновесному

участку моделирования

𝑃 — давление
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Введение

Актуальность темы.Кулоновские системы являются основой наших представлений об окру­

жающем мире на уровне атомных ядер и электронов. Методы моделирования кулоновских систем

широко применяются для расчетов теплофизических свойств веществ, разработки новых матери­

алов, исследования процессов в электролитах и сложных биологических системах, интерпретации

экспериментальных данных и многих других задач. Вследствие ограниченности компьютерных

мощностей на первый план выходит проблема разработки эффективных алгоритмов расчета ку­

лоновских систем и обработки результатов численных экспериментов с помощью квантово-стати­

стических подходов.

Природа дальнодействующего кулоновского взаимодействия в веществе и его сингулярное

поведение на малых расстояниях вызывают ряд трудностей при построении методов моделирова­

ния кулоновских систем. Несмотря на активное развитие в последние 70 лет методов численного

эксперимента, существует ряд нерешенных до сих пор проблем. Формально проблема кулонов­

ского дальнодействия решается с помощью подхода Эвальда, в котором энергия системы пред­

ставляется в виде суммы бесконечных рядов по координатам частиц. Особая сложность возникает

при рассмотрении двухкомпонентных кулоновских систем вследствие коллапса таких систем при

описании с помощью классической механики. Эти факторы ограничивают число частиц несколь­

кими десятками тысяч даже для модельных систем, таких как однокомпонентная плазма (ОКП).

В случае же двухкомпонентных систем в настоящее время не существует строго обоснованных

подходов, учитывающих одновременно дальнодействие и квантовые эффекты, в том числе обмен­

ные эффекты. Все это влияет на точность получаемых уравнений состояния кулоновских систем,

которые впоследствии используются, например, при рассмотрении процессов в астрофизических

объектах.

При расчете термодинамических свойств в моделировании проявляется их зависимость от

числа частиц, тогда как основной интерес представляют свойства в термодинамическом пределе,

то есть предел термодинамических функций при стремлении числа частиц и объема к бесконечно­

сти прификсированной концентрации (или плотности). Вследствие трудностей учета кулоновского

дальнодействия и отсутствия характерной длины взаимодействия, достижение высокой производи­

тельности моделирования с помощью усечения потенциала на некотором расстоянии невозможно,

что является стандартной практикой при использовании короткодействующих потенциалов (на­

пример, Леннарда–Джонса или мягких сфер). Из-за этого в моделировании кулоновских систем

зачастую используется небольшое число частиц в сравнении с упомянутыми потенциалами, осо­

бенно при сильном вырождении. Поэтому эффективность расчета кулоновских взаимодействий
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для достижения термодинамического предела является еще одной актуальной проблемой.

Цель диссертационной работы состоит в разработке эффективных методов моделирования,

учитывающих дальнодействие в классических и квантовых кулоновских системах, с помощью

усреднения потенциала Эвальда по углам, а также программной реализации этих методов и расчет

с их помощью энергии, давления и структурных свойств однокомпонентной и невырожденной

водородной плазмы.

Для достижения поставленной цели были решены следующие задачи:

1. Был аналитически выведен усредненный по углам потенциал Эвальда (УУПЭ) для одно- и

двухкомпонентных кулоновских систем, а также получены соответствующие формулы для потен­

циальной энергии. Кроме того, выведены выражения для потенциальной энергииОКП с усеченным

кулоновским потенциалом (без дальнодействия), а также поправки к вириальному давлению для

потенциалов, зависящих от объема, — как в случае обычного потенциала Эвальда, так и УУПЭ.

2. Разработан и отлажен параллельный код для моделирования методом Монте–Карло (МК)

ОКП с различными типами потенциалов взаимодействия, позволяющий вычислять среднее значе­

ние потенциальной энергии и радиальные функции распределения.

3. Проведено моделирование ОКП методом МК, позволившее определить термодинамиче­

ский предел энергии, получить уравнение состояния в табличном и аппроксимированном виде в

диапазоне параметра неидеальности 0.01 ≤ Γ ≤ 170, а также показать преимущества учета дально­

действия при моделировании.

4. Получены выражение для кулоновской высокотемпературной матрицы плотности с учетом

дальнодействия и связанный с ней псевдопотенциал для невырожденной водородной плазмы.

5. Реализован и протестирован программный код для расчета кулоновской матрицы плотно­

сти с учетом дальнодействия, а также действия и энергии водородной плазмы с использованием

интегралов по траекториям. Получены псевдопотенциалы взаимодействия между всеми частицами

водородной плазмы с учетом температурных и дальнодействующих эффектов.

6. Выполнено моделирование невырожденной слабонеидеальной водородной плазмы метода­

ми МК, включая метод интегралов по траекториям. Оценена вероятность образования связанных

состояний и найдено значение энергии в термодинамическом пределе при Γ = 0.01 для верифика­
ции метода расчета.

7. Предложено решение проблемы нефизической кластеризации водородной плазмы при тем­

пературах ниже 52 кК, заключающееся в учете конечного значения тепловой длины волны де

Бройля электронов при взаимодействии между электронами с одинаковой проекцией спина. Это

позволяет приближенно учесть принцип Паули и избежать коллапса системы.

8. Проведено моделирование невырожденной водородной плазмы при фиксированном пара­
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метре вырождения 𝜒 = 0.01 в диапазоне параметра неидеальности 0.1 ≤ Γ ≤ 3. Получены зависи­

мости радиальных функций распределения, степени ионизации и состава плазмы от параметра Γ,

а также построено уравнение состояния в термодинамическом пределе в табличном виде.

Научная новизна работы состоит в следующем:

1. Разработан и изложен последовательный вывод УУПЭ, а также выражений для потенци­

альной энергии в одно- и двухкомпонентной плазме; впервые строго показано, что усреднение

сумм Эвальда сводится к кулоновскому потенциалу, умноженному на полином третьей степени.

2. Впервые потенциальная энергия ОКП выражена через усеченный кулоновский потенциал

с периодическими граничными условиями (без учета дальнодействия).

3. Впервые произведено моделирование МК ОКП с помощью УУПЭ с использованием до

миллиона частиц и получено согласие термодинамического предела энергии с аналитическим

результатом кластерного разложения при слабом взаимодействии (Γ = 0.1) с точностью до четырех

значащих цифр.

4. Впервые исследовано влияние дальнодействия на сходимость по числу частиц энергии

ОКП.

5. Впервые аналитически получена высокотемпературная кулоновская матрица плотности и

соответствующий квантовый псевдопотенциал Кельбга с учетом дальнодействия, а также предло­

жен метод суммирования взаимодействий с интегралами по траекториям в этом случае.

6. Впервые приближенно решена проблема образования нефизических кластеров водород­

ной плазмы, нарушающих принцип Паули, в квазиклассическом моделировании с улучшенным

псевдопотенциалом Кельбга.

7. Впервые рассчитано уравнение состояния невырожденной водородной плазмы с получен­

ным псевдопотенциалом с учетом кулоновского дальнодействия.

Научная и практическая значимость

1. Предложенная в работе методика расчета с помощьюУУПЭповышает эффективность рас­

четов межчастичных кулоновских взаимодействий на два порядка по сравнению с использованием

обычного потенциала Эвальда.

2. Полученное в работе уравнение состояния ОКП может быть использовано для астрофизи­

ческих приложений.

3. Полученная в работе матрица плотности и псевдопотенциал, а также метод суммирования

взаимодействий с интегралами по траекториям вместе с их программной реализацией могут быть

напрямую использованы в моделировании или встроены в программные коды других методов, в

том числе с учетом вырождения, для эффективного учета дальнодействия.

4. Решение проблемы кластеризации в водородной плазме может служить преодолением
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низкотемпературного барьера квазиклассического моделирования невырожденных двухкомпо­

нентных систем при использовании точной матрицы плотности, когда в системе присутствуют

молекулярные соединения.

5. В работе был рассмотрен случай невырожденной водородной плазмы при параметре неиде­

альности порядка единицы, рассчитаны ее энергия и давление, а также радиальные функции рас­

пределения. Эти данные могут быть полезны при дальнейшем уточнении уравнения состояния

водорода в термодинамическом пределе.

На защиту выносятся следующие основные результаты и положения:

1. УУПЭ, выраженный в аналитической форме для одно- и двухкомпонентной плазмы, с

демонстрацией повышения эффективности численных расчетов и улучшения сходимости энергии

по числу частиц в области сильного взаимодействия в случае ОКП.

2. Формулы для потенциальной энергии и давления классических одно- и двухкомпонентных

кулоновских систем, учитывающие дальнодействие через УУПЭ, и для ОКП без дальнодействия,

включая поправки к вириальному давлению для потенциала Эвальда и УУПЭ.

3. Табличное и аналитическое уравнение состоянияфлюидаОКПв зависимости от параметра

неидеальности, полученное в термодинамическом пределе из моделирования с использованием

миллиона частиц.

4. Выражение для кулоновской высокотемпературной матрицы плотности с учетом дально­

действия, связанный с ней псевдопотенциал для невырожденной водородной плазмы и их про­

граммная реализация.

5. Табличное уравнение состояния невырожденной сильновзаимодействующей водородной

плазмы, зависимости степени ионизации, состава и радиальных функций распределения от пара­

метра неидеальности при параметре вырождения 0.01, а также решение проблемы кластеризации

в квазиклассическом моделировании с улучшенным псевдопотенциалом Кельбга, в том числе с

учетом дальнодействия.

Апробация работы. Основные результаты диссертации докладывались на Научно-коорди­

национной Сессии «Исследования неидеальной плазмы» в 2022 и 2024 годах (Россия, Москва),

XXXVIII Fortov International Conference on Interaction of Intense Energy Fluxes with Matter (Россия,

Кабардино-Балкария, 2023), 65-ой Всероссийской научной конференции МФТИ (Россия, Москва,

2023), Забабахинских Научных Чтениях в 2023 и 2025 годах (Россия, Снежинск), XXXIX Fortov

International Conference onEquations of State forMatter (Россия, Кабардино-Балкария, 2023), школе–

конференции по теоретической физике конденсированного состояния и неравновесных процессов

(Россия, Саров, 2024), 66-ой Всероссийской научной конференции МФТИ (Россия, Москва, 2024),

семинаре Теоретического отдела им. Л.М. БиберманаОИВТРАН в 2022, 2023 и 2025 годах (Россия,
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Москва), конкурсе научных работ студентов и молодых ученыхОИВТ РАН (Россия,Москва, 2023),

семинаре кафедры теоретической физики МФТИ (Россия, Долгопрудный, 2023), II Всероссийской

Школе НЦФМ по газодинамике и физике взрыва (Россия, Саров, 2025), 67-ой Всероссийской

научной конференции МФТИ (Россия, Москва, 2025).

Публикации.Материалы диссертации опубликованы в 20 печатных работах, из них 9 статей

в рецензируемых журналах [1—9] и 11 тезисов докладов.

Личный вклад автора. Диссертация написана автором лично. Положения, выносимые на

защиту, сформулированы лично автором. Выводы УУПЭ и потенциальной энергии в случае одно-

и двухкомпонентной плазмы проделаны лично автором. Выводы высокотемпературной матри­

цы плотности, соответствующих недиагонального и диагонального псевдопотенциалов с учетом

дальнодействия проделаны лично автором. Программная реализация метода МК, в том числе

с интегралами по траекториям, для моделирования одно- и двухкомпонентной плазмы с помо­

щью различных потенциалов и псевдопотенциалов взаимодействия реализована и протестирована

лично автором. Решение проблемы образования некорректных соединений при квазиклассическом

моделировании низкотемпературной водородной плазмы с улучшенным псевдопотенциалом Кель­

бга, а также нарушения принципа Паули предложено и реализовано лично автором. Программа

KelbgLIP, вместе с документацией для расчетов свойств водородной плазмы и псевдопотенциалов

взаимодействия, реализована, представлена в открытом доступе и протестирована лично автором.

Расчеты, представленные в диссертации, произведены автором лично. Публикация полученных

результатов осуществлялась совместно с соавторами, при этом вклад диссертанта был определя­

ющим.

Благодарности. Выражаю благодарность Филинову В.С., Апфельбауму Е.М., Морозову И.В.,

Ларкину А.С., Майорову С.А., Жуховицкому Д.И. и Чугунову А.И. за стимулирующие дискуссии

и обсуждения результатов в процессе выполнения данной работы. Я благодарен научному ру­

ководителю моей аспирантуры Левашову П.Р. за постановку увлекательной задачи, множество

интересных обсуждений и советов за время работы в ОИВТ РАН и обучении в аспирантуре. Так­

же я благодарен студенту Онегину А.С. за тестирование и предложения по ускорению расчетов в

LAMMPS. Я выражаю свою благодарность научному руководителю моей бакалаврской и магистер­

ской работы Князеву Д.В. за время обсуждений научных проблем, терпеливое наставничество, а

также внимательное руководство на ранних этапах моей научной карьеры.

Структура и объем диссертации. Диссертация состоит из предисловия, списка сокращений

и обозначений, введения, 5 глав, заключения, одного приложения и списка литературы. Общий

объем диссертации 198 страниц, включая 35 рисунков и 18 таблиц. Список литературы включает

218 наименований на 21 страницах.



16

Глава 1

Термодинамические свойства классических кулоновских систем

В данной работе рассматриваются трехмерные электронейтральные системы, состоящие из

заряженных частиц, взаимодействующих согласно закону Кулона. Указанные системы могут быть

представлены как совокупностью точечных зарядов, так и непрерывным распределением плот­

ности заряда. В работе рассмотрение ограничивается невырожденными системами, для которых

характерная тепловая длина волны де Бройля значительно меньше среднего межчастичного рас­

стояния. Это позволяет описывать такие системы в рамках классической или квазиклассической

механики. Дополнительно предполагается, что взаимодействие частиц является исключительно

парным и задается посредством некоторого потенциала или псевдопотенциала. Это предположе­

ние является обоснованным для рассматриваемых в моделировании данной работы невырожден­

ных систем. В рамках данной работы парный потенциал 𝜑(r) имеет размерность обратной длины;

например, в случае кулоновского взаимодействия 𝜑(r) = 1⇑𝑟.
Парныепотенциалы взаимодействия в классических системахможноразделить на две группы:

короткодействующие и дальнодействующие.Математически это выражается следующим образом:

если для некоторого потенциала 𝜑(r) интеграл∫
R3∖𝒮𝑅(0)

𝜑(r)𝑑r (1.1)

сходится, то такой потенциал относится к классу короткодействующих потенциалов. Иначе, по­

тенциал является дальнодействующим. Под обозначением интеграла в формуле (1.1) понимается

интеграл по всему пространствуR3, за исключениемшара𝒮𝑅(0) радиуса𝑅 в начале координат. Это

разделение органично возникает вследствие связи парной корреляционной функции, потенциала

𝜑(r) и потенциальной энергии системы.

Если потенциал является короткодействующим, для моделирования такой системы обычно

вводится некоторый радиус 𝑟cut, на расстояниях больше которого потенциал полагается равным ну­

лю. Именно такой усеченный или обрезанный потенциал зачастую используется в моделировании.

Это позволяет увеличить эффективность расчетов, особенно при рассмотрении очень большого

числа частиц в моделировании. Расходимость интеграла (1.1), например, для кулоновского потен­

циала, отражает необходимость рассмотрения всевозможных взаимодействий в системе, свойства

которой необходимо описать. Таким образом, «хвост» потенциала взаимодействия, хоть и убывает

достаточно быстро с увеличением расстояния, вносит значительный вклад в потенциальную энер­

гию. Следовательно, возникает задача разработки метода, позволяющего свести дальнодейству­
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ющее взаимодействие к эффективному короткодействующему виду, пригодному для численного

моделирования. Ниже основное внимание будет уделено именно кулоновскому взаимодействию.

Задача вычисления энергии системы с учетом кулоновского дальнодействия исторически воз­

никла при расчете решеточных сумм (иначе говоря, постоянных Маделунга) для кристаллических

структур. Так как кристалл, например, поваренной солиNaCl, состоит из множества повторяющих­

ся в пространстве элементарных ячеек, с теоретической точки зрения проще заменить конечный

набор элементарных ячеек на бесконечную систему. Таким образом, вводится основная (кубиче­

ская) ячейка из нескольких частиц, которая периодически повторяется вR3 вдоль трех неколлине­

арных направлений. В результате, при расчете потенциала, создаваемого заряженными частицами

в некоторой точке основной ячейки, необходимо учитывать влияние всех периодических образов.

В результате, потенциальная энергия основной ячейки представляет собой ряд.

Оказалось, что этот ряд сходится очень медленно. Более того, ряд сходится условно, что

позволяет получить любой заданный результат с помощью разного способа составления частич­

ных сумм ряда (теорема Римана о перестановке слагаемых условно сходящегося ряда). Поэтому

потребовался некоторый подход, устраняющий эту условную сходимость, а также приводящий к

осмысленному с физической точки зрения результату.

Эта проблема была решена Эвальдом [10] в 1921 году. Ему удалось свести условно сходящий­

ся ряд к двум абсолютно и быстро сходящимся рядам, которые легко могут быть использованы в

моделировании. Основа для процедуры Эвальда заключается в разделении кулоновского потенци­

ала на две части:
1

𝑟
= erfc(𝛼𝑟)

𝑟
+ erf(𝛼𝑟)

𝑟
(1.2)

и суммировании взаимодействий с образами в прямом и обратном пространствах, соответственно.

Основным преимуществом данного подхода является то, что с увеличением параметра 𝛼 сумма

в прямом пространстве сходится быстрее, тогда как в обратном пространстве сходимость улуч­

шается при уменьшении 𝛼 [11]. Таким образом, появляется возможность выбора оптимального

значения параметра, обеспечивающего наилучшую общую сходимость потенциала.

Суммирование Эвальда широко используется в физике и химии, и этому методу посвящено

большое количество работ, в которых исследуется его корректность и эффективность [12—16].

Математические вопросы перехода от условно сходящегося ряда к абсолютно сходящемуся с по­

мощью техники Эвальда весьма сложны и обсуждаются в нескольких работах [11; 17]. Вместе с

тем, широкое применение этого метода в первопринципных расчетах позволяет получать термо­

динамические характеристики, хорошо согласующиеся с экспериментальными данными. Кроме

того, успешное использование результатов расчетов энергий кристаллических структур в циклах
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Борна—Габера также служит косвенным подтверждением корректности данного метода [18]. По

мнению автора данной работы, существуют и теоретические основания, поддерживающие приме­

нимость этой техники (см. раздел 1.1.3).

Хотя изначально техника суммирования Эвальда разрабатывалась для кристаллических

структур, она нашла широкое применение в моделировании жидкостей, газов и плазмы. В мо­

делировании зачастую рассматривается кубическая ячейка длиной 𝐿, на которую необходимо

наложить некоторые граничные условия. Для свойств системы в термодинамическом пределе (то

есть для очень большой системы) возникает вопрос о сходимости по числу частиц. Оказывается,

что выбор именно периодических граничных условий (ПГУ) позволяет ослабить зависимость от

числа частиц [19]. Это можно объяснить тем, что ПГУ устраняют влияние границ (стенок) расчет­

ной ячейки, имитируя бесконечную систему. Поэтому область применения техники суммирования

Эвальда не ограничивается только кристаллическими структурами.

С помощью техники Эвальда в данной работе будут исследоваться термодинамические свой­

ства двух невырожденных (классических) кулоновских систем: однокомпонентной плазмы (ОКП)

и двухкомпонентной плазмы (ДКП), состоящей из точечных электронов и ионов. Для описания

этих систем используются два параметра: параметр неидеальности Γ и параметр вырождения 𝜒:

Γ = (𝑍𝑒)
2𝛽

𝑟𝑎
, 𝜒 = 𝑛𝑒Λ

3, (1.3)

где 𝑍 — зарядовое число, 𝛽 = (𝑘𝐵𝑇 )−1 — обратная температура, 𝑟𝑎 = (4𝜋𝑁𝑒⇑3)−1⇑3𝐿 — ради­

ус ионной сферы (или «среднее» расстояние между электронами), 𝑛𝑒 = 𝑁𝑒⇑𝑉 — концентрация

электронов, Λ = (2𝜋ℎ̵2𝛽⇑𝑚𝑒)1⇑2 — тепловая длина волны де Бройля электронов, 𝑉 = 𝐿3 — объем

кубической ячейки, 𝑁𝑒 — число электронов.

В случае ОКП, вся термодинамика зависит только от параметра неидеальности, Γ, так как

ОКП является полностью классической системой; рассматривая квантовый аналог ОКП, а имен­

но модель желе, можно говорить о том, что модель ОКП достигается при полном отсутствии

вырождения в модели желе (𝜒→ 0).

В случае водородной плазмы (𝑍 = 1) параметр вырождения всегда принимает конечные зна­

чения из-за наличия связанных состояний, описание которых требует привлечения аппарата кван­

товой механики. Тогда невырожденной будем называть систему, если параметр 𝜒 ≪ 1 (например,

𝜒 = 10−2). Отметим, что, строго говоря, классическая водородная плазма не является устойчивой

системой [20] как минимум по тем же причинам, по которым неустойчив классический атом водо­

рода. Поэтому под термином классическая водородная плазма следует всегда понимать именно

невырожденную систему с некоторой степенью вырождения.

Пара (𝑟𝑠, 𝜃) часто используется как альтернатива (Γ, 𝜒), где 𝑟𝑠 = 𝑟𝑎⇑𝑎𝐵 — параметр Брак­
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нера, а 𝜃 = (𝛽𝐸𝑓)−1 — приведенная к энергии Ферми температура (этот параметр иногда тоже

называют параметром вырождения). Здесь 𝐸𝑓 = ℎ̵2

2𝑚𝑒
(3𝜋2𝑁𝑒⇑𝐿3)2⇑3 обозначает энергию Ферми, а

𝑎𝐵 = ℎ̵2⇑(𝑚𝑒𝑒2)—радиус Бора. Если заданы (Γ, 𝜒), то безразмерная обратная температура и объем
ячейки определяются следующим образом:

𝛽𝐸𝐻 = (
9𝜋

2
)
1⇑3

Γ2𝜒−2⇑3, ( 𝐿
𝑎𝐵

)
3

= 6𝜋2Γ3𝜒−2𝑁𝑒, (1.4)

а также (𝑟𝑠, 𝜃):
𝑟𝑠 = (9𝜋⇑2)1⇑3Γ𝜒−2⇑3, 𝜃 = 4⇑(9𝜋)1⇑3𝜒−2⇑3. (1.5)

Здесь 𝐸𝐻 = 𝑚𝑒𝑒4⇑ℎ̵2 — энергия Хартри. Отметим, что 𝜃 ∝ 1⇑𝜒2⇑3, то есть больший параметр 𝜃

соответствует невырожденным системам (меньшему параметру 𝜒).

Теперь подробнее опишем рассматриваемые системы ионов и электронов. ОКП представляет

собой набор точечных положительно заряженных частиц с величиной заряда 𝑍𝑒 (ионы) и одно­

родно распределенный компенсирующий фон (электроны) такой плотности, чтобы вся система

являлась электронейтральной. Такая модель является неплохим приближением к реальному веще­

ству, когда ионы могут быть рассмотрены классически, а электроны полностью вырождены [21].

Эти условия могут наблюдаться в ядрах белых карликов (для ионов гелия, кислорода и углеро­

да), коре нейтронных звезд (например, для ионов железа), а также в теплом плотном веществе

(warm dense matter), которое можно получать в лаборатории в импульсных экспериментах [21].

Эта модель является классической, так как вырожденные электроны в ней учитываются как равно­

мерно распределенный заряд, а энергия определяется электростатическим взаимодействием всех

зарядов системы.

Под невырожденной водородной плазмой в данной работе понимается система из точечных

электронов и протонов, когда длина волны де Бройля электронов много меньше, чем межчастичное

расстояние электронов с одинаковой проекцией спина. При этом расстояние между электронами

с различной проекцией спина может быть порядка тепловой длины волны де Бройля. Другими

словами, многочастичные обменные эффекты пренебрежимо малы в этих условиях. Так как масса

протона примерно в две тысячи раз больше массы электрона, то это условие также выполнено и

для протонов. Условие невырожденности плазмыможет выполняться либо при достаточно высоких

температурах (почти идеальный газ) либо при достаточно низких плотностях. Примером может

служить плазма на Солнце [22]. Условия малого вырождения и сильного взаимодействия реали­

зуются в так называемой ультрахолодной плазме [23; 24]. Эта область особенно интересна для

исследования, так как она требует учета квантовых свойств при высокой неидеальности системы.

Для ОКП и ДКП можно применять методы компьютерного моделирования, которые основа­

ны на принципах статистической физики. Так для расчета термодинамики вещества в теории рас­
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сматриваются все возможные конфигурации (положения частиц) в фазовом пространстве; каждой

конфигурации присваивается вес. В данной работе рассматривается ансамбль таких конфигура­

ций при фиксированном числе частиц, объеме и температуре; поэтому вес каждой конфигурации

задается распределением Больцмана. Далее такие величины, как например энергия и давление,

могут быть вычислены как средние по всевозможным конфигурациям.

Так как в моделировании участвует конечное число частиц, серьезной проблемой является

изучение свойств системы в так называемом термодинамическом пределе. Под термодинами­

ческим пределом в данной работе понимается предел энергии на одну частицу и давления при

стремлении числа частиц и объема системы в бесконечность при фиксированной плотности (кон­

центрации) вещества. Так как, вообще говоря, легко себе представить систему, не имеющую такого

предела (например, система мягких сфер при показателе жесткости меньше 3), возникает вопрос

о существовании термодинамического предела.

Интуитивно понятно, что вопрос существования термодинамического предела связан с устой­

чивостью системы: необходимо, чтобы система не сжималась в точку, не разлеталась, а также чтобы

при больших числах частиц ее полная свободная энергия росла линейно пропорционально числу

частиц. Вопрос об устойчивости, а также существовании термодинамического предела с матема­

тической точки зрения детально изучался в работах Эллиота Либа [25], а в данной работе будут

лишь упомянуты некоторые основные идеи и заключения. Например, было показано [21], что для

классической системы из 𝑁 частиц, взаимодействующих посредством парного потенциала 𝜑(r),
должны выполняться два условия:

1. Условие устойчивости:

𝑈(R) = 1

2
∑
𝑖≠𝑗
𝑞𝑖𝑞𝑗𝜑(r𝑖 − r𝑗) ≥ −𝐴𝑁 ; 𝐴 ≥ 0, (1.6)

где потенциальная энергия на одну частицу𝑈(R)⇑𝑁 должна быть ограничена снизу констан­

той 𝐴.

2. Ограничение на скорость убывания потенциала:

𝜑(r) ≤ 𝐵

⋃︀r⋃︀3+𝜀 при ⋃︀r⋃︀ ≥ 𝑅, 𝜀 > 0, 𝐵 > 0, (1.7)

то есть потенциал должен достаточно быстро стремиться к нулю на больших межчастичных

расстояниях.

Отметим, что условие (1.7) напрямуюсвязано со сходимостьюинтеграла (1.1). Еслипотенциал

удовлетворяет условию (1.7), то интеграл (1.1) сходится. Таким образом, условия (1.6) и (1.7)

выполняются для короткодействующих потенциалов, таких как потенциал Леннарда–Джонса или

потенциал мягких сфер при параметре жесткости больше 3, что обеспечивает термодинамическую
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устойчивость системы, существование термодинамического предела и эквивалентность различных

статистических ансамблей. Аналогичное условие можно записать и в случае квантовых систем,

что будет рассмотрено в главе 2. Однако для кулоновского потенциала оба условия (1.6) и (1.7) не

выполняются.

Существование термодинамического предела для систем с кулоновским взаимодействием,

несмотря на нарушение условия (1.7), было доказано Либом и Лебовицем [26] для устойчивых

систем (то есть систем с энергией, ограниченной снизу). Данное рассмотрение является чисто

классическим и основывается на электрической нейтральности системы и эффектах экранирова­

ния. ОКП удовлетворяет этим условиям: так, например, в работе [21] показано, что для энергии

ОКП на одну частицу существует ограничение снизу, а именно 𝑈OCP(R)⇑𝑁 ≥ −0.9Γ. Более деталь­
ное и общее рассмотрение этого результата можно найти в работе Либа и Нарнхофера [27]. Там

также было показано, что термодинамический предел существует и единственный для системы

ОКП 1. Однако классическая ДКП с чисто кулоновским потенциалом является неустойчивой, и,

следовательно, для такой системы термодинамический предел отсутствует.

Несмотря на это, зачастую на практике рассматриваются двух (или более) компонентные

системы с кулоновским взаимодействием плюс некоторый эффективный потенциал, обеспечива­

ющий стабильность системы (например, уже упомянутый потенциал Леннарда–Джонса). В таких

работах возникает интерес к расчету чисто классической кулоновской энергии точечных частиц

в периодических граничных условиях с учетом всех взаимодействий с периодическими образа­

ми. Рассчитать эту величину можно с помощью техники суммирования Эвальда, что приводит к

парному потенциалу Эвальда.

Далее в разделе 1.1 будет рассмотрено несколько способов получения потенциала Эвальда на

примере двухкомпонентной электронейтральной системы. Изложение будет, в основном, соответ­

ствовать работе [12] с некоторыми дополнительными пояснениями и идеями автора диссертации, в

том числе будет обсуждаться проблема дипольного слагаемого, возникающего при суммировании

«по сферам».

1.1. Условная сходимость потенциальной энергии и метод Эвальда

В данном разделе рассматривается кубическая ячейка объемом 𝐿3, содержащая 𝑁 точечных

частиц. Каждая 𝑖-я частица имеет заряд 𝑞𝑖 и положение r𝑖 в кубе; положения частиц различны (нет

двух частиц, которые находятся в одной и тойже точке пространства). Система электронейтральна:
𝑁

∑
𝑖=1
𝑞𝑖 = 0. (1.8)

1 Для предела в смысле ван Хове, см. [27].
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Используются периодические граничные условия, поэтому ячейка повторяется в трех взаимно пер­

пендикулярных направлениях. Это означает, что частица с координатой r𝑖 в ячейке имеет бесконеч­

ное число изображений с координатами r𝑖+n𝐿. Здесь n—целочисленный вектор, n = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧),
𝑛𝑥, 𝑛𝑦, 𝑛𝑧 ∈ Z. На данный момент нас интересует лишь электростатическая задача; термодинамика

и вопросы, связанные с существованием статистической суммы, будут рассмотрены в разделе 1.3.

Согласно закону Кулона, полная потенциальная энергия 𝑈TCP(R) основной ячейки двухком­

понентной системы для некоторого набора координат R = (r1, . . . , r𝑁) записывается следующим

образом (используются гауссовы единицы):

𝑈TCP(R) =
1

2
∑′
n

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

𝑞𝑖𝑞𝑗
⋃︀r𝑖𝑗 +𝐿n⋃︀

= 1

2
∑
n

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗
⋃︀r𝑖𝑗 +𝐿n⋃︀

+ 1

2
∑
n≠0

𝑁

∑
𝑖=1

𝑞2𝑖
𝐿⋃︀n⋃︀ . (1.9)

В формуле (1.9) учитывается взаимодействие частиц основной ячейки и периодических образов.

Суммирование ведется по всем целочисленным векторам n; штрих означает, что слагаемые с n = 0
пропускаются, если 𝑖 = 𝑗. Таким образом, частица 𝑖 взаимодействует со всеми своими копиями, но

не с самой собой. В правой части уравнения (1.9) для удобства вся сумма разбита на два вклада:

парное взаимодействие и взаимодействие частиц со своими же копиями.

Отсюда можно увидеть, что ряд (1.9) сходится условно. Для этого разложим каждое слагаемое

ряда в ряд Тейлора по 1⇑⋃︀n⋃︀ ≤ 1:

∑′
n

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

𝑞𝑖𝑞𝑗
⋃︀r𝑖𝑗 +𝐿n⋃︀

= ∑′
n

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑞𝑖𝑞𝑗 ⌊︀

1

𝐿⋃︀n⋃︀ −
(r𝑖𝑗 ⋅ n)
𝐿2⋃︀n⋃︀3 −

1

2
( ⋃︀r𝑖𝑗 ⋃︀2
𝐿3⋃︀n⋃︀3 −

3⋃︀r𝑖𝑗 ⋅ n⋃︀2
𝐿3⋃︀n⋃︀5 ) + 𝑜(⋃︀n⋃︀−4)}︀ . (1.10)

Первые два слагаемые в (1.10) равны нулю вследствие условия электронейтральности (1.8). Таким

образом, первое слагаемое, вносящее ненулевой вклад в сумму, убывает как ⋃︀n⋃︀3, что обеспечивает
условную сходимость потенциальной энергии (1.9).

1.1.1. Форсирование абсолютной сходимости

Для того, чтобы произвести суммирование условно сходящегося ряда, необходимо фор­

сировать абсолютную сходимость ряда. Это значит, что необходимо некоторым образом задать

порядок сходимости (то есть задать способ составления частичных сумм) с помощью придания

веса каждому слагаемому.

Разберем идею форсирования сходимости на хорошо известном примере. Рассмотрим следу­

ющий числовой условно сходящийся ряд:
∞
∑
𝑛=1

(−1)𝑛−1
𝑛

= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ 1

7
+ . . . . (1.11)

Для того, чтобы найти его сумму, будем составлять частичные суммы следующим образом. Первая

частичная сумма состоит из первых положительного и отрицательного слагаемых в (1.11). Следу­

ющая частичная сумма является результатом добавления к первой следующих положительного и
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отрицательного слагаемых. Такой способ суммирования приводит нас к результату ln 2:
∞
∑
𝑛=1

(−1)𝑛−1
𝑛

=
∞
∑
𝑛=1

]︀ 1

2𝑛 − 1 −
1

2𝑛
{︀ = ln 2. (1.12)

Однако порядок суммирования можно изменить:
∞
∑
𝑛=1

]︀ 1

4𝑛 − 3 +
1

4𝑛 − 1 −
1

2𝑛
{︀ = 1 + 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ . . . = 3 ln 2

2
(1.13)

и получить совершенно другой результат. Отметим для наглядности, что аналогичные преобразо­

вания для абсолютно сходящихся рядов приводят к идентичным результатам:
∞
∑
𝑛=1

(−1)𝑛−1
𝑛2

=
∞
∑
𝑛=1

⌊︀ 1

(2𝑛 − 1)2 −
1

(2𝑛)2 }︀ =
𝜋2

12
=
∞
∑
𝑛=1

⌊︀ 1

(4𝑛 − 3)2 +
1

(4𝑛 − 1)2 −
1

(2𝑛)2 }︀ . (1.14)

Для того, чтобы удобнее устанавливать порядок суммирования, придадим каждому слагае­

мому вес 𝑒−𝑠𝑛, где 𝑠 > 0— некоторое положительное число. Например:

𝐿(𝑠) =
∞
∑
𝑛=1

]︀ 1

2𝑛 − 1 −
1

2𝑛
{︀ 𝑒−𝑠𝑛 = ⌊︀

∞
∑
𝑛=1

𝑒−𝑠𝑛

2𝑛 − 1 −
∞
∑
𝑛=1

𝑒−𝑠𝑛

2𝑛
}︀ . (1.15)

Таким образом, каждому слагаемому был присвоен некоторый вес таким образом, чтобы зафик­

сировать порядок суммирования как в уравнении (1.12). Ряд в формуле (1.15) сходится абсолютно

∀𝑠 > 0. Результатом их суммирования являются следующие функции (суммирование произведено

с помощью пакета Mathematica [28]):
∞
∑
𝑛=1

𝑒−𝑠𝑛

2𝑛 − 1 = 𝑒
−𝑠⇑2 th−1 (𝑒−𝑠⇑2) = ln(2) − ln(𝑠)

2
+ 𝑜(𝑠0), (1.16)

∞
∑
𝑛=1

𝑒−𝑠𝑛

2𝑛
= −1

2
ln (1 − 𝑒−𝑠) = − ln 𝑠

2
+ 𝑜(𝑠0). (1.17)

Теперь, вычитая эти вклады и находя предел при 𝑠 → 0, приходим к ответу (1.12). Отметим,

что каждый из рядов (1.16) и (1.17) расходятся при 𝑠 → 0. Итого, абсолютная сходимость была

форсирована с помощью веса 𝑒−𝑠𝑛, который фиксирует порядок сходимости, придавая одинако­

вый и уменьшающийся с ростом 𝑛 вес определенным слагаемым. Аналогично можно получить

ответ (1.13):
∞
∑
𝑛=1

]︀ 1

4𝑛 − 3 +
1

4𝑛 − 1 −
1

2𝑛
{︀ 𝑒−𝑠𝑛 = 1

3
𝑒−𝑠 (3 2𝐹1 (

1

4
,1;

5

4
; 𝑒−𝑠) + 2𝐹1 (

3

4
,1;

7

4
; 𝑒−𝑠))+

+ 1

2
ln(sh(𝑠) − ch(𝑠) + 1) = 3 ln 2

2
+ 𝑠

16
(4 ln 𝑠 − 𝜋 − 4 − 4 ln 8) + 𝑜 (𝑠) , (1.18)

где 2𝐹1(𝑎, 𝑏; 𝑐; 𝑠) = ∑∞𝑘=0(𝑎)𝑘(𝑏)𝑘𝑧𝑘⇑((𝑐)𝑘𝑘!) — гипергеометрическая функция, а (𝑥)𝑘 — убываю­

щий факториал.

Таким образом, вес 𝑒−𝑠𝑛 задает алгоритм построения частичных сумм. Ключевое здесь то, что

некоторым слагаемым (с одинаковым номером 𝑛) придается один и тот же вес, и для последующих

слагаемых, добавляющихся к предыдущей частичной сумме, этот вес меньше.

В случае суммы (1.9) необходимо форсировать абсолютную сходимость не только на некото­

ром множестве параметра 𝑠, но также и для любых не совпадающих положений частиц в ячейке.
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1.1.2. Суммирование по сферам

Потенциальную энергию (1.9) формально можно переписать в более привычном виде парного

взаимодействия между частицами в основной ячейке:

𝑈TCP(R) =
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜓(r𝑖𝑗) +
1

2

𝑁

∑
𝑖=1
𝑞2𝑖𝜓(0), (1.19)

где парный и одночастичный потенциалы принимают следующий вид:

𝜓(r) = ∑
n

1

⋃︀r +𝐿n⋃︀ , 𝜓(0) = ∑
n≠0

1

𝐿⋃︀n⋃︀ = 𝜓(r→ 0) − 1

𝐿⋃︀n⋃︀ ⋁︀⋃︀n⋃︀→0

= lim
𝑟→0

⎛
⎝
𝜓(r) − 1

𝑟

⎞
⎠
. (1.20)

Из разложения (1.10) хорошо видно, что ряд в выражении для 𝜓(r) расходится. Тем не менее,

подставляя этот потенциал в (1.19) и пользуясь условием электронейтральности, можно получить

сходимость (условную) потенциальной энергии 𝑈TCP(R). Далее будем преобразовывать функцию

𝜓(r): именно для нее и будет производиться форсирование сходимости.

Прежде чем приступать к преобразованиям, выпишем некоторые свойства (пускай и бес­

конечного) потенциала 𝜓(r). Эти свойства должны сохраняться после процедуры форсирования

сходимости и проведения суммирования.

1. Во-первых, функция 𝜓(r) является периодической:

𝜓(r +m𝐿) = ∑
n

1

⋃︀r +m𝐿 +𝐿n⋃︀ = ∑n′
1

⋃︀r +𝐿n′⋃︀ = 𝜓(r), (1.21)

где m — некоторый целочисленный вектор и n′ = n +m. Финальный вид энергии 𝑈TCP(R) после
процедуры форсирования сходимости и суммирования должен иметь такой же вид, как в форму­

ле (1.19), а значит и результирующий потенциал (Эвальда) должен оставаться периодичным.

2. Во-вторых, не менее важное свойство для верификации процедуры суммирования состоит

в следующем. Рассмотрим любой набор координат частиц в основной ячейке, которая является

электронейтральной. Для определенности можно рассматривать энергию, например, объемно-цен­

трированной кубической решетки. Назовем эту ячейку элементарной. Пусть некоторым образом

была рассчитана ее потенциальная энергия на одну частицу, учитывая периодические образы. Те­

перь составим большую ячейку, которая состоит из восьми элементарных ячеек; иногда такую

ячейку называют суперячейкой. Если теперь рассчитать потенциальную энергию такой суперячей­

ки и снова разделить на число частиц (которое стало в 8 раз больше, в сравнении с элементарной),

должен получиться в точности такой же результат, как с расчетом только для элементарной ячей­

ки. Этот критерий следует из того, что при таком мультиплицировании физическая система никак

не изменилась: вместо расчетной ячейки была рассмотрена не элементарная ячейка, а несколько

таких элементарных ячеек. Однако из-за периодических граничных условий и неизменности поло­

жения частиц в элементарной и суперячейке, энергия на одну частицу (или потенциал, создаваемый
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всеми частицами в некоторой точке) должна остаться точно такой же.

Второй пункт 2 также может быть сформулирован следующим образом. Рассмотрим некото­

рый ион в основной ячейке. Этот ион окружен бесконечным числом других ионов, которые создают

в точке расположения этого иона потенциал. Наша цель состоит в определении этого потенциа­

ла в виде суммы эффективных взаимодействий между этим ионом и остальными частицами в

элементарной ячейке. Однако при рассмотрении суперячейки в качестве расчетной ячейки, потен­

циал в точке нахождения этого иона должен остаться идентичным. Это утверждение эквивалентно

условию 2.

Вернемся к потенциалу 𝜓(r) в уравнении (1.20). Для его дальнейшего преобразования вос­

пользуемся следующим тождеством:

1

𝑥
= 1

𝜋1⇑2

∞∫
0

𝑒−𝑡𝑥
2

𝑡1⇑2
𝑑𝑡, (1.22)

то есть

𝜓(r) = 1⌋︂
𝜋
∑
n

∞∫
0

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑑𝑡. (1.23)

Теперь разделим промежуток интегрирования в (1.23) на две части, вводя параметр 𝛼:

𝜓(r) = 1⌋︂
𝜋
∑
n

𝛼2∫
0

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑑𝑡 + 1⌋︂
𝜋
∑
n

∞∫
𝛼2

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑑𝑡. (1.24)

Обратим внимание, что параметр 𝛼 имеет размерность обратной длины.

Второе слагаемое в (1.24) принимает следующий вид:

𝜓𝑠(r) =
1⌋︂
𝜋
∑
n

∞∫
𝛼2

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑑𝑡 = ∑
n

erfc(𝛼⋃︀r +𝐿n⋃︀)
⋃︀r +𝐿n⋃︀ . (1.25)

Более того, величина𝜓𝑠(r) представляет собой абсолютно сходящийся ряд, так как для erfc(𝑥) при
больших 𝑥 справедливо асимптотическое поведение erfc(𝑥) = 𝑒−𝑥2(1⇑(⌋︂𝜋𝑥) + 𝑜(1⇑𝑥2)). Так как

на малом расстоянии 𝜓𝑠(r) имеет кулоновскую расходимость, а на большом расстоянии быстро

стремится к нулю, назовем ее короткодействующей частью потенциала (индекс s в 𝜓𝑠(r) от слова
short-range).

Тогда вторая часть является дальнодействующей (long-range), 𝜓(r) = 𝜓𝑙(r) + 𝜓𝑠(r):

𝜓𝑙(r) =
1⌋︂
𝜋
∑
n

𝛼2∫
0

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑑𝑡 = ∑
n

erf(𝛼⋃︀r +𝐿n⋃︀)
⋃︀r +𝐿n⋃︀ . (1.26)

Как хорошо видно из (1.25) и (1.26), была по существу использована формула (1.2) разделения

кулоновского потенциала на два вклада: с функцией ошибок erf (дальнодействующая часть) и

дополнительной функцией ошибок erfc (короткодействующая часть).

Для проведения дальнейших преобразований, необходимо поменять местами суммирование
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и интегрирование местами в (1.26). Такой переход является обоснованным только в случае аб­

солютной и равномерной сходимости ряда. Таким образом, необходимо форсировать сходимость

ряда в (1.26).

Можно выбрать различные весовые функции, которые обеспечат абсолютную и равномерную

сходимость ряда. Однако из соображений удобства работы в трехмерном пространстве, можно

выбрать такую функцию, которая будет придавать одинаковый вес всем слагаемым с одинаковым

модулем ⋃︀n⋃︀. Тогда все слагаемые, находящиеся на границе сферы 𝑛2
𝑥+𝑛2

𝑦 +𝑛2
𝑧 = ⋃︀n⋃︀2 для некоторого

значения ⋃︀n⋃︀ имеют один и тот же вес. Поэтому в таком случае говорят о суммировании по сферам.

Выберем в качестве весовой функции exp(−𝑠𝐿2⋃︀n⋃︀2). Тогда имеем следующее форсирование

сходимости:

𝜓𝑙(r) ⇒ 𝜓𝑙(r, 𝑠) =
1⌋︂
𝜋
∑
n

𝛼2∫
0

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑒−𝑠𝐿
2⋃︀n⋃︀2𝑑𝑡. (1.27)

Впоследствии необходимо сделать несколько преобразований ряда 𝜓𝑙(r, 𝑠), подставить его в пол­

ную потенциальную энергию и вычислить предел 𝑠 → 0, пользуясь условием электронейтрально­

сти. Отметим также, что для конечного 𝑠 > 0 потенциал 𝜓𝑙(r, 𝑠) не является периодичным, то есть
𝜓𝑙(r, 𝑠) ≠ 𝜓𝑙(r +m𝐿, 𝑠), m ∈ Z3. Таким образом, условие 2 не выполнено при 𝑠 > 0. Это значит,

что хотя и при 𝑠 = 0 потенциал является периодичным, в пределе 𝑠 → 0 апериодичность потенци­

ала после проведения упомянутых преобразований может сохраниться, а значит в пределе 𝑠 → 0

можно ожидать несоблюдение условия 2.

Ряд в (1.27) сходится абсолютно при 𝑠 > 0 и равномерно по (r, 𝑠) ∈ (︀0, 𝐿)3 ×(︀𝜖,∞) для любого
𝜖 > 0. Тогда можно поменять порядок интегрирования и суммирования:

𝜓𝑙(r, 𝑠) =
1⌋︂
𝜋
∑
n

𝛼2∫
0

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑒−𝑠⋃︀n⋃︀
2

𝑑𝑡 =
𝛼2∫
0

𝑡−1⇑2𝑑𝑡∑
n

1⌋︂
𝜋
𝑒−𝑡⋃︀r+𝐿n⋃︀

2

𝑒−𝑠𝐿
2⋃︀n⋃︀2 . (1.28)

Далее необходимо воспользоваться следующим тождеством, которое является свойством

𝜃-функций Якоби:

∑
n
𝑒−𝑡⋃︀a+n⋃︀

2 = (𝜋
𝑡
)
3⇑2
∑
n
𝑒−𝜋

2𝑛2⇑𝑡𝑒2𝜋𝑖n⋅a. (1.29)

Для этого преобразуем показатель экспоненты в уравнении (1.28) следующим образом:

−𝑡⋃︀r +𝐿n⋃︀2 − 𝑠⋃︀𝐿n⋃︀2 = −𝐿2(𝑠 + 𝑡) ⋀︀n + 𝑡r⇑𝐿
𝑠 + 𝑡 ⋀︀

2

− 𝑠𝑡⋃︀r⋃︀
2

𝑠 + 𝑡 . (1.30)

В результате использования уравнений (1.29) и (1.30), получаем следующее выражение:

𝜓𝑙(r, 𝑠) =
𝜋

𝐿3

𝛼2∫
0

𝑡−1⇑2 exp(−𝑠𝑡⋃︀r⋃︀
2

𝑠 + 𝑡 ) (𝑡 + 𝑠)
−3⇑2 ⌊︀1 +∑

n≠0
exp(− 𝜋2⋃︀n⋃︀2

𝐿2(𝑠 + 𝑡)) exp(
2𝜋𝑖n ⋅ r𝑡⇑𝐿

𝑠 + 𝑡 )}︀𝑑𝑡, (1.31)

в котором было выделено слагаемое n = 0. Вклады n ≠ 0 не содержат расходимости при 𝑠 → 0;
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произведем интегрирование после изменения порядка суммирования и интегрирования:

𝜋

𝐿3∑
n≠0

𝛼2∫
0

𝑡−1⇑2 exp(−𝑠𝑡⋃︀r⋃︀
2

𝑠 + 𝑡 ) (𝑡 + 𝑠)
−3⇑2 exp(− 𝜋2⋃︀n⋃︀2

𝐿2(𝑠 + 𝑡)) exp(
2𝜋𝑖n ⋅ r𝑡⇑𝐿

𝑠 + 𝑡 )𝑑𝑡 =

= ∑
n≠0

exp (−𝜋2𝑛2

𝐿2𝑠 )𝜋3⇑2 erfi( 𝛼⋃︀𝜋n+𝑖𝐿𝑠r⋃︀
𝐿
⌈︂
𝑠(𝑠+𝛼2))

𝐿2
⌋︂
𝑠⋃︀𝜋n + 𝑖𝐿𝑠r⋃︀ ÐÐ→

𝑠→0
∑
n≠0

exp (−𝜋2⋃︀n⋃︀2
𝛼2𝐿2 )

𝐿𝜋⋃︀n⋃︀2 exp (2𝑖𝜋n ⋅ r⇑𝐿) , (1.32)

где erfi(𝑥) = −𝑖 erf(𝑖𝑥). Вклад n = 0 расходится при 𝑠 → 0, так как условие электронейтраль­

ности еще не было использовано. Произведем интегрирование и выпишем его асимптотическое

поведение при 𝑠→ 0:

𝜋

𝐿3

𝛼2∫
0

𝑡−1⇑2 exp(−𝑠𝑡⋃︀r⋃︀
2

𝑠 + 𝑡 ) (𝑡 + 𝑠)
−3⇑2𝑑𝑡 =

𝜋3⇑2 erf ( ⋃︀r⋃︀⌉︂
1
𝛼2 + 1

𝑠

)

𝐿3⋃︀r⋃︀𝑠3⇑2 = 2𝜋

𝐿3𝑠
− 𝜋

𝛼2𝐿3
− 2𝜋⋃︀r⋃︀2

3𝐿3
+ 𝑜(𝑠0). (1.33)

Теперь найдем сумму 𝜓(r, 𝑠) = 𝜓𝑠(r) + 𝜓𝑙(r, 𝑠) при 𝑠→ 0:

𝜓(r, 𝑠) = ∑
n

erfc(𝛼⋃︀r +𝐿n⋃︀)
⋃︀r +𝐿n⋃︀ + ∑

n≠0

𝑒−
𝜋2 ⋃︀n⋃︀2

𝛼2𝐿2

𝐿𝜋⋃︀n⋃︀2 𝑒
2𝑖𝜋n⋅r⇑𝐿 + 2𝜋

𝐿3𝑠
− 𝜋

𝛼2𝐿3
− 2𝜋⋃︀r⋃︀2

3𝐿3
+ 𝑜(𝑠0). (1.34)

Параметризованная энергия 𝑈TCP(R, 𝑠) имеет вид уравнения (1.19), но с потенциалом 𝜓(r, 𝑠):

𝑈TCP(R, 𝑠) =
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜓(r𝑖𝑗, 𝑠) +
1

2

𝑁

∑
𝑖=1
𝑞2𝑖𝜓(0, 𝑠). (1.35)

Запишем парную энергию взаимодействия:

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜓(r𝑖𝑗, 𝑠) =
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗
⎛
⎝∑n

erfc(𝛼⋃︀r𝑖𝑗 +𝐿n⋃︀)
⋃︀r𝑖𝑗 +𝐿n⋃︀

+ ∑
n≠0

𝑒−
𝜋2 ⋃︀n⋃︀2

𝛼2𝐿2

𝐿𝜋⋃︀n⋃︀2 𝑒
2𝑖𝜋n⋅r𝑖𝑗⇑𝐿⎞

⎠
+

+ 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗
2𝜋

𝐿3𝑠
− 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗
𝜋

𝛼2𝐿3
− 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗
2𝜋⋃︀r𝑖𝑗 ⋃︀2
3𝐿3

+ 𝑜(𝑠0). (1.36)

Последнее слагаемое можно преобразовать к дипольному виду:

−1
2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗
2𝜋⋃︀r𝑖𝑗 ⋃︀2
3𝐿3

= 2𝜋

3𝐿3
⋁︀
𝑁

∑
𝑖=1
𝑞𝑖r𝑖⋁︀

2

. (1.37)

Аналогично можно получить формулу для одночастичного потенциала:

𝜓(0, 𝑠) = 𝜓(r→ 0, 𝑠) − 1

𝐿⋃︀n⋃︀ ⋁︀⋃︀n⋃︀→0

= ∑
n≠0

⎛
⎜
⎝
erfc(𝛼⋃︀𝐿n⋃︀)

⋃︀𝐿n⋃︀ + 𝑒
−𝜋2 ⋃︀n⋃︀2

𝛼2𝐿2

𝐿𝜋⋃︀n⋃︀2
⎞
⎟
⎠
− 2𝛼⌋︂

𝜋
+ 2𝜋

𝐿3𝑠
− 𝜋

𝛼2𝐿3
+ 𝑜(𝑠0). (1.38)

Теперь найдем сумму:

𝑈TCP(R, 𝑠) =
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗
⎛
⎜
⎝
∑
n

erfc(𝛼⋃︀r𝑖𝑗 +𝐿n⋃︀)
⋃︀r𝑖𝑗 +𝐿n⋃︀

+ ∑
n≠0

𝑒−
𝜋2 ⋃︀n⋃︀2

𝛼2𝐿2

𝐿𝜋⋃︀n⋃︀2 𝑒
2𝑖𝜋n⋅r𝑖𝑗⇑𝐿

⎞
⎟
⎠
+

+ 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑞𝑖𝑞𝑗 (

2𝜋

𝐿3𝑠
− 𝜋

𝛼2𝐿3
)+
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+ 2𝜋

3𝐿3
⋁︀
𝑁

∑
𝑖=1
𝑞𝑖r𝑖⋁︀

2

+

+ 1

2

𝑁

∑
𝑖=1
𝑞2𝑖 ∑

n≠0

⎛
⎜
⎝
erfc(𝛼⋃︀𝐿n⋃︀)

⋃︀𝐿n⋃︀ + 𝑒
−𝜋2 ⋃︀n⋃︀2

𝛼2𝐿2

𝐿𝜋⋃︀n⋃︀2
⎞
⎟
⎠
− 1

2

𝑁

∑
𝑖=1
𝑞2𝑖

2𝛼⌋︂
𝜋
+ 𝑜(𝑠0) = 𝑈sphere(R) + 𝑜(𝑠0). (1.39)

Расходящийся при 𝑠 → 0 вклад во второй строке уравнения (1.39) равен нулю вследствие условия

электронейтральности (1.8). Таким образом, в методе Эвальда явно учитывается электронейтраль­

ность системы, которая проявит себя в разделе 1.2.4.

Для удобства, введем безразмерный параметр 𝛿 = 𝛼𝐿 и получим следующую формулу для

потенциальной энергии некоторой электронейтральной конфигурации заряженных частиц:

𝑈TCP,sphere(R) =
𝜉

2𝐿

𝑁

∑
𝑖=1
𝑞2𝑖 +

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝑣(r𝑖𝑗) +
2𝜋

3𝐿3
⋁︀
𝑁

∑
𝑖=1
𝑞𝑖r𝑖⋁︀

2

, (1.40)

где

𝑣(r) = 1

𝐿
∑
n

erfc (𝛿 ⋃︀r⇑𝐿 + n⋃︀)
⋃︀r⇑𝐿 + n⋃︀ + 1

𝐿
∑
n≠0

𝑒−𝜋
2𝑛2⇑𝛿2

𝜋𝑛2
𝑒2𝑖𝜋n⋅r⇑𝐿 (1.41)

— парный потенциал Эвальда и

𝜉 = ∑
n≠0

⌊︀erfc(𝛿𝑛)
𝑛

+ 𝑒
−𝜋2𝑛2⇑𝛿2

𝜋𝑛2
}︀ − 2𝛿⌋︂

𝜋
= lim

𝑟→0

⎛
⎝
𝐿𝑣(r) − 1

𝑟⇑𝐿
⎞
⎠

(1.42)

— постоянная, отвечающая за взаимодействие частицы со своими изображениями. Как видно из

уравнения (1.42), значение 𝜉 зависит от потенциала взаимодействия. Обратим внимание, что

потенциал 𝑣(r) и величина 𝜉 зависят от параметра 𝛿; эта зависимость не будет указываться явно.

При этом, потенциальная энергия от параметра 𝛿 не зависит.

Проанализируемполучившийся результат, в томчисле проверим выполнение описанных выше

условий 1 и 2. Как уже упоминалось, первое слагаемое в (1.40) отвечает за взаимодействие частиц

со своими изображениями. Второе слагаемое в (1.40) есть парное взаимодействие с потенциалом

𝑣(r). В условии 1 говорилось, что этот потенциал должен быть периодичным. Проверим это:

𝑣(r +m𝐿) = 1

𝐿
∑
n

erfc (𝛿 ⋃︀r⇑𝐿 + n +m⋃︀)
⋃︀r⇑𝐿 + n +m⋃︀ + 1

𝐿
∑
n≠0

𝑒−𝜋
2𝑛2⇑𝛿2

𝜋𝑛2
𝑒2𝑖𝜋n⋅r⇑𝐿𝑒2𝑖𝜋n⋅m. (1.43)

Последняя экспонента 𝑒2𝑖𝜋n⋅m в (1.43) всегда равна единице, так как скалярное произведение

целочисленных векторов n ⋅m есть некоторое целое число, а в первом слагаемом можно произвести

замену переменных суммирования n′ = n +m; эти преобразования приводят снова к потенциалу

𝑣(r). Таким образом, потенциал Эвальда является периодичным. Отметим в то же время, что в

процессе преобразования из потенциала𝜓(r, 𝑠→ 0) был исключен некоторый квадратичный вклад,
чтобы в результате получить 𝑣(r).

Этот квадратичный вклад после преобразований превратился в последнее слагаемое уравне­

ния (1.40) и содержит квадрат дипольного момента основной ячейки. Зачастую, это слагаемое и
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называют дипольным.

Если попробовать проверить формулу (1.40) на выполнение условие 2, окажется, что оно не

выполняется. Таким образом, энергия суперячейки, составленная из восьми элементарных ячеек,

на одну частицу оказывается не равна энергии на одну частицу для элементарной ячейки.

1.1.3. Проблема дипольного слагаемого и альтернативный метод суммирования

Возникновение дипольного слагаемого при суммировании по сферам, а также вопрос о необ­

ходимости его включения или исключения из окончательного результата, являются дискуссион­

ными [12; 29; 30]. В работе [12] предлагается исключить это слагаемое, чтобы удовлетворить

правилу о ближайшем изображении (о нем будет сказано позже). Это соображение эквивалентно

удовлетворению второму условию 2.

В книге Рапапорта [19], а также книге Аллена и Тилдесли [31] можно увидеть следующую

интерпретацию исключения дипольного слагаемого. Результат суммирования ряда есть предел

частичных сумм. Суммирование по сферам предполагает составление кластеров (почти) сфе­

рической формы из элементарных ячеек. Таким образом, внешнее окружение таких кластеров

(например, вакуум или металл) может оказывать влияние на энергию из-за ненулевого дипольного

момента кластера. Для того, чтобы избавиться от излишнего вклада, необходимо окружить эти

кластеры проводящим веществом (металлом), который экранирует электрическое поле поляриза­

ционных зарядов.

С точки зрения автора данной работы, это объяснение является абсурдным. Изначально

рассматривается система зарядов в вакууме. Введение дополнительного материала, окружающего

заряды, является трюком, который хоть и формально позволяет устранить дипольное слагаемое,

но никаким образом не раскрывает причины его появления. Повторим еще раз: в рассматриваемой

системе находятся только точечные заряды в вакууме.

Стоит вернуться к изначальной постановке задачи. Формула для потенциальной энергии

периодической кулоновской системы является условно сходящимся рядом. Форсирование сходи­

мости с помощью суммирования по сферам приводит лишь к некоторому возможному результату

суммирования, как это было показано на примере простых рядов в уравнениях (1.15) и (1.18).

Так как результат суммирования по сферам не удовлетворяет физическому принципу (условию 2),

при суммировании возник артефакт, отвечающий данному способу (порядку) суммирования. Это

было проиллюстрировано в работе [32] следующим образом.

Рассмотрим некоторую частичную сумму потенциала 𝜓⋃︀n⋃︀(r, 𝑠) (под частичной суммой по­

нимается сумма по нескольким ячейкам для некоторого радиуса сферы ⋃︀n⋃︀). Как уже упомянуто
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выше, этот потенциал не является периодичным. Рассмотрим далее величину 𝜓⋃︀n⋃︀(r +A, 𝑠), где A
— вектор трансляции (то есть точка r + A находится в соседней ячейке от основной). Как пока­

зано в работе [32] (см. уравнение (54) в [32]), между потенциалом в соседней и основной ячейке

выполняется следующее соотношение:

𝜓⋃︀n⋃︀(r +A, 𝑠) = 𝜓⋃︀n⋃︀(r, 𝑠) +
4𝜋P ⋅A
3𝑉

, (1.44)

где P—дипольный момент основной ячейки, а 𝑉 —ее объем. Формула (1.44) еще раз показывает,

что частичная сумма 𝜓⋃︀n⋃︀(r, 𝑠) при суммировании по сферам не является периодичной функци­

ей. Что еще более критично, дополнительный вклад, нарушающий периодичность, не стремится к

нулю в пределе бесконечного числа слагаемых. Таким образом, при суммировании по сферам полу­

чается периодичный потенциал плюс некоторый артефакт конечных кластеров, то есть артефакт,

возникший из-за форсирования сходимости. Далее можно придумать такие условия, при которых

этот артефакт в некотором смысле уничтожается (на примере введения окружающей проводящей

среды), однако такой подход лишь скрывает недостатки такого способа суммирования. Для того,

чтобы проиллюстрировать, что дипольное слагаемое является лишь артефактом суммирования,

произведем суммирование с другим фактором, по модулю равным единице (то есть с сохранением

одинакового веса всех слагаемых). Кратко основные результаты такого суммирования приведены

в работе [12].

Итак, снова рассмотрим дальнодействующую часть потенциала (1.26). Этот ряд расходится.

Форсируем сходимость с помощью фактора exp(𝑖𝐿n ⋅ 𝜉), где 𝜉 — трехмерный вектор с действи­

тельными компонентами. Этот вектор выполняет роль параметра 𝑠. Такой фактор суммирования

является комплексным числом, равным по модулю единице. Таким образом, форсируется сходи­

мость ряда, однако не абсолютная. В результате, получаем следующее выражение для потенциала:

𝜓𝑙(r) ⇒ 𝜓𝑙(r,𝜉) =
1⌋︂
𝜋
∑
n

𝛼2∫
0

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑒𝑖𝐿n⋅𝜉𝑑𝑡. (1.45)

Ряд в формуле для 𝜓𝑙(r,𝜉) сходится условно. Чтобы произвести аналогичные разделу 1.1.2 вы­

кладки, необходимо поменять порядок суммирования и интегрирования. Строго говоря, такой

переход обоснован только для абсолютно сходящихся рядов. Так как цель последующих выкла­

док — лишь иллюстрация наличия артефактов при суммировании условно сходящегося ряда,

выполним такую перестановку:

𝜓𝑙(r,𝜉) =
1⌋︂
𝜋
∑
n

𝛼2∫
0

𝑡−1⇑2𝑒−𝑡⋃︀r+𝐿n⋃︀
2

𝑒𝑖𝐿n⋅𝜉𝑑𝑡⇒ 1⌋︂
𝜋

𝛼2∫
0

𝑡−1⇑2𝑑𝑡∑
n
𝑒−𝑡⋃︀r+𝐿n⋃︀

2

𝑒𝑖𝐿n⋅𝜉. (1.46)

Еще раз отметим, что переход в уравнении (1.46) не является строгим. Поэтому вместо знака

равенства используется символ⇒. Тем не менее, в последующих формулах будет использоваться
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знак равенства.

Теперь снова необходимо воспользоваться тождеством (1.29). Для этого приводим показатель

экспоненты в (1.46) к соответствующему виду:

−𝑡⋃︀r +𝐿n⋃︀2 + 𝑖𝐿𝜉 ⋅ n = −𝑡𝐿2 ⋀︀n + ]︀ r
𝐿
− 𝑖𝜉

2𝑡𝐿
{︀⋀︀

2

− 𝑖r ⋅ 𝜉 − ⋃︀𝜉⋃︀
2

4𝑡
. (1.47)

Тождество (1.29) для (1.46) приводит к следующей формуле, являющейся аналогом выраже­

ния (1.31):

𝜓𝑙(r,𝜉) = 𝜋
𝛼2∫
0

𝑑𝑡
exp (−𝑖r ⋅ 𝜉) exp (− ⋃︀𝜉⋃︀

2

4𝑡 )
𝑡2𝐿3

(1 +∑
n≠0

exp(−𝜋
2⋃︀n⋃︀2
𝑡𝐿2

) exp(2𝜋𝑖n ⋅ ]︀ r
𝐿
− 𝑖𝜉

2𝑡𝐿
{︀)) . (1.48)

Снова вклады с n ≠ 0 не содержат сингулярности при 𝜉 → 0. Для интегрирования по переменной 𝑡

снова меняем порядок суммирования и интегрирования (и снова этот переход не является строгим

с математической точки зрения):

𝜋

𝛼2∫
0

𝑑𝑡
𝑒−𝑖r⋅𝜉𝑒−

⋃︀𝜉⋃︀2
4𝑡

𝑡2𝐿3 ∑
n≠0
𝑒−

𝜋2 ⋃︀n⋃︀2

𝑡𝐿2 𝑒2𝜋𝑖n⋅[︀
r
𝐿
− 𝑖𝜉

2𝑡𝐿
⌉︀ = ∑

n≠0

4𝜋𝑒
− 1
4 ⋃︀𝜉⋃︀

2−𝜋2𝑛2

𝐿2 +𝜋n⋅𝜉⇑𝐿

𝛼2 + 2𝑖𝜋n⋅r
𝐿
−𝑖r⋅𝜉

𝐿 (⋃︀𝜉⋃︀2𝐿2 + 4𝜋 (𝜋𝑛2 −𝐿n ⋅ 𝜉)) ÐÐ→𝜉→0
∑
n≠0

𝑒−
𝜋2 ⋃︀n⋃︀2

𝛼2𝐿2

𝐿𝜋⋃︀n⋃︀2 𝑒
2𝑖𝜋n⋅r⇑𝐿.

(1.49)

Таким образом, в пределе получили такой же результат, как и при суммировании по сферам (1.32).

Аналогично, вклад при n = 0 расходится при 𝜉 → 0:

𝜋

𝛼2∫
0

𝑑𝑡
𝑒−𝑖r⋅𝜉𝑒−

⋃︀𝜉⋃︀2
4𝑡

𝑡2𝐿3
= 4𝜋𝑒−

⋃︀𝜉⋃︀2

4𝛼2 −𝑖r⋅𝜉

⋃︀𝜉⋃︀2𝐿3
= − 𝜋

𝛼2𝐿3
+ 4𝜋

⋃︀𝜉⋃︀2𝐿3
− 4𝑖𝜋r ⋅ 𝜉

⋃︀𝜉⋃︀2𝐿3
− 2𝜋⋃︀r ⋅ 𝜉⋃︀2

⋃︀𝜉⋃︀2𝐿3
+ 𝑜(⋃︀𝜉⋃︀0). (1.50)

Суммируя все вместе и вычисляя потенциал самовзаимодействия 𝜓(0,𝜉), получаем следующий

результат для энергии:

𝑈TCP(R,𝜉) =
𝜉

2𝐿

𝑁

∑
𝑖=1
𝑞2𝑖 +

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝑣(r𝑖𝑗) +
2𝜋

⋃︀𝜉⋃︀2𝐿3
⋁︀
𝑁

∑
𝑖=1
𝑞𝑖𝜉 ⋅ r𝑖⋁︀

2

+ 𝑜(⋃︀𝜉⋃︀0). (1.51)

Таким образом, снова получено дипольное слагаемое в несколько более общей форме. Вычислим

предел при 𝜉 → 0. Для этого перепишем скалярное произведение через модули векторов 𝜉 и r𝑖:
2𝜋

⋃︀𝜉⋃︀2𝐿3
⋁︀
𝑁

∑
𝑖=1
𝑞𝑖𝜉 ⋅ r𝑖⋁︀

2

= 2𝜋

𝐿3
⋁︀
𝑁

∑
𝑖=1
𝑞𝑖⋃︀r𝑖⋃︀ cos(r𝑖,𝜉)⋁︀

2

, (1.52)

где косинус угла между векторами имеет следующий вид:

cos(r,𝜉) = 𝑥𝜉𝑥 + 𝑦𝜉𝑦 + 𝑧𝜉𝑧
⋃︀r⋃︀ ×

⌈︂
𝜉2𝑥 + 𝜉2𝑦 + 𝜉2𝑧

. (1.53)

Рассмотрим предел по разным направлениям. Пусть 𝜉𝑦 = 𝜉𝑧 = 0, а 𝜉𝑥 → 0 (𝜉 = (𝜉𝑥, 𝜉𝑦, 𝜉𝑧)):

lim
𝜉→0

cos(r,𝜉) = lim
𝜉𝑥→0

𝑥𝜉𝑥
⋃︀r⋃︀ × 𝜉𝑥

= 𝑥⋃︀r⋃︀ . (1.54)

Теперь рассмотрим предел по другому направлению. Пусть 𝜉𝑥 = 𝜉𝑧 = 0, а 𝜉𝑦 → 0:

lim
𝜉→0

cos(r,𝜉) = lim
𝜉𝑦→0

𝑦𝜉𝑦
⋃︀r⋃︀ × 𝜉𝑦

= 𝑦

⋃︀r⋃︀ . (1.55)
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Мы получили, что предел по разным направлениям приводит к разным результатам. В таком

случае говорят, что предел 𝜉 → 0 не существует. Такое поведение является проявлением условной

сходимости ряда (1.9). Это означает, что можно подобрать такое направление предела 𝜉 → 0, чтобы

cos(r,𝜉) принял любое значение от -1 до 1, в том числе и ноль. Это иллюстрирует тот факт, что

дипольное слагаемое не имеетфизического смысла и зависит от способа суммирования. Более того,

оно нарушает условие (2), которое следует из эквивалентности двух задач: вычисления энергии на

одну частицу для элементарной ячейки и суперячейки. Здесь также можно упомянуть интересный

препринт [29], в котором рассматривается суммирование по эллипсу, результат которого содержит

дипольное слагаемое в матричном виде.

Все это показывает, что дипольное слагаемое должно быть исключено в случае задачи данной

работы, и финальное выражение для потенциальной энергии классической двухкомпонентной

кулоновской системы покоящихся зарядов принимает вид:

𝑈E
TCP(R) =

𝜉

2𝐿

𝑁

∑
𝑖=1
𝑞2𝑖 +

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝑣(r𝑖𝑗). (1.56)

Стоит снова отметить, что нет (их не может быть) строгих математических обоснований, почему

результат суммы условно сходящегося ряда должен иметь именно такую форму (1.56). Тем не

менее, физические требования к поведению потенциальной энергии 1 и 2, которые приводят к

исключению дипольного слагаемого, являются вполне осмысленными.

Наконец, существует строгий метод суммирования, в котором подобных проблем не возни­

кает. Он заключается в рассмотрении потенциалаЮкавы вместо кулоновского потенциала, то есть

экранированного кулоновского потенциала с бесконечно малым экранированием, в котором не на­

рушается свойство периодичности даже при конечном экранировании. В нескольких работах [11;

12] выражается некоторое недоверие к такому подходу. С другой стороны, подобное обращение с

кулоновским потенциалом является привычным, например, при поиске его преобразования Фурье.

Попробуем вычислить преобразование Фурье по определению для кулоновского потенциала:∫
𝑑r
𝑟
exp(𝑖k ⋅ r) = − 4𝜋

𝑘2
cos(𝑘𝑟)⋀︀

+∞

0

= 4𝜋

𝑘2
[︀1 − lim

𝑟→+∞
cos(𝑘𝑟)⌉︀ . (1.57)

Этот предел не существует. Однако проблема легко решается с помощью экранирования куло­

новского потенциала (потенциал Юкавы):∫
𝑑r
𝑟
𝑒−𝜅𝑟 exp(𝑖k ⋅ r) = 4𝜋

𝑘2 + 𝜅2 ÐÐ→𝜅→0

4𝜋

𝑘2
. (1.58)

Таким образом, всегда под преобразованием Фурье кулоновского потенциала понимается пре­

образование Фурье потенциала Юкавы с бесконечно малым параметром экранирования 𝜅, хотя

практически никогда об этом не упоминается (некоторые рассуждения об этом можно найти в [33;

34]).
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Воспользовавшись аналогичным приемом, рассмотрим потенциальную энергию (1.9) в случае

потенциала Юкавы:

𝑈TCP(R, 𝜅) =
1

2
∑′
n

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

𝑞𝑖𝑞𝑗
⋃︀r𝑖𝑗 +𝐿n⋃︀

𝑒−𝜅⋃︀r𝑖𝑗+𝐿n⋃︀ = 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜓(r𝑖𝑗, 𝜅) +
1

2

𝑁

∑
𝑖=1
𝑞2𝑖𝜓(0, 𝜅), (1.59)

где

𝜓(r, 𝜅) = ∑
n

𝑒−𝜅⋃︀r+𝐿n⋃︀

⋃︀r +𝐿n⋃︀ , 𝜓(0, 𝜅) = ∑
n≠0

𝑒−𝜅𝐿⋃︀n⋃︀

𝐿⋃︀n⋃︀ = 𝜓(r→ 0, 𝜅) − 𝑒
−𝜅𝐿⋃︀n⋃︀

𝐿⋃︀n⋃︀ ⋁︀⋃︀n⋃︀→0

, (1.60)

и рассчитаем предел при 𝜅 → 0 для 𝑈TCP(R, 𝜅). Отметим, что ряды (1.60) сходятся абсолютно

для любого 𝜅 > 0, а также что экранированный потенциал является периодичным (𝜓(r, 𝜅) =
𝜓(r +m𝐿,𝜅)).

Достаточно подробно процедура суммирования Эвальда для потенциала Юкавы описана в

работе [35] (см. формулы (27), (34)–(38)) в случае однокомпонентной плазмы. Произведем анало­

гичный вывод для двухкомпонентной системы.

Запишем потенциал (1.60) в интегральной форме:

𝜓(r, 𝜅) = ∑
n

𝑒−𝜅⋃︀r+𝐿n⋃︀

⋃︀r +𝐿n⋃︀ = ∑n
𝑒−𝜅⋃︀r−𝐿n⋃︀

⋃︀r −𝐿n⋃︀ =
∫
𝑤(𝜌)𝑒

−𝜅⋃︀r−𝜌⋃︀

⋃︀r − 𝜌⋃︀ 𝑑𝜌 = 𝜓𝑠(r, 𝜅) + 𝜓𝑙(r, 𝜅), (1.61)

где

𝑤(𝜌) = ∑
n
𝛿(𝜌 − n𝐿). (1.62)

Потенциал также разбивается на две части: быстро убывающую в прямом пространстве и дально­

действующую. Для этого введем вспомогательную функцию:

𝜂(𝑥) = erfc(𝛼𝑥 − 𝜅⇑(2𝛼))
1 + erf(𝜅⇑(2𝛼)) . (1.63)

Отметим, что выбор данной функции не является единственным (см. раздел 2.2 в [11]). Тогда:

𝜓𝑠(r, 𝜅) =
∫
𝑤(𝜌)𝜂(⋃︀r − 𝜌⋃︀)𝑒

−𝜅⋃︀r−𝜌⋃︀

⋃︀r − 𝜌⋃︀ 𝑑𝜌, (1.64)

𝜓𝑙(r, 𝜅) =
∫
𝑤(𝜌) (︀1 − 𝜂(⋃︀r − 𝜌⋃︀)⌋︀ 𝑒

−𝜅⋃︀r−𝜌⋃︀

⋃︀r − 𝜌⋃︀ 𝑑𝜌 ≡
∫
𝑤(𝜌)𝐹 (⋃︀𝜌 − r⋃︀)𝑑𝜌, (1.65)

где

𝐹 (𝑥) = (︀1 − 𝜂(𝑥)⌋︀ 𝑒
−𝜅𝑥

𝑥
. (1.66)

Первая часть потенциала находится простым интегрированием дельта функций:

𝜓𝑠(r, 𝜅) =
∫
∑
n
𝛿(𝜌 − n𝐿)𝜂(⋃︀r − 𝜌⋃︀)𝑒

−𝜅⋃︀r−𝜌⋃︀

⋃︀r − 𝜌⋃︀ 𝑑𝜌 = ∑n
𝜂(⋃︀r − n𝐿⋃︀)𝑒

−𝜅⋃︀r−n𝐿⋃︀

⋃︀r − n𝐿⋃︀ . (1.67)

Дальнодействующая часть потенциала является сверткой функций 𝑤(𝜌) и 𝐹 (⋃︀𝜌⋃︀). Используя
теорему о свертке, получаем Фурье образ 𝜓𝑙(k, 𝜅) потенциала 𝜓𝑙(r, 𝜅):

𝜓𝑙(k, 𝜅) = 𝑤(k)𝐹 (k), (1.68)
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где 𝜓𝑙(k, 𝜅) и 𝑤(k)—Фурье образы функций 𝜓𝑙(r, 𝜅) и 𝑤(𝜌), соответственно:

𝜓𝑙(k, 𝜅) =
1

(2𝜋)3
∫
𝜓𝑙(r, 𝜅)𝑒−𝑖k⋅r𝑑r, 𝑤(k) = 1

(2𝜋)3
∫
𝑤(𝜌)𝑒−𝑖k⋅𝜌𝑑𝜌, (1.69)

и 𝐹 (k)—Фурье образ функции 𝐹 (⋃︀𝜌⋃︀), с точностью до постоянной (2𝜋)3:

𝐹 (k) =
∫
𝐹 (⋃︀𝜌⋃︀)𝑒−𝑖k⋅𝜌𝑑𝜌 = 4𝜋

+∞∫
0

𝜌2𝐹 (𝜌)sin(𝑘𝜌)
𝑘𝜌

𝑑𝜌 =
4𝜋𝑒−𝜅

2⇑(4𝛼2) [︀𝑒−𝑘2⇑(4𝛼2) + 2𝜅⌋︂
𝜋𝑘
𝐷(𝑘⇑(2𝛼))⌉︀

(𝑘2 + 𝜅2)(1 + erf(𝜅⇑(2𝛼))) ,

(1.70)

𝐹 (0) =
4𝜋𝑒−

𝜅2

4𝛼2 (1 + 𝜅⌋︂
𝜋𝛼
)

𝜅2(1 + erf( 𝜅
2𝛼))

, (1.71)

где 𝐷(𝑥)—функция Доусона. Фурье образ 𝑤(k) находится простым интегрированием:

𝑤(k) = 1

(2𝜋)3
∫
∑
n
𝛿(𝜌 − n𝐿)𝑒−𝑖k⋅𝜌𝑑𝜌 = 1

(2𝜋)3∑n
𝑒−𝑖𝐿k⋅n = 1

(2𝜋)3∑n
𝑒𝑖𝐿k⋅n = 1

𝐿3∑
n
𝛿(k − 2𝜋n⇑𝐿).

(1.72)

Последнее равенство в (1.72) является свойством функции под названием «гребень Дирака»,

которое также может быть получено с помощью сумматорной формулы Пуассона (см. [36] и

формулу (1.121)). Разлагая теперь 𝜓𝑙(r, 𝜅) в интеграл Фурье и пользуясь (1.68), можем найти

дальнодействующую часть потенциала:

𝜓𝑙(r, 𝜅) =
∫
𝜓𝑙(k, 𝜅)𝑒𝑖k⋅r𝑑k =

∫
1

𝐿3∑
n
𝛿(k − 2𝜋n⇑𝐿)𝐹 (k)𝑒𝑖k⋅r𝑑k =

= 1

𝐿3∑
n
𝐹 (2𝜋n

𝐿
) 𝑒𝑖2𝜋n⋅r⇑𝐿 = 1

𝐿3∑
n≠0
𝐹 (2𝜋n

𝐿
) 𝑒𝑖2𝜋n⋅r⇑𝐿 + 𝐹 (0)

𝐿3
. (1.73)

Рассмотрим теперь предел 𝜅→ 0:

𝜓𝑠(r, 𝜅) = ∑
n

erfc(𝛼⋃︀r + n𝐿⋃︀)
⋃︀r + n𝐿⋃︀ + 𝑜(𝜅0), (1.74)

𝜓𝑙(r, 𝜅) =
1

𝐿
∑
n≠0

𝑒−𝜋
2n2⇑(𝛼2𝐿2)

𝜋n2
+ 1

𝐿3
(4𝜋
𝜅2
− 𝜋

𝛼2
) + 𝑜(𝜅0), (1.75)

а также вычислим одночастичный потенциал:

𝜓(0, 𝜅) = 𝜓(r→ 0, 𝜅) − 𝑒
−𝜅𝐿⋃︀n⋃︀

𝐿⋃︀n⋃︀ ⋁︀⋃︀n⋃︀→0

= ∑
n≠0

⌊︀𝑒
−𝜋2n2⇑(𝛼2𝐿2)

𝐿𝜋n2
+ erfc(𝛼𝑛𝐿)

𝑛𝐿
}︀ − 2𝛼⌋︂

𝜋
+ 1

𝐿3
(4𝜋
𝜅2
− 𝜋

𝛼2
) + 𝑜(𝜅0).

(1.76)

Как и ожидалось, возникла расходимость при 𝜅→ 0, которая устраняется с помощью условия элек­

тронейтральности. В случае однокомпонентной плазмы в работе [35] это эквивалентно отсутствию

вклада при n = 0 в формуле (37) из-за наличия фонового заряда. Итак, подставим (1.74), (1.76)

и (1.75) в энергию (1.59) (снова используем параметр 𝛿 = 𝛼𝐿):

𝑈TCP(R, 𝜅) =
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝑣(r𝑖𝑗) +
𝜉

2𝐿

𝑁

∑
𝑖=1
𝑞2𝑖 +

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑞𝑖𝑞𝑗

1

𝐿3
(4𝜋
𝜅2
− 𝜋𝐿

2

𝛿2
) + 𝑜(𝜅0). (1.77)

Последнее слагаемое в (1.77) равно нулю вследствие электронейтральности. В результате, сно­

ва приходим к формуле (1.56), которая удовлетворяет условиям 1 и 2, а дипольное слагаемое



35

отсутствует.

1.1.4. О взгляде на проблему дипольного слагаемого в цитируемых работах

Существует огромное число работ и подходов о суммировании решеточных сумм. Ссылки

на эти работы, а также обзор некоторых используемых методов, можно найти в работе [11]. Здесь

автор данной работы хотел бы обратить внимание на отношение к дипольному слагаемому во

многих работах.

Существует несколько, в том числе уже упомянутых, работ [12; 32; 37], в которых утверждает­

ся о корректности результата суммирования по сферам (то есть необходимости учета дипольного

слагаемого). Так, например, в работе [12] (см. формулу (3.6) и обсуждение рядом) упоминается

метод суммирования с экранированным кулоновским потенциалом. А именно, в формуле (3.8)

показывается, что отличие от результата суммирования по сферам является именно это диполь­

ное слагаемое. Однако из этого делается вывод, что «использование фактора exp(︀−𝑠⋃︀r𝑖𝑗 + n⋃︀2⌋︀
для форсирования сходимости для различных частей суммы решетки неверно и вносит ошиб­

ку, пропорциональную квадрату дипольного момента соответствующей конфигурации». То есть

несовпадение финального результата такого способа суммирования с суммированием по сферам

интерпретируется как неправильный результат.

Аналогичный подход представлен в работе [32]. При разложении в формуле (66) потенциала

Эвальда по расстоянию наблюдается появление квадратичного слагаемого (позже будет показано,

что именно это квадратичное слагаемое отвечает за дальнодействие в потенциале Эвальда). Этот

квадратичный вклад интерпретируется как «нежелательный». Дипольное слагаемое полностью

компенсирует этот квадратичный вклад; поэтому в работе [32] рассматривается моделирование

кулоновской системы с учетом этого дипольного слагаемого.

Стоит еще раз вспомнить, что потенциальная энергия кулоновской системы является условно

сходящимся рядом. Это значит, что в принципе можно получить любой результат при суммиро­

вании этого ряда. Строго говоря, с математической точки зрения не существует «правильного»

или «неправильного» способа рассчитать условно сходящийся ряд. Тем не менее, видимо, в силу

кажущейся формальной обоснованности метода суммирования по сферам, а также его неплохой

проработанности и возможности визуализации [31], этот способ идентифицируется как правиль­

ный [12].

Способ суммирования по сферам не является чем-то лучше или хуже по сравнению с дру­

гими методами суммирования с математической точки зрения. Это просто один из вариантов

просуммировать условно сходящийся ряд. Тем не менее, видимо, можно выделить целый класс
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способов суммирования, которые не удовлетворяют физическим условиям 1 и 2, но приводят к

правильному с физической точки зрения результату плюс некоторый «артефакт» данного способа

суммирования.

В литературе можно найти некоторое объяснение учета дипольного слагаемого. Например,

в обзоре Холопова [11] говорится, что возможна несколько другая постановка задачи, а именно

«присутствие бесконечно удаленных границ». Предполагается, что вместо «объемно трансляци­

онно-симметричного решения в бесконечном кристалле без границ» рассматривается конечный

кристалл, граница которого должна влиять на потенциальную энергию. В то же время, представить

себе бесконечно удаленные границы достаточно сложно. К тому же, реальный кристалл зачастую

имеет макроскопический объем, тогда как в дипольное слагаемое подставляется объем расчетной

ячейки.

Следует отметить, что в большинстве современных работ используется выражение (1.56)

без учета дипольного слагаемого. Это выражение можно считать устоявшимся и проверенным на

практике, поскольку его использование, а также промежуточные вычисления, не приводят к проти­

воречиям с экспериментальными данными. Помимо этого, автор настоящей работы рассматривает

выполнение условий 1 и 2 при использовании формулы (1.56) как дополнительное обоснование

его применимости. Однако вопрос о единственности формулы для потенциала, удовлетворяющей

указанным условиям, остается открытым и выходит за рамки данной работы.

1.1.5. Потенциальная энергия классической одно- и двухкомпонентной плазмы

В предыдущем разделе 1.1 с помощью рассмотрения экранированного потенциала Эвальда

в пределе бесконечно малого экранирования, была получена потенциальная энергия электроней­

тральной кулоновской системы точечных заряженных частиц c фиксированными положениями.

Как уже упоминалось, в работе [35] был произведен аналогичный вывод для ОКП. Таким обра­

зом, можно записать следующую формулу для потенциальной энергии одно- и двухкомпонентной

системы с помощью потенциала Эвальда:

𝑈E(R) = 𝑈E
0 +

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝑣(r𝑖𝑗), (1.78)

где потенциалЭвальда 𝑣(r) определен в уравнении (1.41). Для удобства и вследствие суммирования
по всем векторам n можно заменить мнимую экспоненту на косинус:

𝑣(r) = 1

𝐿
∑
n

erfc (𝛿 ⋃︀r⇑𝐿 + n⋃︀)
⋃︀r⇑𝐿 + n⋃︀ + 1

𝐿
∑
n≠0

𝑒−𝜋
2𝑛2⇑𝛿2

𝜋𝑛2
cos(2𝜋n ⋅ r⇑𝐿). (1.79)
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Выражение (1.79) используется в расчетах. Постоянный вклад 𝑈E
0 различен в случае двухкомпо­

нентной:

𝑈E
0 → 𝑈E

0,TCP =
𝜉

2𝐿

𝑁

∑
𝑖=1
𝑞2𝑖 , (1.80)

и однокомпонентной системы

𝑈E
0 → 𝑈E

0,OCP =
𝜉 − 𝜋𝑁⇑𝛿2

2𝐿
(𝑍𝑒)2𝑁 = 𝑈0,TCP −

𝜋𝑁2

2𝛿2𝐿
(𝑍𝑒)2, (1.81)

где постоянная 𝜉, которая зависит только от параметра 𝛿, определена в уравнении (1.42). В случае

однокомпонентной системы, все заряды в уравнении (1.78) необходимо заменить на 𝑍𝑒, то есть

𝑞𝑖 = 𝑍𝑒 для всех 𝑖 в случае ОКП. Последний вклад в уравнении (1.81) отвечает за взаимодействие

положительных частиц сфоном ифона с самим собой. Формулы (1.78)–(1.81) будут использоваться

в дальнейшем в данной работе.

С помощью формулы (1.78) можно также записать выражение для расчета постоянных Маде­

лунга кристаллических структур. Постоянная Маделунга может быть рассчитана в случае ОКП:

𝑀E
OCP =

𝑟𝑎
2𝐿

⎨⎝⎝⎝⎝⎝⎝⎪
𝜉 − 𝜋𝑁⇑𝛿2 +

𝑁

∑
𝑗=1
𝑖≠𝑗

𝐿𝑣(r𝑖𝑗)
⎬⎠⎠⎠⎠⎠⎠⎮
, (1.82)

где 𝑟𝑎 = (4𝜋𝑁⇑(3𝑉 ))−1⇑3 — радиус ионной сферы, и в случае ДКП:

𝑀E
TCP =

𝑟0
𝐿

⎨⎝⎝⎝⎝⎝⎝⎪
𝜉𝑧𝑖 +

𝑁

∑
𝑗=1
𝑖≠𝑗

𝑧𝑗𝐿𝑣(r𝑖𝑗)
⎬⎠⎠⎠⎠⎠⎠⎮
, (1.83)

где 𝑧𝑖 = 𝑞𝑖⇑𝑒— зарядовое (целое) число, а 𝑟0 — расстояние между ближайшими соседями.

Рассмотрим некоторые свойства полученного потенциала Эвальда (1.79). Эти свойства пона­

добятся для анализа усредненного по углам потенциала Эвальда, приведенного далее в разделе 1.2.

На основную ячейку, рассматриваемую в моделировании, наложены ПГУ. Это означает, что

потенциал взаимодействия между частицами должен удовлетворять следующим условиям:

1. быть периодичным;

2. иметь точку минимума;

3. быть симметричным относительно точки минимума.

Чтобы проиллюстрировать эти условия, рассмотрим схематичный рисунок потенциала Эвальда

вдоль направления [100] (см. рис. 1.1), или, иначе говоря, в случае одномерной системы. По другим

направлениям потенциал ведет себя аналогично (см. рис. 1.2 и 1.6). На рисунке 1.1 изображена

элементарная ячейка с одной заряженной частицей в центре ячейки. Эта ячейка повторяется влево

и вправо, что соответствует ПГУ. Для исследования потенциальной поверхности, создаваемой

такой системой зарядов, поместим в нее пробную частицу с единичным зарядом. Положение
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Точки минимумов

Функция четная (симметричная) относительно точек минимумов 

r

Рис. 1.1. Качественное поведение потенциалаЭвальда вдоль направления [100]. Черные точки иллюстрируют
положения заряженной частицы и ее изображений; вертикальные линии представляют края элементарной
ячейки. Сплошная линия — потенциальная энергия. Она имеет максимум в позициях ионов и минимум
между ионами на краю ячейки.

пробной частицы будем варьировать и отображать качественное поведение потенциальной энергии

взаимодействия с другими частицами. Так, сплошная линия на рис. 1.1 показывает потенциальную

энергию взаимодействия между некоторым пробным единичным зарядом в позиции 𝑟 и системой

частиц, расположенных в центрах периодически повторяющихся ячеек (черные точки на рис. 1.1).

Во-первых, энергия взаимодействия должна быть бесконечной, если положение пробного

заряда идентично положению одного из ионов. Это объясняется тем, что в этом случае в энергию

взаимодействия вносит вклад бесконечное взаимодействие с частицей, находящейся в положении

пробной. При изменении положения вправо (или влево) от заряженной частицы потенциальная

энергия уменьшается практически по кулоновскому закону.

Во-вторых, энергия должна быть минимальной, когда пробный заряд равноудален от двух

ионов, то есть находится на краю ячейки. В этом положении пробный заряд также равноудален от

всех зарядов. Помимо этого, картина зарядов слева и справа от пробной частицы, находящейся

на границе ячейки, плотностью идентична; а значит эта точка является точкой симметрии. Эти

соображения показывают причины, по которым потенциал взаимодействия обладает характери­

стиками 1–3, которые были обозначены выше.

Эти свойства приводят к одному очень важному свойству поведения потенциальной энергии,

а точнее потенциалу, создаваемому в некоторой точке. Для иллюстрации рассмотрим потенциал,

создаваемый всеми остальными частицами в точке нахождения некоторой частицы 𝑖:

𝑢(r𝑖) =
𝜉

𝐿
𝑞𝑖 +

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑗𝑣(r𝑖𝑗), 𝑈TCP(R) =
1

2

𝑁

∑
𝑖=1
𝑞𝑖𝑢(r𝑖). (1.84)
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На формулу (1.84) можно смотреть как на взаимодействие 𝑁 частиц с некоторым парным потен­

циалом 𝑣(r𝑖𝑗). Следующие рассуждения производятся именно с этой точки зрения.

Для иллюстрации поведения функции 𝑈TCP(R) рассмотрим самый простой случай, а именно

систему из двух частиц с противоположным знаком (𝑞1 = −𝑞2 = −𝑞 < 0). Тогда получаем:

𝑢(r1) = −
𝜉

𝐿
𝑞 + 𝑞𝑣(r12). (1.85)

Поместим частицу r2 в начало ячейки, то есть r2 = 0 и для простоты опустим индекс «1». Таким

образом, получаем функцию 𝑢(𝑥, 𝑦, 𝑧), описывающую взаимодействие двух частиц. На рис. 1.2

изображена эта функция при 𝑧 = 0.

Рис. 1.2. Представление парного потенциала Эвальда. 𝑖-ая частица помещена в центр куба. Если частица «а»
находится внутри куба, она вносит вклад в 𝑢(r𝑖). Если частица «б» находится вне куба, ее вклад равен нулю.
Таким образом, 𝑣(r) можно считать равным нулю, если r находится вне куба. Следовательно, потенциал
Эвальда можно рассматривать как короткодействующий.

С точностью до постоянного слагаемого и знака, функция 𝑢(𝑥, 𝑦, 𝑧) отражает вклад парного

взаимодействия частицы, находящейся в начале отсчета, и других частиц. На рис. 1.2 изображены

две частицы под символами «а» и «б». Частица «а» находится внутри куба 𝐿 × 𝐿 × 𝐿 с центром

в начале координат, а частица «б» формально находится вне этого куба (этим частицам также

можно сопоставить их изображения — здесь они не показаны). Процедура Эвальда устроена та­

ким образом, что все частицы, которые попали в куб, изображенный на рис. 1.2, вносят вклад во

взаимодействие с частицей в центре куба, а частицы вне этого куба — нет. Так, например, взаимо­

действие с частицей «а» вносит вклад в полную потенциальную энергию, тогда как взаимодействие

с частицей «б» не вносит.
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Таким образом, можно говорить о том, что потенциал Эвальда обладает некоторой конечной

дальностью взаимодействия или «радиусом»2 взаимодействия. Этот «радиус» ограничен поверх­

ностью куба размерами 𝐿 × 𝐿 × 𝐿 и объемом 𝑉 = 𝐿3. Таким образом, парный потенциал Эвальда

является короткодействующим; расстояние, на котором частицы взаимодействуют, зависит от на­

правления, а набор граничных точек, за которыми взаимодействие не учитывается, представляет

собой поверхность куба. Эта поверхность является экстремумом потенциала, на которой достига­

ются минимальные значения потенциала (см. также раздел IIA в [38]). Тем не менее, необходимо

отметить отличие потенциала Эвальда от других короткодействующих потенциалов: «радиус» вза­

имодействия не является постоянным, а увеличивается с увеличением объема ячейки (или числа

частиц).

Рис. 1.3. Иллюстрация правила БИ на двумерной системе с ПГУ. Выбранная частица, для которой произво­
дятся рассуждения, расположена в правом нижнем углу основной ячейки, а также обведена черным цветом.
Правило БИ говорит о том, что для расчета энергии взаимодействия этой частицы с остальными 𝑁 части­
цами можно либо просуммировать все ее взаимодействия с частицами в основной ячейке, либо провести
куб (квадрат в двумерном случае, показан пунктиром) с центром в этой частице (аналогично рис. 1.2) и
просуммировать взаимодействия со всеми частицами, которые попали в этот куб (квадрат) — результат не
зависит от способа суммирования.

Рассмотрим теперь выражение (1.84) для нескольких частиц (см. рис. 1.3, где 𝑖-ая частица

выделена красным цветом с черной границей). Для расчета потенциала 𝑢(r𝑖) можно напрямую

рассчитать величину 𝑢(r𝑖), суммируя по взаимодействиям 𝑖-ой частицы и остальных в основной

ячейке. В результате получится некоторое значение 𝑢(r𝑖). Но рассмотрим теперь иной способ

расчета потенциала. С центром в 𝑖-ой частице изобразим куб размерами 𝐿×𝐿×𝐿 (см. пунктирный

квадрат на рис. 1.3). В этом кубе находится 𝑁 частиц. Рассчитаем теперь взаимодействия (с

потенциалом Эвальда 𝑣(r)) между 𝑖-ой частицей в центре куба и остальными частицами, которые
2 Конечно же, термин радиус взаимодействия вводится для сферически симметричных потенциалов. В случае

кубической ячейки и анизотропного потенциала Эвальда этот термин взят в кавычки.
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находятся в этом кубе, добавив также постоянное слагаемое 𝜉
𝐿𝑞𝑖. В силу того, что потенциал 𝑣(r)

является периодической функцией, получаем точно такое же значение 𝑢(r𝑖), как в предыдущем

методе суммирования взаимодействий [39].

Таким образом, в периодической системе для расчета взаимодействия некоторой частицы

со всеми остальными можно рассчитывать взаимодействия с ближайшими частицами, которые

находятся в зоне действия потенциала (кубическая поверхность в случае потенциала Эвальда).

Такой способ суммирования взаимодействий называется правилом ближайшего изображения

(сокращенно правило БИ; minimum image convention [39] или дословно соглашение оминимальном

изображении). Это правило бывает особенно полезным при работе с периодическими системами

и потенциалами, имеющими конечный радиус действия, но не являющимися периодичными. В

дальнейшем зачастую под суммой ∑𝑁
𝑖=1∑𝑁

𝑗=1
𝑗≠𝑖

или под ∑𝑖≠𝑗 понимается сумма именно в смысле

правила БИ.

Отдельно отметим крайне полезное для вычисления производных по объему свойство одно­

родности потенциала Эвальда, а также потенциальной энергии (1.78). Для начала подчеркнем, что

потенциалЭвальда (1.79) зависит от объема ячейки. Это значит, что если прификсированных коор­

динатах x = r⇑𝐿 увеличить𝐿 в некоторое число раз, то потенциал 𝑣(r) уменьшится в это число раз;

то есть 𝐿𝑣(r) есть функция отношения r⇑𝐿 и не меняется при изменении объема, и 𝑣(r) = 𝑣(r;𝐿).
Вследствие этого, полная потенциальная энергия (1.78) тоже является явной функцией объема

(или длины ячейки 𝐿), 𝑈E(r) = 𝑈E(r;𝐿). Тогда потенциал Эвальда, а также потенциальная энергия
являются однородной функцией всех переменных, то есть координат и длины ячейки:

𝑣(𝛾r;𝛾𝐿) = 1

𝛾
𝑣(r;𝐿), 𝑈E(𝛾r1, . . . , 𝛾r𝑁 ;𝛾𝐿) =

1

𝛾
𝑈E(r1, . . . , r𝑁 ;𝐿). (1.86)

Обратим внимание, что потенциалЭвальда не является однородным только по координатам частиц,

как это выполняется, например, для кулоновского потенциала. Обычно эта явная зависимость

потенциала Эвальда, а также потенциальной энергии от 𝐿 не будет указываться, за исключением

вычисления производных по объему (см. раздел 1.3.4).

1.1.6. Потенциальная энергия однокомпонентной плазмы без учета дальнодействия

Как уже говорилось, использование ПГУ позволяет ослабить влияние граничных эффектов и

рассматривать термодинамические свойства вещества вдали от границ. Тем не менее, формально

не обязательно в выражении потенциальной энергии (1.9) производить суммирование по всевоз­

можным соседним ячейкам. Например, можно рассмотреть обычное выражение для потенциальной
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энергии 𝑁 точечных заряженных частиц:

𝑈C
TCP(R) =

1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒟(r𝑖)
𝑗≠𝑖

𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

, (1.87)

а суммирование по всем взаимодействиям воспринимать в смысле правила о ближайшем изоб­

ражении. В таком случае, получаем систему с ПГУ, но без учета кулоновского дальнодействия.

Таким образом, в таком подходе необходимо обрезать кулоновское взаимодействие на некотором

расстоянии (или учитывать взаимодействие 𝑖-ой частицы только с частицами внутри некоторой

области 𝒟(r𝑖) вокруг 𝑖-ой). Таким образом, сравнивая выражение с потенциалом Эвальда и с усе­

ченным кулоновским потенциалом, можно исследовать влияние учета дальнодействия, например,

на сходимость термодинамических функций к термодинамическому пределу (то есть по числу

частиц).

Формула (1.87) для энергииДКПскулоновским взаимодействиемлегко записывается.Однако

в случае ОКП в литературе, видимо, не существует рассмотрения ее потенциальной энергии с

усеченным кулоновским взаимодействием при наличии ПГУ. Далее эта формула будет получена,

а ее вывод был представлен автором данной работы в статье [4].

Снова рассмотрим кубическую ячейку объемом 𝑉 = 𝐿3, содержащую 𝑁 положительно за­

ряженных частиц и однородный нейтрализующий фон, обеспечивающий электронейтральность

системы (см. рис. 1.4). На ячейку наложены ПГУ, из-за чего помимо частиц в основной ячейке

присутствует бесконечное число изображений этих частиц за пределами основной ячейки.

Для расчета потенциала 𝑢(r) в заданной точке r используется правило БИ. Для вычисления

потенциала 𝑢(r) вокруг точки r строится куб (или шар) объемом 𝑉 , центр которого совпадает с r

(как показано на рис. 1.4). Таким образом, потенциал в точке формируют только взаимодействия

с частицами внутри этой области (куба 𝒞(r) или шара 𝒮(r)). Заметим, что общее число частиц в

шаре 𝑁𝑠(r) может отличаться от 𝑁 . Количество частиц в шаре с центром в точке r𝑖 обозначается

как𝑁𝑠,𝑖 = 𝑁𝑠(r𝑖). Для удобства далее приводятся формулы для кубической области, которые затем

отдельно корректируются для шара с учетом разницы между 𝑁𝑠,𝑖 и 𝑁 , а также формы фона.

Плотность заряда в точке r складывается из плотности точечных ионов и однородного отри­

цательно заряженного фона:

𝑤(r) = (𝑍𝑒) ⌊︀
𝑁

∑
𝑖=1
𝛿(r − r𝑖) −

𝑁

𝐿3
}︀ ,

∫
𝒞(r′)

𝑤(r)𝑑r = 0, ∀r′ ∈ 𝑉. (1.88)

Здесь 𝑍 > 0—зарядовое число, 𝒞(r′)—кубическая область с центром в точке r′ внутри основной

ячейки, а 𝑒 > 0— заряд электрона.

Для определения потенциала в точке r, где r ∈ 𝒞(0) (то есть r находится в основной ячейке),

решается уравнение Пуассона. В данном контексте учитывается только взаимодействие с части­
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r𝑖

0

𝒞(r𝑖)

𝒮(r𝑖)

𝒞(0)

Рис. 1.4. Иллюстрация процедуры расчета потенциала 𝑢(r𝑖) в точке r𝑖. В данном случае r𝑖 представляет
собой положение иона в верхнем левом углу основной ячейки, а 0 обозначает начало координат. Для вы­
числения потенциала сначала определяется кубическая 𝒞(r𝑖) (или шаровая 𝒮(r𝑖)) область, центрированная
в точке r𝑖. Объем этой области составляет 𝑉 = 𝐿3 (𝑉 = 4𝜋𝑟3𝑚⇑3, где 𝑟𝑚 = (4𝜋⇑3)−1⇑3𝐿). Затем выпол­
няется интегрирование по этой области (см. уравнение (1.89)). Учитываются все взаимодействия иона с
другими частицами внутри области. Процедура интегрирования соответствует правилу БИ. Для упрощения
иллюстрация приведена для двумерной системы. Границы основной ячейки выделены жирными линиями, а
области интегрирования показаны пунктирными линиями.

цами в объеме 𝑉 , ближайшими к точке r (см. рис. 1.4), без суммирования по всем периодическим

копиям других ячеек.

Решение уравнения Пуассона имеет следующий вид:

𝑢(r) =
∫
𝒞(r)

𝑤(r′)𝑑r′
⋃︀r′ − r⋃︀ =

𝑁

∑
𝑖=1

𝑍𝑒

⋃︀r − r𝑖⋃︀
− 𝑁𝑍𝑒

𝐿3

∫
𝒞(r)

𝑑(r′ − r)
⋃︀r′ − r⋃︀ =

= 𝑍𝑒(
𝑁

∑
𝑖=1

1

⋃︀r − r𝑖⋃︀
− 𝑁𝐶

𝐿
) = 𝑍𝑒

𝑁

∑
𝑖=1
𝜑(⋃︀r − r𝑖⋃︀), 𝜑(𝑟) = 1⇑𝑟 −𝐶⇑𝐿. (1.89)

Константа𝐶 определяется геометрией области, по которой выполняется интегрирование. В случае

кубической области:

𝐶 → 𝐶𝒞 =
1

𝐿2

∫
𝒞(r)

𝑑(r′ − r)
⋃︀r′ − r⋃︀ =

1

𝐿2

∫
𝒞

𝑑b
𝑏
=

1
2∫
− 1

2

𝑑𝑏̃𝑥

1
2∫
− 1

2

𝑑𝑏̃𝑦

1
2∫
− 1

2

𝑑𝑏̃𝑧
1⌉︂

𝑏̃2𝑥 + 𝑏̃2𝑦 + 𝑏̃2𝑧
= ln(26 + 15

⌋︂
3) − 𝜋

2
≈ 2.38,

(1.90)

где 𝒞 = 𝒞(0)— основная ячейка (см. рис. 1.4). В случае шара:

𝐶 → 𝐶𝒮 =
1

𝐿2

∫
𝒮(r)

𝑑(r′ − r)
⋃︀r′ − r⋃︀ =

1

𝐿2

∫
𝒮

𝑑b
𝑏
= 4𝜋

𝐿2

𝑟𝑚∫
0

𝑏 𝑑𝑏 = 2𝜋𝑟2𝑚
𝐿2
= 2𝜋(3⇑(4𝜋))2⇑3 ≈ 2.42. (1.91)
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Здесь было введено обозначение b = r′−r, что соответствует смещению к центру куба (или шара) r.

Также введены обозначения 𝑏̃𝛼 = 𝑏𝛼⇑𝐿, где 𝛼 = {𝑥, 𝑦, 𝑧}, а 𝒮(r) обозначает шар с центром в точке r,

𝒮 = 𝒮(0). Следовательно, интегрирование выполняется по кубу (илишару) с центром в точке r′ = r.
Данный расчет соответствует правилу БИ, поэтому вклад фона остается постоянным и не зависит

от r. Стоит отметить, что в конечноразмерных системах это не так [21; 40].

В силу электронейтральности, выраженной уравнением (1.88), среднее значение потенциала

взаимодействия 𝜑(𝑟) равно нулю:∫
𝒞,𝒮

𝜑(𝑟)𝑑r =
∫
𝒞,𝒮

𝑑r
⋃︀r⋃︀ −𝐶𝒞,𝒮𝐿

2 = 0. (1.92)

Полная потенциальная энергия вычисляется путем интегрирования произведения плотно­

сти заряда (1.88) и потенциала, полученного из уравнения Пуассона (1.89), за вычетом энергии

самовзаимодействия (
∫
𝛿(r − r𝑗)⇑⋃︀r − r𝑗 ⋃︀𝑑r = 1⇑𝑟𝑗𝑗):

𝑈C
OCP(R) =

1

2

∫
𝑤(r)𝑢(r)𝑑r − (𝑍𝑒)

2

2

𝑁

∑
𝑗=1

∫
𝛿(r − r𝑗)
⋃︀r − r𝑗 ⋃︀

𝑑r =

= (𝑍𝑒)
2

2

⎨⎝⎝⎝⎝⎪

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

∫
𝛿(r − r𝑗)𝑑r
⋃︀r − r𝑖⋃︀

− 𝑁𝐶
𝐿

𝑁

∑
𝑖=1

∫
𝛿(r − r𝑖)𝑑r −

𝑁

𝐿3

𝑁

∑
𝑖=1

∫
𝑑r

⋃︀r − r𝑖⋃︀
+ 𝑁

2𝐶

𝐿4

∫
𝑑r
⎬⎠⎠⎠⎠⎮
. (1.93)

При вычислении интегралов в (1.93) используется правило БИ. Первое слагаемое описывает

взаимодействие зарядов и включает сумму всех парных взаимодействий. Каждая 𝑖-ая частица

взаимодействует только с ближайшими частицами или их изображениями. Таким образом, первое

слагаемое преобразуется следующим образом:
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

∫
𝛿(r − r𝑗)𝑑r
⋃︀r − r𝑖⋃︀

→
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

∫
𝒞(r𝑖)

𝛿(r − r𝑗)𝑑r
⋃︀r − r𝑖⋃︀

=
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

1

⋃︀r𝑖 − r𝑗 ⋃︀
. (1.94)

Под суммой ∑𝑁
𝑗=1
𝑖≠𝑗

необходимо понимать суммирование в смысле правила БИ, то есть более фор­

мально ∑𝑗∈𝒞(r𝑖)
𝑖≠𝑗

в случае кубической области.

Второе и третье слагаемые в (1.93) описывают взаимодействие точечных зарядов с фоном.

Каждая 𝑖-ая частица окружена отрицательным фоновым зарядом в форме куба (или шара), цен­

трированного на этой частице. Таким образом, получаем:
𝑁

∑
𝑖=1

∫
𝛿(r − r𝑖)𝑑r→

𝑁

∑
𝑖=1

∫
𝒞(r𝑖)

𝛿(r − r𝑖)𝑑r = 𝑁, (1.95)

и
𝑁

∑
𝑖=1

∫
𝑑r

⋃︀r − r𝑖⋃︀
→

𝑁

∑
𝑖=1

∫
𝒞(r𝑖)

𝑑r
⋃︀r − r𝑖⋃︀

=
𝑁

∑
𝑖=1

∫
𝒞

𝑑b
⋃︀b⋃︀ = 𝐿

2𝑁𝐶. (1.96)

Последнее слагаемое в (1.93) описывает взаимодействие фона с фоном и не зависит от поло­
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жения области: ∫
𝑑r = 𝐿3. (1.97)

В итоге потенциальная энергия ОКП с усеченным кулоновским потенциалом имеет следую­

щий вид (𝑟𝑖𝑗 = ⋃︀r𝑖 − r𝑗 ⋃︀):

𝑈C
OCP(R) =

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

(𝑍𝑒)2
⋃︀r𝑖 − r𝑗 ⋃︀

− (𝑍𝑒)
2𝑁2

2𝐿
𝐶 = 1

2
(𝑍𝑒)2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝜑(𝑟𝑖𝑗) − (𝑍𝑒)2
𝑁

2𝐿
𝐶. (1.98)

Отметим, что полная энергия взаимодействия частиц с фоном −(𝑍𝑒)2𝑁2𝐶⇑𝐿 по модулю в два раза

больше, чем энергия взаимодействия фона с собой (𝑍𝑒)2𝑁2𝐶⇑(2𝐿). Это соотношение зачастую

возникает при рассмотрении ОКП, в том числе в случае вырожденных систем [41].

При вычислении потенциала в заданной точке r𝑖 рассматривается суммирование по частицам

в шаре или кубе. В последнем случае следует использовать уравнение (1.98) с константой 𝐶 → 𝐶𝒞 .

При суммировании по шару 𝑖-ая частица имеет 𝑁𝑠,𝑖 − 1 соседей в объеме 4𝜋𝑟3𝑚⇑3. Следовательно,
верхний предел суммирования по 𝑗 равен𝑁𝑠,𝑖 (∑𝑁

𝑗=1
𝑖≠𝑗
→ ∑ 𝑗∈𝒮(r𝑖)

𝑖≠𝑗
= ∑𝑁𝑠,𝑖

𝑗=1
𝑖≠𝑗

; см. уравнение (1.99)). Кроме

того, в этом случае следует использовать константу 𝐶 → 𝐶𝒮 .

В случае суммирования по частицам в шаре с центром в точке r𝑖 целесообразно сместить

кулоновский потенциал так, чтобы его значение на границе шара было равно нулю:

𝑈C, 𝒮
OCP(R) =

(𝑍𝑒)2
2

𝑁

∑
𝑖=1

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

⌊︀ 1

𝑟𝑖𝑗
− 1

𝑟𝑚
}︀ + (𝑍𝑒)

2𝑁(𝑁 − 1)
2𝑟𝑚

− (𝑍𝑒)
2𝑁2

2𝐿
𝐶𝒮 . (1.99)

Здесь 𝑁𝑠,𝑖 обозначает количество частиц в шаре с центром в точке r𝑖. Заметим, что при смещении

потенциала выполняется следующая замена:
𝑁

∑
𝑖=1

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

1

𝑟𝑚
= 𝑁(𝑁𝑠 − 1)

𝑟𝑚
→ 𝑁(𝑁 − 1)

𝑟𝑚
, 𝑁𝑠 = (

𝑁

∑
𝑖=1
𝑁𝑠,𝑖) ⇑𝑁, (1.100)

где 𝑁𝑠 − 1— среднее число соседей. Если раскрыть скобки в уравнении (1.99), то получим:

𝑈C, 𝒮
OCP(R) =

(𝑍𝑒)2
2

𝑁

∑
𝑖=1

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

1

𝑟𝑖𝑗
− (𝑍𝑒)

2𝑁2

2𝐿
𝐶𝒮 +

(𝑍𝑒)2𝑁(𝑁 −𝑁𝑠)
2𝑟𝑚

. (1.101)

В результате получаем незначительную модификацию формулы (1.98) (в ходе моделирования

𝑁𝑠,𝑖 обычно близко к 𝑁 , особенно для сильно неупорядоченной плазмы (Γ ≪ 1), 𝑁 − 𝑁𝑠,𝑖 ≈ 0;

см. рис. 4.1). Этот вклад помогает стабилизировать флуктуации суммы ∑𝑁𝑠,𝑖
𝑗=1
𝑖≠𝑗

1⇑𝑟𝑖𝑗 , связанные с

разницей между количеством частиц в сфере и количеством частиц в кубической ячейке (см.

раздел 4.6.1).

Таким образом, было получено выражение для энергии ОКП с усеченным кулоновским потен­

циалом при суммировании по частицам в шаре или кубе. Это дает возможность оценить влияние

дальнодействующих эффектов, включенных в потенциал Эвальда, на сходимость энергии по числу
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частиц путем сравнения результатов, полученных с помощью потенциала Эвальда и кулоновского

потенциала (см. раздел 4.3.1).

1.2. Усредненный по углам потенциал Эвальда

В предыдущем разделе 1.1.5 была выписана потенциальная энергия (1.78) для одно- и двух­

компонентной кулоновской системы фиксированных положений зарядов через потенциал Эваль­

да (1.79). Этот потенциал является короткодействующим и учитывает взаимодействие частиц

основной ячейки со всеми периодическими образами. Таким образом, этот потенциал можно ис­

пользовать в моделировании кулоновских систем с периодическими граничными условиями.

Тем не менее, можно заметить, что потенциал Эвальда 𝑣(r) является анизотропным. Это зна­
чит, что этот потенциал зависит не только от расстояния между частицами, но также и от направ­

ления вектора относительно ячейки. Это в том числе проявляется в том, что потенциал Эвальда

имеет «радиус» действия, который зависит от направления (см. рис. 1.2). Однако изначально рас­

сматривается система частиц, взаимодействующих с кулоновским потенциалом, который зависит

только от расстояния между частицами. Появление зависимости от угла возникает из-за того, что

система помещена в кубическую ячейку, которая периодически повторяется в пространстве.

Зачастую основной интерес представляют изотропные системы, такие как плазма, ионные

растворы, жидкости и т.д. Анизотропия потенциала взаимодействия в этих случаях порождает

большой объем ненужных вычислений. Отсюда возникает идея усреднить потенциал Эвальда по

всем направлениям и получить функцию, которая зависит только от расстояния между частицами,

но включает в себя взаимодействия с периодическими образами.

Именно такая логика была изложена в работе Е. Якуба и К. Ронки [42] в 2003 году. Ими был

представлен усредненный по углам потенциал Эвальда (УУПЭ) и соответствующее выражение для

потенциальной энергии в случае двухкомпонентной системы. Впоследствии эти авторы получили

аналогичные результаты для однокомпонентной плазмы [43; 44]. Для вывода УУПЭ необходи­

мо рассмотреть анизотропную часть потенциала Эвальда и усреднить ее по всем направлениям.

Впоследствии необходимо разложить полученный потенциал в ряд Тейлора. Оказывается, что все

коэффициенты этого разложения, кроме первых двух, равны нулю. Самое главное достоинство

такого подхода состоит в простоте УУПЭ: он является произведением кулоновского потенциала и

полинома третьей степени. Так, если оригинальный потенциал Эвальда имеет достаточно сложную

форму и выражен в виде ряда, то УУПЭ имеет явную простую аналитическую форму.

Необходимо также прокомментировать содержание работ Е. Якуба и К. Ронки [42; 43] касае­

мо вывода УУПЭ. Так, в работе [42] после усреднения и разложения потенциала в ряд Тейлора не



47

приводится формула для коэффициентов разложения, и, что более критично, никаким образом не

обосновывается их равенство нулю. Как будет показано дальше, равенство нулю коэффициентов

разложения в формуле (5) в [42] достигается только в пределе 𝛿 → ∞. В работе по ОКП [43]

явного вывода УУПЭ и потенциальной энергии не производится; более того, основная формула

(8) в [43], в которой приводится потенциальная энергия ОКП, неверна, а попытки использовать ее

в моделировании приводят к расходящимся с ростом числа частиц результатам. Поэтому суще­

ствовала необходимость в детальном и аккуратном выводе УУПЭ в случае ОКП и ДКП, а также

соответствующих выражений для потенциальной энергии.

Помимо этого, идея усреднения потенциала Эвальда по направлениям в работе 2003 года [42]

не нова; этот потенциалможно найти в более ранних работах поОКП [38] (см.формулу [38, (2.11)]).

Более того, аналогичный подход описан в рукописном отчете 1983 года [45], написанном на фран­

цузском языке. Этот отчет содержит ссылку на недоступный для просмотра технический отчет

1969 года [46], где, как утверждается в [45], Д. Париж предложил методику усреднения потенциа­

ла Эвальда. В отчете [46] (цитата по [45]) «Д. Париж ... получает сферическую часть потенциала,

аналитически вычисляя сферическое среднее для каждого слагаемого суммы Эвальда. Затем он

проводит численное суммирование и табулирует потенциал на сетке точек 𝑟 для интерполяции

в программе Монте–Карло». Таким образом, судя по доступным источникам, идея усреднения

потенциала Эвальда по направлениям впервые была высказана в 1969 году в отчете [46]. Однако

первый опубликованный вариант УУПЭ для ОКП появился в 1983 году в отчете [45]; более того,

в этом отчете вывод УУПЭ произведен в более общем виде (для экранированного кулоновского

потенциала), что, как оказалось, сделать гораздо проще с математической точки зрения. Поэтому

не совсем верно называть подход усреднения потенциала Эвальда по направлениям подходом или

потенциалом Якуба и Ронки, как можно найти в некоторых источниках [41; 47], в том числе в

публикациях автора данной работы [1; 2].

Также в литературе можно найти термин «потенциалВигнера» [48; 49] для системы типаОКП.

Этот потенциал имеет вид УУПЭ плюс ряд по сферическим гармоникам, причем коэффициенты

гармоник подбираются таким образом, чтобы удовлетворить ПГУ (см. [48, уравнение (3.2)] и [50]).

Квадратичная часть этого потенциала возникает при решении уравнения Пуассона с равномерной

плотностью заряда. Таким образом, в квадратичной части УУПЭ учитывается электронейтраль­

ность системы, притом даже в случае двухкомпонентной системы.

Следует также отметить совпадение УУПЭ с потенциалами в других моделях. Например, в

модели ионной сферы (см. рис. 5 и раздел II.B.2 в [51]), а также самосогласованного потенциала в

модели Томаса–Ферми в пределе высоких температур [52]. Такое совпадение обусловлено поста­

новкой этих задач: точечная частица, окруженная однородным компенсирующим зарядом. Далее
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будет показано (1.191), что УУПЭ порождает именно такую плотность заряда.

Выпишем результат, который получается в результате процедуры усреднения потенциала

Эвальда по углам:

𝑈 a(R) = 𝑈 a
0 +

1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜙(𝑟𝑖𝑗), (1.102)

где

𝜙(𝑟) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

1
𝑟 [︀1 + 1

2 (𝑟⇑𝑟𝑚) ((𝑟⇑𝑟𝑚)2 − 3)⌉︀, 𝑟 ≤ 𝑟𝑚

0, 𝑟 > 𝑟𝑚.
(1.103)

— сдвинутый УУПЭ, а постоянные слагаемые различны в случае двухкомпонентной:

𝑈 a
0 → 𝑈 a

0,TCP = −
3

4𝑟𝑚

𝑁

∑
𝑖=1
𝑞2𝑖 , (1.104)

и однокомпонентной системы

𝑈 a
0 → 𝑈 a

0,OCP = −
3(𝑍𝑒)2
20𝑟𝑚

𝑁(𝑁 + 5). (1.105)

Можно также записать выражения для постоянных Маделунга в случае ОКП:

𝑀 a
OCP =

𝑟𝑎
2𝑟𝑚

⎨⎝⎝⎝⎝⎝⎝⎪
− 3

10
(𝑁 + 5) + ∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑟𝑚𝜙(𝑟𝑖𝑗)
⎬⎠⎠⎠⎠⎠⎠⎮

(1.106)

и в случае ДКП:

𝑀 a
TCP =

𝑟0
𝑟𝑚

⎨⎝⎝⎝⎝⎝⎝⎪
−3
2
𝑧𝑖 + ∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑧𝑗𝑟𝑚𝜙(𝑟𝑖𝑗)
⎬⎠⎠⎠⎠⎠⎠⎮
. (1.107)

Напомним, что 𝑟𝑚 = (4𝜋⇑3)−1⇑3𝐿.
Несмотря на то, что фактически ОКП и ДКП имеют одну и ту же формулу (1.78) для расчета

потенциальной энергии (с точностью до постоянного слагаемого), исторически выводУУПЭв этих

случаях был проделан различными путями: сначала в пределе 𝛿 →∞ в работе [1], а далее в случае

𝛿 = ⌋︂𝜋 в работе [2]. Рассмотрим теперь процедуру вывода УУПЭ в случае ДКП, представленную

в [1].

1.2.1. Вывод УУПЭ в случае двухкомпонентной плазмы

Для начала рассмотрим уравнение (1.78) при 𝛿 ≫ 1. В этом случае всеми слагаемыми порядка

erfc(𝛿𝑛)⇑𝑛 можно пренебречь, так как lim
𝛿→∞

erfc(𝛿𝑛)⇑𝑛 = 0 для любого 𝑛 > 0 (например, erfc(5) ≈
10−12). Тогда получаем следующее модифицированное выражение для потенциальной энергии

ДКП:

𝑈E𝛿≫1

TCP (R) = 𝜉𝛿≫1

2𝐿

𝑁

∑
𝑖=1
𝑞2𝑖 +

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝑣𝛿≫1
(r𝑖𝑗), (1.108)
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где

𝜉
𝛿≫1
= ∑

n≠0

𝑒−𝜋
2𝑛2⇑𝛿2

𝜋𝑛2
− 2𝛿⌋︂

𝜋
, (1.109)

𝑣
𝛿≫1

(r) = 1

𝐿
⌊︀erfc (𝛿𝑟⇑𝐿)

𝑟⇑𝐿 +∑
n≠0

𝑒−𝜋
2𝑛2⇑𝛿2

𝜋𝑛2
cos(2𝜋n ⋅ r⇑𝐿)}︀ . (1.110)

Определим усредненный по углам потенциал Эвальда следующим образом:

𝑣𝑎
𝛿≫1

(𝑟) = 1

4𝜋

1∫
−1

𝑑(cos 𝜃)
2𝜋∫
0

𝑣
𝛿≫1

(r)𝑑𝜓. (1.111)

Единственным фактором, требующим усреднения, является косинус (n ⋅ r = 𝑛𝑟 cos 𝜃):

1

4𝜋

1∫
−1

𝑑(cos 𝜃)
2𝜋∫
0

cos (2𝜋𝑛𝑟 cos 𝜃⇑𝐿)𝑑𝜓 = 𝐿⇑𝑟
2𝜋𝑛

sin (2𝜋𝑛𝑟⇑𝐿) . (1.112)

Таким образом, получаем усредненный по углам парный потенциал 𝑣𝑎
𝛿≫1

(𝑟):

𝑣𝑎
𝛿≫1

(𝑟) = 1

𝑟
⌊︀erfc(𝛿𝑟⇑𝐿) + 1

2𝜋2∑
n≠0

exp (−𝜋2𝑛2⇑𝛿2)𝑛−3 sin (2𝜋𝑛𝑟⇑𝐿)}︀ . (1.113)

Разложим его в сходящийся ряд по 𝑟, разложив erfc(𝛿𝑟⇑𝐿) и sin(2𝜋𝑛𝑟⇑𝐿) в ряд Тейлора:

𝑣𝑎
𝛿≫1

(𝑟) = 1

𝑟
(1 +

+∞
∑
𝑘=1

𝐶𝑘𝑟
2𝑘+1) , (1.114)

с коэффициентами

𝐶𝑘 =
2(−1)𝑘

(2𝑘 + 1)𝐿2𝑘+1 ⌊︀
(2𝜋)2𝑘−1
(2𝑘)! ∑n≠0

𝑓𝑘(n) −
𝛿2𝑘+1⌋︂
𝜋𝑘!

}︀ . (1.115)

Этот ряд сходится для любого действительного 𝑟, так как ряды Тейлора для erfc(𝑤) и sin(𝑤)
сходятся для любого действительного аргумента 𝑤. Здесь введено обозначение

𝑓𝑘(n) = 𝑓𝑘(𝑛) = exp (−𝜋2𝑛2⇑𝛿2)𝑛2(𝑘−1). (1.116)

Легко найти 𝐶0:

𝐶0 =
1

𝐿
⌊︀ 1
𝜋
∑
n≠0

exp (−𝜋2𝑛2⇑𝛿2)𝑛−2 − 2𝛿⌋︂
𝜋
}︀ = 𝜉

𝛿≫1
⇑𝐿 = lim

𝑟→0

⎛
⎝
𝑣
𝛿≫1

(r) − 1

𝑟

⎞
⎠
. (1.117)

Заметим, что коэффициент 𝐶0 тоже зависит от парного потенциала взаимодействия. Для вычис­

ления 𝐶𝑘 при 𝑘 ≥ 1 необходимо суммировать бесконечный ряд по n. Дальнейшие вычисления

проводятся для 𝑘 ≥ 1.
Для удобства включим слагаемое с n = 0 в сумму уравнения (1.115). Поскольку 𝑓𝑘(0) = 𝛿1,𝑘:

∑
n≠0
𝑓𝑘(n) = ∑

n
𝑓𝑘(n) − 𝛿1,𝑘. (1.118)

Здесь 𝛿𝑖,𝑗 — символ Кронекера. Теперь уравнение (1.115) преобразуется в следующее выражение:

𝐶𝑘 =
2(−1)𝑘

(2𝑘 + 1)𝐿2𝑘+1 ⌊︀
(2𝜋)2𝑘−1
(2𝑘)! ∑n

𝑓𝑘(n) −
𝛿2𝑘+1⌋︂
𝜋𝑘!

}︀ + 2𝜋

3𝐿3
𝛿1,𝑘 (1.119)

для 𝑘 ≥ 1. Таким образом, необходимо точно вычислить следующий ряд по всем целочисленным
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векторам n:

∑
n
𝑓𝑘(n), 𝑘 ≥ 1. (1.120)

Ниже такой ряд будет вычислен для любого 𝛿 > 0. В работе [42] утверждается, что𝐶𝑘 = 0 для 𝑘 ≥ 2.
Ниже будет показано, что это верно только в пределе 𝛿 →∞.

Для суммирования ряда удобнее всего воспользоваться сумматорнойформулойПуассона [36]

(см. также [53, Теорема 6.11]):

∑
n
𝑓𝑘(n) = ∑

q
𝐹𝑘(q), (1.121)

где

𝐹𝑘(q) =
∫
𝑒−2𝜋𝑖q⋅n𝑓𝑘(n)𝑑n =

2𝛿2𝑘+1

𝜋2𝑘
Γ(𝑘 + 1⇑2)𝑒−𝛿2𝑞2𝑀(1 − 𝑘,3⇑2, 𝛿2𝑞2) (1.122)

— преобразование Фурье функции 𝑓𝑘(n). Суммирование теперь выполняется по целочисленному
вектору q = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) ∈ Z3.𝑀(𝑎, 𝑏, 𝑥)— это гипергеометрическая функция Куммера (Похгамме­

ра), определенная рядом:

𝑀(𝑎, 𝑏, 𝑥) =
∞
∑
𝑠=1

𝑎(𝑠)

𝑏(𝑠)𝑠!
𝑥𝑠, (1.123)

где 𝑎(𝑠) обозначает возрастающий факториал:

𝑎(0) = 1, 𝑎(𝑠) = 𝑎(𝑎 + 1)(𝑎 + 2)⋯(𝑎 + 𝑠 − 1). (1.124)

Согласно определению (1.123):

𝑀(1 − 𝑘,3⇑2, 𝑥) =
∞
∑
𝑠=0

(1 − 𝑘)(𝑠)
(3⇑2)(𝑠)𝑠!𝑥

𝑠. (1.125)

Поскольку (1 − 𝑘)(𝑘) = 0, (1 − 𝑘)(𝑘+1) = 0 и так далее, ряд обрывается:

𝑀(1 − 𝑘,3⇑2, 𝑥) =
𝑘−1
∑
𝑠=0
𝑎𝑠,𝑘𝑥

𝑠, 𝑎𝑠,𝑘 =
(1 − 𝑘)(𝑠)
(3⇑2)(𝑠)𝑠! , 𝑎0,𝑘 = 1. (1.126)

Подставляя (1.126) в (1.122), получаем ряд (1.120) в следующем виде:

∑
n
𝑓𝑘(n) =

2𝛿2𝑘+1

𝜋2𝑘
Γ(𝑘 + 1⇑2)

𝑘−1
∑
𝑠=0
𝑎𝑠,𝑘𝛿

2𝑠∑
q
𝑒−𝛿

2𝑞2𝑞2𝑠. (1.127)

Для выполнения суммирования по q используем полиномиальную теорему:

∑
q
𝑞2𝑠𝑒−𝛿

2𝑞2 = ∑
q
(𝑞2𝑥 + 𝑞2𝑦 + 𝑞2𝑧)𝑠𝑒−𝛿

2𝑞2 = ∑
q

∑
𝛼1+𝛼2+𝛼3=𝑠

𝑠!

𝛼1!𝛼2!𝛼3!
𝑞2𝛼1
𝑥 𝑞2𝛼2

𝑦 𝑞2𝛼3
𝑧 𝑒−𝛿

2𝑞2𝑥𝑒−𝛿
2𝑞2𝑦𝑒−𝛿

2𝑞2𝑧 =

= ∑
𝛼1+𝛼2+𝛼3=𝑠

𝑠!

𝛼1!𝛼2!𝛼3!
(
+∞
∑

𝑞𝑥=−∞
𝑞2𝛼1
𝑥 𝑒−𝛿

2𝑞2𝑥) × (
+∞
∑

𝑞𝑦=−∞
𝑞2𝛼2
𝑦 𝑒−𝛿

2𝑞2𝑦) × (
+∞
∑

𝑞𝑧=−∞
𝑞2𝛼3
𝑧 𝑒−𝛿

2𝑞2𝑧) . (1.128)

Суммирование по 𝛼1, 𝛼2, 𝛼3 ≥ 0 выполняется только при условии 𝛼1 + 𝛼2 + 𝛼3 = 𝑠. Каждая внутрен­
няя сумма связана с 𝜃-функцией Якоби с нулевым аргументом:

+∞
∑

𝑞=−∞
𝑞2𝛼𝑒−𝛿

2𝑞2 = (−1)𝛼 ( 1

2𝛿

𝜕

𝜕𝛿
)
𝛼

𝜗3(0, 𝑒−𝛿
2), (1.129)
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где 𝜗3(0, 𝑥) определена как:

𝜗3(0, 𝑥) =
+∞
∑

𝑞=−∞
𝑥𝑞

2 = 1 + 2
+∞
∑
𝑞=1
𝑥𝑞

2

, ⋃︀𝑥⋃︀ < 1. (1.130)

Таким образом, подставляя (1.128) в (1.127), получаем окончательную формулу:

∑
n
𝑓𝑘(n) =

2

𝜋2𝑘
Γ(𝑘 + 1⇑2)𝛿2𝑘+1

𝑘−1
∑
𝑠=0
𝑎𝑠,𝑘𝛿

2𝑠 (−1)𝑠𝑠!
2𝑠

×

× ∑
𝛼1+𝛼2+𝛼3=𝑠

1

𝛼1!𝛼2!𝛼3!
(1
𝛿

𝜕

𝜕𝛿
)
𝛼1

𝜗3(0, 𝑒−𝛿
2) × (1

𝛿

𝜕

𝜕𝛿
)
𝛼2

𝜗3(0, 𝑒−𝛿
2) × (1

𝛿

𝜕

𝜕𝛿
)
𝛼3

𝜗3(0, 𝑒−𝛿
2). (1.131)

Таким образом, суммирование по неограниченному трехмерному аргументу преобразуется в ко­

нечную сумму.

Формула (1.131) была протестирована для 1 ≤ 𝑘 ≤ 4 с использованием Wolfram

Mathematica [28]: численное суммирование ∑n 𝑓𝑘(n) и символическое вычисление правой ча­

сти (1.131) для 0.8 ≤ 𝛿 ≤ 3 дают одинаковые результаты с точностью до машинной погрешности.

Здесь ограничение 𝛿 ≥ 0.8 возникает из-за того, что Mathematica не может вычислить окончатель­

ный численный результат для малых 𝛿. Хотя это не используется в данной работе, формула (1.131)

может быть полезна для численных вычислений производных 𝜃-функции Якоби 𝜗3(0, 𝑥).
Наиболее интересный с практической точки зрения результат получается в пределе 𝛿 →∞. В

пределе 𝛿 →∞ 𝜃-функция становится постоянной:

lim
𝛿→∞

𝜗3(0, 𝑒−𝛿
2) = lim

𝑥→0
𝜗3(0, 𝑥) = 1. (1.132)

Таким образом, в выражении (1.131) ненулевой вклад дают только производные нулевого порядка,

а значит только слагаемое 𝛼1 = 𝛼2 = 𝛼3 = 0 = 𝑠 вносит вклад в (1.131). В результате для всех 𝑘 ≥ 1
получаем:

∑
n
𝑓𝑘(n) =

2

𝜋2𝑘
Γ(𝑘 + 1⇑2)𝛿2𝑘+1, 𝛿 →∞. (1.133)

Этот асимптотический результат остается справедливым даже при сравнительно малых значени­

ях 𝛿 (см. рис. 1.5). Отметим также, что этот результат получается формальной заменой суммиро­

вания в (1.133) интегрированием по всему пространству:

∑
n
𝑓𝑘(n) →

∞∫
0

4𝜋𝑛2𝑓𝑘(𝑛)𝑑𝑛 =
2

𝜋2𝑘
Γ(𝑘 + 1⇑2)𝛿2𝑘+1. (1.134)

Этот переход, конечно же, не является обоснованным. Однако обосновать его в пределе 𝛿 → ∞
можно с помощью сумматорной формулы Эйлера–Маклорена (см. приложение B [1]).

Используя связь Γ(𝑘 + 1⇑2) = (2𝑘)!⌋︂𝜋

22𝑘𝑘!
, получаем все коэффициенты для 𝑘 ≥ 1:

𝐶𝑘 =
2𝜋

3𝐿3
𝛿1,𝑘, 𝛿 →∞. (1.135)

Следует отметить, что данный ключевой результат был приведен в работе [42] без доказательства.
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Рис. 1.5. Ряд (1.120) как функция 𝛿 для 1 ≤ 𝑘 ≤ 4. Сплошные линии представляют собой численное сумми­
рование. Пунктирные линии — асимптотическое поведение при 𝛿 →∞ (1.133).

Кроме того, в пределе 𝛿 → 0 выполняется соотношение (см. рис. 1.5):

∑
n
𝑓𝑘(n) = 𝛿1,𝑘, 𝛿 → 0, (1.136)

которое было впервые получено автором данной работы в [1].

После усреднения парный потенциал (1.114) принимает следующую простую форму:

𝑣𝑎
𝛿≫1

(𝑟) = 1 +𝐶0𝑟 +𝐶1𝑟3

𝑟
, (1.137)

а полная потенциальная энергия системы 𝑈E
TCP (1.108) заменяется следующим выражением 𝑈 a

TCP:

𝑈 a
TCP(R) =

𝐶0

2

𝑁

∑
𝑖=1
𝑞2𝑖 +

1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

(1 +𝐶0𝑟𝑖𝑗 +𝐶1𝑟
3
𝑖𝑗). (1.138)

Отметим, что суммирование теперь производится по шару объема 𝑉 с центром в точке r𝑖.

Потенциал взаимодействия изменился, а значит константа 𝐶0 также должна измениться, так

как она зависит от потенциала взаимодействия по определению. Ее значение будет определено в

уравнении (1.145). Постоянный вклад в энергию (1.138) преобразуется следующим образом вместе

со вторым слагаемым в потенциале взаимодействия:
1

2

𝑁

∑
𝑖=1
𝑞2𝑖𝐶0 +

1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

𝐶0𝑟𝑖𝑗 =
𝐶0

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑞𝑖𝑞𝑗. (1.139)

В итоге полная энергия системы принимает следующий вид:

𝑈 a
TCP(r) =

𝐶0

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑞𝑖𝑞𝑗 +

1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

(1 + 2𝜋

3𝐿3
𝑟3𝑖𝑗) =

= 𝐶0

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑞𝑖𝑞𝑗 +

1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜙(𝑟𝑖𝑗), (1.140)

где

𝜙(𝑟) = 1

𝑟
⌊︀1 + 1

2
( 𝑟

𝑟𝑚
)
3

}︀ (1.141)
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— парный потенциал взаимодействия3. Здесь 𝑟𝑚 = ( 3
4𝜋)1⇑3𝐿 — радиус сферы, объем которой

эквивалентен объему𝐿3 (4𝜋3 𝑟3𝑚 = 𝐿3). Выражение (1.141) будемназывать усредненнымпотенциалом

или усредненным по углам потенциалом Эвальда (УУПЭ).

Суммирование производится в соответствии с правилом БИ. Это приводит к тому, что УУПЭ

равен нулю за пределами сферы радиуса 𝑟𝑚. Таким образом, в точке 𝑟 = 𝑟𝑚 потенциал испыты­

вает скачок со значения 𝜙(𝑟𝑚) до нуля. Чтобы избежать этого скачка, сдвинем потенциал таким

образом, чтобы в точке 𝑟 = 𝑟𝑚 он равнялся нулю:
𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗(︀𝜙(𝑟𝑖𝑗) − 𝜙(𝑟𝑚) + 𝜙(𝑟𝑚)⌋︀ =
1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜙(𝑟𝑖𝑗) +
𝜙(𝑟𝑚)

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗, (1.142)

где потенциал 𝜙(𝑟) определен в уравнении (1.103). Перепишем последний вклад в выраже­

нии (1.142) в следующей форме:
1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗 =
1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑞𝑖𝑞𝑗(1 − 𝛿𝑖,𝑗) =

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑞𝑖𝑞𝑗 −

𝑁

∑
𝑖=1
𝑞2𝑖 (1.143)

Таким образом, получаем следующую формулу для энергии (см. уравнения (7) и (8) в [42]):

𝑈 a
TCP(R) =

𝐶0 + 𝜙(𝑟𝑚)
2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑞𝑖𝑞𝑗 −

𝑁

∑
𝑖=1

3𝑞2𝑖
4𝑟𝑚
+ 1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜙(𝑟𝑖𝑗). (1.144)

Постоянная 𝐶0 определяется потенциалом взаимодействия:

𝐶0 = lim
𝑟→0

⎛
⎝
𝜙(𝑟) − 1⇑𝑟

⎞
⎠
= − 3

2𝑟𝑚
= −𝜙(𝑟𝑚) (1.145)

где использовано 𝜙(𝑟𝑚) = 3⇑(2𝑟𝑚). Таким образом, первое слагаемое в (1.144) равно нулю, а

энергия принимает вид:

𝑈 a
TCP(R) = −

𝑁

∑
𝑖=1

3𝑞2𝑖
4𝑟𝑚
+ 1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝜙(𝑟𝑖𝑗). (1.146)

Радиус взаимодействия УУПЭ немного больше, чем половина длины ячейки [54], 𝑟𝑚 > 𝐿⇑2.
Это приводит к тому, что ион 𝑖 взаимодействует не только с частицами в основной ячейке, но и с их

изображениями (см. раздел III в [42]). Несмотря на это, обычные методы атомистического модели­

рования, например, использующие список соседей, остаются справедливыми, если рассматривать

УУПЭ как потенциал с усечением в точке 𝑟 = 𝑟𝑚. Таким образом, для расчета взаимодействий

каждая частица в основной кубической ячейке окружается сферой радиуса 𝑟𝑚; все взаимодействия

центральной частицы с другими частицами и их изображениями внутри этой сферы суммируются

(см. рис. 1.4). Подробности можно найти в разделе 3.1.2, а также разделе 3 и рис. 2 [54].
3 В случае УУПЭ индекс TCP у обозначения 𝜙(𝑟) пропустим.
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1.2.2. Вывод УУПЭ в случае однокомпонентной плазмы

Теперь произведем вывод УУПЭ для ОКП, аналогично работе [2] автора данной работы.

Традиционно, в случае ОКП в качестве параметра 𝛿 используется значение 𝛿 = ⌋︂𝜋 [39; 55; 56].

Помимо этого, часть постоянного вклада в (1.81) обычно включена в потенциал взаимодействия.

Это связано с тем, что плотность заряда в некоторой точке создается не только точечными ча­

стицами, но также и равномерно распределенным компенсирующим фоном. Это также должно

проявляться в потенциале взаимодействия наличием постоянных вкладов таким образом, чтобы

среднее значение потенциала было равно нулю. Таким образом, в соответствии с решением урав­

нения Пуассона с ПГУ и также фиксировании параметра 𝛿 = ⌋︂𝜋, можно получить следующее

уравнение для энергии ОКП:

𝑈E
OCP(R) = 𝑈̃0,OCP +

(𝑍𝑒)2
2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑣
𝛿=
⌋︂

𝜋
(r𝑖𝑗), (1.147)

где

𝑣
𝛿=
⌋︂

𝜋
(r) = 𝑣

𝛿=
⌋︂

𝜋
(r) − 1⇑𝐿, 𝑈̃0,OCP =

(𝑍𝑒)2
2𝐿

(𝜉
𝛿=
⌋︂

𝜋
− 1)𝑁. (1.148)

В результате, среднее значение потенциала 𝑣
𝛿=
⌋︂

𝜋
(r) равно нулю:

1

𝑉

∫
𝑉

𝑣
𝛿=
⌋︂

𝜋
(r)𝑑r = 0. (1.149)

Формула (1.147) сводится к (1.78) при 𝛿 = ⌋︂𝜋 подстановкой (1.148) в (1.147) и раскрытием скобок.

Для удобства введем также в данном разделе обозначение x = r⇑𝐿. Далее необходимо снова

определить УУПЭ в случае (1.148):

𝑣𝑎
𝛿=
⌋︂

𝜋
(𝑟) = 1

4𝜋

1∫
−1

𝑑(cos 𝜃)
2𝜋∫
0

𝑣
𝛿=
⌋︂

𝜋
(r)𝑑𝜓. (1.150)

Потенциал 𝑣
𝛿=
⌋︂

𝜋
(r), то есть сам потенциал Эвальда (1.79), содержит слагаемые, которые являются

функцией ⋃︀r⇑𝐿 + n⋃︀ и раньше были отброшены, чего нельзя сделать при 𝛿 = ⌋︂𝜋. Для усреднения

перепишем выражение ⋃︀r⇑𝐿 + n⋃︀ в следующем виде:

⋃︀x + n⋃︀ =
⌋︂
𝑥2 + 𝑛2 + 2𝑛𝑥 cos 𝜃, (1.151)

где 𝜃 — угол между векторами x и n. Теперь выполним интегрирование по угловой переменной

для слагаемого с дополнительной функцией ошибок:

1

2

1∫
−1

𝑑(cos 𝜃)erfc(
⌋︂
𝜋⋃︀x + n⋃︀)

⋃︀x + n⋃︀ = 𝑓(⋃︀𝑛 − 𝑥⋃︀) − 𝑓(⋃︀𝑛 + 𝑥⋃︀)
2𝜋𝑛𝑥

, (1.152)

где функция 𝑓(𝑛) определяется следующим образом:

𝑓(𝑛) = 𝑒−𝜋𝑛2 − 𝜋𝑛 erfc (
⌋︂
𝜋𝑛) . (1.153)
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Усреднение второго слагаемого в 𝑣
𝛿=
⌋︂

𝜋
(r) такое же, как в формуле (1.112). Таким образом, усред­

ненный по углам парный потенциал 𝑣𝑎
𝛿=
⌋︂

𝜋
(𝑥) принимает вид:

𝐿𝑣𝑎
𝛿=
⌋︂

𝜋
(𝑥) = erfc(⌋︂𝜋𝑥)

𝑥
+ 1

2𝜋𝑥
∑
n≠0

1

𝑛
⌊︀𝑓(⋃︀𝑛 − 𝑥⋃︀) − 𝑓(⋃︀𝑛 + 𝑥⋃︀) + 𝑒

−𝜋𝑛2

𝜋𝑛2
sin(2𝜋𝑛𝑥)}︀ . (1.154)

Так как в дальнейшем потенциал будет использоваться совместно с правилом БИ, важным является

поведение потенциала при 𝑟 < 𝐿, то есть 𝑥 < 1. Поскольку минимальное значение 𝑛 равно 1,

раскроем модуль следующим образом: ⋃︀𝑛 − 𝑥⋃︀ = 𝑛−𝑥. Далее разложим 𝐿𝑣𝑎
𝛿=
⌋︂

𝜋
(𝑥) в сходящийся ряд

по 𝑥 в точке 𝑥 = 0:
𝐿𝑣𝑎

𝛿=
⌋︂

𝜋
(𝑥) = 1

𝑥
+ 𝜉

𝛿=
⌋︂

𝜋
+ 2𝜋𝑥2

3
+
∞
∑
𝑘=2

𝐶𝑘𝑥
2𝑘. (1.155)

Так как в выражении (1.154) присутствуют функции 𝑓(𝑛 + 𝑥) и 𝑓(𝑛 − 𝑥), разложить их при

𝑥 = 0 напрямую не получится. Для этого воспользуемся следующим трюком. Представим функцию

𝑓(𝑛 + 𝑥) в виде интеграла Фурье для переменной n:

𝑓(𝑛 + 𝑥) =
+∞∫
−∞

ℱ𝑛(︀𝑓(𝑥 + 𝑛)⌋︀(𝜔)𝑒−𝑖𝜔𝑛𝑑𝜔, (1.156)

где ℱ𝑛(︀𝑓(𝑛)⌋︀(𝜔)— преобразование Фурье:

ℱ𝑛(︀𝑓(𝑛)⌋︀(𝜔) =
1

2𝜋

+∞∫
−∞

𝑓(𝑛)𝑒𝑖𝜔𝑛𝑑𝑛. (1.157)

Используя следующее свойство преобразования Фурье:

ℱ𝑛(︀𝑓(𝑥 + 𝑛)⌋︀(𝜔) = 𝑒−𝑖𝜔𝑥ℱ𝑛(︀𝑓(𝑛)⌋︀(𝜔), (1.158)

получаем

𝑓(𝑛 + 𝑥) =
+∞∫
−∞

𝑒−𝑖𝜔𝑥ℱ𝑛(︀𝑓(𝑛)⌋︀(𝜔)𝑒−𝑖𝜔𝑛𝑑𝜔. (1.159)

Таким образом, выражение 𝑓(𝑛 − 𝑥) − 𝑓(𝑛 + 𝑥) преобразуется в:

𝑓(𝑛 − 𝑥) − 𝑓(𝑛 + 𝑥) = 2𝑖
+∞∫
−∞

ℱ𝑛(︀𝑓(𝑛)⌋︀(𝜔) sin(𝜔𝑥)𝑒−𝑖𝜔𝑛𝑑𝜔. (1.160)

Теперь разложим sin(𝜔𝑥) в ряд Тейлора в точке 𝑥 = 0:

𝑓(𝑛 − 𝑥) − 𝑓(𝑛 + 𝑥) =
∞
∑
𝑘=0

⎛
⎜
⎝
2𝑖

+∞∫
−∞

ℱ𝑛(︀𝑓(𝑛)⌋︀(𝜔)
(−1)𝑘𝜔2𝑘+1

(2𝑘 + 1)! 𝑒
−𝑖𝜔𝑛𝑑𝜔

⎞
⎟
⎠
𝑥2𝑘+1, (1.161)

или, используя обозначение обратного преобразования Фурье, перепишем уравнение (1.161):

𝑓(𝑛 − 𝑥) − 𝑓(𝑛 + 𝑥) =
∞
∑
𝑘=0

2𝑖(−1)𝑘
(2𝑘 + 1)!ℱ

−1
𝜔 (︀𝜔2𝑘+1ℱ𝑛(︀𝑓(𝑛)⌋︀(𝜔)⌋︀(𝑛)𝑥2𝑘+1. (1.162)

Преобразование Фурье ℱ𝑛(︀𝑓(𝑛)⌋︀(𝜔) имеет вид:

ℱ𝑛(︀𝑒−𝜋𝑛
2 − 𝜋𝑛erfc (

⌋︂
𝜋𝑛)⌋︀ = −𝑒

−𝜋𝜔2

2𝜋𝜔2
− 1

2
𝑖𝛿′(𝜔). (1.163)
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Под 𝛿′(𝜔) понимается производная 𝛿-функции. Поскольку уравнение (1.163) умножается на 𝜔2𝑘+1,

второй вклад не оказывает влияния при 𝑘 ≥ 1. Таким образом:

ℱ−1𝜔 ⌊︀𝜔2𝑘+1 (−𝑒
−𝜋𝜔2

2𝜋𝜔2
)}︀ (𝑛) = 𝑖21+2𝑘𝜋𝑘+ 1

2𝑛Γ(𝑘 + 1

2
) 𝑒−𝜋𝑛2

𝑀 (1 − 𝑘, 3
2
, 𝑛2𝜋) , (1.164)

где𝑀(𝑎, 𝑏, 𝑥)— гипергеометрическая функция (1.123). Разлагая функции erfc и sin в точке 𝑥 = 0
в уравнении (1.154), получаем выражение для 𝐶𝑘 в уравнении (1.155) (если 𝑘 ≥ 1):

𝐶𝑘 = (−1)𝑘∑
n≠0
𝑒−𝜋𝑛

2 ⌊︀2
2𝑘𝜋2𝑘−1𝑛2𝑘−2

(2𝑘 + 1)! − 21+2𝑘𝜋𝑘− 1
2

(2𝑘 + 1)! Γ(𝑘 +
1

2
)𝑀 (1 − 𝑘, 3

2
, 𝑛2𝜋)}︀ − 2(−1)𝑘𝜋𝑘

(2𝑘 + 1)𝑘! . (1.165)

Добавляя и вычитая вклад при n = 0 и используя свойство Γ-функции

Γ(𝑘 + 1⇑2) = (2𝑘)!⌋︂𝜋⇑(22𝑘𝑘!), получаем окончательное выражение для 𝐶𝑘 при 𝑘 ≥ 1:

𝐶𝑘 = (−1)𝑘∑
n
𝑒−𝜋𝑛

2 ⌊︀2
2𝑘𝜋2𝑘−1𝑛2𝑘−2

(2𝑘 + 1)! − 21+2𝑘𝜋𝑘− 1
2

(2𝑘 + 1)! Γ(𝑘 +
1

2
)𝑀 (1 − 𝑘, 3

2
, 𝑛2𝜋)}︀ + 2𝜋

3
𝛿1,𝑘, (1.166)

где 𝛿1,𝑘 — символ Кронекера.

Теперь снова используем формулу Пуассона:

∑
n
𝑒−𝜋𝑛

2

𝑛2𝑘−2 = ∑
q
𝐹𝑘(q), (1.167)

где

𝐹𝑘(q) =
∫
𝑒−𝜋𝑛

2

𝑛2𝑘−2𝑒−2𝜋𝑖n⋅q𝑑n = 2𝜋 1
2
−𝑘Γ(𝑘 + 1

2
) 𝑒−𝜋𝑞2𝑀 (1 − 𝑘, 3

2
, 𝑞2𝜋) (1.168)

— преобразование Фурье от функции 𝑒−𝜋𝑛
2
𝑛2𝑘−2. Подставляя (1.168) в левую часть уравне­

ния (1.169), получаем, что:
22𝑘𝜋2𝑘−1

(2𝑘 + 1)!∑n
𝑒−𝜋𝑛

2

𝑛2𝑘−2 = 21+2𝑘𝜋𝑘− 1
2

(2𝑘 + 1)! Γ(𝑘 +
1

2
)∑

n
𝑒−𝜋𝑛

2

𝑀 (1 − 𝑘, 3
2
, 𝑛2𝜋) , (1.169)

из которого следует, что 𝐶𝑘 = 0 для 𝑘 ≥ 2 и 𝐶1 = 2𝜋⇑3. В результате получаем потенциал ви­

да (1.137):

𝑣a
𝛿=
⌋︂

𝜋
(𝑟) = 𝑣𝑎

𝛿=
⌋︂

𝜋
(𝑟) − 1⇑𝐿 = 1

𝑟
⌊︀1 + ( 3

4𝜋)1⇑3(𝜉𝛿=⌋︂𝜋
− 1) 𝑟

𝑟𝑚
+ 1

2
( 𝑟

𝑟𝑚
)
3

}︀ = 1

𝑟
+ 2𝑈̃0,OCP

𝑁(𝑍𝑒)2 +
2𝜋𝑟2

3𝑉
. (1.170)

Постоянное слагаемое

( 3
4𝜋)1⇑3(𝜉𝛿=⌋︂𝜋

− 1) = 2𝑀𝑠𝑐, 𝑀𝑠𝑐 = −0.88005944211 (1.171)

выражено через постоянную Маделунга простой кубической решетки [57] и отвечает за взаимо­

действие с фоном. Однако если ранее взаимодействия суммировались внутри кубической ячейки,

то теперь суммирование производится внутри сферической ячейки (как на рис. 1.4). Поэтому

постоянное слагаемое необходимо скорректировать.

Коррекциюможно произвести, например, с помощью кластерного разложения и условия того,

что в пределемалого взаимодействия потенциальная энергия должна быть равна нулю, как это было

сделано в [2]. Однако существует более простое соображение, которое сразу приводит к верному

ответу. Ранее постоянный вклад в потенциале (1.148) обеспечивал равенство нулю его среднего
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значения. Тогда этот постоянный вклад необходимо скорректировать с помощью условия, которое

обеспечивает равенство нулю среднего значения потенциала в сфере:
𝑟𝑚∫
0

4𝜋𝑟2𝜙OCP(𝑟)𝑑𝑟 = 0, 𝜙OCP(𝑟) =
1

𝑟
⌊︀1 −𝐶 𝑟

𝑟𝑚
+ 1

2
( 𝑟

𝑟𝑚
)
3

}︀ , (1.172)

где постоянная 𝐶 определяется равенством нулю интеграла от потенциала по ячейке. Решая это

уравнение, получаем 𝐶 = 1.8, что совсем немного отличается от значения 2⋃︀𝑀𝑠𝑐⋃︀ = 1.76; однако
это небольшое отличие обеспечивает сходимость потенциальной энергии по числу частиц. Таким

образом, УУПЭ в случае ОКП принимает следующий вид:

𝜙OCP(𝑟) =
1

𝑟
⌊︀1 − 9𝑟

5𝑟𝑚
+ 1

2
( 𝑟

𝑟𝑚
)
3

}︀ , 𝜙OCP(𝑟𝑚) = −
3

10𝑟𝑚
. (1.173)

В соответствии с заменой ( 3
4𝜋)1⇑3(𝜉𝛿=⌋︂𝜋

− 1) → 1.8 меняется также и постоянный вклад (1.148):

𝑈̃0,OCP → 𝑈̃ a
0,OCP = −

9(𝑍𝑒)2
10𝑟𝑚

𝑁, (1.174)

𝑈 a
OCP(R) = −

9(𝑍𝑒)2
10𝑟𝑚

𝑁 + (𝑍𝑒)
2

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝜙OCP(𝑟𝑖𝑗). (1.175)

Снова сдвинем потенциал таким образом, чтобы его значение на границе сферы было равно нулю:

𝑈 a
OCP(R) = −

9(𝑍𝑒)2
10𝑟𝑚

𝑁 + (𝑍𝑒)
2

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝜙OCP(𝑟𝑚) +
(𝑍𝑒)2
2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝜙(𝑟𝑖𝑗) =

= −3(𝑍𝑒)
2

20𝑟𝑚
𝑁(𝑁𝑠 + 5) +

(𝑍𝑒)2
2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝜙(𝑟𝑖𝑗), 𝑁𝑠 = (
𝑁

∑
𝑖=1
𝑁𝑠,𝑖) ⇑𝑁, (1.176)

где потенциал 𝜙(𝑟) определен в уравнении (1.103). Как и в случае с кулоновским потенциа­

лом (1.100), среднее значение 𝑁𝑠 заменяется на 𝑁 . В результате, получаем следующее уравнение

для энергии ОКП:

𝑈 a
OCP(R) = −

3(𝑍𝑒)2
20𝑟𝑚

𝑁(𝑁 + 5) + (𝑍𝑒)
2

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝜙(𝑟𝑖𝑗). (1.177)

Как видно, процесс поиска коэффициентов разложения, а также их вычисления, не очень

прост. Оказывается, что в случае ОКП получить УУПЭ можно намного проще с помощью экрани­

рованного кулоновского потенциала (потенциала Юкавы) и усреднить потенциал взаимодействия,

не производя процедуру Эвальда.

1.2.3. УУПЭ в случае потенциала Юкавы и предельный переход

В работе 1983 года [45] описывается намного более простой и элегантный способ вывода

УУПЭ (1.170) в случае ОКП. Делается это снова с помощью экранированного кулоновского потен­

циала (то есть путем рассмотрения юкавовской ОКП в пределе малого экранирования). Приведем
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этот вывод далее.

Рассмотрим ЮОКП, согласно работе [35]. Ее потенциальная энергия дается следующим

выражением:

𝑈OCP(R, 𝜅) = 𝑈0,OCP(𝜅) +
(𝑍𝑒)2
2

𝑁

∑
𝑖=1
∑
𝑗=1
𝑖≠𝑗

𝜓(r𝑖𝑗, 𝜅), (1.178)

где

𝑈0,OCP(𝜅) =
(𝑍𝑒)2𝑁

2
lim
𝑟→0

(𝜓(r, 𝜅) − 1⇑𝑟) , (1.179)

𝜓(r, 𝜅) = ∑
n
𝜑(r + n𝐿,𝜅) − 𝜑(k→ 0, 𝜅)

𝑉
, (1.180)

и 𝜑(k, 𝜅) = 4𝜋⇑(𝑘2 + 𝜅2) — Фурье компонента юкавовского потенциала. Последнее слагаемое в

потенциале (1.180) возникает из-за наличия компенсирующего фона (см. формулу (25) в [35]).

Для потенциала (1.180) можно применить процедуру суммирования Эвальда, как было показано в

разделе 1.1.3. Далее можно усреднить получившийся результат по направлениям и разложить по­

тенциал в ряд, как это было сделано в разделе 1.2.2. Результат такого преобразования можно найти

в работе [58]. Однако в результате этой процедуры получаются настолько сложные выражения для

коэффициентов, что нет никакой надежды получить аналогичное равенство нулю некоторых ко­

эффициентов, как это можно сделать в ОКП (см. раздел 1.2.2). Оказывается, что этого не нужно

делать.

Применим процедуру усреднения потенциала по углам сразу к (1.180), отделив не требующий

усреднения вклад при n = 0:

𝜓a(𝑟, 𝜅) = 𝜑(𝑟, 𝜅) +∑
n≠0

1

4𝜋

1∫
−1

𝑑(cos 𝜃)
2𝜋∫
0

𝑑𝜔𝜑(r + n𝐿,𝜅) − 4𝜋

𝑉 𝜅2
. (1.181)

Теперь вычислим среднее каждой компоненты ряда:

1

4𝜋

1∫
−1

𝑑(cos 𝜃)
2𝜋∫
0

𝑑𝜔𝜑(r+n𝐿,𝜅) = 1

2

1∫
−1

𝑑(cos 𝜃)exp(−𝜅
⌋︂
𝑟2 +𝐿2𝑛2 + 2𝑟𝑛𝐿 cos 𝜃)⌋︂

𝑟2 +𝐿2𝑛2 + 2𝑟𝑛𝐿 cos 𝜃
= sinh(𝜅𝑟)

𝜅𝑟
𝜑(n𝐿,𝜅).

(1.182)

При взятии интеграла было учтено, что 𝑟 < 𝑛𝐿. Таким образом, получаем следующее выражение

для усредненного потенциала:

𝜓a(𝑟, 𝜅) = 𝜑(𝑟, 𝜅) + sinh(𝜅𝑟)
𝜅𝑟

∑
n≠0
𝜑(n𝐿,𝜅) − 𝜑(0, 𝜅)

𝑉
, 𝜑(0, 𝜅) = 4𝜋

𝜅2
. (1.183)

Рассматривая выражение (1.179) для постоянного слагаемого в энергии, можно выразить ряд по

всем целочисленным векторам:

𝑈OCP,0(𝜅) =
(𝑍𝑒)2𝑁

2
⌊︀∑
n≠0
𝜑(n𝐿,𝜅) − 4𝜋

𝑉 𝜅2
}︀ ⇒ ∑

n≠0
𝜑(n𝐿,𝜅) = 2𝑈OCP,0(𝜅)

(𝑍𝑒)2𝑁 + 4𝜋

𝑉 𝜅2
. (1.184)
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Подставив (1.184) в (1.183), получаем УУПЭ в случае ЮОКП:

𝜓a(𝑟, 𝜅) = 𝜑(𝑟, 𝜅) + 2𝑈OCP,0(𝜅)
(𝑍𝑒)2𝑁

sinh(𝜅𝑟)
𝜅𝑟

+ 4𝜋

𝑉 𝜅2
]︀sinh(𝜅𝑟)

𝜅𝑟
− 1{︀ . (1.185)

Вычисляя теперь предел при 𝜅→ 0, получаем формулу (1.170):

𝜓a(𝑟, 𝜅) = 1

𝑟
+ 2𝑈OCP,0(0)

(𝑍𝑒)2𝑁 + 2𝜋𝑟2

3𝑉
+ 𝑜(𝜅0) = 𝑣a

𝛿=
⌋︂

𝜋
(𝑟) + 𝑜(𝜅0). (1.186)

Как видно, такой способ не только намного проще, но и дает выражение для УУПЭ в случае

потенциала Юкавы. Более того, сложная функциональная зависимость 𝜓a(𝑟, 𝜅) в (1.185) показы­

вает, что путь вывода, который можно проделать с кулоновским потенциалом, обречен на провал в

случае потенциала Юкавы, так как пришлось бы угадать из коэффициентов разложения функцио­

нальную форму в виде (1.185). Отметим также, что формула (1.185) была приведена в работе [59],

посвященной исследованию распределения электрических микрополей в электрон-ионной плазме.

В следующем разделе будет проведен анализ полученного потенциала взаимодействия.

1.2.4. Анализ УУПЭ: конечность радиуса взаимодействия, порождаемая плотность заряда

и правило о ближайшем изображении

Проанализируем полученный УУПЭ в случае двухкомпонентной системы (см. раздел 1.2.1).

Для начала отметим, что УУПЭ (1.141) достигает минимального значения 3⇑(2𝑟𝑚) > 0 в точке

𝑟 = 𝑟𝑚. Как уже было описано в разделе 1.1.5, минимум потенциала при использовании ПГУ опре­

деляет его радиус действия; в случае обычного потенциала Эвальда он определялся кубической

ячейкой размерами 𝐿 × 𝐿 × 𝐿 = 𝑉 (см. рис. 1.2). В случае УУПЭ радиус действия определяется

сферой радиуса 𝑟𝑚 то есть объема 4𝜋𝑟3𝑚⇑3 = 𝑉 . Минимальное значение потенциала, то есть радиус

взаимодействия, не зависит от направления; точки минимума потенциала образуют поверхность

сферы. Теперь, по аналогии с уравнением (1.84), в соответствии с правилом БИ, окружим 𝑖-ую

частицу шаром радиуса 𝑟𝑚 так, чтобы r𝑖 находился в центре шара, и вычислим потенциал 𝑢(r𝑖),
создаваемый другими частицами в точке нахождения 𝑖-ой, используя уравнение (1.146):

𝑢(r𝑖) = −
3𝑞𝑖
2𝑟𝑚
+ ∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑗𝜙(𝑟𝑖𝑗), 𝑈𝑎
TCP(R) =

1

2

𝑁

∑
𝑖=1
𝑞𝑖𝑢(r𝑖) (1.187)

В этом случае необходимо учитывать все частицы, находящиеся в шаре объема 𝐿3 = 4𝜋𝑟3𝑚⇑3.
Следовательно, выражение (1.141) рассматривается только до расстояния 𝑟𝑚; для 𝑟 > 𝑟𝑚 пере­

определим 𝜙(𝑟) равным нулю, 𝜙(𝑟 > 𝑟𝑚) = 0. Такое переопределение не влияет на полную по­

тенциальную энергию (поскольку радиус взаимодействия равен 𝑟𝑚), но оказывается удобным для

реализации алгоритма вычислений. Так, сдвинув потенциал в точке 𝑟𝑚, получаем уравнение (1.103)

для потенциала взаимодействия, которое используется далее в моделировании.
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Разъясним теперь запись ∑𝑗∈𝒮(r𝑖)
𝑖≠𝑗

. Для вычисления потенциальной энергии по уравне­

нию (1.102) в точке r𝑖 необходимо использовать следующий алгоритм:

1. Перейти к опорной точке r𝑖 выбранного иона 𝑖;

2. Вычислить энергию его взаимодействия с каждым 𝑗-м ионом, если ⋃︀r𝑖 − r𝑗 ⋃︀ ≤ 𝑟𝑚.

Таким образом, необходимо перейти к рассмотрению шаровой области 𝒮(r𝑖), которая наклады­

вается на периодическую кубическую ячейку (см. рис. 1.4). Теперь на выбранный ион оказывают

влияние не только частицы, находящиеся в основной ячейке, но и частицы, расположенные внутри

шара. Общее число частиц в шаре 𝑁𝑠,𝑖 = 𝑁𝑠(r𝑖) зависит от положения центра шара, r𝑖.

Теперь исследуем, какую плотность заряда создает каждая частица в шаре. Рассмотрим одну

частицу с зарядом 𝑞1, находящуюся в точке r1 внутри шара. Она создает в некоторой точке r

потенциал:

𝑞1𝜙(⋃︀r − r1⋃︀). (1.188)

Вычислим плотность заряда 𝜌(r) в точке r:

Δ(𝑞1𝜙(⋃︀r − r1⋃︀)) = −4𝜋𝜌(r), (1.189)

используя уравнение Пуассона. Лапласиан усредненного потенциала имеет следующий вид:

Δ𝜙(𝑟) = −4𝜋𝛿(r) + 3

𝑟3𝑚
. (1.190)

Тогда плотность заряда:

𝜌(r) = −Δ(𝑞1𝜙(⋃︀r − r1⋃︀))
4𝜋

= 𝑞1𝛿(r − r1) −
3𝑞1
4𝜋𝑟3𝑚

. (1.191)

Видно, что эта точечная частица не является кулоновской в обычном смысле. Помимо точечной

плотности 𝑞1𝛿(r − r1), она создает равномерно распределенный заряд противоположного знака во

всем шаре с плотностью −3𝑞1⇑(4𝜋𝑟3𝑚). Эту частицу можно рассматривать как обычную кулонов­

скую точечную частицу плюс некоторый дополнительный заряд вокруг нее. Взаимодействие этого

дополнительного заряда с другой частицей определяется дополнительным кубическим вкладом
1
2 (𝑟⇑𝑟𝑚)3 в усредненном потенциале (1.141). Более того, плотность заряда (1.191) такова, что весь

шар оказывается электрически нейтральным:∫
𝒮(0)

𝜌(r)𝑑r = 𝑞1 −
3𝑞1
4𝜋𝑟3𝑚

4𝜋𝑟3𝑚
3
= 0. (1.192)

Это отражает то, что электронейтральность системы представляет собой неотъемлемую харак­

теристику УУПЭ. Таким образом, УУПЭ (1.141) описывает взаимодействие шаров радиуса 𝑟𝑚 с

нулевым зарядом; шары взаимодействуют друг с другом только если расстояние между их центра­

ми меньше 𝑟𝑚.
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Сравним теперь поведение УУПЭ и потенциала Эвальда вдоль трех основных кристаллогра­

фических направлений, а также чисто кулоновский потенциал. Для этого по аналогии с уравне­

нием (1.85) рассмотрим потенциал взаимодействия между частицей в начале отсчета и в точке r1
(𝑞1 = −𝑞2 = −𝑞 < 0):

𝑢(r1) =
3𝑞

2𝑟𝑚
+ 𝑞𝜙(𝑟1) ≡ 𝑞𝜙(𝑟1). (1.193)

Потенциалы Эвальда изображены до минимального значения (до радиуса взаимодействия), по­

скольку их поведение на бóльших расстояниях тривиально (см. рис. 1.1 и рассуждения выше), а

УУПЭ до значения 𝑟𝑚 (см. рис. 1.6). Все эти потенциалы стремятся к кулоновскому на малых
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Рис. 1.6. Потенциал взаимодействия двух частиц с зарядами 𝑞1 = −𝑞2 = −𝑞 < 0 как функция приведенного
расстояния 𝑟⇑𝐿. В трехмерном виде потенциал Эвальда представлен на рис. 1.2.

расстояниях; в частности, для УУПЭ:

lim
𝑟→0

𝜙(𝑟)
1⇑𝑟 = 1. (1.194)

Однако на больших расстояниях их поведение различается. Кривая УУПЭ располагается меж­

ду кривыми потенциалов Эвальда вдоль направлений [100] и [111]. Также кривые различаются

положениями минимума. Наименьшее (𝑟⇑𝐿 = 1⇑2) и наибольшее (
⌋︂
3⇑2) положения минимумов

соответствуют потенциалу Эвальда вдоль направлений [100] и [111], соответственно. Значение

𝑟𝑚⇑𝐿 ≈ 0.62 для 𝜙(𝑟) находится между ними. Тот факт, что 𝑟𝑚⇑𝐿 > 1⇑2, создает некоторые труд­
ности при расчете взаимодействий и будет обсуждаться далее (см. раздел 3.1.2).

Также стоит отметить, что процедура усреднения сохраняет однородность потенциала Эваль­

да по координатам и длине ячейки (1.86). Так 𝜙(𝑟) = 𝜙(𝑟,𝐿), 𝑈𝑎
0 = 𝑈𝑎

0 (𝐿) и

𝜙(𝛾𝑟, 𝛾𝐿) = 𝛾−1𝜙(𝑟,𝐿), 𝑈𝑎
0 (𝛾𝐿) = 𝛾−1𝑈𝑎

0 (𝐿), 𝛾 > 0, (1.195)

то есть вся потенциальная энергия (1.102) также однородна по координатам и длине ячейки.
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1.3. Термодинамика классических систем: энергия, термодинамическое и

вириальное давление

Получив выражение для потенциальной энергии кулоновских систем с дальнодействием (1.56)

(а также без дальнодействия (1.98)) для фиксированных положений зарядов, можно построить

термодинамику этих систем; то есть записать выражение для статистической суммы и получить

выражения для энергии и давлении при заданных температуре и объеме.

1.3.1. 𝑁𝑉 𝑇 ансамбль

Итак, рассмотрим систему зарядов в классическихмоделяхДКПиОКПв заданном объеме𝑉 .

Им соответствует потенциальная энергия𝑈(R). Гамильтониан кулоновской системы также зависит

от импульсов частиц p𝑖:

𝐻(P,R) =𝐾(P) +𝑈(R), 𝐾(P) =
𝑁

∑
𝑖=1

p2
𝑖

2𝑚
. (1.196)

Массы всех частиц для простоты выкладок равны𝑚, P = (p1, . . . ,p𝑁).
Соединим эту систему с термостатом температуры 𝑇 , а также введем обозначение для об­

ратной температуры 𝛽 = (𝑘𝐵𝑇 )−1. Тогда функция распределения по импульсам и координатам

при фиксированных 𝑁𝑉 𝑇 параметрах (то есть в каноническом ансамбле) задается следующим

образом:

𝑤(P,R) = 1

𝑍
exp(−𝛽𝐻(P,R)), 𝑍 = 𝑍(𝑇,𝑉 ) = 𝑄

𝑁 !Λ3𝑁
, (1.197)

гдеΛ = Λ(𝑇 ) =
⌈︂
2𝜋ℎ̵2𝛽⇑𝑚—тепловая длина волныдеБройля и𝑄—конфигурационныйинтеграл:

𝑄 =
∫
𝑑r1 . . . 𝑑r𝑁 exp (−𝛽𝑈(R)) . (1.198)

Таким образом, полная энергия системы и ее потенциальная энергия вычисляются как средние

значения по ансамблю:

𝐸 = −(𝜕 ln𝑍
𝜕𝛽

)
𝑉

= 1

𝑍𝑁 !(2𝜋ℎ̵)3𝑁
∫
𝐻𝑒−𝛽𝐻𝑑R𝑑P = 3

2𝑁𝑘𝐵𝑇 + ∐︀𝑈(R)̃︀, (1.199)

где под угловыми скобками понимается усреднение по конфигурациям (или ансамблю):

∐︀(. . .)̃︀ ≡ 1

𝑄

∫
(. . .)𝑒−𝛽𝑈(R)𝑑r1 . . . 𝑑r𝑁 . (1.200)

Отметим, что иногда указание зависимости от R, например, в энергии 𝑈(R) для удобства будет

опускаться.

Следует уточнить важный вопрос, касающийся статистической суммы ДКП. Формально, для

полностью классической двухкомпонентной кулоновской системы статистическая сумма 𝑍 (или

конфигурационный интеграл (1.198)) не существует. Это обусловлено расходимостью интеграла

в области фазового пространства, где разноименные заряды сближаются на бесконечно малые
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расстояния, а потенциальная энергия стремится к минус бесконечности. Такое поведение озна­

чает присутствие связанных состояний, описание которых требует привлечения аппарата кван­

товой механики. Так, для корректного описания такой классической (точнее, невырожденной)

двухкомпонентной кулоновской системы требуется применение подходов, основанных на матрице

плотности. Такое рассмотрение будет произведено в главе 2 данной работы.

Тем не менее, часто помимо кулоновского взаимодействия предполагается некоторое до­

полнительное отталкивательное взаимодействие (например, в форме потенциала Леннарда–Джон­

са [54]), которое устраняет расходимость статистической суммы. Хотя в данной работе такие

эффективные классические потенциалы не рассматриваются, при работе с термодинамическими

функциями в системе с разноименными зарядами необходимо понимать наличие этого дополни­

тельного отталкивания, либо воспринимать все преобразования достаточно формально. В то же

время, в случае ОКП связанных состояний нет, энергия ограничена снизу, статистическая сумма

не расходится и может быть вычислена без дополнительных оговорок.

1.3.2. Парная корреляционная функция

Одной из величин, отражающих структуру вещества, является двухчастичная корреляцион­

ная функция, 𝑔2(q1,q2):

𝑔2(q1,q2) =
𝑉 2

𝑁2
∐︀
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝛿(q1 − r𝑖)𝛿(q2 − r𝑗)̃︀. (1.201)

В случае идеального газа, эта функция равна единице (с точностью до фактора (𝑁 − 1)⇑𝑁 ). Если

потенциальная энергия системы может быть записана в виде:

𝑈(R) = 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

𝒬2𝜑(r𝑖, r𝑗), (1.202)

то есть в виде парного взаимодействия с некоторымпарнымпотенциалом𝜑(r𝑖, r𝑗) (символ𝒬2 имеет

размерность заряда в квадрате), то средняя по ансамблю потенциальная энергия выражается через

𝑔2(q1,q2):

∐︀𝑈(R)̃︀ = 1

2
𝒬2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑖≠𝑗

∐︀
∫
𝛿(q1 − r𝑖)𝛿(q2 − r𝑗)𝜑(q1,q2)𝑑q1𝑑q2̃︀ =

𝑁2𝒬2

2𝑉 2

∫
𝜑(q1,q2)𝑔2(q1,q2)𝑑q1𝑑q2.

(1.203)

В случае, когда потенциал 𝜑(r𝑖, r𝑗) зависит только от разности векторов, то есть 𝜑(r𝑖, r𝑗) =
𝜑(r𝑖 − r𝑗), корреляционная функция так же зависит только от разности векторов:

𝜑(r𝑖, r𝑗) = 𝜑(r𝑖 − r𝑗) Ô⇒ 𝑔2(q1,q2) = 𝑔2(q1 − q2). (1.204)
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Для иллюстрации этого, рассмотрим систему из трех частиц:

𝑔2(q1,q2) =
𝑉 2

𝑁2𝑄
]︀𝑒−𝛽𝒬2𝜑(q1,q2)

∫
𝑑r3𝑒−𝛽𝒬

2𝜑(q1,r3)𝑒−𝛽𝒬
2𝜑(q2,r3) + . . .{︀ . (1.205)

В выражении (1.205) выписано только первое слагаемое; остальные имеют похожий вид, что при­

водит к альтернативному определению корреляционной функции [60]:

𝑔2(q1,q2) =
𝑉 2

𝑄

∫
exp (︀−𝛽𝑈(q1,q2, r3, . . . , r𝑁)⌋︀𝑑r3 . . . 𝑑r𝑁 . (1.206)

Теперь введем в уравнении (1.205) замену переменных t = r3 − q2 и воспользуемся свойством

потенциала (1.204):

𝑔2(q1,q2) =
𝑉 2

𝑁2𝑄
]︀𝑒−𝛽𝒬2𝜑(q1−q2)

∫
𝑑t𝑒−𝛽𝒬2𝜑(q1−q2−t)𝑒−𝛽𝒬

2𝜑(−t) + . . .{︀ = 𝑔2(q1 − q2). (1.207)

В результате замены получаем необходимое свойство (1.204). Для случая 𝑁 частиц необходимо

ввести 𝑁 − 2 замен переменных. Также в случае (1.204) связь корреляционной функции и потен­

циальной энергии (1.203) принимает следующий вид:

∐︀𝑈(R)̃︀ = 𝑁
2𝒬2

2𝑉

∫
𝜑(q)𝑔2(q)𝑑q. (1.208)

В некоторых случаях, когда система является изотропной, интегрирование производится в сфери­

ческих координатах:

∐︀𝑈(R)̃︀ = 2𝜋𝑁2𝒬2

𝑉

∞∫
0

𝑞2𝜑(𝑞)𝑔2(𝑞)𝑑𝑞. (1.209)

В случае ОКП среднее значение межчастичного потенциала равно нулю (см. формулу (1.92)).

Тогда формулу (1.208) можно переписать в следующем виде:

∐︀𝑈(R)̃︀ = 𝑁
2(𝑍𝑒)2
2𝑉

∫
𝜑(q)(︀𝑔2(q) − 1⌋︀𝑑q +

𝑁2(𝑍𝑒)2
2𝑉

∫
𝜑(q)𝑑q =

= 𝑁
2(𝑍𝑒)2
2𝑉

∫
𝜑(q)(︀𝑔2(q) − 1⌋︀𝑑q (для ОКП). (1.210)

В случае изотропной ОКП:

∐︀𝑈(R)̃︀ = 2𝜋𝑁2(𝑍𝑒)2
𝑉

∫
𝑞2𝜑(𝑞)(︀𝑔2(𝑞) − 1⌋︀𝑑𝑞 (для ОКП). (1.211)

Из последнего равенства хорошо видно, что вычитание единицы позволяет избежать расходимости

потенциальной энергии, так как 𝑔2(𝑞) ≈ 1 при больших 𝑞.

1.3.3. Термодинамическое и вириальное давление

Давление системы взаимодействующих точечных частиц может быть рассчитано исходя из

двух точек зрения: с точки зрения термодинамики и с точки зрения механики. В определенном

случае (об этом будет сказано далее), который обычно подразумевается, эти формулы отличаются

только способом усреднения: по ансамблю или по времени, соответственно.
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С точки зрения термодинамики, давление определяется производной по объему от логарифма

статистической суммы:

𝛽𝑃𝐹 = −(
𝜕(𝛽𝐹 )
𝜕𝑉

)
𝑇

, 𝛽𝐹 = − ln𝑍, (1.212)

где𝐹 обозначает свободную энергию. Производная может быть переписана в терминах конфигура­

ционного интеграла (1.198) вследствие независимости длины волны де Бройля (1.197) от объема:

𝛽𝑃𝐹 = (
𝜕 ln𝑄

𝜕𝑉
)
𝑇

= 1

𝑄
(𝜕𝑄
𝜕𝑉

)
𝑇

. (1.213)

Так как объем явно не входит в конфигурационный интеграл, необходимо произвести масшта­

бирование (скейлинг) переменных. Для этого рассмотрим некоторый начальный объем системы

𝑉0 = 𝐿3
0. Увеличим объем системы в 𝛾 раз для некоторой конкретной точки в конфигурацион­

ном пространстве, рассчитаем все производные и зафиксируем 𝛾 → 1. Тогда необходимо сделать

следующую замену переменных:

𝐿 = 𝛾𝐿0, 𝑉 = 𝛾3𝑉0, r𝑖 = 𝛾r𝑖,0, 𝑑r𝑖 = 𝛾3𝑑r𝑖,0, 𝑑𝑉 = 3𝑉 𝑑𝛾⇑𝛾, (1.214)

где r𝑖,0 — координаты частицы в ячейке начального объема 𝑉0. Тогда конфигурационный интеграл

принимает следующий вид:

𝑄 =
∫
𝑑r1,0...𝑑r𝑁,0𝛾

3𝑁𝑒−𝛽𝑈 , (𝜕𝑄
𝜕𝑉

)
𝑇

= 𝛾

3𝑉
(𝜕𝑄
𝜕𝛾

)
𝑇

, (1.215)

а производная по объему превращается в производную по 𝛾. Вычислим ее:

(𝜕𝑄
𝜕𝛾

)
𝑇

=
∫
𝑑r1,0...𝑑r𝑁,0

𝜕

𝜕𝛾
(𝛾3𝑁𝑒−𝛽𝑈)

𝑇
= 3𝑁𝛾−1𝑄 +

∫
𝑑r1...𝑑r𝑁 (−𝜕(𝛽𝑈)

𝜕𝛾
)
𝑇

𝑒−𝛽𝑈 . (1.216)

Затем подставим производную по 𝛾 в (1.213) и получим выражение для термодинамического

давления, 𝑃𝐹 :

𝛽𝑃𝐹 =
1

3𝑉0𝛾2𝑄
(𝜕𝑄
𝜕𝛾

)
𝑇

= 𝛾

3𝑉 𝑄
(𝜕𝑄
𝜕𝛾

)
𝑇

= 𝑁⇑𝑉 − 𝛾

3𝑉
̂︂(𝜕(𝛽𝑈)

𝜕𝛾
)
𝑇

]︁ = 𝑁⇑𝑉 − ̂︁(𝜕(𝛽𝑈)
𝜕𝑉

)
𝑇

[︁ . (1.217)

Формула (1.217) совпадает с уравнением (4) в работе [61].

Первое слагаемое в уравнении (1.217) соответствует вкладу идеального газа, а второе опи­

сывает избыточное давление, обусловленное неидеальностью (взаимодействием) системы. Можно

также ввести моментальное давление для некоторой конкретной конфигурации частиц:

𝛽𝑃𝐹 (R) = 𝑁⇑𝑉 − (𝜕(𝛽𝑈)
𝜕𝑉

)
𝑇

, (1.218)

рассчитывать эту величину на каждом шаге моделирования и усреднить затем ее по конфигура­

циям. Для последующего взятия производной необходимо рассмотреть конкретный вид потенци­

альной энергии.

Прежде чем сделать это, рассмотрим расчет давления с точки зрения классической механики.

В этом случае, координаты и импульсы частиц являются функцией времени 𝑡. Пользуясь видом

кинетической энергии и усредняя по времени, можно получить следующее соотношение для ки­
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нетической энергии и силами в системе, называемое вириальной теоремой (см. стр. 38 в [62]):

2∐︀𝐾̃︀𝜏 +
𝑁

∑
𝑖=1
∐︀ṗ𝑖 ⋅ r𝑖̃︀𝜏 = 0. (1.219)

Первое слагаемое представляет собой удвоенную кинетическую энергию системы, а второе сла­

гаемое есть сумма скалярных произведений координаты каждой частицы на силу, действующую

на эту частицу. При этом, обе величины усреднены по очень большому (бесконечному) проме­

жутку времени 𝜏 (3.2). По теореме о равнораспределении энергии по степеням свободы, получаем

выражение для средней кинетической энергии:

2∐︀𝑇 ̃︀𝜏 = 3𝑁𝑘𝐵𝑇. (1.220)

Рассмотрим теперь силы, действующие в системе. Во-первых, присутствуют межчастичные

силы из-за взаимодействия. Во-вторых, из-за наличия конечного объема необходимо ввести силу,

сдерживающую объем системы. Этой силой служит давление. Суммируя давление каждого участка

поверхности объема системы, получаем следующее выражение (см. стр. 119 в [63]):

3𝑁𝑘𝐵𝑇 +
𝑁

∑
𝑖=1
∐︀ṗ𝑖 ⋅ r𝑖̃︀𝜏 = 3𝑁𝑘𝐵𝑇 +

𝑁

∑
𝑖=1
∐︀f𝑖 ⋅ r𝑖̃︀𝜏 − 𝑃𝑊

∫
r ⋅ 𝑑s = 0. (1.221)

Пользуясь формулой Остроградского–Гаусса, получаем, что поверхностный интеграл принимает

простую форму:

𝑃𝑊

∫
r ⋅ 𝑑s = 𝑃𝑊

∫
𝑉

div r𝑑𝑉 = 3𝑃𝑊𝑉. (1.222)

В результате, получается следующее выражение для вириального давления:

𝛽𝑃𝑊 = 𝑁⇑𝑉 + ∐︀𝛽𝑊 ̃︀𝜏
3𝑉

, (1.223)

где межчастичный (или внутренний) вириал𝑊 имеет вид:

𝑊 =
𝑁

∑
𝑖=1

r𝑖 ⋅ f𝑖. (1.224)

Здесь f𝑖 — сила, действующая на 𝑖-ую частицу со стороны остальных частиц. Таким образом, в

величину 𝑊 вносят вклад только межчастичные силы. Также удобно записать вириал (1.224) в

парной форме:

𝑊 = 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

r𝑖𝑗 ⋅ f𝑖𝑗, (1.225)

где f𝑖𝑗 — сила, действующая на 𝑖-ю частицу со стороны 𝑗-й частицы.

Стоит отметить, что с точки зрения автора данной работы, описанная процедура вывода

вириального давления является несколько непрозрачной. Эта процедура описана в таком же виде,

как, например, в пятом томе курса теоретической физики Ландау и Лифшица [63]. Аналогичный

вывод можно найти в книге Аллена и Тилдесли (см. стр. 62 в [31]).

Таким образом, было получено два определения давления: термодинамическое 𝑃𝐹 в уравне­
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нии (1.217) и вириальное 𝑃𝑊 в уравнении (1.223). В случае, когда потенциальная энергия пред­

ставляется парным потенциалом:

𝑈(R) = 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝜑(r𝑖𝑗), (1.226)

который не зависит от объема явно, то формула (1.217) легко сводится к (1.223). Для этого

рассмотрим производную (𝜕(𝛽𝑈)⇑𝜕𝛾)𝑇 в (1.216):

(𝜕(𝛽𝑈)
𝜕𝛾

)
𝑇

= 1

2

𝑁

∑
𝑖=1
∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗 (
𝜕𝜑(𝛾r𝑖𝑗,0)

𝜕𝛾
)
𝑇

= 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗∇r𝑖𝑗𝜑(r𝑖𝑗) ⋅ r𝑖𝑗,0. (1.227)

Вводя обозначение f𝑖𝑗 = −𝑞𝑖𝑞𝑗∇r𝑖𝑗𝜑(r𝑖𝑗) и фиксируя 𝛾 = 1, получаем:

(𝜕𝑄
𝜕𝑉

)
𝑇

= (3𝑉 )−1
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀
3𝑁𝑄 + 𝛽

2

∫
𝑑R𝑒−𝛽𝑈(R)

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

f𝑖𝑗 ⋅ r𝑖𝑗

[︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌊︀
(1.228)

и давление:

𝛽𝑃𝐹 = 𝑁⇑𝑉 + ∐︀𝛽𝑊 ̃︀
3𝑉

, (1.229)

что по форме совпадает с вириальным давлением (1.223). Заметим, что формула (1.229) была

получена в случае (1.226), когда парный потенциал зависит только от вектора r𝑖𝑗 .

Формулы для вириального и термодинамического давления в случае (1.226) совпадают по

форме, но отличаются способом усреднения. В случае термодинамического давления усреднение

производится по всевозможным конфигурациям в соответствии с распределением Больцмана. В

случае вириального давления усреднение производится по времени. В соответствии с эргодической

гипотезой, эти способы усреднения приводят к одному и тому же значению давления. В рамках

данной работы эта гипотеза считается верной. Независимо от способа вывода формулы (через

статистическую сумму или анализ динамики системы), в моделировании формулы для усреднения

по времени ∐︀. . .̃︀𝜏 могут быть использованы взаимозаменяемо с выражениями для усреднения по

ансамблю ∐︀. . .̃︀ независимо от способа моделирования (Монте-Карло или МД).

Как уже упоминалось, вириальное давление, то есть давление, рассчитанное исходя из сил

межчастичного взаимодействия, может приводить к неверному результату. Это обусловлено тем,

что при вариации объема в давление может вносить вклад не только вариация положения частиц

(градиент потенциала), но и вариация самого потенциала, если он зависит от объема. Потенциал

Эвальда явно содержит зависимость от длины ячейки, что может приводить к дополнительным в

сравнении с вириальным вкладам в давление.
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1.3.4. Поправка к вириальному давлению

Рассмотрим снова формулу (1.217) и предположим, что потенциальная энергия зависит не

только от положения частиц, но и явно зависит от длины ячейки (объема):

𝑈 = 𝑈(R;𝐿) = 𝑈(r1, ..., r𝑁 ;𝐿). (1.230)

Тогда при дифференцировании по объему воспользуемся правилом дифференцирования функции

многих переменных:

(𝜕𝑈
𝜕𝑉

)
𝑇

= ⌊︀
𝑁

∑
𝑖=1

(𝜕𝑈
𝜕r𝑖

)
𝑇,𝐿

⋅ 𝑑r𝑖
𝑑𝐿
+ (𝜕𝑈

𝜕𝐿
)
𝑇,r𝑖

}︀ 𝑑𝐿
𝑑𝑉
= − 1

3𝑉

𝑁

∑
𝑖=1

r𝑖 ⋅ f𝑖 +
𝐿

3𝑉
(𝜕𝑈
𝜕𝐿

)
𝑇,r𝑖

, (1.231)

где f𝑖 = −(𝜕𝑈⇑𝜕r𝑖)𝑇,𝐿 и используется равенство 𝑑r𝑖⇑𝑑𝐿 = r𝑖⇑𝐿. Обозначение (𝜕⇑𝜕𝐿)𝑇,r𝑖 указывает,
что производная берется исключительно по параметру 𝐿, от которого явным образом зависит

потенциальная энергия. Зависимость координат от объема учитывается в первом слагаемом урав­

нения (1.231), (𝜕⇑𝜕r𝑖)𝑇,𝐿, где индексы 𝑇 и 𝐿 означают постоянство температуры и размера ячейки

соответственно.

Подставляя уравнение (1.231) вформулу (1.217), получаем связьмежду вириаломидавлением

для систем, энергия которых зависит от размера ячейки 𝐿:

𝛽𝑃𝐹 = ]︀𝑁⇑𝑉 + ∐︀𝛽𝑊 ̃︀
3𝑉

{︀ − 1

3𝑉
̂︂𝐿(𝜕(𝛽𝑈)

𝜕𝐿
)
𝑇,r𝑖

]︁ . (1.232)

Таким образом, явная зависимость потенциальной энергии от размера ячейки приводит к допол­

нительному вкладу в давление. Способ вывода этого вклада из динамических соображений, в

частности, непосредственно из вириальной теоремы, не ясен. В то же время нет оснований по­

лагать, что вириальная теорема и дифференцирование свободной энергии должны приводить к

различным результатам для давления. Поэтому введем следующее определение скорректирован­

ного вириального давления:

𝛽𝑃 corr
𝑊 = ⌊︀𝑁⇑𝑉 + ∐︀𝛽𝑊 ̃︀𝜏

3𝑉
}︀ − 1

3𝑉
̂︂𝐿(𝜕(𝛽𝑈)

𝜕𝐿
)
𝑇,r𝑖

]︁
𝜏

≡ 𝛽𝑃𝑊 −
1

3𝑉
̂︂𝐿(𝜕(𝛽𝑈)

𝜕𝐿
)
𝑇,r𝑖

]︁
𝜏

. (1.233)

Снова отметим, что для корректировки вириального давленияиспользуется эргодическая гипотеза.

Аналогичная корректировка была получена ранее в общем виде в работах [61; 64]. Несмотря на

полученное еще в 2006 году [61] несоответствие вириального и термодинамического давления, во

многих работах используется именно вириальное давление; в том числе такой подход реализован

в пакете LAMMPS.

Отметим, что явная зависимость потенциала от объема не является экзотикой и спецификой

использования ПГУ. Аналогичная ситуация возникает в моделях среднего атома, когда атом окру­

жен сферической ячейкой с некоторой плотностью заряда [52]. В такой задаче самосогласованный

потенциал зависит от температуры и объема, что также приводит к дополнительным вкладам в

давление в сравнении с вириальным. Хотя определение вириального давления, например, для мо­
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дели Томаса–Ферми обычно не используется, оно используется в более сложной модели среднего

атома, а именно в модели Либермана [65; 66]. Согласно работе [66], термодинамическое и вири­

альное определения приводят в этой модели к различным значениям, а отличие связано именно с

поверхностными вкладами.

В следующем разделе будет получена корректная формула для давления кулоновских систем,

а также поправки к вириальному давлению в случае потенциала Эвальда.

1.3.5. Давление классических кулоновских систем

Обычно давление классических кулоновских систем получают из вириального давле­

ния (1.223) и вириала (1.225) следующим образом. Если между частицами кулоновское взаи­

модействие, то f𝑖𝑗 = 𝑞𝑖𝑞𝑗r𝑖𝑗⇑𝑟3𝑖𝑗 . Подставляя эту формулу в вириал (1.225), получаем, что вириал

совпадает с кулоновской потенциальной энергией (1.87):

𝑊 = 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

r𝑖𝑗 ⋅ f𝑖𝑗 =
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗r𝑖𝑗 ⋅ r𝑖𝑗⇑𝑟3𝑖𝑗 =
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗⇑𝑟𝑖𝑗 = 𝑈(R). (1.234)

В результате, пользуясь уравнением (1.223), получаем давление кулоновских систем:

𝛽𝑃 = 𝑁⇑𝑉 + ∐︀𝛽𝑈(R)̃︀
3𝑉

, (1.235)

где усреднение производится либо по времени, либо по конфигурациям.

Однако зачастую в моделировании в качестве потенциала взаимодействия используется не

кулоновский потенциал, а потенциал Эвальда или УУПЭ, для которого соотношение между по­

тенциальной энергией и давлением (1.235) не вполне очевидно. Тем не менее, его можно доказать,

воспользовавшись термодинамическим определением давления (1.217) и однородностью потен­

циала Эвальда (1.86) (или УУПЭ (1.195)). Производная в уравнении (1.217) теперь записывается

следующим образом:

𝛾 (𝜕(𝛽𝑈(𝛾r1, . . . , 𝛾r𝑁 ;𝛾𝐿))
𝜕𝛾

)
𝑇

= 𝛾 𝜕
𝜕𝛾

(1
𝛾
𝛽𝑈(r1, . . . , r𝑁 ;𝐿))

𝑇

= − 𝛽𝑈(𝛾r1, . . . , 𝛾r𝑁 ;𝛾𝐿). (1.236)

Тогда выражение (1.217) упрощается до:

𝛽𝑃𝐹 = 𝑁⇑𝑉 + ∐︀𝛽𝑈(R)̃︀
3𝑉

, (1.237)

где 𝑈(R) — потенциальная энергия кулоновской системы, выраженная с помощью потенциала

Эвальда (𝑈E(R)) или УУПЭ (𝑈𝑎(R)).
Покажем теперь, что прямое использование вириального давления (1.223) для кулоновских

систем приводит к иному выражению для давления, а также получим необходимую поправки к

вириальному давлению (1.233). Чтобы рассчитать вириальное давление, необходимо в первую
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очередь рассчитать вириал (1.225):

𝑊 = −1
2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

r𝑖𝑗 ⋅ 𝑞𝑖𝑞𝑗∇𝑣(r𝑖𝑗) =
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝐹 (r𝑖𝑗) , (1.238)

где

𝐹 (r) = 1

𝐿2∑
n

𝐺 (⋃︀r⇑𝐿 + n⋃︀)
⋃︀r⇑𝐿 + n⋃︀ (𝑟2⇑𝐿 + r ⋅ n) +∑

n≠0

𝑒−𝜋
2𝑛2⇑𝛿2

𝜋𝑛2

2𝜋

𝐿2
(r ⋅ n) sin(2𝜋

𝐿
n ⋅ r) , (1.239)

и:

𝐺 (𝑥) = 2𝛿𝑒−𝛿
2𝑥2

⌋︂
𝜋𝑥

+ erfc (𝛿𝑥)
𝑥2

. (1.240)

Из уравнения (1.239) хорошо видно, что функция 𝐹 (r) не выражается через потенциал Эваль­

да, что в итоге не приведет к равенству вириала и потенциальной энергии. Помимо этого, при

дифференцировании пропадают все постоянные вклады, отвечающие за взаимодействие частиц

со своими же изображениями, а также связанные с фоном вклады. Они содержатся в поправке

𝐿 (𝜕𝑈⇑𝜕𝐿)𝑇,r𝑖:

𝐿(𝜕𝑈
E(R)
𝜕𝐿

)
𝑇,r𝑖
= −𝑈0 −

1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝑣 (r𝑖𝑗) +
1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝐹 (r𝑖𝑗) . (1.241)

Подставляя полученные результаты в формулу (1.233), получаем компенсацию вкладов, связанных

с градиентом потенциала Эвальда, что приводит к формуле (1.235).

Аналогичные выкладки справедливы в случае УУПЭ:

𝑊 = −1
2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

r𝑖𝑗 ⋅ 𝑞𝑖𝑞𝑗∇𝜙(r𝑖𝑗) =
1

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗 (
1

𝑟𝑖𝑗
−
𝑟2𝑖𝑗
𝑟3𝑚

) , (1.242)

𝐿(𝜕𝑈
𝑎(R)
𝜕𝐿

)
𝑇,r𝑖
= −𝑈𝑎

0 +
3

4

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗 (
1

𝑟𝑚
−
𝑟2𝑖𝑗
𝑟3𝑚

) . (1.243)

Снова после подстановки в формулу (1.233), получаем формулу (1.235).

Итак, было продемонстрировано, что для вычисления давления классических кулоновских

систем необходимо использовать формулу (1.237), которая связывает потенциальную энергию и

давление. Таким образом, процедура Эвальда и ПГУ сохраняет «теорему вириала для однородных

потенциалов»: избыточное давление полностью определяется потенциальной энергией. Отметим,

что в квантовом случае это соотношение не выполняется.

1.3.6. Удобные единицы измерения энергии в моделировании ОКП

Ранее были выписаны несколько формул для расчета потенциальной энергии ОКП в размер­

ных единицах. Тем не менее, для этой системы существуют некоторые традиционные единицы,

используемые во многих работах по моделированию ОКП [39; 55]. Такой выбор связан с тем,

что в полностью классической системе вся термодинамика определяется лишь одним параметром
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неидеальности (см. параграф 32 в [63]):

Γ = (𝑍𝑒)2𝛽⇑𝑟𝑎, 4𝜋𝑟3𝑎⇑3 = 𝑉 ⇑𝑁, (1.244)

откуда следует, что (𝐿⇑𝑟𝑎) = (4𝜋𝑁⇑3)1⇑3 и 𝑟𝑚⇑𝑟𝑎 = 𝑁1⇑3. Так, в качестве единицы длины обычно

используется радиус ионной сферы 𝑟𝑎, а средняя по ансамблю потенциальная энергия, деленная

на температуру, 𝛽∐︀𝑈̃︀, зависит только от параметра Γ для данного числа частиц.

Перепишем формулы для энергии в безразмерном виде. Формула (1.78) энергии, выраженной

через потенциал Эвальда для ОКП, принимает вид:

𝛽𝑈E
OCP(R) = 𝛽𝑈E

0,OCP +
Γ

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑟𝑎𝑣(r𝑖𝑗), 𝛽𝑈E
0,OCP =

𝜉 − 𝜋𝑁⇑𝛿2
2(𝐿⇑𝑟𝑎)

𝑁Γ. (1.245)

Формула для энергии (1.99), выраженная через кулоновский потенциал в сферической области,

принимает вид:

𝛽𝑈C, 𝒮
OCP(R) =

Γ

2

𝑁

∑
𝑖=1

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

⌊︀ 1

𝑟𝑖𝑗⇑𝑟𝑎
− 1

𝑟𝑚⇑𝑟𝑎
}︀ + Γ𝑁(𝑁 − 1)

2𝑟𝑚⇑𝑟𝑎
− Γ𝑁2

2(𝐿⇑𝑟𝑎)
𝐶𝒮 , (1.246)

а формула (1.98) для кубической области:

𝛽𝑈C, 𝒞
OCP(R) =

Γ

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗∈𝒞(r𝑖)
𝑖≠𝑗

1

𝑟𝑖𝑗⇑𝑟𝑎
− Γ𝑁2

2(𝐿⇑𝑟𝑎)
𝐶𝒞. (1.247)

Также формула (1.102), выраженная через УУПЭ, принимает следующий вид:

𝛽𝑈 a
OCP(R) = 𝛽𝑈 a

0,OCP +
Γ

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑟𝑎𝜙(𝑟𝑖𝑗), 𝛽𝑈 a
0,OCP = −

3Γ

20𝑟𝑚⇑𝑟𝑎
𝑁(𝑁 + 5). (1.248)

Таким образом, в расчете все величины длины нужно измерять в 𝑟𝑎 (например, положив во всех

формулах величину 𝑟𝑎 равной единице), получая при этом энергию, деленную на температуру.

Именно формулы (1.245)–(1.248) будут использоваться далее в расчетах.

1.3.7. Предел Дебая–Хюккеля

В пределе слабого взаимодействия (Γ≪ 1) представляется возможным рассчитать термоди­

намические функции невырожденных кулоновских систем аналитически. В случае двухчастичной

системы такой расчет нашел отражение в теории электролитов, когда концентрация ионов в рас­

творе является малой. Именно для такого случая в 1923 году [67] Дебаем и Хюккелем была

разработана теория разбавленных растворов сильных электролитов и получено выражение для

коэффициента активности. В данной работе основной интерес представляют результаты, касаю­

щиеся экранирования потенциала, а также полной потенциальной энергии невырожденной плазмы

малой плотности.

В литературе можно найти вывод для потенциала и кулоновской поправки в случае двухком­
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понентной системы (см., например, [63]). Здесь будет кратко получен предел Дебая–Хюккеля для

парной корреляционной функции и потенциальной энергии в случае ОКП.

Как видно из уравнения (1.210), для вычисления потенциальной энергии ОКП необходимо

знать парную корреляционнуюфункцию. В случае слабого взаимодействия (или низкой плотности)

парная корреляционная функция связана с потенциалом 𝜑(q1,q2). Рассмотрим выражение (1.206)

снова для трех частиц:

𝑔2(q1,q2) =
𝑉 2

𝑄

∫
exp )︀−𝛽(𝑍𝑒)2(𝜑(q1,q2) + 𝜑(q1, r3) + 𝜑(q2, r3))⌈︀𝑑r3 =

= 𝑒−𝛽(𝑍𝑒)2𝜑(q1,q2)𝑉
2

𝑄

∫
exp )︀−𝛽(𝑍𝑒)2(𝜑(q1, r3) + 𝜑(q2, r3))⌈︀𝑑r3. (1.249)

Так как газ взаимодействует очень слабо, необходимо интегрировать по функции распределе­

ния идеального газа. Тогда 𝛽𝜑(r1, r2) ≈ 0, а конфигурационный интеграл 𝑄 = 𝑉 𝑁 . В результате,

получаем следующий результат:

𝑔2(q1,q2) = 𝑒−𝛽(𝑍𝑒)2𝜑(q1,q2)𝑉
2

𝑉 3

∫
𝑑r3 = 𝑒−𝛽(𝑍𝑒)2𝜑(q1,q2). (1.250)

В случае, когда потенциал 𝜑(q1,q2) = 𝜑(q1 − q2), получаем парную корреляционную функцию в

пределе Γ→ 0:

𝑔2(q1 − q2) = 𝑒−𝛽(𝑍𝑒)2𝜑(q1−q2). (1.251)

Так как координаты q1 и q2 есть просто некоторые координаты в пространстве, не связанные

с положениями частиц, то величина 𝜑(q1 − q2) имеет смысл потенциала, создаваемого всеми

частицами в точке q1 относительно точки q2. Поэтому в формулу (1.251) необходимо подставлять

не парный потенциал взаимодействия, а потенциал, создаваемый всеми частицами в системе.

Более строгое объяснение состоит в том, что парная корреляционная функция может быть

записана точно через потенциал средней силы𝒲(q1 − q2):

𝑔2(q1 − q2) = 𝑒−𝛽𝒲(q1−q2). (1.252)

Для функции 𝒲(q) справедливо кластерное разложение, аналогично разложению Майера (см.

раздел 8.8 в [68]). «Нулевой» порядок разложения состоит именно из парного потенциала взаи­

модействия. Однако для кулоновского потенциала необходимо учитывать более высокие порядки

разложения, а именно использовать суммирование по диаграммам, чтобы избежать расходимости

потенциальной энергии из-за дальнодействующего характера потенциала. Так, например, можно

просуммировать по так называемым «кольцевым» диаграммам (см. формулу (8.160) в [68]), что

приводит к следующему выражению для потенциала средней силы:

− 𝛽𝒲(q1 − q2) ≈ −𝛽(𝑍𝑒)2𝜑(q1 − q2) +
𝑁

𝑉

∫
(︀−𝛽(𝑍𝑒)2𝜑(q1 − r3)⌋︀(︀−𝛽(𝑍𝑒)2𝜑(r3 − q2)⌋︀𝑑r3+
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+ (𝑁
𝑉
)
2 ∫
(︀−𝛽(𝑍𝑒)2𝜑(q1 − r3)⌋︀(︀−𝛽(𝑍𝑒)2𝜑(r4 − r3)⌋︀(︀−𝛽(𝑍𝑒)2𝜑(r4 − q2)⌋︀𝑑r3𝑑r4 + . . . . (1.253)

Пользуясь теоремой о свертке, можно переписать уравнение (1.253) в Фурье пространстве:

−𝛽𝒲(𝑘) ≈ −𝛽(𝑍𝑒)2𝜑(𝑘) + 𝑁
𝑉
(︀−𝛽(𝑍𝑒)2𝜑(𝑘)⌋︀2 + (𝑁

𝑉
)
2

(︀−𝛽(𝑍𝑒)2𝜑(𝑘)⌋︀3 + . . . . (1.254)

Производя формальное суммирование в соответствии с формулой геометрической прогрессии,

получаем:

𝒲(𝑘) ≈ (𝑍𝑒)2𝜑(𝑘)
1 + 𝑁

𝑉 𝛽(𝑍𝑒)2𝜑(𝑘)
, 𝜑(𝑘) = 4𝜋

𝑘2
(1.255)

или

𝒲(𝑟) ≈ (𝑍𝑒)
2𝛽

𝑟
𝑒−𝑞⇑𝜆𝐷 , 𝜆𝐷 = (4𝜋(𝑍𝑒)2𝛽𝑁⇑𝑉 )−1⇑2, (1.256)

что будет получено далее с помощью уравнения Пуассона (1.263).

Итак, чтобы найти такое распределение потенциала в системе, необходимо решить уравне­

ние Пуассона. В системе присутствуют положительно заряженные точечные ионы и равномерно

распределенный отрицательный заряд. Будем считать, что вся система находится в термодинами­

ческом равновесии; это значит, что впоследствии все величины (типа потенциала) уже усреднены

по 𝑁𝑉 𝑇 -ансамблю.

Поместим точку отсчета на некоторый точечный заряд. Тогда потенциал, создаваемый отно­

сительно этого иона на радиус-векторе q, задается следующим уравнением Пуассона:

(𝑍𝑒)Δ𝑢(q) = −4𝜋𝜌(q). (1.257)

Плотность заряда 𝜌(q) создается другими ионами и фоновым зарядом. Распределение плотности

заряда для компенсирующего фона постоянно и не зависит от радиус-вектора q:

𝜌𝑒 = −
𝑍𝑒𝑁

𝑉
. (1.258)

Если говорить о распределении плотности точечных зарядов, будем решать самосогласованную

задачу. Все частицы создают некоторый потенциал 𝑢(q). Сами частицы также находятся в этом

потенциале. Тогда равновесное распределение зарядов соответствует распределению Больцмана:

𝜌𝑖(q) =
𝑍𝑒𝑁

𝑉
𝑒−(𝑍𝑒)2𝛽𝑢(q) +𝑍𝑒𝛿(q). (1.259)

Подставляя полученную плотность заряда в уравнение Пуассона, получаем уравнение Пуас­

сона–Больцмана:

Δ𝑢(q) = −4𝜋 ]︀𝑁
𝑉
(𝑒−(𝑍𝑒)2𝛽𝑢(q) − 1) + 𝛿(q){︀ . (1.260)

Так как нас интересует случай малого взаимодействия (Γ≪ 1), разложим экспоненту до линейного

слагаемого:

(𝑒−(𝑍𝑒)2𝛽𝑢(q) − 1) = −(𝑍𝑒)2𝛽𝑢(q). (1.261)
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В результате, получим следующее уравнение:

(Δ − 1

𝜆2𝐷
)𝑢(q) = −4𝜋𝛿(q), 𝜆𝐷 = (4𝜋(𝑍𝑒)2𝛽𝑁⇑𝑉 )−1⇑2, (1.262)

где 𝜆𝐷 —длина Дебая. Это уравнение необходимо решать в сферических координатах. Учитывая,

что на малых расстояниях 𝑢(q) = 1⇑⋃︀q⋃︀, а на больших 𝑞 потенциал стремится к нулю, получаем:

𝑢(q) = 𝑒
−𝑞⇑𝜆𝐷

𝑞
, Γ≪ 1. (1.263)

Отметим, что потенциал в точке q создается всеми зарядами в системе. По форме данный

потенциал полностью совпадает с парным потенциалом Юкавы. Зная распределение потенциала

относительно некоторого иона, можно записать парную корреляционную функцию (1.251) отно­

сительно этого иона:

𝑔2(q) = exp{−𝛽
(𝑍𝑒)2
𝑞

𝑒−𝑞⇑𝜆𝐷 ≈ 1 − 𝛽 (𝑍𝑒)
2

𝑞
𝑒−𝑞⇑𝜆𝐷 , Γ≪ 1. (1.264)

Вновь обратимся к связи потенциальной энергии и парной корреляционной функции (1.210).

Уравнение (1.264) задает структуру ОКП. Вычитание из нее единицы учитывает наличие компен­

сирующего фона. Также все заряды в системе на микроскопическом уровне взаимодействуют с

потенциалом Кулона. Тогда получим выражение для потенциальной энергии ОКП в пределе Γ→ 0:

𝛽∐︀𝑈(R)̃︀⇑𝑁 = 𝛽𝑁
2𝑉

∫ (𝑍𝑒)2
𝑞

(︀𝑔2(q) − 1⌋︀𝑑q =

= −2𝜋𝛽2(𝑍𝑒)4𝑁⇑𝑉
∞∫
0

𝑞𝜑(𝑞)𝑑𝑞 = −2𝜋𝛽2(𝑍𝑒)4𝑁𝜆𝐷⇑𝑉 = −
⌋︂
3

2
Γ3⇑2. (1.265)

Полученный результат является первой поправкой к энергии идеального газа.

Этот результат можно улучшать, пользуясь кластерным (вириальным) разложением [69; 70].

На сегодняшний день, самым продвинутым результатом такой процедуры является работа Ортне­

ра [71], в которой было получено следующее уравнение для энергии ОКП:

𝛽∐︀𝑈(R)̃︀⇑𝑁 = 𝑝0Γ3⇑2 + 𝑝1Γ3 lnΓ + 𝑝2Γ3 + 𝑝3Γ9⇑2 lnΓ + 𝑝4Γ9⇑2 + 𝑝5Γ6 ln2 Γ + 𝑝6Γ6 lnΓ + 𝑝7Γ6, (1.266)

где

𝑝0 = −
⌋︂
3

2
, 𝑝1 = −9⇑8, 𝑝2 = −9 ln 3⇑8 − 3𝐶𝐸⇑2 + 1, 𝑝3 = −27

⌋︂
3⇑16,

𝑝4 ≈ 0.2350, 𝑝5 = −81⇑16, 𝑝6 ≈ −2.0959, 𝑝7 ≈ 0.0676, (1.267)

и𝐶𝐸 ≈ 0.577—постоянная Эйлера–Маскерони. Если первая поправка Дебая–Хюккеля применима

до Γ = 10−2 с точностью 0.5%, то уравнение Ортнера дает ошибку 0.01% при Γ = 0.1. Тем не менее,

уже при Γ = 1 разложение дает значительную ошибку (десятки процентов). Разложение (1.266)

можно несколько улучшить, подстраивая коэффициенты под результаты расчета энергии в гипер­

цепном приближении [72] (см. также рис. 4.6). Тем не менее, даже такая процедура не позволяет

получить высокую точность при Γ≫ 1. Поэтому единственным способом исследования кулонов­
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ских сильно взаимодействующих систем является компьютерное моделирование; в то же время,

представленные аналитические поправки служат надежным тестом для верификации результатов

моделирования.

1.4. Основные результаты и заключение главы

В этой главе были рассмотрены термодинамические свойства классических кулоновских си­

стем при наличии периодических граничных условий. Отдельное внимание уделено выводу потен­

циала Эвальда и показано, что дипольное слагаемое в энергии является артефактом форсирования

сходимости ряда «по сферам». В случае однокомпонентной плазмы было выведено уравнение для

потенциальной энергии через кулоновский потенциал с шаровой и кубической областью взаимо­

действия с ПГУ, то есть без учета взаимодействия основной ячейки со всеми периодическими

образами. Главным результатом главы является усредненный по углам потенциал Эвальда в случае

двух- и однокомпонентной системы. Также было рассмотрено два определения давления: термоди­

намическое и вириальное. Было показано, что зависимость потенциала от объема ячейки приводит

к дополнительному вкладу в давление, которое не учитывается в вириальном давлении.

Результаты главы были опубликованы в рецензируемых изданиях [1; 2; 4; 5; 7] и сборниках

тезисов.
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Глава 2

Представление термодинамических свойств в терминах

матрицы плотности с учетом дальнодействия

Как уже говорилось в начале предыдущей главы, классическая двухкомпонентная кулонов­

ская система является неустойчивой. Строго говоря, для такой системы нельзя построить термоди­

намику из-за расходимости ее статистической суммы [20]. Для того, чтобы правильно описать тер­

модинамические свойства таких систем, необходимо рассматривать их с точки зрения квантовой

механики. Тогда классическое условие стабильности (1.6) заменяется на условие𝐻-стабильности:

энергия основного состояния системы ограничена снизу величиной, пропорциональной первой

степени числа частиц.

𝐻-устойчивость системы частиц с кулоновским взаимодействием была впервые доказана

Дайсоном и Ленардом [73; 74]. Более простое доказательство было предложено Либом и Тиррин­

гом [75] в рамках нерелятивистской квантовой механики. Еще один важный факт был установлен

Дайсоном [76], который показал, что для предотвращения коллапса частицы хотя бы одного вида

должны быть фермионами. Таким образом, как принцип неопределенности, так и принцип запрета

Паули обеспечивают устойчивость вещества.

Из вышесказанного следует, что корректное моделирование ДКП должно учитывать как

квантовые эффекты, так и статистику Ферми. Это возможно с использованием современных су­

перкомпьютеров, но требует значительных вычислительных ресурсов. По этой причине зачастую

классическая ДКП заменяется некоторой модельной системой, для которой выполняется усло­

вие (1.6) или оба условия (1.6) и (1.7) [77; 78].

Например, притягивающий и отталкивающий кулоновские потенциалы в ДКП могут быть

заменены отталкивающим дебаевским потенциалом [79]; также притягивающий кулоновский по­

тенциал может быть заменен некоторым квантовым псевдопотенциалом, ограниченным снизу (или

просто усеченным на малых расстояниях кулоновским потенциалом). Также возможно модели­

рование ДКП с кулоновским потенциалом, в процессе которого искусственно предотвращаются

столкновения разноименных зарядов. Каждый из перечисленных подходов приводит к устойчивой

системе с конечным термодинамическим пределом, однако очевидно, что любая такая система не

является, строго говоря, двухкомпонентной кулоновской системой зарядов. Ниже рассматривают­

ся некоторые конкретные упрощения, которые часто используются в компьютерном моделирова­

нии.
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Некоторые примеры псевдопотенциалов включают псевдопотенциал Дойча [80; 81], который

практически совпадает с потенциалом, имеющим отталкивающую сердцевину [82] (см. уравнение

(14) в работе [78]), кулоновский потенциал c «полочкой» [83; 84] (см. уравнение (9) в работе [85]),

коррекцию в нуле с помощью добавления очень малого числа к расстоянию между частицами (см.

уравнение (1) в работе [86]) или модификацию для плавного затухания до конечного значения в

нуле [87; 88], а также другие подходы [89].

Одним из наиболее обоснованных способов построения псевдопотенциала с учетом принципа

неопределенности является вычисление суммыСлейтера [90; 91]. Расчет суммыСлейтера в первом

порядке теории возмущений приводит к известному псевдопотенциалу Кельбга [92; 93], который

использовался в многочисленных расчетах [41; 94—96]. Его основное достоинство заключается в

том, что псевдопотенциал Кельбга является решением уравнения Блоха на матрицу плотности в

пределе высоких температур. Можно сказать, что этот псевдопотенциал был получен из первых

принципов.

Для учета обменных эффектов между электронами в МД-моделировании к потенциалу вза­

имодействия добавляется эффективное отталкивание [97] (см. уравнение (16) в работе [78], урав­

нение (5) в работе [95] и уравнение (7) в работе [98]). Такие расчеты позволяют получать как

термодинамические [82], так и неравновесные свойства [87; 99—102], а также изучать процессы

релаксации [103]. Классическое моделирование Монте-Карло ДКП с различными псевдопотенци­

алами также применяется [104—108], хотя и реже, чем МД.

Как уже упоминалось, исходя из первых принципов можно получить псевдопотенциал, кор­

ректно учитывающий квантовые свойства в пределе высоких температур.Однако зачастуюпод пер­

вопринцпным моделированием имеется в виду метод квантовой молекулярной динамики (КМД),

в случае которого электронная система рассчитывается в рамках метода функционала плотности

(МФП) в приближении Кона–Шэма [109—111]. Обычно этот метод применяется для плотных

систем, в которых электронная подсистема является умеренно и сильно вырожденной, что не яв­

ляется объектом исследования данной работы. Тем не менее, существует множество работ по мо­

делированию водородной плазмы этим методом [112; 113]. В этом случае электронная подсистема

рассчитывается в приближении самосогласованного поля, а ее влияние на движение классических

протонов рассчитывается с помощью теоремы Гельмана–Фейнмана. Из-за необходимости решать

матричные уравнения, похожие на уравнение Шредингера, трудоемкость этого метода составляет

𝑂(𝑁3), что ограничивает число частиц в моделировании несколькими сотнями.

Альтернативный метод, позволяющий избежать использования псевдопотенциалов, заклю­

чается в представлении частиц в виде волновых пакетов (метод волновых пакетов, Wave-Packet

MD) [114]. Этот метод позволяет рассчитывать термодинамические свойства неидеальной плаз­
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мы [115] и имеет меньшую вычислительную сложность 𝑁2 по сравнению с КМД. Таким образом,

он требует значительно меньше времени (на несколько порядков) для выполнения одного шага

моделирования (см. таблицу I в работе [116]).

Более распространенной практикой для первопринципного моделирования водорода явля­

ется использование метода квантового Монте-Карло с интегралами по траекториям (МКИТ или

Path Integral Monte Carlo, PIMC) [96; 113; 117—120]. Теоретически этот метод позволяет полу­

чать результаты для любых значений параметра неидеальности и вырождения с любой заданной

точностью (иногда в этом случае используется термин «квазиточные результаты» [121]). Одна­

ко основной проблемой МКИТ является «проблема знаков», возникающая при суммировании по

перестановкам координатфермионов [122], которая может быть приближенно решена путем сведе­

ния матрицы плотности к форме детерминанта [123; 124] или произведению детерминантов [125].

Другим методом является приближение фиксированных узлов, разработанное Сиперли [126]. В на­

стоящее время предлагаются и другие методы для обхода проблемы знаков, которая пока остается

нерешенной в случае взаимодействующего Ферми газа [41; 122; 127—131]. Стоит отметить, что

точность таких приближений практически невозможно оценить, из-за чего достоверность таких

результатов может быть подвергнута сомнению, особенно в вырожденном случае.

Свойства водородной плазмы также изучались с использованием гиперцепного приближения

(ГЦП или HNC) [132; 133], которое учитывает вырождение электронов. На основе этих расчетов

было построено уравнение состояния [134; 135], которое может быть использовано для разработки

широкодиапазонной модели плазмы [136—140].

ВмоделированииметодомМДважно отслеживать образование и распад классических связан­

ных состояний в плазме. Связанные состояния могут быть определены путем анализа либо энергии

частиц [82], либо их траекторий [141; 142]. В работе [82] показано, что количество связанных со­

стояний может значительно варьироваться в зависимости от глубины псевдопотенциала на малых

расстояниях. Кроме того, образование связанных состояний играет ключевую роль в изучении

процессов рекомбинации [86]. В классическом методе Монте-Карло доля связанных состояний

может быть искажена процессом выборки [105]. Также в теоретических исследованиях связанные

состояния создают ряд трудностей из-за расходимости атомной статистической суммы [143—146].

Еще одной важной проблемой, возникающей при корректном моделировании ДКП, являет­

ся учет дальнодействующих эффектов. Для их учета, как правило, применяются ПГУ [82; 98] и

различные численные методы, основанные на процедуре Эвальда, включая методы частиц в ячей­

ках [147], быстрый мультипольный метод [148] и метод гладких частиц в ячейках Эвальда [149].

Тем не менее, при квантовом моделировании ДКП такие взаимодействия часто игнорируются [84;

95]. Некоторые авторы обсуждают неоднозначности и численные сложности, возникающие при
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использовании процедуры Эвальда и ПГУ [87; 102; 150]. Особенно остро эта проблема про­

является в моделировании двухкомпонентных систем методом МКИТ, где дальнодействующие

взаимодействия, как правило, не учитываются [98; 117; 118; 123; 151], хотя в некоторых недавних

работах эти вопросы рассматриваются [41; 152]. Пренебрежение кулоновским дальнодействием

может приводить к более медленной сходимости термодинамических свойств по числу частиц,

особенно в системах с выраженным ближним и дальнодействующим порядком, как будет показано

в разделе 4.3.1. В отличие от ДКП, в моделировании однородного электронного газа потенциал

Эвальда применяется практически всегда [32; 124; 125; 153; 154], как и в случае ОКП, где учет

дальнодействующих эффектов стал стандартной практикой [39; 155] с самой первой работы по

моделированию ОКП в 1966 году [55].

В данной работе рассматривается невырожденная неидеальная ДКП. Обычно такие условия

возникают при высоких температурах или низких плотностях. В последнем случае такое состояние

называется ультрахолодной плазмой; оно изучается как экспериментально [23; 24; 156; 157], так

и с помощью моделирования [82; 86; 91; 101; 103; 158; 159]. При моделировании в этом случае

необходимо учитывать как квантовые эффекты на малых расстояниях, так и дальнодействующие

на больших. Таким образом, одной из задач данной работы является разработка первопринципно­

го метода моделирования, правильно учитывающего поведение псевдопотенциала на больших и

малых расстояниях.

Далее будут рассмотрены основы метода Кельбга для решения уравнения Блоха в высокотем­

пературном пределе, учет в этом решении дальнодействия с помощью УУПЭ, а также представ­

ление термодинамики квантовых систем в виде интегралов по траекториям.

2.1. Матрица плотности и ее связь с термодинамикой

Рассмотрим квантовую систему𝑁 частиц с массами𝑚𝑖 с гамильтонианом 𝐻̂ . Пусть волновые

функции Ψ𝑙(R), где R = (r1, r2, . . . , r𝑁), являются решением стационарного уравнения Шрединге­

ра:

𝐻̂Ψ𝑙(R) = 𝐸𝑙Ψ𝑙(R), Ψ𝑙(R) ≡ Ψ𝑙(r1, r2, . . . , r𝑁) = ∐︀R⋃︀Ψ𝑙̃︀, (2.1)

где 𝑙 — номер состояния. Также будут использоваться обозначения Дирака, ⋃︀Ψ𝑙̃︀, для волновой

функции Ψ𝑙(R). Гамильтониан запишется следующим образом:

𝐻̂ = 𝐾̂ + 𝑈̂ , 𝐾̂ =
𝑁

∑
𝑖=1

p̂2
𝑖

2𝑚𝑖

, (2.2)

где 𝐾̂ и 𝑈̂ — операторы кинетической и потенциальной энергии, соответственно, а p̂𝑖 — оператор

импульса 𝑖-ой частицы. Также достаточно полезными являются соотношения полноты координат­
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ного базиса и взаимосвязь с импульсным базисом:

1̂ =
∫
𝑑R⋃︀R̃︀∐︀R⋃︀, 1̂ =

∫
𝑑P⋃︀P̃︀∐︀P⋃︀, ∐︀R⋃︀P̃︀ = 𝑒𝑖R⋅P⇑ℎ̵

(2𝜋ℎ̵)3𝑁⇑2 , (2.3)

где R — координатная переменная, а P— импульсная переменная, сопряженная к R.

Термодинамические свойства квантовой системы при температуре 𝑇 могут быть вычислены

с использованием матрицы плотности 𝜌(𝛽) и ее координатного представления 𝜌(R,R′;𝛽) [160]:

𝜌(𝛽) = exp(−𝛽𝐻̂), 𝜌(R,R′;𝛽) = ∐︀R⋃︀𝜌(𝛽)⋃︀R′̃︀ = ∑
𝑙

𝑒−𝛽𝐸𝑙Ψ∗𝑙 (R)Ψ𝑙(R′), (2.4)

где Ψ∗𝑙 (R) — комплексно-сопряженная величина к Ψ𝑙(R). Матрица плотности удовлетворяет

следующему дифференциальному уравнению Блоха:
𝑑𝜌(𝛽)
𝑑𝛽

= −𝐻̂𝜌(𝛽). (2.5)

Отметим, что в матрице плотности 𝜌(𝛽) не учитывается тождественность частиц.
В общем случае, статистическая сумма должна учитывать неразличимость частиц с помощью

перестановок координат [160]. Однако поскольку рассматривается невырожденный случай 𝜒≪ 1,

перестановки координат дают пренебрежимо малый вклад. В результате, система подчиняется

распределению Больцмана; такие частицы часто называют больцманонами. Тогда статистическая

сумма 𝑍(𝛽) принимает следующий вид:

𝑍(𝛽) = 1

𝑁 !
Sp𝜌(𝛽) = 1

𝑁 !

∫
𝑑R𝜌(R,R;𝛽). (2.6)

Обратим внимание, что в статистическую сумму 𝑍(𝛽) вводится фактор 1⇑𝑁 !, который учитывает

всевозможные перестановки координат частиц. Этот фактор возникает при рассмотрении вырож­

денных систем и антисимметризации матрицы плотности [160], как уже говорилось выше. Более

естественно было бы вписать этот фактор в саму матрицу плотности; однако так как в основном

преобразования будут производиться для несимметризованной матрицы плотности, этот фактор

включается в формулу для статистической суммы. Энергия и давление могут быть рассчитаны как

производные от статистической суммы:

𝐸 = −(𝜕 ln𝑍(𝛽)
𝜕𝛽

)
𝑉

, 𝛽𝑃 = (𝜕 ln𝑍(𝛽)
𝜕𝑉

)
𝛽

, (2.7)

а при подстановке статистической суммы в результате можно получить формулы для энергии

и давления конкретных конфигураций; термодинамические же величины будут выражаться как

средние по ансамблю от этих величин.

Так как решить 𝑁 -частичное уравнение Шредингера не представляется возможным, необхо­

димо использовать численные методы Монте–Карло для нахождения средних по ансамблю. Для

этого требуется найти явное выражение для матрицы плотности в координатном представлении:

𝜌(R,R′;𝛽) = ∐︀R⋃︀ exp(−𝛽𝐾̂ − 𝛽𝑈̂)⋃︀R′̃︀. (2.8)
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В случае, когда взаимодействие отсутствует, матрица плотности 𝜌0(R,R′;𝛽) = ∐︀R⋃︀𝑒−𝛽𝐾̂ ⋃︀R′̃︀ выгля­
дит следующим образом [160]:

𝜌0(R,R′;𝛽) =
𝑁

∏
𝑖=1

⌊︀( 𝑚𝑖

2𝜋ℎ̵2𝛽
)
3⇑2

exp(− 𝑚𝑖

2ℎ̵2𝛽
(r𝑖 − r′𝑖)2)}︀ . (2.9)

Так как операторы кинетической и потенциальной энергии не коммутируют, обычно матрица

плотности может быть получена аналитически только в пределе высоких температур. Например, в

соответствии с формулой Троттера [161]:

exp(−𝛽𝐾̂ − 𝛽𝑈̂) = lim
𝑛→∞

(exp(−𝜀𝐾̂) exp(−𝜀𝑈̂))𝑛+1 , 𝜀 = 𝛽⇑(𝑛 + 1), (2.10)

что позволяет в качестве высокотемпературной матрицы плотности рассматривать выражение

∐︀R⋃︀ exp(−𝛽𝐾̂)⋃︀R′̃︀∐︀R⋃︀ exp(−𝛽𝑈̂)⋃︀R̃︀. Однако формула Троттера (2.10) справедлива только для огра­
ниченных снизу операторов 𝑈̂ . Это значит, что в случае двухкомпонентной кулоновской системы

формула Троттера не применима. С физической точки зрения это значит, что при применении

этой формулы для двухкомпонентной системы статистическая сумма расходится из-за области

фазового пространства, в которой частицы могут подходить друг к другу сколь угодно близко,

приводя к стремлению потенциальной энергии в минус бесконечность.

2.1.1. Псевдопотенциал Кельбга в общем виде

Для неограниченных снизу потенциалов необходимо использовать теорию возмущений для

решения уравнения Блоха (2.5). Такой подход был представлен в работе Г. Кельбга [92]. Для этого

определяется следующий оператор 𝐺̂(𝛽):

𝜌(𝛽) = 𝑒−𝛽(𝑈̂+𝐾̂) = 𝑒−𝛽𝑈̂𝑒−𝛽𝐾̂𝐺̂(𝛽), (2.11)

где 𝐺̂(𝛽) ≠ 1̂ для 𝛽 > 0. Дифференцируя уравнение (2.11) и умножая его слева на 𝑒𝛽𝐾̂𝑒𝛽𝑈̂ , можно

получить (11) в [92]:
𝑑𝐺̂(𝛽)
𝑑𝛽

= 𝑒𝛽𝐾̂ (𝐾̂ − 𝑒𝛽𝑈̂𝐾̂𝑒−𝛽𝑈̂) 𝑒−𝛽𝐾̂𝐺̂(𝛽). (2.12)

Далее используется разложение экспоненты в ряд Тейлора:

𝑒±𝛽𝑈̂ = 1̂ ± 𝛽𝑈̂ + 𝛽
2

2
𝑈̂2 + . . . . (2.13)

Таким образом, второе слагаемое в скобках в уравнении (2.12) принимает вид:

𝑒𝛽𝑈̂𝐾̂𝑒−𝛽𝑈̂ = 𝐾̂ + 𝛽(︀𝑈̂ , 𝐾̂⌋︀ + 𝛽
2

2
(︀𝑈̂ , (︀𝑈̂ , 𝐾̂⌋︀⌋︀ + 𝛽

3

6
(︀𝑈̂ , (︀𝑈̂ , (︀𝑈̂ , 𝐾̂⌋︀⌋︀⌋︀ + . . . . (2.14)

Кельбг утверждает, что «ряд обрывается на слагаемом порядка 𝛽2 из-за структуры оператора

кинетической энергии». Он не доказывает это утверждение. Тем не менее, оно верно, поскольку

оператор кинетической энергии содержит только производные второго порядка; поэтому комму­

татор (︀𝑈̂ , (︀𝑈̂ , (︀𝑈̂ , 𝐾̂⌋︀⌋︀ = 0 (см. доказательство в приложении в [162]). Это приводит к обнулению
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слагаемых высшего порядка по 𝛽.

В результате, Кельбгом было получено следующее точное дифференциальное уравнение на

оператор 𝐺̂(𝛽):
𝑑𝐺̂(𝛽)
𝑑𝛽

= −𝑒𝛽𝐾̂ {𝛽(︀𝑈̂ , 𝐾̂⌋︀ + 𝛽
2

2
(︀𝑈̂ , (︀𝑈̂ , 𝐾̂⌋︀⌋︀ 𝑒−𝛽𝐾̂𝐺̂(𝛽), 𝐺̂(0) = 1̂, (2.15)

которое можно решить в первом порядке теории возмущений методом итераций. Для этого нужно

переписать уравнение (2.15) в следующем виде (в первом порядке по 𝑈̂ ):
𝑑𝐺̂(𝛽)
𝑑𝛽

= −𝛽𝑒𝛽𝐾̂(︀𝑈̂ , 𝐾̂⌋︀𝑒−𝛽𝐾̂𝐺̂(𝛽) = 𝛽 𝑑

𝑑𝛽
(𝑒𝛽𝐾̂𝑈̂𝑒−𝛽𝐾̂) 𝐺̂(𝛽). (2.16)

Выполняя формальное интегрирование уравнения (2.16) по 𝛽, получаем уравнение (13) в [92]:

𝐺̂(𝛽) = 1̂ +
𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒𝛽1𝐾̂𝑈̂𝑒−𝛽1𝐾̂) 𝐺̂(𝛽)𝑑𝛽1 = 1̂ +

𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒𝛽1𝐾̂𝑈̂𝑒−𝛽1𝐾̂) 1̂𝑑𝛽1 +

+
𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒𝛽1𝐾̂𝑈̂𝑒−𝛽1𝐾̂)

𝛽1∫
0

𝛽′1
𝑑

𝑑𝛽′1
(𝑒𝛽′1𝐾̂𝑈̂𝑒−𝛽′1𝐾̂) 1̂𝑑𝛽′1𝑑𝛽1+. . . . (2.17)

В первом порядке теории возмущений в выражении для 𝐺̂(𝛽) остаются первые два слагаемые:

𝐺̂(𝛽) = 1̂ +
𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒𝛽1𝐾̂𝑈̂𝑒−𝛽1𝐾̂)𝑑𝛽1. (2.18)

Матрица плотности получается подстановкой уравнения (2.18) в (2.11):

𝜌(𝛽) = 𝑒−𝛽𝑈̂𝑒−𝛽𝐾̂ + 𝑒−𝛽𝑈̂𝑒−𝛽𝐾̂
𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒𝛽1𝐾̂𝑈̂𝑒−𝛽1𝐾̂)𝑑𝛽1. (2.19)

Это основное уравнение в [92]. Его можно преобразовать к следующему виду (уравнение (14)

в [92]):

𝜌(𝛽) = 𝑒−𝛽𝑈̂𝑒−𝛽𝐾̂ + 𝑒−𝛽𝑈̂
𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒(𝛽1−𝛽)𝐾̂𝑈̂𝑒−(𝛽1−𝛽)𝐾̂) 𝑒−𝛽𝐾̂𝑑𝛽1. (2.20)

Пусть оператор потенциальной энергии имеет следующий вид:

𝑈̂ = 1

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝜑(r𝑖𝑗). (2.21)

Теперь разложим потенциал взаимодействия 𝜑(r𝑖𝑗) в интеграл Фурье:

𝜑(r𝑖𝑗) =
1

(2𝜋)3
∫
𝑑k𝜑(k)𝑒𝑖k⋅(r𝑖−r𝑗). (2.22)

Здесь𝜑(k) является компонентойФурье потенциала𝜑(r𝑖−r𝑗). Тогда полная потенциальная энергия
имеет следующий вид:

𝑈̂ = 1

16𝜋3

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗

∫
𝑑k𝜑(k)𝑒𝑖k⋅(r𝑖−r𝑗). (2.23)
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Таким образом, матрица плотности в (2.20) принимает вид:

𝜌(𝛽) = 𝑒−𝛽𝑈̂𝑒−𝛽𝐾̂ + 1

16𝜋3

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗

∫
𝑑k𝜑(k)𝑒−𝛽𝑈̂

𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒(𝛽1−𝛽)𝐾̂𝑒𝑖k⋅(r𝑖−r𝑗)𝑒−(𝛽1−𝛽)𝐾̂) 𝑒−𝛽𝐾̂𝑑𝛽1.

(2.24)

Для простоты положим далее массы всех частиц равными 𝑚. Можно показать, что (см. по­

дробности в [162]):

𝑒𝛽
′𝐾̂𝑒𝑖k⋅(r𝑖−r𝑗)𝑒−𝛽

′𝐾̂ = exp (𝑖k ⋅ (r𝑖 − r𝑗)) exp (𝛽′ ℎ̵
2𝑡2

𝑚 + 𝛽′ ℎ̵𝑚k ⋅ (p̂𝑖 − p̂𝑗)) . (2.25)

Теперь подставим уравнение (2.25) в (2.24):

𝜌(𝛽) = 𝑒−𝛽𝑈̂𝑒−𝛽𝐾̂+

+ 1

16𝜋3

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗

∫
𝑑k𝜑(k)𝑒𝑖k⋅(r𝑖−r𝑗)𝑒−𝛽𝑈̂

𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒

ℎ̵(𝛽1−𝛽)
𝑚 k⋅(p̂𝑖−p̂𝑗)+

ℎ̵2(𝛽1−𝛽)
𝑚 𝑡2) 𝑒−𝛽𝐾̂𝑑𝛽1. (2.26)

Таким образом, было получено уравнение (19) в [92]. Теперь может быть получено координатное

представление матрицы плотности (см. подробности вывода в [162]):

∐︀R⋃︀𝜌(𝛽)⋃︀R′̃︀ = ( 𝑚

2𝜋ℎ̵2𝛽
)
3𝑁⇑2

𝑒
− 𝑚
2ℎ̵2𝛽

𝑁

∑
𝑖=1

(r𝑖−r′𝑖)2
𝑒−𝛽𝑈(R)

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
1 + 𝛽𝑈(R) − 𝛽

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗 Φ(r𝑖𝑗, r′𝑖𝑗;𝛽)
[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
, (2.27)

где Φ(r𝑖𝑗, r′𝑖𝑗;𝛽) обозначает функционал Кельбга:

Φ(r𝑖𝑗, r′𝑖𝑗;𝛽) =
1

8𝜋3

1∫
0

𝑑𝛼

∫
𝜑(k)𝑒𝑖k⋅d𝑖𝑗(𝛼) exp (−𝛼(1 − 𝛼)𝜆2𝑖𝑗(𝛽)𝑘2)𝑑k (2.28)

с диагональными элементами:

Φ(r𝑖𝑗, r𝑖𝑗;𝛽) =
1

4𝜋3

∫
𝜑(k)𝑒𝑖k⋅r𝑖𝑗𝐷(𝜆𝑖𝑗𝑘⇑2)

𝜆𝑖𝑗𝑘
𝑑k, (2.29)

и была введена замена 𝛼 = 𝛽1⇑𝛽, 𝛽𝑑𝛼 = 𝑑𝛽1. Здесь 𝜆𝑖𝑗 = 𝜆𝑖𝑗(𝛽) =
⌈︂
ℎ̵2𝛽⇑(2𝜇𝑖𝑗) — приведенная

тепловая длина волны де Бройля, 𝜇−1𝑖𝑗 = 𝑚−1𝑖 + 𝑚−1𝑗 — приведенная масса, 𝐷(𝑥) — функция

Доусона. Здесь и далее

d𝑖𝑗(𝛼) = 𝛼r𝑖𝑗 + (1 − 𝛼)r′𝑖𝑗, 𝑑𝑖𝑗(𝛼) = ⋃︀𝛼r𝑖𝑗 + (1 − 𝛼)r′𝑖𝑗 ⋃︀, (2.30)

и r′𝑖𝑗 = r′𝑖 − r′𝑗 .
Рассмотрим функцию 𝑒𝑥. Если 𝑥 ≪ 1, то приближенно выполнено равенство 𝑒𝑥 ≈ 1 + 𝑥.

Уравнение (2.27) было получено в первом порядке по 𝑈̂ . Таким образом, следующая величина

должна быть намного меньше 1:
∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
𝛽𝑈(R) − 𝛽

2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗 Φ(r𝑖𝑗, r′𝑖𝑗;𝛽)
∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
≪ 1. (2.31)

Уравнение (2.31) является условием применимости теории возмущений. Поэтому можно фор­
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мально использовать эквивалентность 1 + 𝑥 и 𝑒𝑥 для малых 𝑥:

1 + 𝛽𝑈(R) − 𝛽
2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗 Φ(r𝑖𝑗, r′𝑖𝑗;𝛽) ≈ 𝑒𝛽𝑈(R) exp
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀
−𝛽
2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗Φ(r𝑖𝑗, r′𝑖𝑗;𝛽)
[︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌊︀
. (2.32)

Подставляя это выражение в уравнение (2.27), получаем:

∐︀R⋃︀𝜌(𝛽)⋃︀R′̃︀ = ( 𝑚

2𝜋ℎ̵2𝛽
)
3𝑁⇑2

𝑒
− 𝑚
2ℎ̵2𝛽

𝑁

∑
𝑖=1

(r𝑖−r′𝑖)2
exp

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀
−𝛽
2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗Φ(r𝑖𝑗, r′𝑖𝑗;𝛽)
[︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌊︀
. (2.33)

В результате, в координатном представлении матрица плотности (2.19) имеет вид (с учетом

постоянного слагаемого 𝑈0 в потенциальной энергии):

𝜌(R,R′;𝛽) = 𝜌0(R,R′;𝛽) exp (−𝛽𝑈0) exp(−
𝛽

2

𝑁

∑
𝑖=1
𝑞𝑖∑

𝑗≠𝑖
𝑞𝑗Φ(r𝑖𝑗, r′𝑖𝑗;𝛽)) , (2.34)

Постоянное слагаемое в потенциальной энергии приводит к дополнительному множителю

𝑒−𝛽𝑈0 в матрице плотности (2.34); если такой вклад отсутствует (например, в случае кулоновского

потенциала), этот множитель исчезает.

Отметим, что на расстояниях 𝑟𝑖𝑗 ≫ 𝜆𝑖𝑗 псевдопотенциал Кельбга совпадает с соответствую­

щим ему потенциалом 𝜑(r). Продемонстрируем это следующим образом. Так как основной вклад

в интеграл вносят значения при 𝑘𝑟𝑖𝑗 ∼ 1, то 𝑘 ∼ 1⇑𝑟𝑖𝑗 . Пользуясь тем, что 1⇑𝑟𝑖𝑗 ≪ 1⇑𝜆𝑖𝑗 , полу­
чаем 𝑘 ∼ 1⇑𝑟𝑖𝑗 ≪ 1⇑𝜆𝑖𝑗 , откуда следует 𝑘𝜆𝑖𝑗 ≪ 1. В то же время, в пределе 𝑘𝜆𝑖𝑗 ≪ 1 фактор

𝐷(𝜆𝑖𝑗𝑘⇑2)⇑(𝜆𝑖𝑗𝑘) стремится к 1⇑2, что приводит к совпадению псевдопотенциала и потенциала:

Φ(r𝑖𝑗, r𝑖𝑗;𝛽) =
1

4𝜋3

∫
𝜑(k)𝑒𝑖k⋅r𝑖𝑗𝐷(𝜆𝑖𝑗𝑘⇑2)

𝜆𝑖𝑗𝑘
𝑑k ∼ 1

8𝜋3

∫
𝜑(k)𝑒𝑖k⋅r𝑖𝑗𝑑k = 𝜑(r𝑖𝑗), 𝑟𝑖𝑗 ≫ 𝜆𝑖𝑗. (2.35)

Объясняется это тем, что большие расстояния соответствуютмалымвекторам 𝑘. А если расстояние

намного больше, чем длина волны де Бройля, то этому соответствуют волновые вектора, длина

которых много меньше длины волны де Бройля (𝑘 ≪ 1⇑𝜆𝑖𝑗).
Пошаговый вывод уравнения (2.34) в общем виде не является тривиальным и может быть

найден в других работах [163], в том числе был разобран автором данной работы [162]. Также

уравнения (2.28), (2.29) могут быть использованы для построения псевдопотенциалов для любого

потенциала, для которого существует Фурье-образ [120].

В случае кулоновского потенциала, 𝜑(k) = 4𝜋⇑𝑘2, решение Кельбга имеет следующий

вид [117]:

Φ→ Φ0(r𝑖𝑗, r′𝑖𝑗;𝛽) =
1∫
0

𝑑𝛼

𝑑𝑖𝑗(𝛼)
erf

⎛
⎝
𝑑𝑖𝑗(𝛼)⇑𝜆𝑖𝑗(𝛽)
2
⌈︂
𝛼(1 − 𝛼)

⎞
⎠

(2.36)

с диагональными элементами Φ0(r𝑖𝑗, r𝑖𝑗;𝛽) ≡ Φ0(𝑟𝑖𝑗;𝛽):

Φ0(r𝑖𝑗, r𝑖𝑗;𝛽) =
1

𝑟𝑖𝑗
(1 − exp(−

𝑟2𝑖𝑗
𝜆2𝑖𝑗(𝛽)

) +
⌋︂
𝜋𝑟𝑖𝑗

𝜆𝑖𝑗(𝛽)
erfc( 𝑟𝑖𝑗

𝜆𝑖𝑗(𝛽)
)) , (2.37)

а постоянная 𝑈0 в уравнении (2.34) должна быть равна нулю.
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2.1.2. Псевдопотенциал Кельбга с учетом дальнодействия

Как уже упоминалось, подставляя различные потенциалы взаимодействия в формулу (2.29),

можно получать соответствующие псевдопотенциалы взаимодействия. Таким образом, можно

учесть дальнодействие в псевдопотенциале Кельбга с помощью УУПЭ (1.103). Для этого най­

дем его преобразование Фурье:

𝜙(𝑘) =
∫
𝜙(𝑟)𝑒𝑖r⋅k𝑑r = 4𝜋

𝑟𝑚∫
0

𝑟2𝜙(𝑟)sin(𝑟𝑘)
𝑟𝑘

𝑑𝑟 = 4𝜋

𝑘2
⌊︀1 + 3 cos(𝑟𝑚𝑘)

𝑟2𝑚𝑘
2
− 3 sin(𝑟𝑚𝑘)

𝑟3𝑚𝑘
3

}︀ ≡ 4𝜋

𝑘2
𝜁(𝑘; 𝑟𝑚).

(2.38)

Поскольку УУПЭ сферически симметричен, то 𝜙(k) = 𝜙(𝑘). Следовательно, интеграл по k в

уравнении (2.28) можно взять по углам в сферических координатах:∫
𝜙(k)𝑒𝑖k⋅d𝑖𝑗(𝛼)𝑒−𝛼(1−𝛼)𝜆2

𝑖𝑗𝑘
2

𝑑k = 4𝜋

𝜆2𝑖𝑗𝑑𝑖𝑗(𝛼)

∞∫
0

𝑠𝜙(𝑠⇑𝜆𝑖𝑗) sin(𝑠𝑑𝑖𝑗(𝛼)⇑𝜆𝑖𝑗)𝑒−𝛼(1−𝛼)𝑠
2

𝑑𝑠, (2.39)

где была введена переменная 𝑠 = 𝜆𝑖𝑗𝑘. В дальнейшем также будут использоваться следующие

обозначения:

𝑥𝑖𝑗(𝛼) = 𝑑𝑖𝑗(𝛼)⇑𝜆𝑖𝑗, 𝑥𝑚 = 𝑟𝑚⇑𝜆𝑖𝑗, x𝑖𝑗 = r𝑖𝑗⇑𝜆𝑖𝑗. (2.40)

Подставляя преобразование Фурье УУПЭ (2.38) в уравнение (2.39), получаем интеграл по 𝛼 и 𝑠:

Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) =
1

𝜋

1∫
0

𝑑𝛼

𝑑𝑖𝑗(𝛼)

∞∫
0

2

𝑠
𝜁 ( 𝑠

𝜆𝑖𝑗
;
𝑟𝑚
𝜆𝑖𝑗

) sin(𝑠𝑑𝑖𝑗(𝛼)⇑𝜆𝑖𝑗)𝑒−𝛼(1−𝛼)𝑠
2

𝑑𝑠. (2.41)

Если функция 𝜁(𝑘; 𝑟𝑚) равна 1 (в случае кулоновского потенциала), результатом взятия интеграла

является псевдопотенциал Кельбга (2.36). Далее функцию Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) будем называть псев­

допотенциалом Кельбга-УУЭ. В этом случае псевдопотенциал состоит из двух вкладов: обычный

псевдопотенциал Кельбга плюс вклад, отвечающий за дальнодействие:

Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) = Φ0(r𝑖𝑗, r′𝑖𝑗;𝛽) +Φ1(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽), (2.42)

Φ1(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) =
1

𝜋

1∫
0

𝑑𝛼

𝑑𝑖𝑗(𝛼)
× 𝐼(𝑑𝑖𝑗(𝛼)⇑𝜆𝑖𝑗, 𝑟𝑚⇑𝜆𝑖𝑗, 𝛼), (2.43)

где

𝐼(𝑥𝑖𝑗(𝛼), 𝑥𝑚, 𝛼) =
∞∫
0

2

𝑠
⌊︀3 cos(𝑥𝑚𝑠)

𝑥2𝑚𝑠
2
− 3 sin(𝑥𝑚𝑠)

𝑥3𝑚𝑠
3

}︀ sin(𝑠𝑥𝑖𝑗(𝛼))𝑒−𝛼(1−𝛼)𝑠
2

𝑑𝑠. (2.44)

Интегрирование уравнения (2.44) по переменной 𝑠 приводит к следующему выражению для

𝐼(𝑥𝑖𝑗(𝛼), 𝑥𝑚, 𝛼):

𝐼(𝑥𝑖𝑗(𝛼), 𝑥𝑚, 𝛼) =
1

4𝑥3𝑚
[︀2
⌋︂
𝜋
⌈︂
(1 − 𝛼)𝛼 (𝑓1(𝑥𝑖𝑗(𝛼)) − 𝑓1(−𝑥𝑖𝑗(𝛼))) + 𝑓2(𝑥𝑖𝑗(𝛼)) − 𝑓2(−𝑥𝑖𝑗(𝛼))⌉︀ ,

(2.45)
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где:

𝑓1(𝑥𝑖𝑗(𝛼)) ≡ (︀4(1 − 𝛼)𝛼 − (2𝑥𝑚 − 𝑥𝑖𝑗(𝛼))(𝑥𝑚 + 𝑥𝑖𝑗(𝛼))⌋︀ exp(−
(𝑥𝑚 + 𝑥𝑖𝑗(𝛼))2

4(1 − 𝛼)𝛼 ) , (2.46)

𝑓2(𝑥𝑖𝑗(𝛼)) ≡ 𝜋 )︀−3𝑥𝑖𝑗(𝛼) (2(𝛼 − 1)𝛼 + 𝑥2𝑚) − 2𝑥3𝑚 + 𝑥3𝑖𝑗(𝛼)⌈︀ erf
⎛
⎝
𝑥𝑚 + 𝑥𝑖𝑗(𝛼)
2
⌈︂
(1 − 𝛼)𝛼

⎞
⎠
. (2.47)

Подставляя этот результат в уравнение (2.42), получаем псевдопотенциал Кельбга-УУЭ в виде

определенного интеграла по 𝛼. Эта форма удобна для численных расчетов (см. приложение А).

Для квазиклассического моделирования необходимо также знать явное выражение в случае

r𝑖𝑗 = r′𝑖𝑗; таким образом, 𝑑𝑖𝑗(𝛼) заменяется на 𝑟𝑖𝑗 в уравнении (2.42). Для удобства далее пропустим
индексы 𝑖𝑗. Теперь сначала вычислим интеграл по 𝛼 в уравнении (2.43):

1

𝜋

1∫
0

𝑑𝛼

𝑟
𝐼(𝑟⇑𝜆, 𝑟𝑚⇑𝜆,𝛼) =

4

𝑟𝜋

∞∫
0

𝑑𝑠

𝑠2
⌊︀3 cos(𝑟𝑚𝑠⇑𝜆)

𝑟2𝑚𝑠
2⇑𝜆2 − 3 sin(𝑟𝑚𝑠⇑𝜆)

𝑟3𝑚𝑠
3⇑𝜆3 }︀ sin(𝑠𝑟⇑𝜆)𝐷 (𝑠⇑2) , (2.48)

где было использовано:
1∫
0

𝑑𝛼𝑒−𝛼(1−𝛼)𝑠
2 = 2𝐷 (𝑠⇑2)

𝑠
. (2.49)

Интеграл в уравнении (2.48) может быть вычислен напрямую. Таким образом, общее выражение

для диагонального псевдопотенциала Кельбга-УУЭ имеет следующий вид:

Φ(r, r; 𝑟𝑚, 𝛽) ≡ Φ(𝑟; 𝑟𝑚, 𝛽) = Φ0(𝑟;𝛽) +Φ1(𝑟; 𝑟𝑚, 𝛽), (2.50)

где

Φ1(𝑟; 𝑟𝑚, 𝛽) =
4

𝑟𝜋
]︀𝐼all(𝑟⇑𝜆, 𝑟𝑚⇑𝜆) − 𝐼all(−𝑟⇑𝜆, 𝑟𝑚⇑𝜆) −

𝑟

4𝜆
𝜋3⇑2{︀ , (2.51)

𝐼all(𝑥,𝑥𝑚) = 𝐼exp(𝑥,𝑥𝑚) + 𝐼erf(𝑥,𝑥𝑚) + 𝐼mod(𝑥,𝑥𝑚), (2.52)

𝐼exp(𝑥,𝑥𝑚) =
𝜋𝑒−(𝑥𝑚+𝑥)2(𝑥𝑚 + 𝑥)

128𝑥3𝑚⋃︀𝑥𝑚 + 𝑥⋃︀
(2𝑥2𝑥𝑚 − 2𝑥3 + 10𝑥𝑥2𝑚 − 5𝑥 + 6𝑥3𝑚 + 3𝑥𝑚) , (2.53)

𝐼erf(𝑥,𝑥𝑚) =
𝜋3⇑2

256𝑥3𝑚
(4(𝑥𝑚 + 𝑥) ((𝑥2 + 3)𝑥𝑚 − 𝑥 (𝑥2 + 3) + 5𝑥𝑥2𝑚 + 3𝑥3𝑚) − 3) erf (⋃︀𝑥𝑚 + 𝑥⋃︀) , (2.54)

𝐼mod(𝑥,𝑥𝑚) =
𝜋⋃︀𝑥𝑚 + 𝑥⋃︀

16𝑥3𝑚(𝑥𝑚 + 𝑥)
(𝑥3 − 3𝑥𝑥2𝑚 + 𝑥 − 2𝑥3𝑚) . (2.55)

Отметим, что модули в уравнениях (2.53)–(2.55) играют важную роль в уравнении (2.51) в слагае­

мом 𝐼all(−𝑟⇑𝜆, 𝑟𝑚⇑𝜆). Хотя псевдопотенциал Кельбга с учетом дальнодействия выглядит достаточ­

но громоздким, его удобно использовать в вычислениях в виде интерполяционного полинома на

одномерной сетке.

Перечислим основные свойства полученного псевдопотенциала Кельбг-УУЭ:

1. Если 𝑟𝑚 → ∞, то УУПЭ стремится к кулоновскому потенциалу, а Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) (2.42)
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стремится к псевдопотенциалу Кельбга Φ0(r𝑖𝑗, r′𝑖𝑗;𝛽) (2.36):

lim
𝑟𝑚→∞

Φ1(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) = 0, lim
𝑟𝑚→∞

Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) = Φ0(r𝑖𝑗, r′𝑖𝑗;𝛽). (2.56)

2. Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) конечен при нулевом расстоянии (r𝑖𝑗 → 0, r′𝑖𝑗 → 0) и равен некоторо­

му значению 𝜂(𝑟𝑚, 𝛽), а 𝜂(𝑟𝑚, 𝛽) стремится к значению псевдопотенциала Кельбга при нулевом

расстоянии (
⌋︂
𝜋⇑𝜆) в пределе 𝑟𝑚 →∞:

Φ(r𝑖𝑗 → 0, r′𝑖𝑗 → 0; 𝑟𝑚, 𝛽) =
1 − 𝑒−𝑟2𝑚⇑𝜆2

2𝑟3𝑚⇑𝜆2
+ 𝑒

−𝑟2𝑚⇑𝜆2

𝑟𝑚
− 3

2𝑟𝑚
+
⌋︂
𝜋

𝜆
erf(𝑟𝑚⇑𝜆)

= 𝜂(𝑟𝑚, 𝛽) ÐÐÐ→
𝑟𝑚→∞

⌋︂
𝜋

𝜆
= Φ0(r𝑖𝑗 → 0, r′𝑖𝑗 → 0;𝛽). (2.57)

3. Диагональный псевдопотенциал Кельбга-УУЭ Φ(𝑟; 𝑟𝑚, 𝛽) стремится к нулю достаточно

быстро:

lim
𝑟→∞

(exp (𝑟(2−𝜉))Φ(𝑟; 𝑟𝑚, 𝛽)) = 0, ∀𝜉 > 0. (2.58)

4. В точке 𝑟 = 𝑟𝑚 функция Φ(𝑟; 𝑟𝑚, 𝛽) трижды непрерывно дифференцируема:

𝜆Φ(𝑟𝑚; 𝑟𝑚, 𝛽) = −
3
⌋︂
𝜋 erf(2𝑥𝑚)
64𝑥4𝑚

+ 𝑒
−4𝑥2

𝑚

2𝑥𝑚
− 𝑒
−4𝑥2

𝑚

16𝑥3𝑚
− 𝑒
−𝑥2

𝑚

𝑥𝑚
+ 1

4𝑥3𝑚
−
⌋︂
𝜋 erf(𝑥𝑚)+

⌋︂
𝜋 erf(2𝑥𝑚), (2.59)

𝜆
𝜕Φ(𝑟; 𝑟𝑚, 𝜆)

𝜕𝑟
⋀︀
𝑟=𝑟𝑚
=
3
⌋︂
𝜋 (1 − 8𝑥2𝑚) erf(2𝑥𝑚) + 4𝑥𝑚𝑒−4𝑥

2
𝑚 (16𝑥2𝑚𝑒3𝑥

2
𝑚 − 3)

64𝑥5𝑚𝜆
. (2.60)

Однако четвертая производная имеет разрыв при 𝑟 = 𝑟𝑚:
𝜕4Φ(𝑟; 𝑟𝑚, 𝛽)

𝜕𝑟4
⋀︀
𝑟=𝑟𝑚+0

− 𝜕
4Φ(𝑟; 𝑟𝑚, 𝜆)

𝜕𝑟4
⋀︀
𝑟=𝑟𝑚−0

= 6

𝜆2𝑟3𝑚
. (2.61)

Таким образом, диагональный псевдопотенциал экспоненциально быстро стремится к нулю

при 𝑟 ≫ 𝑟𝑚 (см. рис. 2.1). Такое поведение обеспечивается тем, что на больших расстояниях

𝑟 ≫ 𝜆 псевдопотенциал Φ(r𝑖𝑗, r𝑖𝑗;𝛽) практически совпадает с классическим потенциалом взаимо­

действия 𝜑(r𝑖𝑗), который ему соответствует. Так как псевдопотенциал Кельбг-УУЭ был получен

на основе УУПЭ, который равен нулю при 𝑟 ≥ 𝑟𝑚, это свойство сохраняется и для псевдопотенци­

ала. Стоит отметить, что при использовании полученного псевдопотенциала должно соблюдаться

условие на размер ячейки, а именно 𝑟𝑚 ≫ 𝜆.

Псевдопотенциал Кельбга обладает важным свойством, а именно конечностью значения на

малых расстояниях (см. рис. 2.1). Эта конечность возникает из-за учета некоммутативности опера­

торов кинетической и потенциальной энергий, то есть вследствие принципа неопределенностей. В

результате, потенциальная энергия оказывается ограничена снизу, что стабилизирует кулоновскую

систему (предотвращает падение электрона на протон) и обеспечивает сходимость статистической

суммы.

Тем не менее, псевдопотенциал Кельбга обладает некоторыми особенностями, которые огра­
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Рис. 2.1. Потенциалы и псевдопотенциалы взаимодействия для кулоновских систем. Индексы 𝑖𝑗 опущены.
Классические потенциалы (кулоновский и УУПЭ) неограниченно возрастают при 𝑟 → 0. Учет принципа
неопределенности приводит к устранению этой расходимости и конечности псевдопотенциала при 𝑟 → 0.
На больших расстояниях 𝑟 ≫ 𝜆 квантовые эффекты практически не оказывают влияние, поэтому кулонов­
ский потенциал и УУПЭ совпадают с псевдопотенциалом Кельбга и Кельбга-УУЭ соответственно. Учет
эффектов дальнодействия в УУПЭ и Кельбг-УУЭ п/п приводит к конечному радиусу взаимодействия 𝑟𝑚,
тогда как область взаимодействия кулоновского потенциала и псевдопотенциала Кельбга неограниченна.
Кулоновский потенциал и псевдопотенциал Кельбга сдвинуты на величину 𝜆𝑈𝑎

0 для удобства сравнения с
п/п Кельбга-УУЭ; тем не менее, слагаемое 𝑈0 не вносит вклад в потенциальную энергию в случаях куло­
новского потенциала и исходного псевдопотенциала Кельбга.

ничивают область его применимости. Во-первых, этот псевдопотенциал зависит от температуры.

Это значит, что данный псевдопотенциал имеет физический смысл только при фиксированной

температуре системы (например, в 𝑁𝑉 𝑇 -ансамбле), а значит, строго говоря, его применение в

неравновесных задачах не является обоснованным. Это также приводит к дополнительным поправ­

кам к потенциальной энергии (2.72) из-за необходимости дифференцировать псевдопотенциал по

температуре. Во-вторых, этот псевдопотенциал был получен в высокотемпературном пределе. Так,

решение Кельбга (2.34) применимо при достаточно высоких температурах при условии [162]:

⋁︀𝛽
2
∑
𝑖≠𝑗
𝑞𝑖𝑞𝑗Φ(r𝑖𝑗, r𝑖𝑗;𝛽) −

𝛽

2
∑
𝑖≠𝑗
𝑞𝑖𝑞𝑗𝜑(r𝑖𝑗)⋁︀ ≪ 1. (2.62)

То есть псевдопотенциал справедлив только в случае, когда отличие потенциальной энергии, рас­

считанной с функцией Φ(r, r;𝛽), от классической, рассчитанной с потенциалом 𝜑(r), мало. Таким
образом, этот псевдопотенциал неправильно описывает связные состояния, когда важна область

псевдопотенциала на малых расстояниях; в том числе, этот псевдопотенциал не описывает об­

разование молекул водорода. Фактически, его можно использовать для моделирования системы
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при Γ≪ 1, то есть почти идеального газа. В-третьих, псевдопотенциал Кельбга больше не являет­

ся однородной функцией координат и длины ячейки. Чтобы понять это, можно использовать его

представление в следующем виде:

Φ(r, r; 𝑟𝑚, 𝛽) =
1

𝑟
𝐹 ( 𝑟

𝜆
,
𝑟𝑚
𝜆
) . (2.63)

Так как приведенная тепловая длина волныдеБройля неменяется при вариации объема, отношение

𝑟⇑𝜆 меняется при этой вариации. В результате, при расчете давления квантовой кулоновской

системы необходимо использовать отдельное выражение для давления, которое уже не связано с

потенциальной энергией.

Таким образом, в псевдопотенциале Кельбга было учтено кулоновское дальнодействие. Для

его применения необходимо учесть правильную зависимость от температуры. Чтобы учесть тем­

пературные эффекты, можно использовать два метода. Одним из самых общих и широко исполь­

зуемых методов является представление термодинамики с интегралами по траекториям.

2.2. Представление термодинамики с интегралами по траекториям

Используя то, что гамильтониан 𝐻̂ коммутирует сам с собой, можно представить оператор

плотности в виде 𝑛 + 1 одинаковых экспоненциальных сомножителей:

exp(−𝛽𝐻̂) =
𝑛

∏
𝑘=0

exp(−𝜀𝐻̂), (2.64)

где 𝜀 = 𝛽⇑(𝑛 + 1). Используя далее соотношение полноты для координатного базиса (2.3), можно

представить матрицу плотности в виде 𝑛 повторных интегралов:

𝜌(R,R′;𝛽) =
∫
𝑑R1 . . . 𝑑R𝑛𝜌(R,R1; 𝜀)𝜌(R1,R2; 𝜀) . . . 𝜌(R𝑛,R′; 𝜀), (2.65)

где R𝑘 = (r1,𝑘, . . . , r𝑁,𝑘) представляет набор всех промежуточных координат, или «бусин», на 𝑘-ом

слое. Теперь каждая 𝑖-ая частица рассматривается как замкнутая ломаная (путь или «траектория»)

(r𝑖,0, r𝑖,1, . . . , r𝑖,𝑛, r𝑖,0), или набор «бусин», r𝑖,𝑘. Характерный размер, под которым понимается теп­

ловая длина волны де Бройля, частиц в случае электрона и протона составляет Λ =
⌈︂
2𝜋ℎ̵2𝛽⇑𝑚𝑒

и Λ
⌈︂
𝑚𝑒⇑𝑚𝑝, соответственно (см. рис. 2.2); именно такой «размах» траекторий следует ожидать в

моделировании водородной плазмы в равновесии. В пределе 𝑛 → ∞ можно получить представле­

ние матрицы плотности в виде функционального интеграла по непрерывным траекториям [160],

когда ломаные переходят в непрерывные кривые. На практике рассматриваются только конечные

значения 𝑛.

Подставляя полученное выражение для матрицы плотности (2.65) в статистическую сум­
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му (2.6), получаем представление 𝑍(𝛽) с интегралами по траекториям:

𝑍(𝛽) = 1

𝑁 !

∫
𝑉 𝑁

𝑑R0

∫
𝑑R1 . . . 𝑑R𝑛𝜌(R0,R1; 𝜀)𝜌(R1,R2; 𝜀) . . . 𝜌(R𝑛,R0; 𝜀). (2.66)

0
1
2
3
4
5
6
7
8
9

1 0
n + 1  =  0

0 . 8 2 1 3 0 . 8 2 1 4 0 . 8 2 1 5 0 . 8 2 1 6 0 . 8 2 1 7

�2λe  =  Λ /

x i , k  /  L

k
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Рис. 2.2. Представление электронов и протонов в виде интегралов по траекториям для 𝑛 = 10. Гори­
зонтальная ось показывает проекцию 𝑥-ой координаты частицы r𝑖,𝑘 = (𝑥𝑖,𝑘, 𝑦𝑖,𝑘, 𝑧𝑖,𝑘), а вертикальная ось
показывает номер высокотемпературного разбиения или «бусины», 𝑘. Каждая траектория замкнута; то
есть r𝑖,𝑛+1 = r𝑖,0. Характерная тепловая длина волны электрона равна 𝜆𝑒 =

⌈︂

ℎ̵2𝛽⇑𝑚𝑒 = Λ⇑
⌋︂

2𝜋, а протона
𝜆𝑝 =

⌈︂

ℎ̵2𝛽⇑𝑚𝑝 ≪ 𝜆𝑒 (𝜆𝑝 меньше 𝜆𝑒 в
⌈︂

𝑚𝑝⇑𝑚𝑒 ≈ 43 раза).

Перепишем произведение матриц плотности в уравнении (2.66) в следующем виде:

𝜌(R0,R1; 𝜀)𝜌(R1,R2; 𝜀) . . . 𝜌(R𝑛,R0; 𝜀) =

=
𝑁

∏
𝑖=1

( 𝑚𝑖

2𝜋ℎ̵2𝛽
)
3(𝑛+1)⇑2

exp (−𝛽𝑈0 − 𝑆(R0, . . . ,R𝑛+1; 𝑟𝑚, 𝛽)) , (2.67)

где (𝑆(R0, . . . ,R𝑛+1; 𝑟𝑚, 𝛽) ≡ 𝑆(ℛ; 𝑟𝑚, 𝛽) и 𝜀 = 𝛽⇑(𝑛 + 1))

𝑆(ℛ; 𝑟𝑚, 𝛽) =
𝑛

∑
𝑘=0

⎛
⎝

𝑁

∑
𝑖=1

𝑚𝑖(r𝑖,𝑘 − r𝑖,𝑘+1)2
2ℎ̵2𝜀

+ 𝜀
2

𝑁

∑
𝑖=1

∑
𝑗∈𝒮(r𝑖,𝑘)

𝑖≠𝑗

𝑞𝑖𝑞𝑗Φ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀)
⎞
⎠
. (2.68)

В данной работе величина 𝑆(ℛ; 𝑟𝑚, 𝛽) называется действием; здесь r𝑖𝑗,𝑘 = r𝑖,𝑘 − r𝑗,𝑘. Заметим, что
𝑆(ℛ; 𝑟𝑚, 𝛽) безразмерно. Также используется обозначение ℛ = (R0, . . . ,R𝑛+1) с R𝑛+1 = R0 для

всех конфигурационных переменных.

Полная энергия является суммой кинетической и потенциальной энергии, усредненных по

ансамблю:

𝛽𝐸 ≡ ∐︀𝛽𝐸(ℛ, 𝛽)̃︀ = 𝛽𝐸kin + 𝛽𝐸pot = −𝛽 (
𝜕 ln𝑍(𝛽)

𝜕𝛽
)
𝑉

. (2.69)
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Дифференцируя уравнение (2.66), получаем кинетическую энергию:

𝛽𝐸kin ≡ ∐︀𝛽𝐸kin(ℛ, 𝛽)̃︀ =
3𝑁

2
(𝑛 + 1) − ̂︂

𝑛

∑
𝑘=0

𝑁

∑
𝑖=1

𝑚𝑖(r𝑖,𝑘 − r𝑖,𝑘+1)2
2ℎ̵2𝜀

]︁, (2.70)

и потенциальную энергию:

𝛽𝐸pot ≡ ∐︀𝛽𝐸pot(ℛ; 𝑟𝑚, 𝛽)̃︀ =
𝜀

2
̂︂

𝑛

∑
𝑘=0

𝑁

∑
𝑖=1

∑
𝑗∈𝒮(r𝑖,𝑘)

𝑖≠𝑗

𝑞𝑖𝑞𝑗ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀)]︁ + 𝛽𝑈0, (2.71)

где ℱ(r, r′; 𝑟𝑚, 𝜀) — вклад в потенциальную энергию взаимодействия, учитывающий температур­

ную зависимость псевдопотенциала:

ℱ(r, r′; 𝑟𝑚, 𝜀) = Φ(r, r′; 𝑟𝑚, 𝜀) + 𝜀(
𝜕Φ(r, r′; 𝑟𝑚, 𝜀)

𝜕𝜀
)
𝑉

, (2.72)

а среднее по ансамблю определяется следующим образом:

∐︀(. . .)̃︀ = 1

𝑁 !𝑍(𝛽)

∫
(. . .)

𝑛

∏
𝑘=0

𝜌(R𝑘,R𝑘+1; 𝑟𝑚, 𝜀)𝑑R𝑘. (2.73)

Полная энергия некоторой конфигурации выражается через сумму кинетического и потенциаль­

ного вклада 𝛽𝐸(ℛ, 𝛽) = 𝛽𝐸kin(ℛ, 𝛽) + 𝛽𝐸pot(ℛ; 𝑟𝑚, 𝛽).
Отметим следующую особенность формулы для кинетической энергии (2.70). В пределе

𝑛 → ∞ каждый из вкладов расходится, тогда как сумма является конечной. Несмотря на ее

формальную справедливость, такое поведение может приводить к росту статистической погреш­

ности с ростом 𝑛. Для того, чтобы избежать этого, можно ввести безразмерные переменные по

аналогии с работой [117]. Подробности такой замены можно найти в работе [131]. В данной работе

такая замена не будет произведена.

Полученные формулы для статистической суммы, кинетической и потенциальной энергии

являются достаточно общими для невырожденной системы частиц, и могут применяться для мо­

делирования методомМонте-Карло с интегралами по траекториям. Отметим, что в формуле (2.66)

для статистической суммы используется матрица плотности при температуре в 𝑛 + 1 раз больше

необходимой. Таким образом, рассчитывая термодинамические свойства при различном числе

разбиений 𝑛, необходимо исследовать их на сходимость; так, начиная с некоторого числа высоко­

температурных разбиений, термодинамические свойства перестанут зависеть от 𝑛. Это значит, что

условие применимости псевдопотенциала Кельбга выполняется для каждой матрицы плотности

𝜌(R𝑘,R𝑘+1; 𝜀).
Тем не менее, такой метод достаточно сильно увеличивает трудоемкость вычислений. Помимо

этого, как будет показано далее (см. рис. 5.3), связанные состояния, возникающие при моделирова­

нии двухкомпонентной системы, значительно усложняют моделирование методом Монте–Карло.

Гораздо удобнее в таком случае использовать методы молекулярной динамики для описания свя­

занных состояний (см. рис. 5.8).
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В качестве альтернативы можно использовать методы молекулярной динамики с интегра­

лами по траекториям [164; 165]. Это позволит решить проблемы, возникающие в стандартном

методе Монте–Карло, и учесть температурные эффекты. Однако этот метод не был использован

в данной работе. Вместо этого, можно воспользоваться обычным методом молекулярной дина­

мики с использованием диагональной матрицы плотности для конечной температуры. Однако

для этого необходимо знать диагональную часть матрицы плотности для заданной температу­

ры 𝜌(R,R; 𝑟𝑚, 𝛽), а именно правильно учесть изменение ее потенциальной части с понижением

температуры. Для этого в случае водородной плазмы в работе 2004 года [166] был предложен

улучшенный псевдопотенциал Кельбга.

2.3. Силы и потенциалы взаимодействия в водородной плазме для

молекулярной динамики

Как уже упоминалось, в случае слабо вырожденной электронной подсистемы плазму можно

рассматривать с квазиклассической точки зрения. В таком случае можно учитывать только диаго­

нальную часть матрицы плотности, поскольку недиагональные вклады дают почти одинаковое зна­

чение из-за незначительного размера приведенной тепловой длины волны де Бройля по сравнению

с межчастичным расстоянием. Это приводит к частному случаю 𝑛 = 0 в формуле (2.68), который

сводится к квазиклассическому моделированию с диагональным псевдопотенциаломΦ(r, r; 𝑟𝑚, 𝛽):

𝑆(R; 𝑟𝑚, 𝛽) =
𝛽

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗Φ(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽). (2.74)

Здесь было использовано условие r𝑖,𝑛+1 = r𝑖,0, поэтому кинетическое слагаемое в уравнении (2.68)

исчезает в случае 𝑛 = 0. Таким образом, средняя полная энергия имеет следующий вид:

𝛽𝐸 = 3𝑁

2
+ 𝛽
2
̂︂

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗ℱ(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽)]︁ + 𝛽𝑈0, (2.75)

Только в отсутствие связанных состояний можно разделить полную энергию на кинетическую

𝛽𝐸kin =
3𝑁

2
, 𝑛 = 0, (2.76)

и потенциальную

𝛽𝐸pot =
𝛽

2
̂︂

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗ℱ(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽)]︁ + 𝛽𝑈0, 𝑛 = 0. (2.77)

В то же время, при наличии связанных состояний имеет смысл только полная энергия, так как

орбитальное движение электронов не вполне корректно относить к кинетической энергии.
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2.3.1. Улучшенный псевдопотенциал Кельбга

Для учета температурных эффектов в матрице плотности необходимо получать псевдопотен­

циал напрямую из решения уравнения Блоха, то есть точной матрицы плотности. Однако удобно

не решать уравнение Блоха, а использовать следующее свойство матрицы плотности:

𝜌(𝛽) = 𝑒−𝛽𝐻̂⇑2𝑒−𝛽𝐻̂⇑2Ô⇒ 𝜌(R,R′;𝛽) =
∫
𝑑Q𝜌(R,Q;𝛽⇑2)𝜌(Q,R′;𝛽⇑2). (2.78)

Тогда, зная матрицу плотности при температуре 2𝑇 , можно найти матрицу плотности при темпера­

туре 𝑇 . Таким образом, можно в качестве начального приближения выбрать решение Кельбга (или

более простое квазиклассическое выражение [160]) и получить матрицу плотности для любой по­

ложительной температуры. Проделывая такую операцию несколько раз, можно получить матрицу

плотности для любой температуры. Такая техника в литературе называется matrix-squaring.

Эта процедура была проделана в работе [166]. Однако для того, чтобы было удобно ис­

пользовать полученные расчеты, в обычный псевдопотенциал Кельбга был введен температурный

параметр 𝛾𝑖𝑗(𝛽):

ΦI
0(r𝑖𝑗, r𝑖𝑗;𝛽) ≡ ΦI

0(𝑟𝑖𝑗;𝛽) =
1

𝑟𝑖𝑗

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
1−exp

⎛
⎝
−( 𝑟𝑖𝑗

𝜆𝑖𝑗(𝛽)
)
2⎞
⎠
+

⌋︂
𝜋𝑟𝑖𝑗

𝜆𝑖𝑗(𝛽)𝛾𝑖𝑗(𝛽)
erfc(𝛾𝑖𝑗(𝛽)

𝑟𝑖𝑗
𝜆𝑖𝑗(𝛽)

)
[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
, (2.79)

чтобы аппроксимировать полученную матрицу плотности. Параметр 𝛾𝑖𝑗(𝛽) представляет собой

функцию температуры, зависящую от типов взаимодействующих частиц 𝑖 и 𝑗. Явная зависимость

𝛾𝑖𝑗 от температуры для электрон-протонного и электрон-электронного взаимодействий приведена

в уравнениях (22) и (23) соответственно в работе [166]. Приведем эти уравнения здесь:

𝛾𝑒𝑝(𝛽) =
𝑥𝛽 + 𝑥2𝛽

1 + 𝑎𝑒𝑝𝑥𝛽 + 𝑥2𝛽
, (2.80)

𝛾𝑒𝑒(𝛽) =
𝛾𝑒𝑒,0 + 𝑎𝑒𝑒𝑥𝛽 + 𝑥2𝛽

1 + 𝑥2𝛽
, 𝛾𝑒𝑒,0 = −

2⌋︂
𝜋
𝑥̃3𝛽

1

ln(8𝑥̃4𝛽⇑
⌋︂
𝜋) − 3𝑥̃2𝛽

, (2.81)

где 𝑥𝛽 =
⌈︂
8𝜋⇑(𝛽𝐸𝐻), 𝑥̃𝛽 = (𝜋2𝛽𝐸𝐻⇑4)1⇑6, 𝑎𝑒𝑝 = 1.090(14), 𝑎𝑒𝑒 = 0.18(1).

Таким образом, определим улучшенный Кельбг-УУЭ псевдопотенциал:

ΦI(r, r; 𝑟𝑚, 𝛽) = ΦI
0(r, r;𝛽) +Φ1(r, r; 𝑟𝑚, 𝛽), (2.82)

который можно использовать для точного учета связанных состояний и дальнодействующих ку­

лоновских взаимодействий. Стоит однако отметить, что улучшенный псевдопотенциал (2.79) яв­

ляется аппроксимацией потенциальной части точной матрицы плотности, что в принципе может

приводить к неправильному поведению потенциальной энергии, особенно в случае низких тем­

ператур. Более того, коэффициент 𝛾𝑖𝑗 подбирался по значению матрицы плотности в нуле, из-за

чего поведение улучшенного псевдопотенциала Кельбга на конечных расстояниях может быть

ошибочным. Также не ясна (и не рассматривается в работе [166]) точность градиента улучшенного
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псевдопотенциала Кельбга в сравнении с точным псевдопотенциалом. Помимо этого, дополни­

тельная зависимость от температуры 𝛾𝑖𝑗(𝛽) приводит к дополнительным температурным вкладам

в энергию при вычислении производных по температуре.

Таким образом, на данный момент известны все псевдопотенциалы взаимодействия: протон–

протон, электрон-электрон и электрон-протон. Однако, как говорилось выше, для устойчивости

системы необходимо также учитывать спин электрона. Так, 𝑁⇑2 электронов разбиваются на две

подгруппы:𝑁⇑4 электронов с проекцией спина+1⇑2 («вверх») и𝑁⇑4 электронов с проекцией спина
−1⇑2 («вниз»). Рассмотрим, каким образом учитывается спин во взаимодействии электронов.

2.3.2. Принцип Паули в моделировании водородной плазмы

Для того, чтобы получить поправки к псевдопотенциалу электрон-электронного взаимодей­

ствия, связанные с запретом Паули, необходимо произвести симметризацию матрицы плотности.

Для этого рассмотрим систему из двух электронов. Полная волновая функция такой двухчастич­

ной системы должна быть антисимметрична при перестановке всех (координатных и спиновых)

переменных [167]. Если полная волновая функция является произведением координатной ее части

и спиновой части, то антисимметризация полной волновой функции может быть достигнута двумя

способами: в случае, когда спиновая часть симметрична («спины сонаправлены»), то координатная

часть должна быть антисимметричной; если же спиновая часть антисимметрична («спины анти­

параллельны»), то координатная часть должна быть симметричной. Будем говорить, что в первом

случае электроны находятся в триплетном состоянии, а во втором случае — в синглетном. Тогда

диагональные элементы матрицы плотности системы двух электронов в синглетном и триплетном

состоянии записываются следующим образом [160; 166]:

𝜌S(T)𝑒𝑒 ((r1, r2), (r1, r2);𝛽) =
1

2

⎨⎝⎝⎝⎝⎪
𝜌((r1, r2), (r1, r2);𝛽)±

± 𝜌((r1, r2), (r2, r1);𝛽)
⎬⎠⎠⎠⎠⎮
≡ 1

2
( 𝑚𝑒

2𝜋ℎ̵2𝛽
)
3

𝑒−𝛽𝑈0 exp (−𝛽𝑒2ΦS(T)
𝑒𝑒 (r12;𝛽)) , (2.83)

где коэффициент 1⇑2 есть 1⇑𝑁 !, знак «+» отвечает за синглетное состояние (координатная часть

волновойфункции симметрична), а знак «−»— за триплетное (координатная часть волновойфунк­

ции антисимметрична). Помимо этого, матрица плотности приравнивается к матрице плотности

больцмановского вида, в которой определен новый псевдопотенциал ΦS(T)
𝑒𝑒 (r12; . . . , 𝛽), в котором,

помимо собственно кулоновского взаимодействия, учитывается обмен. Подставляя матрицу плот­

ности (2.34) в (2.83), получаем:

exp (−𝛽𝑒2ΦS(T)
𝑒𝑒 (r12; 𝑟𝑚, 𝛽)) = 𝑒−𝛽𝑒

2ΦI
𝑒𝑒(r12,r12;𝑟𝑚,𝛽) ± exp(−𝑚𝑒𝑟212

ℎ̵2𝛽
) 𝑒−𝛽𝑒2ΦI

𝑒𝑒(r12,−r12;𝑟𝑚,𝛽). (2.84)
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Как видно, возник вклад ΦI
𝑒𝑒(r12,−r12; 𝑟𝑚, 𝛽), связанный с перестановкой координат. В случае,

когда система слабо вырождена, можно воспользоваться следующим приближением:

ΦI
𝑒𝑒(r12,−r12; 𝑟𝑚, 𝛽) ≈ ΦI

𝑒𝑒(r12, r12; 𝑟𝑚, 𝛽), (2.85)

которое следует из аппроксимации недиагонального псевдопотенциала диагональными слагаемы­

ми [117; 166]:

Φ(r, r′; 𝑟𝑚, 𝛽) ≈
1

2
(Φ(r, r; 𝑟𝑚, 𝛽) +Φ(r′, r′; 𝑟𝑚, 𝛽)) . (2.86)

Стоит отметить, что в случае высокотемпературного решения Кельбга приближение (2.86) приме­

нимо с хорошей точностью. Однако в случае низких температур оно может не соблюдаться [168],

особенно на малых расстояниях.

Уравнение (2.84) преобразуется следующим образом:

exp (−𝛽𝑒2ΦS(T)
𝑒𝑒 (r12; 𝑟𝑚, 𝛽)) = 𝑒−𝛽𝑒

2ΦI
𝑒𝑒(r12,r12;𝑟𝑚,𝛽) ⌊︀1 ± exp(−𝑚𝑒𝑟212

ℎ̵2𝛽
)}︀ , (2.87)

откуда можно найти необходимый псевдопотенциал, учитывающий температурные эффекты, даль­

нодействие, а также спин электронов:

ΦS(T)
𝑒𝑒 (r; 𝑟𝑚, 𝛽) = ΦI

𝑒𝑒(r, r; 𝑟𝑚, 𝛽) −
1

𝛽𝑒2
ln(1 ± exp ]︀−𝑚𝑒𝑟2

ℎ̵2𝛽
{︀) . (2.88)

Таким образом, на малых расстояниях дополнительный вклад в случае синглетного состояния

стремится к некоторому числу, а в случае триплетного состояния расходится логарифмически:

− ln(1 ± exp ]︀−𝑚𝑒𝑟2

ℎ̵2𝛽
{︀) =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

− ln(2) + 𝑜(𝑟), «+»

− ln(𝑚𝑒𝑟2

ℎ̵2𝛽 ) + 𝑜(𝑟), «−»,
(2.89)

что должно предотвращать сближение двух электронов с одинаковой проекцией спина на рассто­

яния ближе, чем порядка
⌈︂
ℎ̵2𝛽⇑𝑚𝑒 = 𝜆𝑒.

Однако, как показывают расчеты [166; 169], логарифмической расходимости оказывается

недостаточно для предотвращения сближения электронов в молекуле водорода. Это обусловлено

тем, что наличие, например, в атоме протона приводит к ослаблению отталкивания электронов с

одинаковой проекцией спина, и такие электроны могут подойти достаточно близко (ближе, чем

длина волны 𝜆𝑒, см. рис. 2.3). Если такое происходит, в системе образуется область, в которую

можно добавить очень большое количество электронов и протонов в единое связанное состояние.

Это приводит к тому, что в системе при достижении температуры 50 кК и ниже (порядка энер­

гии диссоциации молекулы водорода) наблюдается образование нефизических «кластеров» [166;

169]. Можно говорить о том, что наблюдается коллапс системы в точку, который и должен был

предотвращаться учетом статистики Ферми. Тем не менее, причины, по которым это происхо­

дит, не до конца понятны, так как никаких значительных приближений, кроме (2.86), при выводе
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Рис. 2.3. Пример образования связанных состояний электронов с одинаковой проекцией спина. Черная
кривая получена без модификации сил (𝛼T

𝑒𝑒 = 0), а красная с использованием (2.91) c параметром 𝛼T
𝑒𝑒 = 1.

формулы (2.88) сделано не было.

В работе [166], где исследовался аналогичныйметод расчета (без учета дальнодействия), было

выдвинуто предположение, что наблюдаемые эффекты могут быть связаны с многочастичными

взаимодействиями. Это соображение справедливо для условий, рассматриваемых в работе [166],

где 𝜒 ∼ 1. Однако в случае невырожденной системы вклад квантовых многочастичных эффектов в

общее взаимодействие мал.

Несостоятельность объяснения кластеризации через многочастичные взаимодействия ста­

новится очевидной при рассмотрении системы, состоящей из 2+2 электронов и 4 протонов. В

данной конфигурации многочастичность сводится к учету перестановок внутри каждой подгруп­

пы электронов. Поскольку число частиц в каждой подгруппе ограничено двумя, взаимодействие

между ними носит парный характер. Тем не менее, даже в такой малой системе при низких тем­

пературах наблюдается кластеризация и сближение электронов с одинаковой проекцией спина.

Возможное объяснение состоит в том, что электроны с одинаковой проекцией спина не вполне

могут рассматриваться как точечные частицы в динамике: конечный размер их тепловых волн де

Бройля приводит к усилению отталкивания между ними, что предотвращает коллапс системы. В

следующем разделе будет рассмотрено возможное приближенное решение данной проблемы.
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2.3.3. Учет конечного значения тепловой длины волны де Бройля электронов

Автор диссертации объясняет недостаточное отталкивание электронов с одинаковой проек­

цией спина следующим качественным образом. Когда два электрона с одинаковой проекцией спина

подходят другу к другу достаточно близко, начинает играть роль конечного значения их тепловых

длин волн де Бройля, что не учитывается в (2.88). Электроны, «центры» которых находятся друг от

друга на расстоянии 𝑟, «чувствуют» друг друга на меньшем расстоянии порядка 𝑟−𝜆𝑒 (см. рис. 2.4).
Таким образом, если учесть конечное значение тепловой длины волны де Бройля электронов, они

должны рассеяться друг на друге. Однако так как электроны в рассматриваемом подходе являются

точечными, достаточного отталкивания не происходит. Таким образом, по мнению автора данной

работы проблема заключается в неправильном описании части матрицы плотности, отвечающей

за кулоновское взаимодействие, возможно связанной с аппроксимацией (2.86).

𝑟

𝑟

𝜆𝑒 𝜆𝑒

𝜆𝑒 𝜆𝑒

𝑟

Рис. 2.4. Качественная иллюстрация способа учета конечного значения тепловой длины волны де Бройля
двух электронов в силах (слева по аналогии с рис. 2.2; справа качественно показаны две траектории на плос­
кости). Показаны характерные траектории двух электронов с одинаковой проекцией спина (перестановка
тождественная). Размах каждой траектории равен 𝜆𝑒. Центры этих траекторий находятся на расстоянии 𝑟,
тогда как взаимодействие происходит между всеми точками траекторий, в том числе на расстоянии 𝑟 − 𝜆𝑒.
Таким образом, отталкивание между электронами должно усилиться.

Для того, чтобы исправить образование нефизических связанных состояний, в данной ра­

боте предлагается следующее. В молекулярной динамике сила межэлектронного взаимодействия

задается градиентом псевдопотенциала:

fS(T)𝑒𝑒 (r; 𝑟𝑚, 𝛽) = −∇ΦS(T)
𝑒𝑒 (r; 𝑟𝑚, 𝛽). (2.90)

Эта сила недостаточно расталкивает электроны с одинаковой проекцией спина. Тогда в силу взаи­

модействия можно ввести фактор, усиливающий кулоновское отталкивание электронов на рассто­

янии порядка длины волны де Бройля. Сделаем это следующим образом:

fT𝑒𝑒(r; 𝑟𝑚, 𝛽) → −
𝑒2𝑟2

(𝑟 − 𝛼T
𝑒𝑒𝜆𝑒𝑒)2

∇ΦI
𝑒𝑒(r, r; 𝑟𝑚, 𝛽) +

1

𝛽
∇ ln(1 − exp ]︀−𝑚𝑒𝑟2

ℎ̵2𝛽
{︀) . (2.91)
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Отметим, что первый вклад отвечает за кулоновское взаимодействие, а второй за обменное. Таким

образом, кулоновское отталкивание (точечных) электронов работает так, будто бы электроны на­

ходятся на расстоянии 𝑟−𝛼T
𝑒𝑒𝜆𝑒𝑒, где 𝛼T

𝑒𝑒 —число порядка единицы. Такая модификация вносится

только в силу взаимодействия электронов с одинаковой проекцией спина; расчет полной потенци­

альной энергии, а также сил взаимодействия между другими частицами остается без изменения.

Эффект от такой модификации сил может быть виден на примере рис. 2.3. Число 𝛼T
𝑒𝑒 выбирается

минимально возможным, чтобы предотвратить образование кластеров.

Таким образом, с помощью описанной модификации приближенно учитывается конечное

значение тепловой длины волны де Бройля электронов. Хотя такая модификация не является

строго обоснованной, она позволяет добиться правильного поведения электронной подсистемы и

обеспечить образование молекул без образования кластеров.

2.4. Финальные формулы для расчета энергии и давления невырожденной

водородной плазмы

Для начала получим формулу для расчета давления невырожденной водородной плазмы. Для

этого можно воспользоваться формулой (1.218), заменив потенциальную энергию на действие:

𝛽𝑃𝐹 (R) = 𝑁⇑𝑉 − (𝜕(𝛽𝑈0 + 𝑆(R; 𝑟𝑚, 𝛽))
𝜕𝑉

)
𝑇

. (2.92)

Так как вклады от различных типов частиц различаются, удобно ввести следующую форму:

𝛽𝑃 (R)𝑉 ⇑𝑁 = 1 + 𝛽𝑈0

3𝑁
+ (𝛽⇑𝑁)

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑞𝑖𝑞𝑗𝑝𝑖𝑗(𝑟𝑖𝑗, 𝑟𝑚, 𝛽), (2.93)

где

𝑝𝑖𝑗(𝑟𝑖𝑗, 𝑟𝑚, 𝛽) = 𝑝I0(𝑟𝑖𝑗, 𝛽) + 𝑝1(𝑟𝑖𝑗, 𝑟𝑚, 𝛽) + 𝛿𝑖,𝑒𝛿𝑗,𝑒𝑝S(T)𝑖𝑗 (𝑟𝑖𝑗, 𝛽). (2.94)

Для удобства введем также обозначения 𝑥𝑖𝑗 = 𝑟𝑖𝑗⇑𝜆𝑖𝑗 и 𝑥𝑚 = 𝑟𝑚⇑𝜆𝑖𝑗 . Для вклада от улучшенного

псевдопотенциала Кельбга получаем:

𝑝I0(𝑟𝑖𝑗, 𝛽) = −
1

6

𝜕

𝜕𝛾
ΦI

0(𝛾𝑟𝑖𝑗, 𝛽)⋀︀
𝛾=1
= 1

6𝑟𝑖𝑗
[︀1 + 2𝑥2𝑖𝑗𝑒−𝛾𝑖𝑗𝑥

2
𝑖𝑗 − 𝑒−𝑥2

𝑖𝑗(1 + 2𝑥2𝑖𝑗)⌉︀ . (2.95)

Вклад, отвечающий за дальнодействие (при 𝑟𝑖𝑗 ≤ 𝑟𝑚), имеет следующий вид:

𝑝1(𝑟𝑖𝑗, 𝑟𝑚, 𝛽) = −
1

6

𝜕

𝜕𝛾
Φ1(𝛾𝑟𝑖𝑗, 𝛾𝑟𝑚, 𝛽)⋀︀

𝛾=1
=

= − 1

96𝑟𝑖𝑗𝑥3𝑚
[︀3
⌋︂
𝜋 (2𝑥2𝑖𝑗 − 2𝑥2𝑚 + 1) (erf(𝑥𝑖𝑗 − 𝑥𝑚)+

+ erf(𝑥𝑖𝑗 + 𝑥𝑚)) − 8𝑥𝑖𝑗 (𝑥2𝑖𝑗 − 3𝑥2𝑚 + 3) + 6𝑒−(𝑥𝑖𝑗+𝑥𝑚)2(𝑥𝑖𝑗 − 𝑥𝑚) + 6𝑒−(𝑥𝑖𝑗−𝑥𝑚)2(𝑥𝑖𝑗 + 𝑥𝑚)⌉︀. (2.96)
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Дополнительный вклад, отвечающий за различные проекции спинов электронов, имеет вид:

𝑝S(T)𝑖𝑗 (𝑟𝑖𝑗, 𝛽) = ∓
1

3𝛽𝑒2
𝑥2𝑖𝑗

𝑒−𝑥
2
𝑖𝑗 ± 1

. (2.97)

При этом, обозначение 𝛿𝑖,𝑒𝛿𝑗,𝑒 в формуле (2.94) означает, что этот вклад не равен нулю только в

случае, когда частицы 𝑖 и 𝑗 являются электронами. Если дальнодействие не учитывается, то вклады

𝛽𝑈0⇑(3𝑁) и 𝑝1(𝑟𝑖𝑗, 𝑟𝑚, 𝛽) равны нулю.

Далее выпишем формулу для расчета полной энергии:

𝛽𝐸(R) = 3𝑁

2
+ Γ

2

𝑁

∑
𝑖=1
∑

𝑗∈𝒮(r𝑖)
𝑖≠𝑗

𝑟𝑎ℱ𝑖𝑗(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽) −
3𝑁Γ

4𝑟𝑚⇑𝑟𝑎
, (2.98)

где

ℱ𝑖𝑗(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽) = ℱ I
0(𝑟𝑖𝑗, 𝛽) + ℱ1(𝑟𝑖𝑗; 𝑟𝑚, 𝛽) + 𝛿𝑖,𝑒𝛿𝑗,𝑒ℱ𝜎1,𝜎2

𝑖𝑗 (𝑟𝑖𝑗, 𝛽) (2.99)

по аналогии с уравнением (2.94). Тогда вклад от улучшенного псевдопотенциала Кельбга имеет

вид:

ℱ I
0(𝑟𝑖𝑗, 𝛽) = ΦI

0(𝑟𝑖𝑗, 𝛽) + 𝛽
𝜕ΦI

0(𝑟𝑖𝑗, 𝛽)
𝜕𝛽

≡ ΦI
0(𝑟𝑖𝑗, 𝛽) + 𝛽

𝜕ΦI
0(𝑟𝑖𝑗, 𝜆𝑖𝑗(𝛽), 𝛾𝑖𝑗(𝛽))

𝜕𝛽
. (2.100)

Производная по температуре от улучшенного псевдопотенциала Кельбга будет выписана даль­

ше (см. уравнение (2.104)). Вклад, отвечающий за дальнодействие, имеет следующий вид (см.

уравнение (2.51)):

ℱ1(𝑟𝑖𝑗; 𝑟𝑚, 𝛽) = Φ1(𝑟𝑖𝑗; 𝑟𝑚, 𝛽) + 𝛽
𝜕Φ1(𝑟𝑖𝑗; 𝑟𝑚, 𝛽)

𝜕𝛽
, (2.101)

где производная по температуре при 𝑟𝑖𝑗 ≤ 𝑟𝑚 имеет вид (используются обозначения 𝑥𝑖𝑗 = 𝑟𝑖𝑗⇑𝜆𝑖𝑗 и
𝑥𝑚 = 𝑟𝑚⇑𝜆𝑖𝑗):

𝛽
𝜕Φ1(𝑟𝑖𝑗; 𝑟𝑚, 𝛽)

𝜕𝛽
=

= 1

128 𝑟𝑖𝑗 𝑥3𝑚
[︀
⌋︂
𝜋 (4 (𝑥4𝑖𝑗 − 3𝑥2𝑖𝑗(2𝑥2𝑚 + 1) + 8𝑥𝑖𝑗𝑥3𝑚 − 3𝑥4𝑚) + 12𝑥2𝑚 − 9) erf(𝑥𝑖𝑗 − 𝑥𝑚)+

+
⌋︂
𝜋 (4 (𝑥4𝑖𝑗 − 3𝑥2𝑖𝑗(2𝑥2𝑚 + 1) − 8𝑥𝑖𝑗𝑥3𝑚 − 3𝑥4𝑚) + 12𝑥2𝑚 − 9) erf(𝑥𝑖𝑗 + 𝑥𝑚)+

+ 2 𝑒−(𝑥𝑖𝑗+𝑥𝑚)2 (2𝑥3𝑖𝑗 − 2𝑥2𝑖𝑗𝑥𝑚 − 𝑥𝑖𝑗(10𝑥2𝑚 + 7) − 6𝑥3𝑚 + 9𝑥𝑚)+

+ 2 𝑒−(𝑥𝑖𝑗−𝑥𝑚)2 (2𝑥3𝑖𝑗 + 2𝑥2𝑖𝑗𝑥𝑚 − 𝑥𝑖𝑗(10𝑥2𝑚 + 7) + 6𝑥3𝑚 − 9𝑥𝑚) + 64𝑥𝑖𝑗 (
⌋︂
𝜋 𝑥3𝑚 + 1)⌉︀. (2.102)

Дополнительный вклад, отвечающий за различные проекции спинов электронов:

ℱ𝜎1,𝜎2

𝑖𝑗 (𝑟𝑖𝑗, 𝛽) = −
1

𝛽𝑒2
𝛽
𝜕

𝜕𝛽
ln(1 ± exp ]︀−𝑚𝑒𝑟2

ℎ̵2𝛽
{︀) = 1

𝛽𝑒2

∓ exp [︀−𝑚𝑒𝑟2

ℎ̵2𝛽 ⌉︀ (
𝑚𝑒𝑟2

ℎ̵2𝛽 )

(1 ± exp [︀−𝑚𝑒𝑟2

ℎ̵2𝛽 ⌉︀)
. (2.103)

Найдем производную по температуре от улучшенного псевдопотенциала Кельбга. Так как

ΦI
0(𝑟𝑖𝑗, 𝛽) = ΦI

0(𝑟𝑖𝑗, 𝜆𝑖𝑗(𝛽), 𝛾𝑖𝑗(𝛽)), то

𝛽
𝜕ΦI

0(𝑟𝑖𝑗, 𝛽)
𝜕𝛽

= 𝜕Φ
I
0(𝑟𝑖𝑗, 𝜆𝑖𝑗(𝛽), 𝛾𝑖𝑗(𝛽))

𝜕𝜆𝑖𝑗(𝛽)
𝛽
𝜕𝜆𝑖𝑗(𝛽)
𝜕𝛽

+ 𝜕Φ
I
0(𝑟𝑖𝑗, 𝜆𝑖𝑗(𝛽), 𝛾𝑖𝑗(𝛽))

𝜕𝛾𝑖𝑗(𝛽)
𝛽
𝜕𝛾𝑖𝑗(𝛽)
𝜕𝛽

. (2.104)
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Выпишем все производные в уравнении (2.104):

𝜕ΦI
0(𝑟𝑖𝑗, 𝜆𝑖𝑗(𝛽), 𝛾𝑖𝑗(𝛽))

𝜕𝜆𝑖𝑗(𝛽)
= 1

𝜆3𝑖𝑗

⎨⎝⎝⎝⎝⎝⎪
2𝑟𝑖𝑗 (exp(−

𝛾2𝑖𝑗𝑟
2
𝑖𝑗

𝜆2𝑖𝑗
) − exp(−

𝑟2𝑖𝑗
𝜆2𝑖𝑗

)) −
⌋︂
𝜋 𝜆𝑖𝑗 erfc (𝛾𝑖𝑗𝑟𝑖𝑗

𝜆𝑖𝑗
)

𝛾𝑖𝑗

⎬⎠⎠⎠⎠⎠⎮
, (2.105)

𝜕ΦI
0(𝑟𝑖𝑗, 𝜆𝑖𝑗(𝛽), 𝛾𝑖𝑗(𝛽))

𝜕𝛾𝑖𝑗(𝛽)
= − 1

𝛾2𝑖𝑗𝜆
2
𝑖𝑗

⌊︀
⌋︂
𝜋 𝜆𝑖𝑗 erfc(

𝛾𝑖𝑗𝑟𝑖𝑗
𝜆𝑖𝑗

) + 2𝛾𝑖𝑗𝑟𝑖𝑗 exp(−
𝛾2𝑖𝑗𝑟

2
𝑖𝑗

𝜆2𝑖𝑗
)}︀ , (2.106)

𝛽
𝜕𝜆𝑖𝑗
𝜕𝛽
= 𝜆𝑖𝑗⇑2. (2.107)

В случае взаимодействия между электроном и протоном (см. уравнение (2.80)):

𝛽
𝜕𝛾𝑒𝑝(𝛽)
𝜕𝛽

= −𝑥𝛽
2
×
1 + 2𝑥𝛽 + (−1 + 𝑎ep)𝑥2𝛽
(1 + 𝑎ep𝑥𝛽 + 𝑥2𝛽)2

. (2.108)

В случае взаимодействия между электронами (см. уравнение (2.81)):

𝛽
𝜕𝛾𝑒𝑒(𝛽)
𝜕𝛽

= 1

6(1 + 𝑥2𝛽)2

⎨⎝⎝⎝⎝⎝⎝⎝⎪

3𝑥𝛽 )︀2(−1 + 𝛾𝑒𝑒,0)𝑥𝛽 + 𝑎𝑒𝑒(−1 + 𝑥2𝛽)⌈︀ +
2(1 + 𝑥2𝛽)𝑥̃3𝛽 (4 + 3𝑥̃2𝛽 − 3 ln(

8𝑥̃4
𝛽⌋︂
𝜋
))

⌋︂
𝜋 (ln(8𝑥̃4

𝛽⌋︂
𝜋
) − 3𝑥̃2𝛽)

2

⎬⎠⎠⎠⎠⎠⎠⎠⎮

.

(2.109)

Формулы (2.93) и (2.98) будут использованы для расчета давления и энергии конфигураций в

МД при моделировании в LAMMPS.Межчастичные силы вМД задаются формулами (3.26)–(3.29).

2.5. Основные результаты и заключение главы

В данной главе было рассмотрено представление термодинамики невырожденной водородной

плазмы с помощью матрицы плотности, в которой учитываются необходимые для устойчивости

системы квантовые эффекты. Матрица плотности получается из высокотемпературного решения

Г. Кельбга, а в случае конечных температур используется аппроксимация с помощью улучшенного

псевдопотенциала Кельбга, разработанная А. В. Филиновым с соавторами. Кулоновское дально­

действие учитывается с помощью решения Кельбга вместе с усредненным по углам потенциа­

лом Эвальда. Таким образом, получается парный псевдопотенциал взаимодействия (улучшенный

Кельбг-УУЭ), в котором учитываются квантовые свойства и эффекты дальнодействия, что поз­

воляет правильно описать связанные состояния. Теоретически этот псевдопотенциал может быть

использован для моделирования невырожденной водородной плазмы при любых положительных

температурах.

Отдельное внимание было уделено учету принципа запрета Паули для электронов с оди­

наковой проекцией спина. В этом случае, антисимметризация матрицы плотности приводит к

дополнительному расходящемуся на малых расстояниях вкладу, который предотвращает сближе­

ние электронов с одинаковой проекцией спина. Тем не менее, на практике оказывается, что этого
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отталкивания не хватает для предотвращения образования нефизических кластеров, в которых

два электрона с одинаковой проекцией спина находятся в одном связанном состоянии. Это об­

стоятельство объясняется тем, что в квазиклассическом рассмотрении не учитывается конечное

значение тепловой длины волны де Бройля электронов. Был предложен приближенный способ

учета взаимодействия частиц на меньших, чем их центры, расстояниях в силах взаимодействия

электронов. Как будет показано далее, такая модификация сил позволяет стабилизировать систе­

му. Полученные псевдопотенциалы взаимодействия, выражение для энергии и давления плазмы

будут использованы для моделирования методом МД.

Помимо этого, было рассмотрено представление термодинамики в виде интегралов по траек­

ториям. Этот метод позволяет точно учесть температурные эффекты. На основании этого метода

можно построить алгоритм моделирования методом Монте–Карло для нахождения средних энер­

гии и давления.

Результаты главы были опубликованы в рецензируемых изданиях [3; 6; 9; 162] и сборниках

тезисов.
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Глава 3

Метод расчета, используемый в работе

В предыдущих главах были рассмотрены термодинамические свойства двух кулоновских си­

стем: однокомпонентной плазмы и водородной (то есть двухкомпонентной) плазмы, соответствен­

но, в главах 1 и 2. Для этих систем были выписаны формулы для усреднения по 𝑁𝑉 𝑇 -ансамблю,

формулы для потенциальной энергии и давления для расчета уравнения состояния. Для того, что­

бы получить эти свойства при заданных плотности и температуре (или параметре неидеальности

и вырождении), необходимо использовать компьютерное моделирование.

Существуют две основные группы методов атомистического моделирования: Монте–Карло

и молекулярная динамика. На эти методы можно смотреть как на разные способы построения

конфигураций частиц таким образом, чтобы получаемая выборка удовлетворяла каноническому

(или некоторому выбранному) ансамблю. Классический алгоритм метода МК обеспечивает та­

кую выборку автоматически, а в МД необходимо внести некоторые дополнительные переменные

(термостат), так как решение уравнений Ньютона для замкнутой системы сохраняет полную энер­

гию (что соответствует микроканоническому ансамблю). В данной работе используется только

канонический ансамбль во всех случаях.

Как методы МК, так и МД могут быть реализованы с использованием интегралов по тра­

екториям. В данной работе используется классический метод МК для ОКП, а для водородной

плазмы используется как метод МК с интегралами по траекториям (в случае слабого взаимодей­

ствия), так и обычная молекулярная динамика с псевдопотенциалом Кельбга (в случае умеренного

взаимодействия). Далее будут описаны базовые алгоритмы моделирования этими методами. При

этом программа для моделирования методом МК была реализована автором данной работы, а

МД-моделирование производится с помощью пакета LAMMPS [170].

При самостоятельной реализации процедуры расчета потенциальной энергии возникают

некоторые особенности, связанные с суммированием по взаимодействиям вшаре. Это особо прояв­

ляется в случае использовании недиагональной матрицы плотности, когда необходимо учитывать

взаимодействие сразу четырех бусин. Далее будет детально описан алгоритм, разработанный и

примененный в данной работе.
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3.1. Методы Монте Карло и молекулярной динамики

В первую очередь, возникает интерес в расчете термодинамических свойств, например, энер­

гии и давления. Эти свойства выражаются как средние от некоторых моментальных величин,

рассчитанных для некоторого конкретного расположения частиц в пространстве. На усреднение

можно смотреть с двух разных точек зрения.

С одной стороны, пользуясь аппаратом статистической механики, среднее необходимо вос­

принимать в смысле теории вероятностей: если известна некоторая величина как функция коор­

динат частиц 𝑂(R), а также задана функция распределения𝑊 (R), среднее необходимо понимать
как следующий интеграл:

∐︀𝑂(R)̃︀ =
∫
𝑑R𝑂(R)𝑊 (R)∫
𝑑R𝑊 (R) . (3.1)

В таком случае можно применять различные численные методы для взятия многомерного инте­

грала в (3.1).

С другой стороны, пользуясь вторым законом Ньютона, можно рассматривать движения ча­

стиц под действием сил со стороны других частиц. Тогда вводится параметр времени 𝑡, а также

траектории всех частиц R(𝑡). Таким образом, среднее можно воспринимать как усреднение по

длительному времени моделирования 𝜏 :

∐︀𝑂(R)̃︀𝜏 =
1

𝜏

𝜏∫
0

𝑂(R(𝑡))𝑑𝑡. (3.2)

В таком случае, необходимо численно решать уравнение Ньютона, на каждом временном шаге

рассчитывать необходимую величину, а в последствии усреднить по всем моментам времени.

Вообще говоря, средние в уравнениях (3.1)–(3.2) не обязаны быть равны. Однако в данной

работе будет предполагаться их равенство; это предположение есть эргодическая гипотеза. Таким

образом, выбор способа усреднения определяется лишь удобством выбора метода моделирования

и поведением каждой системы в конкретном случае.

3.1.1. Метод Монте–Карло для классической системы

Методы МК находят широкое применение в различных областях науки благодаря своей уни­

версальности. Основное преимущество этих методов заключается в возможности вычисления ин­

тегралов с заданной точностью независимо от их размерности. Это делает их особенно полезными

в статистической физике, где часто требуется рассчитывать многомерные интегралы, размерность

которых достигает 3𝑁 , где 𝑁 — число частиц в системе.

Суть методаМК заключается в генерации выборки точек в фазовом пространстве и аппрокси­

мации интегралов суммой по этой выборке. Вместо случайного выбора точек, более эффективным
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подходом является генерация конфигураций в соответствии с заданным распределением вероят­

ностей𝑊 (R). Это позволяет значительно повысить точность и скорость расчетов. В данной работе

рассматривается классический метод МК для моделирования системы точечных частиц, который

в дальнейшем обобщается на случай интегралов по траекториям.

Для реализации метода используется алгоритмМетрополиса-Гастингса [31; 171; 172]. Основ­

ная цель этого алгоритма — генерация выборки конфигураций в соответствии с распределением

Больцмана:

exp(−𝛽𝑈(R)), (3.3)

где 𝑈(R) — потенциальная энергия системы (или действие в случае квантовой системы). На

первом этапе выбирается начальная конфигурация системы R(0) = (r(0)1 , . . . , r(0)𝑁 ), для которой

вычисляется потенциальная энергия 𝑈(R(0)). Затем случайным образом выбирается частица с

номером 𝑖, и ее положение изменяется на случайную величину в пределах интервала (︀−ΔMC,ΔMC⌋︀
по каждой пространственной координате. Таким образом, формируется новое пробное положение

частицы r(1)𝑖 .

После этого вычисляется изменение потенциальной энергии Δ𝑈 = 𝑈(R(1)) −𝑈(R(0)). По­
скольку изменяется положение только одной частицы, расчет Δ𝑈 требует 𝑁 − 1 операций. Ве­

роятность начальной конфигурации пропорциональна exp(−𝛽𝑈(R(0))), а новой конфигурации —

exp(−𝛽𝑈(R(1))). Если новая конфигурация более вероятна, она принимается и становится те­

кущей. В противном случае новая конфигурация принимается с вероятностью exp(−𝛽Δ𝑈), а с

вероятностью 1 − exp(−𝛽Δ𝑈) отклоняется, и текущей остается конфигурация R(0). Этот процесс

повторяется для последующих шагов.

Данный алгоритм гарантирует, что последовательность конфигураций образует цепь Мар­

кова, равновесное распределение которой соответствует распределению Больцмана [172]. Важно

отметить, что метод не ограничивается использованием распределения Больцмана и может быть

обобщен на произвольное распределение𝑊 (R), для которого вычисляются средние значения.
Эффективность генерации конфигураций играет ключевую роль в успешном применении

метода МК. Одним из способов повышения эффективности является динамический выбор пара­

метраΔMC, который определяет максимальное смещение частицы на каждом шаге. Если значение

ΔMC слишком мало, конфигурации будут мало отличаться друг от друга, что приведет к высокой

вероятности принятия новых конфигураций (близкой к 100%). Однако в этом случае алгоритм

будет «топтаться» в ограниченной области фазового пространства, что замедлит сходимость по

конфигурациям. С другой стороны, если ΔMC слишком велико (например, ΔMC = 𝐿⇑2, где 𝐿 —

размер системы), новые конфигурации могут оказаться далекими от равновесных, что приведет к



105

низкой вероятности их принятия, а значит снова очень малой эффективности моделирования.

Эмпирически установлено, что оптимальная эффективность алгоритма достигается при под­

держании доли принятых конфигураций на уровне около 50% [173]. Для этого в процессе модели­

рования можно динамически регулировать параметр ΔMC. Например, каждые 100 шагов вычисля­

ется процент принятых конфигураций. Если этот процент меньше 50%, значение ΔMC уменьша­

ется (например, на 5%); если процент превышает 50%, ΔMC увеличивается. Именно такой подход

используется в данной работе.

В разделе 3.1.3 будет рассмотрено обобщение данного метода на случай интегралов по тра­

екториям, а именно метод МК с интегралами по траекториям (МКИТ). Далее также будет описан

подход к учету взаимодействий между частицами, используемый для расчета потенциальной энер­

гии в рамках модели УУПЭ.

3.1.2. Алгоритм расчета потенциальной энергии с УУПЭ

Напомним, что при расчете потенциальной энергии с использованием УУПЭ (1.102) необ­

ходимо выполнять суммирование по всем частицам, находящимся внутри шара с центром в 𝑖-ой

частице (см. рис. 1.4). Рассмотрим более подробно алгоритм вычисления суммы ∑𝑗∈𝒮(r𝑖)
𝑖≠𝑗

в уравне­

нии (1.102). Стоит отметить, что впервые этот алгоритм был детально описан в работе [54], спустя

7 лет после публикации работы Якуба и Ронки [42].

Основная особенность такого расчета заключается в том, что радиус взаимодействия

𝑟𝑚 ≈ 0.62𝐿 несколько превышает половину длины ячейки 𝐿⇑2. Это приводит к необходимо­

сти учета некоторых частиц «дважды»: во взаимодействие может быть включена как сама 𝑗-ая

частица, так и ее периодическое изображение.

Пример такой ситуации иллюстрируется на рис. 3.1, который соответствует рис. 1 из ста­

тьи [54]. Рассмотрим расчет взаимодействий 𝑖-ой частицы со всеми остальными. Построим шар

радиусом 𝑟𝑚 с центром в точке расположения 𝑖-ой частицы. Также построим кубическую ячей­

ку с центром в частице 𝑖; координаты частиц внутри этой ячейки могут быть легко рассчитаны

с помощью сдвига центра основной ячейки. Частицы «а» и «б» (рис. 3.1) явно попадают как в

кубическую ячейку, так и в шар — взаимодействие с этими частицами необходимо учесть. В то

же время частица «в», хотя и находится внутри кубической ячейки, не попадает в шар, и вза­

имодействие с ней учитывать не нужно. Кроме того, в шар включаются области, выходящие за

пределы кубической ячейки. Например, в такую область попадает периодическое изображение

частицы «б», обозначенное как «б’», взаимодействие с которой также должно быть учтено. Таким

образом, взаимодействие частицы 𝑖 с частицей «б» учитывается «дважды», чего не наблюдается
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Рис. 3.1. Иллюстрация алгоритма расчета взаимодействий с потенциалом, радиус действия которого 𝑟𝑚.
Границы основной ячейки показаны жирным. Радиус большой сферы равен 𝑟𝑚, а маленькой 𝐿−𝑟𝑚. Частица
𝑖 взаимодействует с частицами «а» и «б», а также с изображением «б’». Частица «в» не вносит вклад во
взаимодействие. Серым показаны области, частицы в которых вносят вклад «дважды».

при использовании обычного потенциала Эвальда.

В работе [54] предложен алгоритм расчета всех взаимодействий с учетом выхода за преде­

лы кубической ячейки. Конкретная реализация этого алгоритма, используемая в данной работе,

представлена в виде псевдокода в Алгоритме 1. В Алгоритме 1 используется массив units, содер­

жащий 26 векторов n, состоящих из нулей и ±1. Этот массив применяется для суммирования по

всем соседним ячейкам:

units = {(𝑛𝑥,𝑢, 𝑛𝑦,𝑢, 𝑛𝑧,𝑢)} , (3.4)

где 𝑛𝑥,𝑢, 𝑛𝑦,𝑢, 𝑛𝑧,𝑢 принимают значения ±1 или 0. При этом нулевой вектор 0 = (0,0,0) исключен
из массива units.

Таким образом, если частица имеет периодическое изображение, которое необходимо учесть

(что может выполняться при условии ⋃︀r𝑖𝑗 ⋃︀ > 𝐿−𝑟𝑚), производится суммирование по всем соседним

изображениям с проверкой их нахождения внутри шара. Стоит отметить, что данный алгоритм

может быть дополнительно оптимизирован, так как поиск таких частиц требуется только в об­

ласти, исключенной из сферической области кубической ячейки. В данной работе используется

Алгоритм 1.

Процесс суммирования ∑𝑁𝑠,𝑖
𝑗=1
𝑗≠𝑖

𝑣(𝑟𝑖𝑗) может быть реализован с помощью параллельных вычис­
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Алгоритм 1 Вычисление потенциала и числа частиц𝑁𝑠,𝑖 в шаре 𝒮(r𝑖) для частицы 𝑖 с учетом пери­
одических граничных условий. Функция vec_pbc корректирует вектор расстояния, а 𝜙 вычисляет
УУПЭ.
1: procedure AAEP_potential(r𝑖)
2: 𝑢a𝑖 ← 0 ▷ Инициализация потенциала
3: 𝑁𝑠,𝑖 ← 1 ▷ Инициализация счетчика
4: for 𝑗 = 1,𝑁 ; 𝑗 ≠ 𝑖 do
5: r𝑖𝑗 ← vec_pbc(r𝑖 − r𝑗) ▷ Вычисление вектора расстояния в соответствии с

правилом БИ
6: if ⋃︀r𝑖𝑗 ⋃︀ ≤ 𝑟𝑚 then ▷ Проверка расстояния
7: 𝑢a𝑖 ← 𝑢a𝑖 + 𝜙(r𝑖𝑗) ▷ Добавление вклада в потенциал
8: 𝑁𝑠,𝑖 ← 𝑁𝑠,𝑖 + 1 ▷ Увеличение счетчика
9: if ⋃︀r𝑖𝑗 ⋃︀ > 𝐿 − 𝑟𝑚 then
10: for n in units do ▷ Перебор соседних ячеек
11: q𝑖𝑗 ← r𝑖𝑗 + n𝐿 ▷ Коррекция расстояния
12: if ⋃︀q𝑖𝑗 ⋃︀ ≤ 𝑟𝑚 then
13: 𝑢a𝑖 ← 𝑢a𝑖 + 𝜙(q𝑖𝑗) ▷ Добавление вклада
14: 𝑁𝑠,𝑖 ← 𝑁𝑠,𝑖 + 1 ▷ Увеличение счетчика
15: end if
16: end for
17: end if
18: end if
19: end for
20: return (𝑢a𝑖 ,𝑁𝑠,𝑖) ▷ Возврат результата
21: end procedure

лений. В ходе моделирования методомМК вклады этой суммы распределяются между различными

процессами, что позволяет существенно ускорить вычисления. Подобный подход был рассмотрен

в работе [54].

3.1.3. Метод МК с интегралами по траекториям

В данном разделе рассматривается метод моделирования МК с интегралами по траекториям

(МКИТ). В этом подходе функция распределения принимает более сложный вид по сравнению с

классическим распределением Больцмана, хотя и сохраняет схожие черты:

exp (−𝑆(R0, . . . ,R𝑛+1; 𝑟𝑚, 𝛽)) , (3.5)

𝑆(R0, . . . ,R𝑛+1; 𝑟𝑚, 𝛽) = 𝑆𝐾(R0, . . . ,R𝑛+1;𝛽) + 𝑆𝑈(R0, . . . ,R𝑛+1; 𝑟𝑚, 𝛽), (3.6)

где 𝑆(R0, . . . ,R𝑛+1; 𝑟𝑚, 𝛽)— безразмерное действие, состоящее из кинетического вклада:

𝑆𝐾(R0, . . . ,R𝑛+1;𝛽) =
𝑛

∑
𝑘=0

𝑁

∑
𝑖=1

𝑚𝑖(r𝑖,𝑘 − r𝑖,𝑘+1)2
2ℎ̵2𝜀

(3.7)

и вклада, связанного со взаимодействием:

𝑆𝑈(R0, . . . ,R𝑛+1; 𝑟𝑚, 𝛽) =
𝜀

2

𝑛

∑
𝑘=0

𝑁

∑
𝑖=1

∑
𝑗∈𝒮(r𝑖,𝑘)

𝑖≠𝑗

𝑞𝑖𝑞𝑗Φ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀). (3.8)
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Алгоритм смещения частиц в рамках МКИТ заключается в следующем. На первом этапе

задается случайная начальная конфигурация (R0,R1, . . . ,R𝑛). Например, положения R0 могут

быть заданы случайно, а остальные положения R𝑘 для 𝑘 ≥ 1 могут совпадать с R0. Для этой

конфигурации вычисляются начальные значения кинетической и потенциальной энергии, а также

действия. Затем случайным образом выбирается частица 𝑖, и ее положение изменяется.

Сдвиг частицы происходит в два этапа: сначала частица перемещается как целое на слу­

чайный вектор (то есть все бусины r𝑖,𝑘 сдвигаются на один и тот же вектор для случайного 𝑖),

причем каждая компонента вектора изменяется в пределах (︀−Δcl,Δcl⌋︀. После этого каждая ком­

понента каждой бусины r𝑖,𝑘, где 𝑘 ∈ (︀0, 𝑛⌋︀, дополнительно сдвигается на случайную величину

𝛿MC ∈ (0,
⌈︂
ℎ̵2𝜀⇑𝑚𝑖). В результате формируется новая замкнутая траектория (r′𝑖,0, r′𝑖,1, . . . , r′𝑖,𝑛, r′𝑖,0).

Затем вычисляются изменения действияΔ𝑆 и энергии 𝛽Δ𝐸kin, 𝛽Δ𝐸pot. Новая конфигурация при­

нимается с вероятностью min(1, 𝑒−Δ𝑆).
Однако в данном подходе возникает особенность: бусины, принадлежащие одной частице,

оказываются сильно «связанными» друг с другом, что обусловлено кинетическим вкладом дей­

ствия. Если бусины распределены случайным образом или сосредоточены в одной точке для

частицы 𝑖, такое распределение будет далеким от равновесного. Поэтому перед моделированием

системы с взаимодействием необходимо подготовить начальную конфигурацию, соответствую­

щую распределению невзаимодействующих частиц exp(−𝑆𝐾(R0, . . . ,R𝑛+1;𝛽)). В результате та­

кого моделирования положения бусин быстро достигают равновесного состояния, и последняя

конфигурация может быть использована для дальнейшего моделирования системы с учетом взаи­

модействий.

Необходимо также отметить, что каждая бусина считается «независимой» частицей. Это

означает, что при расчете как потенциального, так и кинетического вкладов в действие использу­

ется правило БИ. Это необходимо для того, чтобы позволить траекториям выходить за пределы

основной ячейки; прямое вычисление разности ⋃︀r𝑖,𝑘 − r𝑖,𝑘+1⋃︀ без использования правила БИ мо­

жет привести к резкому увеличению действия в процессе моделирования. Другими словами, без

применения правила БИ все траектории оказываются «заперты» внутри основной ячейки.

3.1.4. Суммирование взаимодействий с недиагональной матрицей плотности

В классическом методе МК, уравнение (1.102), алгоритм 1 вычисления суммы∑𝑗∈𝒮(r𝑖)
𝑖≠𝑗
≡ ∑𝑁𝑠,𝑖

𝑗=1
𝑖≠𝑗

в потенциальной энергии четко определен. Алгоритм расчета подробно описан в разделе 3.1.2 (см.

также [54]). Однако при вычислении суммы

𝑢Kelbg-AAE(r𝑖) =
𝑛

∑
𝑘=0
∑
𝑗≠𝑖
𝑞𝑗ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀) (3.9)
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возникает неопределенность, связанная с учетом взаимодействия четырех бусин в слагаемом

ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀) из-за взаимодействия на слоях 𝑘 и 𝑘 + 1. Если частицы точечные (𝑛 = 0),

взаимодействуют только те частицы, которые находятся внутри сферы с центром в 𝑖-ой частице.

Для частиц, представленных дискретными траекториями, возможны четыре случая (см. рис. 3.2):

1. ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚 и ⋃︀r𝑖𝑗,𝑘+1⋃︀ ≤ 𝑟𝑚;

2. ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚 и ⋃︀r𝑖𝑗,𝑘+1⋃︀ > 𝑟𝑚;

3. ⋃︀r𝑖𝑗,𝑘⋃︀ > 𝑟𝑚 и ⋃︀r𝑖𝑗,𝑘+1⋃︀ ≤ 𝑟𝑚;

4. ⋃︀r𝑖𝑗,𝑘⋃︀ > 𝑟𝑚 и ⋃︀r𝑖𝑗,𝑘+1⋃︀ > 𝑟𝑚.

Для первого и четвертого случаев процедура расчета очевидна: вклад в сумму (3.9) равен

ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀) ≠ 0 или нулю соответственно. Однако второй и третий случаи порождают

неопределенность: взаимодействие есть на одном слое, но отсутствует на другом. Для проверки

метода расчета были реализованы три варианта: «включающий», «исключающий» и «метод первого

слоя». Обозначим ℱ за вклад в сумму (3.9) для краткости (пропустим аргументы).

Включающий метод учитывает взаимодействие, если оно происходит на любом из слоев:

ℱ =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀), ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚 или ⋃︀r𝑖𝑗,𝑘+1⋃︀ ≤ 𝑟𝑚,

0, иначе.
(3.10)

Исключающий метод учитывает взаимодействие только при его наличии на обоих слоях:

ℱ =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀), ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚 и ⋃︀r𝑖𝑗,𝑘+1⋃︀ ≤ 𝑟𝑚,

0, иначе.
(3.11)

Метод первого слоя учитывает взаимодействие только на слое 𝑘:

ℱ =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀), ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚,

0, иначе.
(3.12)

Метод первого слоя основан на следующих рассуждениях. Действуя матрицей плотности

𝜌(𝛽) из (2.19) на вектор ∐︀R𝑘⋃︀ в случае УУПЭ, получаем:

∐︀R𝑘⋃︀𝜌(𝛽) = ∐︀R𝑘⋃︀𝑒−𝛽𝑈̂
𝑎

𝑒−𝛽𝐾̂ + ∐︀R𝑘⋃︀𝑒−𝛽𝑈̂
𝑎

𝑒−𝛽𝐾̂
𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒𝛽1𝐾̂𝑈̂𝑎𝑒−𝛽1𝐾̂)𝑑𝛽1. (3.13)

Если ⋃︀r𝑖𝑗,𝑘⋃︀ > 𝑟𝑚, второе слагаемое в уравнении (3.13) обращается в ноль, так как при ⋃︀r𝑖𝑗,𝑘⋃︀ > 𝑟𝑚
парная часть равна нулю, то есть 𝑈̂𝑎 = 𝑈𝑎

0 . Таким образом, величина ∐︀R𝑘⋃︀𝜌(𝛽) в (3.13) может быть
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записана как:

∐︀R𝑘⋃︀𝜌(𝛽) = ∐︀R𝑘⋃︀𝑒−𝛽𝑈̂
𝑎

𝑒−𝛽𝐾̂ +

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

∐︀R𝑘⋃︀𝑒−𝛽𝑈̂𝑎
𝑒−𝛽𝐾̂

𝛽∫
0

𝛽1
𝑑

𝑑𝛽1
(𝑒𝛽1𝐾̂𝑈̂𝑎𝑒−𝛽1𝐾̂)𝑑𝛽1, если ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚,

0, если ⋃︀r𝑖𝑗,𝑘⋃︀ > 𝑟𝑚,
(3.14)

так как производная от единичного оператора, который возникает при подстановке 𝑈̂𝑎 = 𝑈𝑎
0 , равна

нулю. После проекции ∐︀R𝑘⋃︀𝜌(𝛽) на ⋃︀R𝑘+1̃︀ получаем:

∐︀R𝑘⋃︀𝜌(𝛽)⋃︀R𝑘+1̃︀ =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

Уравнение (2.34), если ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚,

𝑒−𝛽𝑈
𝑎
0 ∐︀R𝑘⋃︀𝑒−𝛽𝐾̂ ⋃︀R𝑘+1̃︀, если ⋃︀r𝑖𝑗,𝑘⋃︀ > 𝑟𝑚.

(3.15)

Преобразование из верхней строки уравнения (3.14) в верхнюю строку уравнения (3.15) было

кратко описано в разделе 2.1.1 (см. подробности в работе [162]). Нижняя строка уравнения (3.15)

соответствует уравнению (2.34), если Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) = 0. Таким образом, если ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚, вклад в

сумму (3.9) отличен от нуля, а если ⋃︀r𝑖𝑗,𝑘⋃︀ > 𝑟𝑚, вклад равен нулю. Это обосновывает метод первого
слоя, представленный в уравнении (3.12).

rm

ri,k r j,k

ri,k+1 r j,k+1
rm

ri j,k

ri j,k+1

i-ая частица j-ая частица

Figure 1: Schematic illustration of the first-layer method (??). The distance be-
tween the beads on the kth layer is smaller than rm and larger on the k+1th layer.
In this case the contribution to potential energy equals to Φ(ri j,k , ri j,k+1; rm, ϵ).
This is how we resolve the uncertainty in the case when the beads on only one
of the layers interact. The distances |ri,k − ri,k+1 | and |r j,k − r j,k+1 | are greatly
magnified for better illustration.

1

Рис. 3.2. Схематическая иллюстрация метода
первого слоя (3.12). Расстояние между бусина­
ми на 𝑘-м слое меньше 𝑟𝑚, а на (𝑘 + 1)-м слое
больше. В этом случае вклад в потенциальную
энергию равенℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜀). Расстояния
⋃︀r𝑖,𝑘−r𝑖,𝑘+1⋃︀ и ⋃︀r𝑗,𝑘−r𝑗,𝑘+1⋃︀ увеличены для нагляд­
ности.
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Рис. 3.3. Среднее число взаимодействий в ходе модели­
рования МКИТ как функция 𝑛 для трех методов: вклю­
чающего (3.10), исключающего (3.11) и метода первого
слоя (3.12).

Для проверки методов рассмотрим среднее число взаимодействий

∐︀𝑁int(r𝑠)̃︀ = ̂︂
1

𝑛 + 1
𝑛

∑
𝑘=0
∑
𝑗𝑒

𝑗𝑒≠𝑠

1(r𝑠𝑗𝑒,𝑘, r𝑠𝑗𝑒,𝑘+1; 𝑟𝑚, 𝜀)]︁ (3.16)

между электронами в ходе моделирования МКИТ для фиксированных положений протонов при
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Γ = 𝑟𝑠 = 1 и 𝑁𝑒 = 50. Здесь 𝑠 — номер электрона, выбранного для перемещения на текущем

шагеМК, 𝑗𝑒 нумерует электроны, а r𝑠𝑗𝑒,𝑘 = r𝑠,𝑘 − r𝑗𝑒,𝑘. Индикатор 1(r𝑠𝑗𝑒,𝑘, r𝑠𝑗𝑒,𝑘+1; 𝑟𝑚, 𝜀) показывает,
учитывается ли взаимодействиемежду бусинами r𝑠,𝑘, r𝑗𝑒,𝑘, r𝑠,𝑘+1, r𝑗𝑒,𝑘+1 согласно одному изметодов

(3.10)–(3.12).

Для выбора метода, позволяющего устранить неопределенность, используются следующие

утверждения. Среднее число взаимодействий должно быть близко к числу соседей в кубической

ячейке, 𝑁𝑒 − 1. Также предпочтительно использовать метод, результаты которого слабо зависят от

параметра 𝑛. Результаты расчетов представлены на рис. 3.3.

В данном случае параметр 𝜒 ≈ 3.76, что указывает на необходимость учета обменных эффек­
тов для электронов. Расчеты без антисимметризации приведены исключительно для демонстрации

различий в количестве взаимодействий, которые проявляются особенно ярко при большом «раз­

махе» траекторий (то есть при достаточно большом параметре вырождения 𝜒).

Наблюдается, что три метода дают идентичные результаты при 𝑛 = 0. При увеличении 𝑛

включающий метод (3.10) завышает число взаимодействий по сравнению с 𝑁𝑒 − 1, тогда как ис­

ключающий метод (3.11) занижает это значение. В третьем подходе (3.12) число взаимодействий

слабо изменяется с ростом 𝑛 и остается близким к среднему значению 𝑁𝑒 − 1. Также видно, что с

увеличением 𝑛 среднее число взаимодействий стремится к 𝑁𝑒 − 1 во всех случаях.
Таким образом, в качестве наиболее надежного и слабо зависящего от числа разбиений 𝑛

метода используется метод первого слоя. Только этот метод применяется в данной работе. Все,

сказанное выше, относится также и к расчету действия. Следует отметить, что включающий и ис­

ключающий методы могут давать корректный результат при увеличении 𝑛, поскольку r𝑖𝑗,𝑘+1 → r𝑖𝑗,𝑘
при 𝑛 → ∞, однако их сходимость по 𝑛 может быть медленнее по сравнению с методом первого

слоя.

3.2. Классическая и квазиклассическая молекулярная динамика

Как уже упоминалось, рассчитывать средние можно не только по конфигурациям, сгенериро­

ванным в соответствии с некоторым заданным распределением, но также полученным с помощью

решения уравнений движения Ньютона (3.2):

𝑚𝑖r̈𝑖(𝑡) = f𝑖(𝑡) = −(
𝜕𝑈(R)
𝜕r𝑖

)
𝑇,𝑉

. (3.17)

Однако тогда возникает вопрос об интегралах движения, так как решение уравнения Ньютона

для замкнутой системы сохраняет ее полную энергию, что соответствует 𝑁𝑉 𝐸 ансамблю, когда в

данной работе основной интерес представляют расчеты прификсированной температуре, особенно

в случае использования псевдопотенциала Кельбга, который содержит температуру в качестве
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параметра.

Для того, чтобы получаемые в результате решения уравнения движения конфигурации со­

ответствовали 𝑁𝑉 𝑇 ансамблю, а не 𝑁𝑉 𝐸, необходимо ввести дополнительные силы, которые

будут поддерживать температуру, близкую к заданной; иначе говоря, необходимо использовать

термостат. Наиболее обоснованным является термостат Нозе–Гувера [174], так как такой метод

гарантирует соответствие полученных траекторий 𝑁𝑉 𝑇 ансамблю.

Метод Нозе–Гувера основан на расширении фазового пространства системы за счет введения

фиктивной переменной 𝜁 , которая играет роль «тепловой ванны», замедляя или ускоряя движе­

ния реальных частиц. Таким образом, рассматривается следующий гамильтониан расширенной

системы:

𝐻ext(P,R, 𝜁, 𝜂) =𝐾(P) +𝑈(R) + 𝑚𝑄𝜁2

2
+ 𝑔𝑘𝐵𝑇 𝜂 ≡𝐻(P,R) + 𝑚𝑄𝜁2

2
+ 𝑔𝑘𝐵𝑇 𝜂. (3.18)

Уравнения движения при этом модифицируются следующим образом:

ṙ𝑖 =
p𝑖

𝑚𝑖

, (3.19)

ṗ𝑖 = f𝑖 − 𝜁p𝑖, (3.20)

𝜂̇ = 𝜁, (3.21)

𝜁 = 2

𝑚𝑄

(
𝑁

∑
𝑖=1

p2
𝑖

2𝑚𝑖

− 𝑔𝑘𝐵𝑇
2

) , (3.22)

где 𝑚𝑄 — параметр, определяющий инерционность термостата, 𝑇 — заданная температура, а

𝑔𝑘𝐵𝑇 ⇑2 соответствует средней кинетической энергии системы в каноническом ансамбле. Пара­

метр 𝑔 есть число степеней свободы системы в моделировании1. Интегрирование уравнений (3.19)

гарантирует, что на траекториях для полного фазового пространства (P(𝑡),R(𝑡);𝑝𝑠(𝑡), 𝑠(𝑡)) бу­

дет сохраняться полная энергия расширенной системы, тогда как на траекториях из фазового

пространства реальных частиц (P(𝑡),R(𝑡)) будет сохраняться температура. Можно построить

аналогичные схемы и для других ансамблей, например, 𝑁𝑃𝑇 [19].

Для интегрирования уравнений движения используется схема Верле [175], которая обеспе­

чивает сохранение полной энергии системы. Этот метод основан на разложении координат частиц

в ряд Тейлора по времени, что позволяет аппроксимировать их положение на следующем шаге

интегрирования:

r(𝑡 +Δ𝑡) = r(𝑡) +Δ𝑡ṙ(𝑡) + (Δ𝑡)
2

2
r̈(𝑡) + (Δ𝑡)

3

6

...r (𝑡) +𝑂((Δ𝑡)4), (3.23)

r(𝑡 −Δ𝑡) = r(𝑡) −Δ𝑡ṙ(𝑡) + (Δ𝑡)
2

2
r̈(𝑡) − (Δ𝑡)

3

6

...r (𝑡) +𝑂((Δ𝑡)4). (3.24)

Сложив эти два уравнения, можно исключить слагаемые, содержащие первую и третью производ­
1 Зачастую, 𝑔 = 3(𝑁 − 1), так как схема моделирования предполагает сохранение положения центра масс.



113

ные, что приводит к следующей формуле для вычисления координат:

r(𝑡 +Δ𝑡) = 2r(𝑡) − r(𝑡 −Δ𝑡) + (Δ𝑡)2r̈(𝑡) +𝑂((Δ𝑡)4). (3.25)

Метод Верле демонстрирует долговременное сохранение энергии [176], что делает его популярным

в программах для молекулярной динамики. Важно отметить, что этот метод обладает вторым

порядком аппроксимации, при этом силы, действующие на частицы, нужно вычислять на каждом

шаге лишь один раз. В данной работе используется схема Верле с термостатом Нозе–Гувера,

реализованная в пакете LAMMPS.

Отметим, что в уравнении (3.17) в качестве сил используется градиент потенциальной энер­

гии классической системы 𝑈(R). Такой подход применим для систем без связанных состояний,

требующих квантового описания. Например, он подходит для моделирования однокомпонентной

классической плазмы. Однако при моделировании водородной плазмы прямое применение этого

подхода может привести к некорректным результатам: электрон, приближаясь к протону, может

ускоряться из-за больших сил притяжения на малых расстояниях, что, в сочетании с численными

ошибками, может привести к разрушению связанного состояния. Такое поведение не является

физически корректным.

Для применения такойже схемымоделирования в случае невырожденной водородной плазмы,

необходимо в качестве сил использовать градиенты псевдопотенциалов. Так, силы между электро­

нами и протонами, f𝑒𝑝, двумя электронами, fS(T)𝑒𝑒 , и двумя протонами, f𝑝𝑝, задаются следующими

уравнениями (см. также раздел 2.3):

f𝑒𝑝 = 𝑒2∇ΦI
𝑒𝑝(r, r; 𝑟𝑚, 𝛽), (3.26)

fS𝑒𝑒 = −𝑒2∇ΦS
𝑒𝑒(r, r; 𝑟𝑚, 𝛽), (3.27)

fT𝑒𝑒 = −𝑒2
𝑟2

(𝑟 − 𝛼T
𝑒𝑒𝜆𝑒𝑒)2

∇ΦI
𝑒𝑒(r, r; 𝑟𝑚, 𝛽) +

1

𝛽
∇ ln(1 − exp ]︀−𝑚𝑒𝑟2

ℎ̵2𝛽
{︀) , (3.28)

f𝑝𝑝 = −𝑒2∇Φ(r, r; 𝑟𝑚, 𝛽), (3.29)

где улучшенный псевдопотенциал Кельбга-УУЭ определен в уравнении (2.82). Отметим, что в

уравнениях движения силы представляют собой градиенты псевдопотенциалов, вычисленных при

фиксированных 𝛽 и 𝑉 ; именно они определяют траектории частиц и структуру системы. Термо­

динамические функции, напротив, учитывают явную зависимость псевдопотенциала от 𝛽 и 𝑉 ,

входящую в больцмановский вес. В соответствии с этим энергия системы и давление вычисля­

ются по стандартным формулам для зависимых от температуры и объема псевдопотенциалов,

что приводит к дополнительным слагаемым (𝜕ΦI(𝑟;𝛽)⇑𝜕𝛽)𝑉 и (𝜕ΦI(𝑟;𝛽)⇑𝜕𝑉 )𝛽 . Таким образом

обеспечивается термодинамическая согласованность.

Помимо этого, в качестве сил протон-протонного взаимодействия можно рассматривать не
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Таблица 3.1. Выбранные значения параметра 𝛼T
𝑒𝑒 в силах взаимодействия между электронами с одинаковой

проекцией спина. Было выбрано минимальное значение, предотвращающее образование связанных состоя­
ний электронов с одинаковой проекцией спина (см. раздел 2.3.2).

Γ 0.1 0.25 0.4 0.5 0.65 0.8 1 1.5 2 2.5 3
𝛼T
𝑒𝑒 0 0 1 1 1.25 1.5 1.75 2.25 3 4 5

квантовый псевдопотенциал, а классический потенциал взаимодействия, так как тепловая длина

волны де Бройля намного меньше, чем расстояния между протонами. В данной работе в качестве

межпротонных сил используется псевдопотенциал Кельбга (2.50) (без улучшения).

3.3. Зависимость от числа частиц и анализ погрешности

При проведении моделирования начальная конфигурация выбирается случайным образом,

и ее энергия, как правило, не соответствует равновесной. В процессе моделирования энергия

системы значительно изменяется до некоторого момента, после чего начинает осциллировать

около среднего значения (см. рис. 3.4). Этот момент считается началом равновесного участка.

Поскольку строгий критерий выхода на равновесие отсутствует, появление равновесного участка

определяется «на глаз». Таким образом, начальные конфигурации, не соответствующие равновес­

ному состоянию, отбрасываются, а оставшийся равновесный участок используется для расчета

средних значений искомых величин и их статистических погрешностей.

Для вычисления среднего значения энергии и ее статистической ошибки применяется метод

блочного усреднения [177, Глава 11.4]. Равновесная часть моделирования разбивается на 𝑛𝑏 блоков

(см. рис. 3.4), каждый из которых содержит 𝑚tot⇑𝑛𝑏 значений энергии. Среднее значение энергии

для каждого блока вычисляется как:

𝐸̄(𝑙) = 1

𝑚tot⇑𝑛𝑏

𝑙×𝑚tot⇑𝑛𝑏

∑
𝑚=(𝑙−1)×𝑚tot⇑𝑛𝑏

𝑈(R𝑚), (3.30)

где 𝑙 = 1, . . . , 𝑛𝑏 — номер блока. Общее среднее значение энергии определяется как среднее по

всем блокам:

𝐸 = 1

𝑛𝑏

𝑛𝑏

∑
𝑙=1
𝐸̄(𝑙) = 1

𝑚tot

𝑚tot

∑
𝑚=1

𝑈(R𝑚). (3.31)

Статистическая ошибка энергии на одну частицу, 𝛽𝐸⇑𝑁 , оценивается как корень из дисперсии

средних значений по блокам:

𝜎𝐸 =
1

𝑁

⟨
⧸︂⧸︂⟩ 1

𝑛𝑏 − 1
𝑛𝑏

∑
𝑙=1

(𝛽𝐸̄(𝑙) − 𝛽𝐸)2. (3.32)

В данной работе участок моделирования обычно разбивается на 5 частей.

Для получения термодинамического предела𝑁 →∞ зависимость 𝛽𝐸⇑𝑁 от 1⇑𝑁 необходимо

аппроксимировать и вычислить предел при 1⇑𝑁 → 0. В работах [72; 178] по моделированию
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Рис. 3.4. Характерное поведение энергии при моделировании. В данном случае, представлена зависимость
потенциальной энергии ОКП 𝛽𝐸𝑎

OCP⇑𝑁 для 106 частиц при Γ = 0.1 в моделировании МК. Вертикальная
пунктирная красная линия обозначает начало равновесного участка. Зеленые сплошные вертикальные линии
показывают разбиение равновесного участка на блоки. Зависимость энергии в моделировании методом МД
имеет схожий вид.

ОКП утверждается, что при 𝑁 → ∞ в случае малого взаимодействия зависимость 𝛽𝑁−1𝐸OCP(𝑁)
принимает следующий вид:

𝛽𝐸OCP

𝑁
(𝑁) − (𝛽𝐸OCP⇑𝑁)∞ ∼ 𝑁−2⇑3, Γ→ 0. (3.33)

Для случая Γ ≫ 1 авторы работ [72; 178] используют аппроксимацию вида 𝛽𝑁−1𝐸OCP(1⇑𝑁) =
(𝛽𝐸OCP⇑𝑁)∞ + 𝑏(1⇑𝑁2⇑3), а также ее квадратичный аналог. В данной работе в случае ОКП исполь­

зуется следующая функция для всех значений Γ и 𝑁 :
𝛽𝐸OCP

𝑁
(1⇑𝑁) = (𝛽𝐸OCP⇑𝑁)∞ + 𝑏 (1⇑𝑁)𝛾 . (3.34)

Значения параметров (𝛽𝐸OCP⇑𝑁)∞, 𝑏 и 𝛾 определяются из процедуры аппроксимации. Хотя не

существует теоретического обоснования данного приближения (3.34), полученные данные хорошо

аппроксимируются с помощью этой формулы (см. рис. 4.3).

В случае водородной плазмы значительный вклад в энергию вносят связанные состояния,

из-за чего можно ожидать существенно иного поведения зависимости энергии от числа частиц.

Опытным путем удалось выяснить, что линейная и квадратичная аппроксимации неплохо описы­

вают полученные из моделирования данные:
𝛽𝐸

𝑁
(1⇑𝑁) = (𝛽𝐸⇑𝑁)∞ + 𝑏(1⇑𝑁) + 𝑐(1⇑𝑁)2, (3.35)

где в линейном случае необходимо установить 𝑐 = 0.
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Рассмотрим свойства аппроксимации зависимости от числа частиц, представленной форму­

лой (3.34). Для наглядности на рис. 3.5 приведены графики, иллюстрирующие поведение (3.34) для

различных значений параметра 𝛾 при фиксированных параметрах 𝑏⇑Γ = −1 и (𝛽𝐸⇑𝑁)∞⇑Γ = −0.5;
для удобства пропустим индекс OCP. Анализ графиков позволяет сделать вывод, что с увеличе­

нием значения 𝛾 зависимость от числа частиц 𝑁 становится слабее. Напротив, при уменьшении

𝛾 зависимость от 𝑁 усиливается. В случае, когда 𝛾 < 1, функция (3.34) демонстрирует резкое

изменение при стремлении 1⇑𝑁 к нулю, что особенно хорошо видно на вставке к рис. 3.5.

Для более детального анализа скорости сходимости по 𝑁 и характера зависимости от числа

частиц рассмотрим производную 𝜕(𝛽𝐸⇑𝑁)⇑𝜕𝑁−1 функции (3.34):

𝜕(𝛽𝐸⇑𝑁)
𝜕𝑁−1

= 𝑏𝛾 ( 1

𝑁
)
𝛾−1
ÐÐÐ→
1⇑𝑁→0

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

0, 𝛾 ≥ 1

sign(𝑏𝛾) ×∞, 𝛾 < 1.
(3.36)

Из данного выражения следует, что вблизи термодинамического предела можно выделить два

случая: 𝛾 ≥ 1 и 𝛾 < 1. В первом случае (𝛾 ≥ 1) производная стремится к нулю при 𝑁 → ∞,

что указывает на слабую зависимость от числа частиц. Во втором случае (𝛾 < 1) производная

стремится к бесконечности, что свидетельствует о сильной зависимости от 𝑁 . Таким образом,

предпочтительным является вариант, при котором 𝛾 ≥ 1.
В работах Кайоль и соавторов (см. уравнение (2.4) в [72] и уравнение (4.6) в [178]) было

показано, что 𝛾 → 2⇑3 при Γ → 0 и 1⇑𝑁 → 0. Это накладывает нижний предел на значение 𝛾 в

зависимости (3.34), а также подчеркивает необходимость использования относительно большого

числа частиц в области Γ≪ 1 для достижения надежного термодинамического предела.

3.4. Параметры МД моделирования водородной плазмы

При моделировании водородной плазмы в программе LAMMPS необходимо использовать

безразмерные величины. Иначе говоря, необходимо задать некоторые единицы изменения, напри­

мер, энергии и расстояния. В данной работе энергия измеряется в единицах 𝜀, длина измеряется

в единицах 𝜎, а масса в единицах𝑚, которые определены следующим образом:

𝜀 = 𝑒2⇑𝑟𝑎, 𝜎 = 𝑟𝑎, 𝑚 =𝑚𝑒. (3.37)

Фактически это означает использование единиц измерений типа Леннарда–Джонса, хотя (псев­

до)-потенциал взаимодействия имеет другую форму записи.

Помимо этого удобно вспомнить атомные единицы измерения энергии, длины и времени:

𝐸𝐻 = 𝑒2⇑𝑎𝐵, 𝑎𝐵 = ℎ̵2⇑(𝑚𝑒𝑒
2), 𝑡at = ℎ̵⇑𝐸𝐻 , (3.38)

чтобы связать, например, реальное время с временем в LAMMPS. Например, шаг по времениΔ𝑡L,
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Рис. 3.5. Иллюстрация зависимости от числа частиц 𝑁 , определяемой уравнением (3.34), в логарифмиче­
ском масштабе для различных значений 𝛾. На вставке в нижнем левом углу приведены те же функции в
линейном масштабе, что позволяет наглядно продемонстрировать усиление зависимости от 𝑁 при умень­
шении 𝛾 при 1⇑𝑁 → 0. На правой вертикальной оси отложена величина (︀(𝛽𝐸⇑𝑁)⇑(𝛽𝐸⇑𝑁)∞ − 1⌋︀ × 100%,
которая представляет собой разницу между потенциальной энергией при конечном 𝑁 и ее значением в
термодинамическом пределе. Аналогичные зависимости для результатов метода МК представлены на рис.
4.3(а)-(г).

который указывается во входном файле моделирования, можно связать с шагом по времени Δ𝑡,

измеренным в секундах, следующим образом:

Δ𝑡 =Δ𝑡L
}︂

𝑚𝜎2

𝜀
= 𝑡atΔ𝑡L

}︂
9𝜋Γ3

2𝜒2
. (3.39)

Любой промежуток времени моделирования и времени, измеренного в секундах, связаны коэф­

фициентом 𝑡at
⌈︂
9𝜋Γ3⇑(2𝜒2).

Помимо этого, плазма обладает некоторым характерным временем релаксации внутренних

процессов, который отражает период плазменных колебаний. Эту величину можно записать для

электронов и для протонов. Таким образом, для того, чтобы получить корректный результат, время

моделирования должно быть много больше, чем период плазменных колебаний самых тяжелых ча­

стиц (в данном случае— протонов). При этом шаг моделированияΔ𝑡L выбирается таким образом,

чтобы температура системы сохранялась, а остальные термодинамические параметры (например,

энергия) не испытывали сильных скачков.

Выразим период плазменных колебаний в единицах атомного времени через параметры плаз­

мы Γ и 𝜒. Плазменная частота для электронов и соответствующий им период плазменных колеба­
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ний:

𝜔𝑒 =
⌈︂
4𝜋𝑛𝑒𝑒2⇑𝑚𝑒, 𝜏𝑒 = 2𝜋⇑𝜔𝑒. (3.40)

Подставляя теперь концентрацию электронов из уравнения (1.4), получаем связь периода плаз­

менных колебаний и параметров плазмы:

𝜏𝑒 = 𝑡𝑎𝑡
⌋︂
6𝜋3Γ3⇑𝜒, 𝜏𝑝 =

⌈︂
𝑚𝑝⇑𝑚𝑒𝜏𝑒. (3.41)

Плазменный период колебаний для протонов в
⌈︂
𝑚𝑝⇑𝑚𝑒 раз больше, чем для электронов. Отметим,

что отношение масс в моделировании отличается от реального (см. раздел 5.2.1; при моделирова­

нии МД используется соотношение𝑚𝑝⇑𝑚𝑒 = 200).
В результате, если в ходе моделирования было произведено 𝑚tot шагов, то полное время

моделирования относится к периоду электронных колебаний следующим образом:
𝑚totΔ𝑡

𝜏𝑒
=
⌋︂
3

2𝜋
𝑚totΔ𝑡

L, 𝜔𝑒Δ𝑡 =
⌋︂
3Δ𝑡L. (3.42)

Для протонного времени колебаний:
𝑚totΔ𝑡

𝜏𝑝
=
⌈︂
𝑚𝑒⇑𝑚𝑝

⌋︂
3

2𝜋
𝑚totΔ𝑡

L, 𝜔𝑝Δ𝑡 =
⌈︂
3𝑚𝑒⇑𝑚𝑝Δ𝑡

L. (3.43)

Оба этих числа должны быть много больше единицы. Так как второе требование на протонное

время более жесткое, получаем следующее соотношение, которое должно быть удовлетворено:

𝑚tot ≫
2𝜋⌋︂
3Δ𝑡L

⌈︂
𝑚𝑝⇑𝑚𝑒. (3.44)

Таким образом, следует выбирать число шагов как минимум порядка 20𝜋
⌈︂
𝑚𝑝⇑𝑚𝑒⇑(

⌋︂
3Δ𝑡L).

Как хорошо видно, число шагов обратно пропорционально шагу по времени. Невырожденный

режим предполагает малость параметра вырождения, 𝜒 ≪ 1. Однако, если выбрать очень малень­

кий параметр вырождения, в моделировании МД приходится выбрать очень маленький шаг из-за

увеличения скорости вращения электрона вокруг протона, что значительно увеличивает трудоем­

кость расчета. Покажем это следующим образом.

Характерная скорость вращения электрона по орбите в атоме водорода 𝑣𝑒 = ℎ̵⇑(𝑚𝑒𝑎𝐵). В
моделировании за единицу измерения скорости отвечает величина

⌈︂
𝜀⇑𝑚. Тогда безразмерная

скорость вращения электрона имеет вид:

𝑣𝑒
⌈︂
𝑚⇑𝜀 = ℎ̵

𝑚𝑒𝑎𝐵
×
{︂
𝑚𝑒𝑟𝑎
𝑒2
= ⌋︂𝑟𝑠 ∝

Γ1⇑2

𝜒1⇑3 . (3.45)

Таким образом, чем меньше параметр вырождения, тем выше скорость вращения электронов в без­

размерных единицах моделирования. А значит, необходимо уменьшать шаг моделирования для

описания более «крутой» траектории вращения. Таким образом, существует некоторое ограниче­

ние снизу на величину параметра вырождения. В качестве оптимального параметра в данной работе

выбрано значение 𝜒 = 10−2. Этот параметр, с одной стороны, является достаточно малым, чтобы
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эффектами обмена можно было пренебречь, а с другой достаточно большим, чтобы удовлетворить

условию (3.44).

3.5. Алгоритм расчета состава и степени ионизации водородной плазмы

Так как электроны и протоны представлены точками, в ходе моделирования становится воз­

можным различать свободные частицы, атомы, молекулы и заряженные комплексы. Это позволяет

рассчитать состав водородной плазмы и определить степень ионизации, представляющей собой

долю электронов, находящихся в свободном состоянии.

Для решения этой задачи применяется кластерный анализ. Суть его заключается в следу­

ющем: если расстояние между двумя частицами меньше заданного порогового значения, то эти

частицы относятся к одному кластеру. Для расстояния между электронами и протонами вводит­

ся параметр 𝑑𝐻 , а для расстояния между протонами — параметр 𝑑𝐻𝐻 . Эти величины являются

входными параметрами алгоритма и задаются вручную.

Перед началом расчета состава системы опишем метод выбора значений параметров 𝑑𝐻 и

𝑑𝐻𝐻 . Для этого вычисляются радиальные функции распределения для пар протон-электрон 𝑔𝑝−𝑒(𝑟)
и протон-протон 𝑔𝑝−𝑝(𝑟). Далее указанные функции умножаются на 4𝜋𝑟2, чтобы получить плот­

ность вероятности нахождения частицы в сферическом слое на расстоянии 𝑟 от данной частицы.

Характерные графики этих функций приведены на рис. 3.6.

Для определения значений параметров 𝑑𝐻 и 𝑑𝐻𝐻 сначала на графике функции 4𝜋𝑟2𝑔(𝑟) на­
ходится максимум, что задает положение пика. Затем определяется, в какой точке слева от пика

функция становится равной нулю, что называется левымнулемпика. Расстояниемежду этим левым

нулем и положением самого пика определяет полуширину пика. Затем от левого нуля откладывает­

ся удвоенная полуширина пика, и полученное значение принимается за 𝑑𝐻 или 𝑑𝐻𝐻 в зависимости

от типа функции распределения (𝑔𝑝−𝑒(𝑟) или 𝑔𝑝−𝑝(𝑟) соответственно). В тех случаях, когда после

пика, соответствующего связанному состоянию, функция резко падает до нуля (что бывает при

высоких неидеальностях), за значение 𝑑𝐻 или 𝑑𝐻𝐻 принимают не удвоенную полуширину пика, а

положение правого нуля — то есть той точки, где функция после пика снова становится равной

нулю. В некоторых случаях параметр 𝑑𝐻𝐻 также может быть определен непосредственно по виду

функции распределения аналогичным образом.

Рассмотрим теперь конкретную конфигурацию протонов и электронов в некоторый момент

времени. Формально, эти частицы могут образовывать следующие структуры:

• 𝐻+ — свободный протон;
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Рис. 3.6. Иллюстрация алгоритма выбора расстояний 𝑑𝐻 и 𝑑𝐻𝐻 . Синей и красной сплошными линиями
показаны 4𝜋𝑟2𝑔(𝑟) в случае электрон-протон и протон-протон соответственно. Для наглядности процедуры
пунктирными линиями изображены положения пиков в Гауссовой форме; при этом совпадение пунктирной
линии и сплошной не требуется. В данном случае, «правый нуль» соответствует пунктирным линиям.

• 𝐻 — нейтральный атом, состоящий из одного электрона и одного протона;

• 𝐻− — заряженный комплекс, состоящий из одного протона и двух электронов;

• 𝐻2 — нейтральная молекула, состоящая из двух протонов и двух электронов;

• 𝐻+2 — заряженный комплекс, состоящий из двух протонов и одного электрона;

• 𝐻+3 — заряженный комплекс, состоящий из трех протонов и двух электронов;

• 𝐻2+
3 — заряженный комплекс, состоящий из трех протонов и одного электрона.

Кроме того, в системе могут присутствовать свободные электроны, не входящие в состав перечис­

ленных структур.

Алгоритм определения состава системы состоит из нескольких этапов. Изначально имеется

список всех протонов и электронов. На первом шаге для каждого протона находится ближайший

электрон. Если расстояние между ними меньше 𝑑𝐻 , они объединяются в атом 𝐻 , после чего обе

частицы исключаются из списка доступных протонов и электронов. В результате формируется
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список «первичных» атомов, а также списки оставшихся свободных протонов и электронов (в том

числе, эти списки могут быть пусты).

На втором этапе рассматриваются полученные первичные атомы. Пары атомов, протоны

которых находятся на расстоянии, меньшем 𝑑𝐻𝐻 , объединяются в молекулы 𝐻2. Использованные

атомы исключаются из списка первичных, в результате чего формируются список первичных

молекул и список оставшихся первичных атомов.

Далее осуществляется поиск комплексов𝐻+2 . Для этого среди оставшихся первичных атомов

и свободных протонов находятся такие пары, расстояние между протонами в которых меньше

𝑑𝐻𝐻 . Найденные комбинации объединяются в комплексы 𝐻+2 , которые также исключаются из

дальнейшего рассмотрения.

Аналогичным образом определяются комплексы 𝐻+3 и 𝐻2+
3 . Для поиска 𝐻+3 рассматривают­

ся молекулы 𝐻2 и свободные протоны. Если расстояние между одним из протонов молекулы и

свободным протоном меньше 𝑑𝐻𝐻 , частицы объединяются в комплекс 𝐻+3 . При определении 𝐻2+
3

проверяется расстояние между протонами комплексов𝐻+2 и оставшимися свободными протонами.

Все использованные соединения исключаются из списка доступных.

Последним шагом является обнаружение отрицательно заряженных ионов 𝐻−. Для этого

проверяется расстояние между оставшимися атомами и свободными электронами: если оно мень­

ше 𝑑𝐻 , формируется комплекс 𝐻−. Протоны и электроны, не вошедшие в комплексы, считаются

свободными.

Для расчета процентного содержания каждого типа комплексов определяется доля протонов,

содержащихся в данных комплексах, от общего числа протонов в системе. Например, если найдено

12 молекул 𝐻2, то в них содержится 24 протона. При общем числе протонов, равном 100, доля

молекул составляет 24%. Аналогично рассчитываются доли остальных соединений. Суммарная

доля всех комплексов составляет 100%. Степень ионизации определяется как отношение числа

свободных электронов к общему числу электронов в системе. Полученные значения усредняются

по всем временнымшагам молекулярно-динамического моделирования, что позволяет определить

равновесный состав водородной плазмы.

Этот алгоритм был реализован автором данной работы на языке Python. Для поиска частиц на

некотором заданном расстоянии используется KD-дерево из пакета scipy. При расчете расстояний

учитываются ПГУ.
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3.6. Заключение главы

В данной главе были рассмотрены методы моделирования ОКП и водородной плазмы в ка­

ноническом ансамбле, а именно методы молекулярной динамики и Монте–Карло, в том числе с

интегралами по траекториям. Были рассмотрены особенности суммирования взаимодействия в

случае УУПЭ в классическом и квантовом случаях, когда для расчета вероятности конфигурации

и термодинамических величин используется матрица плотности. Также был рассмотрен способ

аппроксимации зависимости энергии от числа частиц, расчет термодинамического предела и ста­

тистической погрешности результатов.

В случае МД обсуждались некоторые особенности при моделировании водородной плазмы, а

именно ограничения на малость параметра вырождения, длины траекторий и единиц измерения в

LAMMPS. Также детально был рассмотрен алгоритм расчета состава водородной плазмы.
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Глава 4

Результаты моделирования однокомпонентной плазмы

В 1966 году первое масштабное численное исследованиеОКПбыло выполнено Брашем, Сали­

ном и Теллером с использованием метода Монте-Карло [55]. Авторы рассчитали термодинамиче­

ские свойства и радиальные функции распределения в диапазоне 0.05 ≤ Γ ≤ 100, соответствующем

жидкому состоянию (точнее говоря, флюиду, так как переход газ–жидкость отсутствует в модели

ОКП). Однако использовалось малое число частиц 𝑁 ≤ 500, что особенно критично при Γ ≪ 1,

когда длина Дебая становится большой [72]; термодинамический предел не рассматривался.

В 1973 году была опубликована известная работа Хансена [39], в которой уравнение состоя­

ния жидкой ОКП было построено на основе данных МК моделирования в диапазоне 1 ≤ Γ ≤ 160.
Число частиц в ячейке также было небольшим (𝑁 ≤ 250), и термодинамический предел не исследо­
вался. Анизотропная часть потенциала Эвальда аппроксимировалась разложением по кубическим

гармоникам; точность этого приближения была подвергнута критике в разделе II работы [179].

Кроме того, видимо в формулах работы [39] присутствуют опечатки (например, в уравнениях (7)

или (B3)).

В работе [179] Слаттери, Дуллен и ДеВитт использовали более точную аппроксимацию потен­

циала Эвальда по сравнению с [39; 55]. Авторы исследовали как жидкую, так и кристаллическую

фазы ОКП (1 ≤ Γ ≤ 300). С использованием 128 частиц они построили уравнение состояния для

обеих фаз и оценили точку кристаллизации ОКП Γ𝑚 = 168 ± 4. Зависимость от числа частиц была

рассмотрена теми же авторами уже в последующей работе [180]. В ней предполагалась линейная

зависимость от𝑁−1, а термодинамический предел определялся экстраполяцией данныхМК. Также

в этой работе [180] приведено существенно отличающееся от предыдущего результата значение

параметра кристаллизации Γ𝑚 = 178 ± 1.
Как видно, сходимость результатов по𝑁 является ключевым вопросом всех подобных иссле­

дований, включая изучение кристаллизации ОКП. Важность этого аспекта обсуждается в работе

[181], где использовалось𝑁 ≤ 1024. При этом рассматривалась «поправка на центр масс» к энергии

ОКП, используемая, например, в работах [39; 180].

Значительный прогресс в точности результатов МК моделирования был достигнут в работах

Кайоль с соавторами [38; 72; 178; 182—184]. Начиная со статьи [182], они разработали метод

моделирования ОКП на сферических поверхностях различной размерности. Возможности этого

подхода были продемонстрированы на примере двумерной ОКП [183] с использованием 𝑁 ≤ 256
в области 0.5 ≤ Γ ≤ 200. В [38] Кайоль сравнил с теоретической точки зрения моделирование в
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кубической ячейке и на сфере. С помощью этого метода были получены наиболее достоверные до

недавнего времени значения энергии ОКП: для 1 ≤ Γ ≤ 190 в [178] и для 0.1 ≤ Γ ≤ 1 в [72]. В обеих

работах рассматривался термодинамический предел; в [178] использовалось 𝑁 ≤ 3200, а в [72] до
51200 частиц. Для снижения статистической погрешности в МК моделировании производилось

рекордное число шагов (108–109).

Из изложенного выше следует, что со временем проблеме зависимости от числа частиц в

моделировании ОКП уделяется все больше внимания. Современные вычислительные мощности

позволили увеличить число частиц в МК моделировании с 𝑁 = 102 в 1966 г. [55] до 𝑁 = 5 × 104 в
2010 г. [72], а также существенно снизить статистическую погрешность.

Что касается метода молекулярной динамики, то он в основном применяется для исследо­

вания динамических и переносных свойств ОКП [184—186], в том числе при наличии внешних

полей [187—189]. Первая ссылка на моделирование МД приведена в [55], а первое «масштабное»

исследование выполнено Хансеном с соавторами [190; 191]. В этих работах представлены расчеты

автокорреляционной функции скорости и динамического структурного фактора. Теплопровод­

ность и вязкость ОКП вычислены в [192] с использованием формулы Кубо. Энергия ОКП также

может быть получена изМД-моделирования [193], как и оценка точки ее кристаллизации Γ𝑚 [194].

Также методом МД была исследована система ОКП с потенциалом Юкавы (ЮОКП) [195; 196],

включая предел слабого экранирования [197]. В таком режиме результаты для ЮОКП стремятся

к результатам для ОКП [35].

Два основных теоретических подхода к исследованию термодинамических свойств ОКП раз­

виваются параллельно: теория интегральных уравнений для РФР 𝑔(𝑟) и разложение энергии по

параметру Γ. Начиная с работы Дебая и Хюккеля [67], где было получено разложение энергии

вплоть до вклада порядка Γ3⇑2, достигнут значительный прогресс. В [70] для этой цели использо­

валась диаграммная техника. Согласно Кайоль [72], дальнейшее развитие подхода Ортнера [71] не

привело к существенным отличиям от результата [70]. Тем не менее, эти исследования расширили

область применимости разложения до Γ ≤ 0.1, тогда как результат Дебая–Хюккеля надежен лишь

при Γ ≤ 0.01. В работе [198] выведено приближенное «первопринципное» уравнение состояния

ОКП с погрешностью 2–5% в диапазоне 0 ≤ Γ ≤ 250.
Однако разложение по Γ не дает относительно точных результатов даже при Γ = 1 (см. рис.

1 в [72] и раздел 3.7 в [21], а также рис. 4.6). При больших Γ применяется теория интегральных

уравнений для РФР. В частности, гиперцепное приближение (ГЦП или HNC) [199] дает достаточно

точные значения энергии при Γ ≤ 1. Однако при сильном взаимодействии интегральные уравнения

требуют корректировки для согласования с результатами моделирования [155; 200; 201].

Таким образом, несмотря на развитие теоретических методов, численное моделирование
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остается незаменимым инструментом исследования ОКП, особенно в области сильного взаимо­

действия. Это обусловливает потребность в быстрых и эффективных методах расчета, обеспе­

чивающих высокую точность. Для уменьшения вычислительных затрат в сравнении с обычным

потенциалом Эвальда в данной работе используется УУПЭ, выражение для потенциальной энер­

гии которого было получено в разделе 1.2.2.

4.1. Верификация процедуры расчета УУПЭ: расчет постоянных

Маделунга

В данном разделе для проверки корректности процедуры расчета энергии ОКП с помощью

УУПЭ вычисляется постоянная Маделунга 𝑀 для объемно-центрированной кубической (ОЦК)

и гранецентрированной кубической (ГЦК) решеток. Для расчета постоянной Маделунга исполь­

зуется формула (1.106). Как будет видно далее, в расчетной ячейке рассматривалось вплоть до

2× 108 частиц. Фактически в случае очень большого числа частиц расчет производился «на лету»:

в цикле рассчитывались положения частиц и вклад от каждой частицы добавлялся в общую сумму.

Такой алгоритм позволяет рассчитывать постоянную Маделунга для любого числа частиц, так как

в этом случае оперативная память компьютера практически не используется.

Результаты расчетов представлены в таблицах 4.1 и 4.2 для ОЦК и ГЦК решеток соответ­

ственно. Несмотря на то, что количество ионов в сфере 𝑁𝑠 отличается от общего числа частиц 𝑁 ,

а ионная конфигурация не обладает сферической симметрией, наблюдается сходимость значений

постоянной Маделунга 𝑀 с увеличением 𝑁 для обоих типов решеток. Следует отметить, что

величина 𝑁𝑠, как и постоянная Маделунга𝑀 , не зависит от индекса 𝑖.

Наблюдается сходимость значений постоянной Маделунга, и точность в 6 значащих цифр

достигается при числе частиц порядка ∼ 108 для обеих решеток. Данный анализ подтверждает

применимость УУПЭ для расчета энергии даже для упорядоченных структур. Точность расчетов

может быть дополнительно повышена за счет увеличения единственного параметра—числа частиц

𝑁 . Приведенные точные значения могут быть рассчитаны с помощью формулы (1.82), их также

можно найти в [57]. Стоит также отметить, что несмотря на ошибки в основной формуле для

потенциальной энергии ОКП в работе [44], приведенные в ней значения постоянных Маделунга в

случае ОКП вместе с УУПЭ верны.

Далее рассмотрим среднее число взаимодействий ОКП в моделировании Монте-Карло. Как

упоминалось ранее, число ионов 𝑁𝑠,𝑖 в сфере вокруг выбранного иона 𝑖 может отличаться от

общего числа частиц 𝑁 , что особенно проявляется в кристаллической структуре (как показано

выше). Пусть 𝑁𝑠(R𝑚) обозначает количество ионов в сфере с центром в начальном положении
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Таблица 4.1. Постоянная Маделунга для ОЦК-решетки, рассчитанная по формуле (1.106) при увеличении
числа ионов 𝑁 . Здесь 𝑁𝑐 обозначает количество примитивных ячеек в суперячейке, при этом 𝑁 = 2𝑁3

𝑐 .
Элементарная ячейка (𝑁𝑐 = 1) состоит из двух частиц с положениями (0,0,0) и (0.5,0.5,0.5) в единицах 𝐿⇑𝑟𝑎.

𝑁𝑐 𝑁 𝑁𝑠 −𝑁 𝑀 a
OCP Отличие, %

1 2 -1 -0.8333856 -6.98088
3 54 5 -0.9036126 0.85759
4 128 9 -0.8998543 0.43810
8 1024 -59 -0.8941086 -0.20322
17 9826 15 -0.8956311 -0.03327
37 101306 243 -0.8959880 0.00655
79 986078 -543 -0.8959281 -0.00013
171 10000422 203 -0.8959254 -0.00043
369 100486818 763 -0.8959294 0.00002

Точно: -0.8959293

Таблица 4.2. Постоянная Маделунга для ГЦК-решетки, рассчитанная по формуле (1.106) при увеличении
числа ионов 𝑁 . Здесь 𝑁𝑐 обозначает количество примитивных ячеек в суперячейке, при этом 𝑁 = 4𝑁3

𝑐 .
Элементарная ячейка (𝑁𝑐 = 1) состоит из четырех частиц с положениями (0,0,0), (0.5, 0.5, 0), (0.5, 0, 0.5),
(0, 0.5, 0.5) в единицах 𝐿⇑𝑟𝑎.

𝑁𝑐 𝑁 𝑁𝑠 −𝑁 𝑀 a
OCP Отличие, %

1 4 -3 -0.8504467 -5.07068
2 32 11 -0.8971610 0.14370
4 256 -7 -0.8947975 -0.12012
8 2048 45 -0.8962085 0.03738
17 19652 -175 -0.8957744 -0.01107
37 202612 89 -0.8958525 -0.00235
79 1972156 -169 -0.8958673 -0.00070
171 20000844 -207 -0.8958733 -0.00003
369 200973636 505 -0.8958739 0.00003

Точно: -0.8958736

случайно выбранного иона на𝑚-ом шаге пробного перемещения. Оказывается, что среднее число

ионов

𝑁̄𝑠 =
1

𝑚tot

𝑚tot

∑
𝑚=1

𝑁𝑠(R𝑚) (4.1)

в ходе МК моделирования неупорядоченной системы близко к 𝑁 . На рис. 4.1 представлены

зависимости 𝑁𝑠(R𝑚) и потенциальной энергии 𝛽𝑈(R𝑚)⇑𝑁 на равновесном участке траекто­

рии для моделирования с параметрами 𝑁 = 103, Γ = 1. В данном случае среднее значение

𝑁̄𝑠 = (1.000 ± 0.009) × 103 близко к 𝑁 = 103.
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Рис. 4.1. Потенциальная энергия на равновесном участке МК моделирования и число ионов в сфере слу­
чайной частицы на шаге𝑚, 𝑁 = 103, Γ = 1. (a) Потенциальная энергия. (b) Число ионов в сфере.

Таким образом, было показано, что процедура усреднения потенциала Эвальда по углам и

полученное выражение для энергии правильно воспроизводят постоянные Маделунга. Это позво­

ляет далее перейти к равновесному моделированию ОКП методом Монте–Карло при некотором

заданном параметре неидеальности. Для того, чтобы убедиться в справедливости представленно­

го подхода, далее будет рассчитана структура ОКП (а именно, ее РФР) с обычным потенциалом

Эвальда и с УУПЭ.

4.2. Радиальная функция распределения ОКП

РФР, 𝑔(𝑟), была рассчитана по результатам МК моделирования с использованием как обыч­

ного потенциала Эвальда, так и УУПЭ для значений Γ = 0.1, 1, 10, 100 и 𝑁 = 104 с помощью

программы VMD [202]. Результаты представлены на рис. 4.2. Для расчета 𝑔(𝑟) было выбрано 104

конфигураций из МК моделирования. Как хорошо видно, полученные обоими методами кривые

для всех наборов параметров совпадают друг с другом (с точностью до статистической погрешно­

сти).

Тем не менее, при 𝑁 = 102 и Γ = 100 наблюдаются различия в 𝑔(𝑟), начиная со второго

максимума (см. рис. 4.3). В то же время, обе функции для Γ = 100,𝑁 = 102 отклоняются от

корректной 𝑔(𝑟); это связано с тем, что такого числа частиц недостаточно для описания структуры
ОКП при Γ = 100, так как 𝑔(𝑟) не вышла в этом случае на единицу. При достижении сходимости

по числу частиц 𝑁 функции распределения, полученные с использованием потенциала Эвальда и
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Рис. 4.2. Радиальная функция распределения 𝑔(𝑟), рассчитанная по результатам МК моделирования с ис­
пользованием потенциала Эвальда (черные сплошные линии) и УУПЭ (красные пунктирные линии) для
Γ = 0.1,1,10,100 и 𝑁 = 104. Для расчета 𝑔(𝑟) использовано 104 конфигураций. Результаты, получен­
ные обоими методами, находятся в хорошем согласии. Зеленой и синей линиями представлены 𝑔(𝑟) для
Γ = 100,𝑁 = 102, рассчитанные с использованием обоих потенциалов; наблюдается значительное расхож­
дение.

УУПЭ, совпадают.

Таким образом, УУПЭ правильно воспроизводит структуру ОКП в моделировании МК при

конечных Γ, что снова подтверждает применимость этого подхода для корректного моделирова­

ния ОКП. Далее будет рассмотрена зависимость потенциальной энергии ОКП от числа частиц и

рассчитан термодинамический предел.

4.3. Сходимость по числу частиц: влияние дальнодействия и

термодинамический предел

Зависимость от числа частиц 𝑁 остается одной из ключевых проблем атомистического мо­

делирования кулоновских систем [82; 116; 203; 204]. С теоретической точки зрения, задача за­

ключается в определении термодинамических свойств в термодинамическом пределе (ТДП). Это

подразумевает проведение расчетов при постоянной концентрации (или плотности) 𝑁⇑𝑉 с по­

следующим устремлением числа частиц 𝑁 и объема системы 𝑉 к бесконечности. На практике

вычисления выполняются для конечных возрастающих значений 𝑁 , после чего зависимость от

1⇑𝑁 экстраполируется для получения ТДП. Еще более ярко эта проблема проявляется при вери­
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фикации методов расчета. Так как зачастую точные аналитические результаты известны только в

пределе малой неидеальности (например, предел Дебая–Хюккеля), когда радиус Дебая становит­

ся очень большим, необходимо использовать очень большое число частиц в моделировании для

достижения ТДП.

Для снижения эффектов конечного размера системы обычно используются периодические

граничные условия [19], а для учета всех кулоновских взаимодействий—методЭвальда. Тем неме­

нее, возникает вопрос о необходимости использования потенциала Эвальда и учета кулоновского

дальнодействия из-за высокой вычислительной сложности потенциала Эвальда в сравнении с куло­

новским потенциалом. Например, в расчетах электронного газа применение потенциала Эвальда

подвергалось критике. В работе Фрейзера и соавторов [32] показано, что чистый кулоновский

потенциал и потенциал Эвальда без квадратичного вклада демонстрируют лучшую сходимость

энергии по числу частиц в сравнении с обычным потенциалом Эвальда для рассмотренной систе­

мы. Авторы утверждают, что «традиционный выбор, примером которого служит метод Эвальда,

не является оптимальным». Далее будет показано на примере ОКП, что критика применения

потенциала Эвальда, упомянутая даже в аннотации [32], является излишне общей.

Рассмотрим далее зависимость от числа частиц потенциальной энергии ОКП; в частно­

сти, сравним зависимости, полученные с использованием усеченного кулоновского потенциа­

ла (1.246)–(1.247), потенциала Эвальда (1.245) и УУПЭ (1.248). Для этого сначала с помощью

аппроксимации (3.34) рассчитывается ТДП на основе полученных с помощью УУПЭ результатов

моделирования. Наблюдаемая зависимость от числа частиц в случае кулоновского потенциала ап­

проксимируется для определения параметров экстраполяции (3.34) к ТДП ОКП, полученному с

помощью УУПЭ.

4.3.1. Термодинамический предел и влияние учета дальнодействия на сходимость энергии

по числу частиц

Далее рассматривается зависимость энергии ОКП, полученной методом МК, от числа ча­

стиц 𝑁 для различных значений параметра Γ, а также с помощью различных потенциалов вза­

имодействия: кулоновский потенциал, потенциал Эвальда и УУПЭ. На рис. 4.3 представлены

соответствующие аппроксимации данных МК моделирования (3.34). Также на рисунке приведены

параметры уравнения (3.34), полученные для УУПЭ и двух различных реализаций кулоновского

взаимодействия.

В таблице 4.3 представлены результаты МК моделирования потенциальной энергии ОКП

для различного числа частиц 𝑁 и параметров неидеальности Γ, полученные с использованием
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кулоновского потенциала в сферической (1.246) и кубической (1.247) областях. Также в таблице 4.5

приведены результатымоделирования сУУПЭ, а в таблице 4.4 с помощью потенциалаЭвальда. Все

расчеты проведены в диапазоне 0.01 ≤ Γ ≤ 100 (см. табл. 4.5). Отметим, что термодинамический

предел был получен для УУПЭ, и эти значения для всех Γ использовались и в случае других

потенциалов. В таблице 4.6 представлены результаты экстраполяции в сравнении с данными МК

моделирования, результатами ГЦП из работ Кайоль и Жиль [72; 178] и выражением Ортнера,

формула (94) в [71] (см. также (1.266)).

Таблица 4.3. Результаты МК моделирования потенциальной энергии ОКП при Γ = 0.1,1,10,100 в зависи­
мости от 𝑁 с использованием кулоновского потенциала в сферической и кубической областях. Цифры в
скобках соответствуют одной стандартной ошибке. Значения для 𝛽𝐸C, 𝒞

OCP приведены при Γ ≤ 10, так как при
больших значениях параметра неидеальности наблюдается аномальная кристаллизация (см. раздел 4.6.2).

Γ 𝑁 −𝛽𝐸C, 𝒮
OCP⇑(𝑁Γ) −𝛽𝐸C, 𝒞

OCP⇑(𝑁Γ)

0.1
102 0.2852(6) 0.2847(6)
103 0.2612(9) 0.2611(5)
104 0.2579(9) 0.2576(8)

1
102 0.5771(2) 0.5782(2)
103 0.5719(2) 0.5726(2)
104 0.5715(2) 0.5714(3)

10
102 0.80309(15) 0.8081(2)
103 0.80038(17) 0.80155(16)
104 0.79984(8) 0.80026(6)

100
150 0.90230(9) —
103 0.8818(5) —
104 0.87683(6) —

Таблица 4.4. Результаты МК моделирования для −𝛽𝐸E
OCP⇑𝑁 при Γ = 0.1,1,10,100 в зависимости от 𝑁 с

использованием потенциала Эвальда (1.245). Цифры в скобках соответствуют одной стандартной ошибке.

Γ
𝑁

102 150 103 104

0.1 0.029815(34) — 0.026178(61) 0.025737(35)
1 0.57646(21) — 0.57197(24) 0.57153(28)
10 8.0031(11) — 7.99955(70) 7.9977(12)
100 87.5327(77) 87.524(12) 87.5278(77) 87.5208(45)

С практической точки зрения, предпочтительным является метод (т.е. вид потенциала вза­

имодействия), который дает значение, ближайшее к ТДП, при сравнительно небольшом числе

частиц𝑁 . На рис. 4.3, а видно, что использование метода Эвальда (потенциал Эвальда или УУПЭ)

не приводит к значительному улучшению сходимости по 𝑁 при Γ = 0.1 ≪ 1. Более того, при

𝑁 = 100 энергия, рассчитанная с использованием кулоновского потенциала, ближе к ТДП, чем
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результаты, полученные методом Эвальда. Во всех случаях показатель степени 𝛾 немного меньше

единицы.
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Рис. 4.3. Зависимость результатов МК моделирования для ОКП от числа частиц 𝑁 при использовании
потенциала Эвальда, УУПЭ, а также кулоновского потенциала с кубической и сферической областями (см.
рис. 1.4) при значениях параметра Γ = 0.1,1,10,100. В таблицах указан термодинамический предел, кото­
рый был получен с помощью УУПЭ. Зависимость от 𝑁 для кулоновского потенциала аппроксимирована с
целью определения параметров 𝛾 и 𝑏; значения (𝛽𝐸OCP⇑𝑁)∞ были зафиксированы и взяты из зависимости
для УУПЭ (в таблицах). Аппроксимации показаны сплошными линиями. Черные точки с погрешностями
получены с помощью УУПЭ, фиолетовые звезды соответствуют результатам с использованием потенциала
Эвальда, синим цветом показаны результаты для кулоновского потенциала с кубической областью, а би­
рюзовым — со сферической областью. Оранжевые звезды обозначают данные МК для наибольшего числа
частиц𝑁 , представленные в [72; 178]. В таблицах также приведены значения термодинамического предела
указанные в работах Кайоль иЖиль [72; 178] и полученные из кластерного разложенияОртнера [71]. Цифры
в скобках указывают величину одной стандартной погрешности.

На рис. 4.3, б для Γ = 1 видно, что результаты для 𝛽𝐸C, 𝒮
OCP и 𝛽𝐸E

OCP имеют практически

идентичные зависимости от 1⇑𝑁 . В то же время зависимость 𝛽𝐸C, 𝒞
OCP от 𝑁 сильнее, что указывает

на большее отклонение этого метода от ТДП при𝑁 = 102 и𝑁 = 103. Однако при𝑁 = 104 все методы
дают одинаковые результаты. В частности, показатели 𝛾 для УУПЭ и 𝛽𝐸C, 𝒮

OCP близки к единице,
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тогда как для кубической области, 𝛽𝐸C, 𝒞
OCP, 𝛾 = 0.78, что указывает на более сильную зависимость

от 𝑁 .

При Γ = 10 наблюдается значительное различие в результатах (см. рис. 4.3, в). Метод Эвальда

демонстрирует наиболее слабую зависимость от 𝑁 . В то же время расчеты с использованием ку­

лоновского потенциала показывают гораздо более сильную зависимость от 𝑁 . Кривая для 𝛽𝐸C, 𝒞
OCP

имеет наименьшее значение 𝛾, тогда как кривая для 𝛽𝐸E
OCP — наибольшее, что свидетельствует о

более слабой зависимости от 𝑁 . Кроме того, аппроксимирующая зависимость для 𝛽𝐸C, 𝒮
OCP стано­

вится близкой1 к 𝛽𝐸E
OCP только при 𝑁 ≈ 104, а к 𝛽𝐸a

OCP — при 𝑁 ≈ 105. Таким образом, различие

между результатами МК моделирования и ТДП составляет менее 0.1%, если в расчетах учиты­

ваются дальнодействующие эффекты (что соответствует 𝛽𝐸E
OCP и 𝛽𝐸a

OCP) при 𝑁 ≥ 102. С другой

стороны, для кулоновского потенциала отклонения от ТДП составляют около 1% при 𝑁 = 102.

Следовательно, при Γ = 10 метод Эвальда повышает точность расчетов на порядок величины при

𝑁 = 102.
При Γ = 100 этот эффект становится еще более выраженным. Значения 𝛽𝐸E

OCP и 𝛽𝐸a
OCP от­

личаются от ТДП не более чем на 0.01% при 𝑁 ≥ 102 и демонстрируют слабую зависимость от 𝑁

(𝛾 = 1.6). Однако результаты для чистого кулоновского потенциала 𝛽𝐸C, 𝒮
OCP показывают сильную

зависимость от 𝑁 (𝛾 = 0.68). При 𝑁 ≈ 102 различие между 𝛽𝐸C, 𝒮
OCP и ТДП составляет около 3%, что

на два порядка больше, чем для потенциала Эвальда. При𝑁 ≥ 105 различие между аппроксимаци­
ей для данных кулоновского потенциала и аппроксимацией для данных УУПЭ составляет менее

0.04%. Результаты для 𝛽𝐸C, 𝒞
OCP при Γ = 100 не представлены, так как при моделировании в куби­

ческой области наблюдаются численные особенности, приводящие к некорректным физическим

результатам (см. раздел 4.6.2).

Для иллюстрации различий между использованием метода Эвальда и чистого кулоновского

потенциала рассмотрим связь между потенциальной энергией и ее радиальной функцией распре­

деления (1.211). Для наглядности рассмотрим сдвинутый кулоновский потенциал и УУПЭ для

𝑁 = 100, а также радиальную функцию распределения для Γ = 10 (см. рис. 4.4).
Потенциалы не различаются при 𝑟⇑𝑟𝑎 ≪ 1, однако с увеличением 𝑟 эти различия быстро

возрастают. В результате в области, где набирается интеграл (𝑟 ≤ 3𝑟𝑎), различия в потенциалах

приводят к значительным различиям в потенциальной энергии. Это расхождение обусловлено

учетом дальнодействующих эффектов в методе Эвальда.

Заключая, можно сказать, что при расчете термодинамических свойств плазмы для Γ ≥ 1

использование метода Эвальда значительно улучшает скорость сходимости энергии в сравнении с

использованием усеченного кулоновского потенциала, что позволяет использовать небольшое чис­
1 Различие между аппроксимацией 𝛽𝐸a

OCP и 𝛽𝐸C, 𝒮
OCP составляет менее 10−2%.
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Рис. 4.4. Иллюстрация формулы (1.211) для Γ = 10 и 𝑁 = 100. Черная кривая представляет радиальную
функцию распределения ОКП минус единица. Красная линия соответствует сдвинутому кулоновскому
потенциалу (1.99), а зеленая линия — сдвинутому УУПЭ (1.103). Оба потенциала равны нулю при 𝑟 = 𝑟𝑚 =
𝑁1⇑3𝑟𝑎, что соответствует границе сферы (см. рис. 1.4).

ло частиц. С одной стороны, данный вывод кажется тривиальным. С другой стороны, существуют

работы, в которых критикуется использование потенциала Эвальда с точки зрения его сходимо­

сти по 𝑁 . Как уже упоминалось, Фрейзер и соавторы [32] в аннотации своей статьи утверждают,

что потенциал Эвальда может не быть оптимальным выбором, отмечая, что «идеи, изложенные

в данной работе, носят общий характер: они могут быть применены к любому типу квантового

или классического моделирования методом Монте-Карло». Однако критика потенциала Эвальда

в работе [32] не применима к случаю однокомпонентной плазмы.

Таким образом, для ОКП техника суммирования Эвальда обеспечивает наиболее быструю

сходимость по числу частиц. Далее полученный термодинамический предел будет сравниваться

с результатами других работ, а также будет произведено сравнение поведения результатов для

УУПЭ и потенциала Эвальда.

4.3.2. Сравнение полученного термодинамического предела с результатами других работ

В работе [72] приведены значения энергии ОКП для Γ = 0.1; 1, полученные путем решения

интегральных уравнений на корреляционную функцию в гиперцепном приближении (ГЦП, метод,

описанный в [199]). Согласно [72], эти результаты являются наиболее точными теоретическими

значениями энергии ОКП в области малых Γ. В этом режиме также хорошую точность демон­
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стрирует Γ-разложение Ортнера [71]. Для сравнения результатов УУПЭ на рис. 4.3 приведены

результаты МК моделирования из работ [72; 178], а также результаты, полученные с использова­

нием потенциала Эвальда.

Хотя аппроксимация (3.34) достаточно точно описывает зависимость энергии от 1⇑𝑁 в ши­

роком диапазоне значений 𝑁 и Γ, при Γ = 100 точка 𝑁 = 100 в случае УУПЭ выпадает из общей

зависимости по неизвестным причинам. Эта точка была исключена из процедуры аппроксимации.

Для Γ = 1 полученные результаты совпадают с результатами Кайоль и Жиль. В случае Γ =
0.01–0.1 полученный ТДП согласуется с результатами ГЦП и Ортнера, что свидетельствует в

пользу представленногометода по сравнению сМКмоделированиями из [72], которые значительно

отличаются в случае Γ = 0.1 в сравнении с теоретическим результатом Ортнера. При Γ = 10 и

Γ = 100 наблюдается расхождение с результатами Кайоль на 2×10−3% и 4×10−3% соответственно,

что превышает статистическую ошибку.

Для данных МК моделирования Кайоль [178] была выполнена аппроксимация по формуле

(3.34); результаты представлены в таблице 4.6 (третья строка). Видно, что для Γ = 1,100 значения
энергии существенно изменяются. В отличие от оригинальных результатов Кайоль, эти значения

совпадают с нашими при Γ = 100 и отличаются при Γ = 1. Отметим, что Кайоль использовал

различные аппроксимирующие функции для разных значений Γ (см. таблицу II в [178]), что с

точки зрения автора данной работы является небольшим недостатком. В данной работе для ОКП

используется только одна аппроксимирующая зависимость (3.34).

На рис. 4.3 приведены данные МК моделирования для наибольшего 𝑁 из работ [72; 178]

(оранжевые звезды). Несмотря на то, что 𝜆3𝐷 значительно меньше объема системы, автор данной

работы полагает, что для заявленной в [178] точности𝑁 = 3200 недостаточно. Это обстоятельство
может увеличивать погрешность термодинамического предела в [178].

Результаты МК моделирования с использованием потенциала Эвальда представлены в табли­

це 4.4 и на рис. 4.3 (фиолетовые звезды). Видно, что традиционное моделирование с потенциалом

Эвальда и моделирование с использованием УУПЭ дают близкие результаты при𝑁 ≥ 103 для всех
рассматриваемых Γ. В то же время при 𝑁 = 102 наблюдаются различия, наибольшее из которых

соответствует Γ = 100.

4.4. Уравнение состояния флюида ОКП

Как уже говорилось, вся термодинамика ОКП зависит только от параметра неидеально­

сти Γ. Так безразмерная потенциальная энергия на одну частицу в термодинамическом пределе

(𝛽𝐸OCP⇑𝑁)∞ зависит только от параметра Γ. Под уравнением состояния обычно понимается связь
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давления, температуры и плотности. Зная температуру и плотность, можно однозначно рассчитать

параметр Γ, а значит и потенциальную энергию. Давление ОКП напрямую связано с потенциаль­

ной энергией (1.235); таким образом, достаточно знать связь энергии и параметра Γ для знания

уравнения состояния ОКП.

В работе [178] была приведена следующая аппроксимация для значений энергии в термоди­

намическом пределе, полученных методом Монте–Карло:

(𝛽𝐸OCP⇑𝑁)I∞ = 𝐴 +𝐵Γ +𝐶Γ𝑠 +𝐷Γ−𝑠, (4.2)

которая является обобщением уравнения (5) работы [179] (см. также уравнение (3) в [205]). Коэф­

фициенты аппроксимации указаны в таблице 4.7 (второй столбец), а область применимости этого

уравнения Γ ∈ (︀3,190⌋︀.
Несмотря на такую широкую область применимости, это уравнение вызывает некото­

рые вопросы. Во-первых, хорошо известно, что точка плавления ОКП приблизительно равна

Γ𝑚 = 175 [137]. Поэтому единое уравнение как для флюида ОКП, так и для кристаллической

фазы не является последовательным, так как оно должно содержать некоторую особенность в

точке плавления. Во-вторых, при малых Γ это уравнение приводит к совершенно неправильным

результатам. Таким образом, областьΓ ∈ (︀0.1,3⌋︀, для которой нет аналитических результатов, оста­
ется неописанной. Возможно, что авторам работы [178] не удалось описать малые неидеальности

так как используемый ими метод, видимо, содержит ошибку, которая приводит к несовпадению

аналитического и расчетного результата при Γ = 0.1, как видно на рис. 4.3.
Сначала скорректируем поведение функции в области Γ ∈ (︀1,100⌋︀. Для этого были изменены

коэффициенты 𝐴,𝐶,𝐷; их новые значения приведены в таблице 4.7 (третий столбец). Также

скорректированная кривая показана на рис. 4.5, а в области небольших Γ, а также на рис. 4.5, б .

На рис. 4.5, б хорошо видно, что при небольших Γ результаты Кайоль лежат выше, а при Γ ≥ 40
наоборот ниже полученных с помощью УУПЭ.

Таблица 4.7. Коэффициенты для уравнения состоянияОКП (4.2). В первом столбце указаны коэффициенты,
представленные в работе [178], а во втором столбце эти коэффициенты были немного скорректированы в
соответствии с полученным с помощью УУПЭ термодинамическим пределом 4.6. Третий столбец содержит
коэффициенты нового УРС, которое правильно описывает интервал Γ ∈ (︀0.1,3⌋︀, в отличие от работы [178].

Кайоль Коррекция Новое УРС (4.2)
𝐴 −0.074970642 −0.094629899 −0.5425760160
𝐵 −0.899588379 то же −0.8987900948
𝐶 0.494646173 0.497997328 0.7585195383
𝐷 −0.102192495 −0.075193290 0.1114323301
𝑠 0.354161214 то же 0.2888260309
Γ (︀3,190⌋︀ (︀1,100⌋︀ (︀0.1,170⌋︀
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Рис. 4.5. Красными и синими символами показываются данные МК, полученные в данной работе с помощью
УУПЭ и в работе [178]. Черной кривой показано уравнение состояния (4.2) с коэффициентами, приве­
денными в работе [178]. Красная кривая — скорректированное УРС с коэффициентами, приведенными в
таблице 4.7 в третьем столбце.

Помимо этого, представляется возможным значительно улучшить поведение УРС в области

Γ ∈ (︀0.1,3⌋︀. Для этого, коэффициенты аппроксимации (4.2) были подобраны таким образом, чтобы

кривая проходила через результаты, полученные с помощьюУУПЭ, а при малых Γ ≤ 0.5 была близ­
ка к расчетам в ГЦП приближении. Обновленные коэффициенты приведены в четвертом столбце

таблицы 4.7, а сама кривая представлена на рис. 4.6 вместе с оригинальным УРС из [178], расчета­

ми в приближении ГЦП из [72], а также предельными разложениями Ортнера [71] и приближением

Дебая–Хюккеля.

Как видно, значительно изменились коэффициенты 𝐴 и 𝐷, которые влияют на поведение

кривой при малых Γ, причем параметр 𝐷 теперь имеет другой знак. Это отражается на рис. 4.6 в

том, что новое УРС при Γ→ 0 стремится к +∞, тогда как УРС из [178], наоборот, стремится к −∞.

Помимо этого, новое УРС лучше описывает результаты расчетов в ГЦП и совпадает с данными

МК моделирования с УУПЭ в области Γ ∈ (︀0.1,1⌋︀. В данной работе моделирование производилось

при Γ ≤ 170, что позволяет использовать новое УРС и в области рядом с плавлением.

Тем не менее, выражение (4.2) не описывает предел Дебая–Хюккеля, то есть не позволяет

правильно аппроксимировать поведение энергии в режиме слабой неидеальности. Для решения

этой проблемы в работе [137] было предложено другое выражение для энергии ОКП:

(𝛽𝐸OCP⇑𝑁)II∞ =
𝐴1 Γ3⇑2
⌋︂
Γ +𝐴2

+ 𝐴3 Γ3⇑2

Γ + 1 +
𝐵1 Γ2

Γ +𝐵2

+ 𝐵3 Γ2

Γ2 +𝐵4

, (4.3)

где 𝐴3 = −
⌋︂
3⇑2 − 𝐴1⇑

⌋︂
𝐴2. Коэффициенты, полученные Потехиным и Шабрие [137] для данных

Кайоля, и новые коэффициенты, подобранные для данных МК с УУПЭ, представлены в табли­
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Рис. 4.6. Сравнение различных зависимостей потенциальной энергии на одну частицу от параметра неиде­
альности. Красными звездами и синими точками показаны результаты моделирования МК, полученные в
данной работе и [72; 178], соответственно. Синей кривой показано УРС из работы Кайоль [178], а красной
и голубой кривой показано новое УРС в соответствии с результатами моделирования УУПЭ. Фиолетовым
цветом показан результат кластерного разложения Ортнера [71], а черным показан предел Дебая–Хюккеля.
Пурпурным цветом показана аппроксимация результатов расчетов в гиперцепном приближении из рабо­
ты [72].

це 4.8. Красная сплошная кривая на рис. 4.6 показывает, что уравнение II (4.3) воспроизводит

предел Γ≪ 1, согласуется с результатами ГЦП в диапазоне 0.1 ≤ Γ ≤ 1 и с данными МК с УУПЭ в

режиме сильного взаимодействия.

Отметим, что как уравнение (4.2), так и уравнение (4.3) воспроизводят данные термодинами­

ческого предела, полученные в данной работе, в пределах полученных статистических погрешно­

стей во всем диапазоне данных.

Таблица 4.8. Коэффициенты для уравнения состояния ОКП (4.3). В первом столбце перечислены коэффи­
циенты, приведенные в работе [137] на основе данных Кайоля [178], а во втором на основе полученных в
этой работе данных МК с УУПЭ.

Кайоль [137; 178] Новое УРС (4.3)
𝐴1 -0.907347 -0.7678971255
𝐴2 0.62849 0.5059769059
𝐵1 4.50 × 10−3 -0.1336099542
𝐵2 170 3.588111959
𝐵3 −8.4 × 10−5 -0.1440005434
𝐵4 3.70 × 10−3 5.177602644



139

Как уже отмечалось выше, давление ОКП непосредственно связано с потенциальной энер­

гией системы, поэтому для определения уравнения состояния ОКП достаточно знать зависи­

мость (4.2). Тем не менее, необходимо учитывать некоторые особенности модели ОКП, связанные

с ее давлением и сжимаемостью. Для обычных веществ выполняется условие термодинамической

устойчивости (𝜕𝑃 ⇑𝜕𝑉 )𝑇 < 0, которое эквивалентно положительности коэффициента сжимаемо­

сти. Однако в случае ОКП это условие нарушается: при Γ > 3 сжимаемость ОКП становится

отрицательной [206]. Более того, в указанной области параметров отрицательный вклад в давле­

ние со стороны взаимодействия полностью компенсирует положительный кинетический вклад, что

приводит к отрицательным значениям общего давления. Несмотря на это, все термодинамиче­

ские характеристики ОКП остаются корректно определенными, а термодинамический предел для

данной системы существует [27].

Нестандартное поведение термодинамических функций ОКП объясняется тем, что в рамках

этой модели не учитывается энергия однородного фона, то есть уравнение состояния электронов.

Другими словами, в модели ОКП однородный фон полагается несжимаемым. Если же рассмот­

реть, в самом простом приближении, однородный фон как вырожденный идеальный ферми-газ, то

дополнительный вклад в свободную энергию обеспечит положительность давления и сжимаемости

модифицированной модели [206], восстанавливая ее физическую интерпретацию. Следует также

отметить, что в модели ОКП отсутствует фазовый переход газ–жидкость. Вместе с тем, рядом

исследователей подчеркивается [207], что, хотя строго говоря фазовой границы не существует, по

некоторым признакам можно установить эту границу около Γ𝑙 ≈ 50.

4.5. Производительность вычислений с использованием УУПЭ

Важным аспектом с практической точки зрения является сравнение производительности

вычислений при использовании точной формулы Эвальда и УУПЭ. Как уже было показано выше,

огромная эффективность УУПЭ позволила на несколько порядков увеличить число частиц при

сравнимых вычислительных затратах. Далее будет оценен выигрыш в скорости при использовании

УУПЭ в сравнении с прямым расчетом с помощью потенциала Эвальда.

Для демонстрации эффективности расчетов с использованием УУПЭ в сравнении с потен­

циалом Эвальда была вычислена постоянная Маделунга для ОЦК-решетки при различном числе

частиц 𝑁 в суперячейке, а также измерено время вычислений. В случае потенциала Эвальда в

сумме по векторам n были учтены несколько слагаемых с 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 = −6, . . . ,6. Все расчеты выпол­

нялись последовательно на процессоре Intel Core i7-7700HQ с базовой тактовой частотой 2.8 ГГц.

Результаты представлены на рис. 4.7.
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Рис. 4.7. Время расчета постоянной Маделунга для ОЦК-решетки в зависимости от числа частиц 𝑁 в
двойном логарифмическом масштабе. Оба метода демонстрируют линейную зависимость от 𝑁 ; расчет с
использованием УУПЭ выполняется в 230 раз быстрее, чем с использованием потенциала Эвальда. Коэф­
фициент наклона кривой (в линейном масштабе) для потенциала Эвальда составляет 0.521 мс, а для УУПЭ
— 2.39 × 10−3 мс.

Оба метода демонстрируют линейную зависимость времени вычислений от числа частиц 𝑁 .

Отношение наклонов линейных зависимостей составляет ≈ 230, что означает, что расчет посто­

янной Маделунга с использованием УУПЭ выполняется в 230 раз быстрее, чем с использованием

потенциала Эвальда.

В работе [72] указано, что для системы с 𝑁 = 51200 частиц требуется «один месяц для

расчета 10000 конфигураций». В данной работе было рассчитано 107 конфигураций за 46 часов

и за 3 недели для 𝑁 = 105 и 𝑁 = 106 соответственно. Это означает, что аналогичный расчет

для 𝑁 = 50000 и 104 шагов МК занял бы 46⇑2⇑107 × 104 = 0.023 часа. Таким образом, можно

грубо оценить, что скорость проведенных в данной работе вычислений примерно в 30 тысяч раз

выше, чем в [72]. Благодаря этому УУПЭ может быть применен для моделирования систем с очень

большим числом частиц в суперячейке, как это было сделано выше. К сожалению, провести прямое

сравнение производительности с работами [72; 178] не представляется возможнымиз-за сложности

реализации метода расчета на гиперсфере [38]. Стоит также отметить, что в недавней работе по

моделированию однородного электронного газа указывается схожий рост производительности в

сравнении с потенциалом Эвальда [208].

Можно предположить, что все упомянутые в этой главе преимущества УУПЭ будут также

проявляться в случае невырожденной двухкомпонентной плазмы. Этот вопрос детально рассмат­
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ривается в следующей главе 5.

4.6. Некоторые аномальные результаты

В процессе работы были обнаружены некоторые побочные результаты, которые представляют

методологический интерес и требуют некоторых дополнительных объяснений.

Во-первых, эти результаты касаются замены среднего числа частиц в сферической области

на полное число частиц в кубической ячейке в формулах для энергии ОКП в случае усечен­

ного кулоновского потенциала, а также УУПЭ. Как уже упоминалось, такая замена позволяет

стабилизировать флуктуации энергии взаимодействия при суммировании по шару. Далее смысл

этого предложения будет проиллюстрирован на примере расчета постоянной Маделунга простой

кубической ячейки и кулоновского потенциала в сферической области.

Во-вторых, в разделе 4.3.1 было упомянуто, что при использовании кулоновского потенциала

в кубической области наблюдается странное поведение ОКП, которое заключается в кристаллиза­

ции при на порядок меньшем параметре неидеальности в сравнении со стандартным результатом.

Как будет показано далее, такое поведение наблюдается даже при использовании достаточно боль­

шого числа частиц 104.

4.6.1. Стабилизация флуктуаций потенциальной энергии в сферической области

При выводе формул для энергии ОКП в случае кулоновского потенциала в сферической об­

ласти, а также в случае УУПЭ, на финальном шаге вывода производилась замена среднего числа

частиц в сфере на заданное число частиц, 𝑁 . Этот шаг не был обоснован математически, однако

он приводит к более стабильным результатам. Покажем далее на примере расчета постоянных Ма­

делунга в случае кулоновского потенциала в сферической области, к чему приведет невыполнение

такой замены.

Рассмотрим выражение (1.101) без дополнительного вклада ∝ (𝑁 −𝑁𝑠,𝑖):

𝑈̃C, 𝒮
OCP(R) =

(𝑍𝑒)2
2

𝑁

∑
𝑖=1

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

1

𝑟𝑖𝑗
− (𝑍𝑒)

2𝑁2

2𝐿
𝐶𝒮 , (4.4)

где константа 𝐶𝒮 определена в уравнении (1.91). Для исследования поведения этой формулы

вычислим константу Маделунга для простой кубической решетки (элементарная ячейка содержит

только одну частицу в вершине). Значение этой константы составляет −0.88005944211 и может

быть получено непосредственно из (1.82).
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Выражение для константы Маделунга в случае уравнения (1.101) принимает следующий вид:

𝑀C, 𝒮
OCP =

1

2

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

⌊︀ 1

𝑟𝑖𝑗⇑𝑟𝑎
− 1

𝑁1⇑3 }︀ −
𝑁2⇑3𝐶𝒮

2(4𝜋⇑3)1⇑3 +
𝑁 − 1
2𝑁1⇑3 =

1

2

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

1

𝑟𝑖𝑗⇑𝑟𝑎
− 𝑁2⇑3𝐶𝒮
2(4𝜋⇑3)1⇑3 +

𝑁 −𝑁𝑠,𝑖

2𝑁1⇑3 , (4.5)

а в случае уравнения (4.4):

𝑀̃C, 𝒮
OCP =

1

2

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

1

𝑟𝑖𝑗⇑𝑟𝑎
− 𝑁2⇑3𝐶𝒮
2(4𝜋⇑3)1⇑3 . (4.6)

Благодаря ПГУ и правилу БИ, постоянная Маделунга не зависит от номера (или положения r𝑖)

иона 𝑖. Полученные результаты расчетов приведены в таблице 4.9. Можно видеть сходимость

Таблица 4.9. Расчет постоянной Маделунга с использованием кулоновского потенциала в сферической
области. Применены два варианта расчета: с несдвинутым кулоновским потенциалом (4.6) и сдвинутым
(4.5). Во втором и третьем столбцах приведена зависимость этих методов от числа частиц. В четвертом
столбце указано количество частиц 𝑁𝑠 в сфере с центром в точке r𝑖 𝑖-го иона, для которого вычисляется
константа Маделунга. В последнем столбце приведен дополнительный вклад, стабилизирующий значение
константы за счет разницы между 𝑁 и 𝑁𝑠.

𝑁 𝑀̃C, 𝒮
OCP 𝑀C, 𝒮

OCP 𝑁𝑠
𝑁−𝑁𝑠

2𝑁1⇑3

8 -1.13895 -0.88895 7 0.25
64 1.22437 -0.90063 81 -2.13
216 -1.97836 -0.89503 203 1.08
512 -2.56315 -0.87565 485 1.69

1000 0.17037 -0.87963 1021 -1.05
8000 -0.26013 -0.88513 8025 -0.63

64000 -1.01417 -0.87667 63989 0.14
1000000 -2.55471 -0.87971 999665 1.68

константы𝑀C, 𝒮
OCP (4.5) с увеличением числа частиц. Однако значение 𝑀̃C, 𝒮

OCP демонстрирует значи­

тельные флуктуации при изменении𝑁 . Эти флуктуации напрямую связаны с разницей между𝑁 и

𝑁𝑠,𝑖, то есть с разницей между количеством частиц в кубической и сферической ячейках с центром

в точке r𝑖 (см. рис. 1.4). Значение 𝑀C, 𝒮
OCP − 𝑀̃C, 𝒮

OCP в точности равно (𝑁 −𝑁𝑠,𝑖)⇑(2𝑁1⇑3): этот вклад
компенсирует флуктуации, связанные с разницей 𝑁 −𝑁𝑠,𝑖; такие флуктуации особенно выражены

в упорядоченных структурах.

В результате, сформулирована идея объяснения аномального поведения формулы (4.6). Од­

нако вопрос о строгом обосновании перехода от числа частиц в сфере к числу частиц в ячейке в

выражениях (1.100) и (1.176) остается открытым.

4.6.2. Аномальная кристаллизация ОКП при использовании кулоновского потенциала с

кубической областью

В разделе 4.3.1 упоминалось, что в случае использования кулоновского потенциала в куби­

ческой области при Γ > 10 наблюдалось странное поведение ОКП. Так, в области 10 ≤ Γ ≤ 20
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в процессе моделирования МК с использованием формулы (1.247) наблюдается кристаллизация

ОКП около значения ΓC, 𝒞
𝑚 ≈ 14; при увеличении числа частиц вплоть до 𝑁 = 104 кристаллизация

ОКП сохраняется. Это достаточно странно, учитывая, что параметр кристаллизации ОКП есть

Γ𝑚 = 175, а также, что для других потенциалов такого поведения не наблюдается. Для иллюстра­

ции приведем парные корреляционные функции для кулоновского потенциала с использованием

сферической и кубической области, а также для УУПЭ в качестве эталона для Γ = 10 и Γ = 20 при
𝑁 = 1000.
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Рис. 4.8. Парные корреляционные функции ОКП для различных потенциалов взаимодействия при Γ = 10
(слева) иΓ = 20 (справа) для𝑁 = 103. Черной сплошной и зеленой пунктирной линиямипоказаны результаты
для кулоновского потенциала в сферической области (1.246) и УУПЭ (1.248) соответственно, а красной
линией для кулоновского потенциала в кубической области (1.247).

Рассмотрим корреляционные функции при Γ = 10 (см. рис. 4.8). Все потенциалы дают одина­

ковую структуру ОКП. Однако при увеличении неидеальности до Γ = 20 видно, что кулоновский

потенциал в сферической области и УУПЭ дают структуру типа флюида, как и ожидалось, тогда

как кулоновский потенциал в кубической области приводит к образованию дальнего порядка —

формируется простая кубическая решетка.

Причины такого поведения неясны. Стоит отметить, что в оригинальном потенциале Эвальда

тоже используется именно кубическая область, однако в этом случае такой ранней кристаллизации

не наблюдается. Тем не менее, автор данной работы предполагает, что при значительном увеличе­

нии числа частиц кристаллизация должна исчезнуть в соответствии с доказанной единственностью

ТДП [27]; однако она наблюдается для достаточно большого числа частиц 𝑁 = 104.
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4.7. Основные результаты и заключение главы

В данной главе были представлены результаты по моделированию методом Монте–Карло си­

стемы ОКП в области параметра неидеальности 0.01 ≤ Γ ≤ 100 и с использованием рекордного

числа частиц, вплоть до миллиона. Были использованы различные потенциалы взаимодействия,

с учетом дальнодействия (потенциал Эвальда и УУПЭ) и без учета дальнодействия (усеченный

кулоновский потенциал). Было показано, что все методы правильно воспроизводят постоянные

Маделунга ОКП и ее структуру для рассматриваемых параметров неидеальности. Было показано,

что в режиме слабого взаимодействия методы демонстрируют примерно одинаковую сходимость

по числу частиц, и небольшое преимущество наблюдается для кулоновского потенциала. Однако

в системах с умеренным и сильным взаимодействием учет дальнодействующих эффектов приво­

дит к увеличению точности расчетов на порядок при использовании небольшого числа частиц.

На основании данных, полученных с помощью УУПЭ, был рассчитан термодинамический предел

энергии ОКП, который совпал с аналитическим результатом Ортнера при Γ = 0.1 с точностью до 4

значащих цифр. Сравнение с результатом аналогичной работы Кайоль и Жиль показывает значи­

тельное увеличение точности полученных в данной работе результатов. На основании полученных

с помощью УУПЭ данных были получены новые коэффициенты УРС, представленного в рабо­

те Кайоль. Это УРС правильно описывает зависимость энергии от Γ при малых неидеальностях

0.1 ≤ Γ < 3 в отличии от предыдущегоУРС, а также с очень хорошей точностью (4×10−3) описывает
полученные в данной работе результаты МК моделирования и данные Кайоль при Γ > 100. Также
был явно продемонстрирован рост производительности на несколько порядков метода расчета с

УУПЭ в сравнении с обычным потенциалом Эвальда и метода, используемого в работе Кайоль.

Результаты главы были опубликованы в рецензируемых изданиях [2; 4; 7], препринте [209] и

сборниках тезисов.
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Глава 5

Результаты моделирования невырожденной водородной

плазмы

Существует огромное число работ, в которых рассматривается моделирование термодина­

мических свойств водородной плазмы, процессов релаксации, транспортных и динамических

свойств [210]. Автор не ставит задачу упомянуть в данной работе даже небольшую часть, по­

священную этим расчетам. Для наиболее полного рассмотрения читатель может обратиться к об­

зору [113]. Далее будут рассмотрены некоторые работы, близкие по поставленной в данной работе

задаче моделирования, а именно расчету термодинамических свойств невырожденной водородной

плазмы.

В первую очередь, рассмотрим несколько недавних работ, использующих псевдопотенциалы

взаимодействия, содержащие подгоночные параметры, а также модельные соображения. Напри­

мер, в работе [82] производится моделирование классической ультрахолодной плазмы методом

МД. При этом, в качестве псевдопотенциала взаимодействия между электроном и ионом исполь­

зуется «псевдо–кулоновский» потенциал, который на малых расстояниях содержит отталкиваю­

щее ядро с некоторым подгоночным параметром, регулирующим поведение псевдопотенциала на

малых расстояниях. Более того, этот потенциал равен нулю при нулевом расстоянии между элек­

троном и протоном. Это приводит, как показано в работе [82], к сильной зависимости результатов

моделирования от выбранного параметра потенциала. Тем не менее, в работе представлены ре­

зультаты моделирования как почти идеальной плазмы, так и плазмы с сильным взаимодействием,

Γ ≤ 20.
В работе [211] также методом МД исследуется поведение слабонеидеальной (Γ ≤ 0.14) плаз­

мы с регуляризацией кулоновского потенциала на малых расстояниях. В отличие от предыдущей

работы [82], при нулевом расстоянии псевдопотенциал имеет конечное значение, совпадающее с

энергией ионизации изолированного атома водорода (13.6 эВ). При этом на расстояниях меньше

некоторой отсечки потенциал квадратично стремится к этому постоянному значению при устрем­

лении расстояния к нулю. Температура вмоделированииможет достигать нескольких тысяч кельви­

нов, то есть рассматривается очень разреженная плазма. В этих условиях степень ионизации равна

нулю, тогда как образование молекул не заявляется, несмотря на очень низкие температуры, что

может быть серьезным недостатком модели. Также снова демонстрируется сильная зависимость

результатов относительно выбранной глубины потенциала.
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В недавней работе [212] используется более сложная модель взаимодействия между части­

цами. При этом электроны не участвуют в МД моделировании, а включены в эффективные по­

тенциалы взаимодействия между ионами и нейтральными частицами. В работе рассматривается

только изотерма 62.5 кK, чтобы избежать образования молекул в моделировании. При этом вы­

рождение системы меняется от слабого к умеренному. Несмотря на то, что такая модель воспроиз­

водит характерный минимум на графике зависимости степени ионизации от 𝑟𝑠, модель приводит к

неправильным результатам при высоких плотностях, а именно к коллапсу системы «в точку» («при

больших долях нейтральных частиц смесь нейтральных атомов и ионов разделяется на плотный

шар из нейтральных частиц, окруженный ионами» [212]). К тому же, как уже упоминалось, в мо­

дели отсутствует образование молекул, что ограничивает ее использование температурами выше

52 кК.

В следующих работах используются более строгие методы, основанные на расчете псевдо­

потенциалов из суммы Слейтера или использовании матрицы плотности. Например, в работе [91]

производится МК моделирование ультрахолодной плазмы, когда параметр вырождения очень мал

(𝜒 ∼ 10−8), а параметр неидеальности меняется от малых значений до нескольких десятков1. Элек­
трон-ионный псевдопотенциал рассчитывается из матрицы плотности, а точнее суммы Слейтера

по волновымфункциям атома водорода. Влияние малых температур на взаимодействие электронов

учитывалось с помощью псевдопотенциала из работы [213]. Отметим, что в работе используется

усредненный по проекциям спина псевдопотенциал. В результате, были рассчитаны зависимо­

сти энергии, давления и корреляционных функций от параметра неидеальности. В то же время,

несмотря на совпадение с результатом Дебая–Хюккеля при слабом взаимодействии, энергия рас­

тет с ростом параметра неидеальности, а также является положительной величиной при сильном

взаимодействии. С точки зрения автора данной работы, это поведение, возможно, является некор­

ректным и требует перепроверки.

Как уже упоминалось, в работе [166] был предложен улучшенный псевдопотенциал Кельбга,

а также с его помощью произведены расчеты методом МД термодинамических свойств плот­

ной горячей водородной плазмы (𝑟𝑠 = 4,6 при 31250 ≤ 𝑇 ≤ 166670 К). Помимо этого, работа

содержит сравнение упомянутых результатов с более точными расчетами методом МКИТ. Было

показано, что использование улучшенного псевдопотенциала Кельбга при температурах менее 50

кК приводит к чрезмерному притягиванию частиц и появлению связанных состояний электронов

с одинаковой проекцией спина электронов. В результате, полная энергия такого моделирования

оказывается значительно меньше корректной, и наблюдается коллапс системы «в точку». Таким

образом, несмотря на умеренное (а не малое) вырождение системы, в работе [166] был использован
1 Отметим, что в работе [91] используется другое определение параметров неидеальности и вырождения.
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квазиклассический подход к ее моделированию.

Также следует упомянуть работу [214], с которой, в основном, будут сравниваться резуль­

таты данной работы. В ней с помощью квазиточного метода МКИТ было рассчитано уравнение

состояния водородной плазмы в достаточно широком диапазоне параметров (1.2 ≤ 𝑟𝑠 ≤ 100,

15.625 ≤ 𝑇 ≤ 250 кК). Несмотря на масштабность расчетов, в моделировании используется не

более 128 частиц из-за трудоемкости метода. Таким образом, в работе были получены значения

энергии и давления невырожденной и вырожденной водородной плазмы. Соответствующие этим

расчетам зависимости степени ионизации и состава плазмы на различных изотермах в зависимости

от параметра 𝑟𝑠 приведены в обзоре [113].

В данной работе для моделирования водородной плазмы используется как метод МК, так и

метод МД. Для начала рассмотрим моделирование методом МК, в том числе с интегралами по

траекториям. Это позволит верифицировать схему расчета взаимодействий в квантовом случае,

а также использовать достаточно большое число частиц, чтобы сравниться с, видимо, единствен­

ным надежным аналитическим результатом для этой системы— пределом Дебая–Хюккеля. Также

будут продемонстрированы недостатки этого метода при наличии связанных состояний; эти недо­

статки будут устранены с помощьюметодаМД. В результате, будут рассчитаны энергия и давление

невырожденной (𝜒 = 10−2) водородной плазмы, зависимость состава и степени ионизации, а также

РФР от параметра неидеальности в диапазоне 0.1 ≤ Γ ≤ 3; в том числе, будет рассмотрено влияние

учета кулоновского дальнодействия (вклада Φ1(𝑟; 𝑟𝑚, 𝛽) (2.51)) на скорость сходимости энергии

по 1⇑𝑁 к термодинамическому пределу.

5.1. Область малых Γ с использованием МКИТ

Для начала произведем расчетыметодомМКводородной плазмы прималом параметре неиде­

альности Γ ≤ 0.1. При этом, помимо использования псевдопотенциала Кельбга, а также матрицы

плотности, произведем моделирование плазмы полностью классическим методом, то есть с ис­

пользованием бесконечного на малых расстояниях УУПЭ. Результаты моделирования для𝑁 = 100
приведены в таблице 5.1. Отметим, что во всех случаях радиус Дебая, 𝑟𝐷⇑𝑎𝐵 = 𝑟𝑠⇑

⌋︂
6Γ, либо пре­

вышает размер ячейки 𝐿, либо имеет схожий порядок величины. Зависимость от числа частиц 𝑁

и термодинамический предел будут рассмотрены далее.

Результаты моделирования показывают, что при Γ ≤ Γmax = 0.01 данные, полученные тремя

методами, находятся в хорошем согласии. Однако при Γ > Γmax наблюдаются скачки энергии,

вызванные образованием связанных состояний (см. рис. 5.2(a) для Γ = 0.05). Это приводит к

увеличению относительной статистической ошибки потенциальной энергии 𝛽𝐸pot. Таким образом,
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Таблица 5.1. Безразмерная потенциальная энергия на частицу, −𝛽𝐸pot⇑(𝑁Γ), для 𝑁 = 100 и различных
значенийΓ. Энергия рассчитана с использованием классическогоУУПЭ,МКИТдля𝑛 = 0 (что эквивалентно
классическому методу МК с псевдопотенциалом Кельбг-УУЭ) и МКИТ для 𝑛 = 10. Цифры в скобках
соответствуют одной стандартной ошибке. Связанные состояния не наблюдаются при Γ ≤ Γmax = 0.01.

Γ УУПЭ МКИТ, 𝑛 = 0 МКИТ, 𝑛 = 10
0.001 0.2463(12) 0.24628(48) 0.2468(14)
0.002 0.2484(8) 0.2483(12) 0.2491(15)
0.005 0.2552(9) 0.2559(14) 0.2557(8)
0.01 0.2661(10) 0.26686(65) 0.2654(11)
0.02 0.23(2) 0.2881(17) 0.2886(6)
0.03 0.45(26) 0.33(4) 0.312(3)
0.04 0.48(20) 0.35(4) 0.41(7)
0.05 0.51(27) 0.7(8) 0.363(10)
0.06 1.9(6) 0.67(18) 2 ± 2
0.1 9 ± 5 8 ± 2 3 ± 3

в области Γ ≤ 0.01 представляется возможным рассчитать термодинамический предел различными

методами, а также произвести сравнение зависимости от числа частиц.

5.1.1. Термодинамический предел при Γ = 0.01

Термодинамический предел рассчитывается по аналогии с ОКП, так как связанные состояния

не вносят вклад в случае слабого взаимодействия. Моделирование проводится с использованием

классического МК с УУПЭ, а также методом МКИТ. В методе МКИТ используются как стан­

дартный псевдопотенциал Кельбга (без учета эффектов дальнодействия), так и псевдопотенциал

Кельбг-УУЭ. Результаты для Γ = 0.01 представлены на рис. 5.1, а также в таблицах 5.2 и 5.3.

В области малых значений Γ и 𝜒 = 10−6 можно представлять частицы в виде точек, что

объясняет практически идентичные результаты для 𝑛 = 0 и 𝑛 = 10 при использовании обоих

псевдопотенциалов. Кроме того, результаты моделирования с УУПЭ совпадают с результатами

МКИТ при использовании псевдопотенциала Кельбг-УУЭ. Также стандартный псевдопотенциал

Кельбга демонстрирует схожую сходимость по 𝑁 , что объясняется сильной неупорядоченностью

и слабым взаимодействием плазмы.

С использованием уравнения (3.34) рассчитывается термодинамический предел𝛽𝐸pot⇑(𝑁Γ) =
−0.12212(65)дляΓ = 0.01; при этомиспользуются полученные с помощьюУУПЭданные.Получен­

ное значение термодинамического предела совпадает с результатом приближения Дебая–Хюккеля

[67] в пределах статистической погрешности: 𝛽𝐸DH
pot ⇑(𝑁Γ) =

⌋︂
1.5Γ = −0.12247. УРС Танаки и

Ичимару (TI, см. уравнение (9) в работе [134] или уравнение (3.142) в [135]) также дает близкое

значение: 𝛽𝐸TI
pot⇑(𝑁Γ) = −0.1240(12), что находится в пределах заявленной точности приближения

TI, составляющей 1%.
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Рис. 5.1. Безразмерная потенциальная энергия на частицу для Γ = 0.01 и различных значений 𝑁 . Расчеты
выполнены с использованием методов УУПЭ иМКИТ (для 𝑛 = 0 и 𝑛 = 10) с учетом и без учета кулоновского
дальнодействия (последнее соответствует псевдопотенциалу «обычный п/п Кельбг»). Термодинамический
предел рассчитан на основе результатов моделирования с помощью УУПЭ.

Таблица 5.2. Результаты моделирования Монте-Карло для средней потенциальной энергии (2.71),
−𝛽𝐸pot⇑(𝑁Γ). Используются пять различных методов для числа частиц от 𝑁 = 102 до 106 и Γ = 0.01;
𝑚tot = 10

7, 𝑛𝑏 = 5. Цифры в скобках соответствуют одной стандартной ошибке.

Метод 𝑛 102 103 104 105 106

УУПЭ — 0.2661(10) 0.15702(81) 0.12663(97) 0.1235(21) 0.1234(16)
Кельбг-УУЭ 0 0.26686(65) 0.15835(48) 0.1273(14) 0.1234(27) 0.1230(12)
Кельбг-УУЭ 10 0.2654(11) 0.1587(17) 0.1298(33) — —

обычный Кельбг 0 0.2275(15) 0.1463(22) 0.1258(15) 0.1235(15) 0.1236(45)
обычный Кельбг 10 0.2291(18) 0.1481(22) 0.1295(13) — —

Таблица 5.3. Дополнительные данные МК моделирования в случае УУПЭ.

Метод 𝑛 2 × 104 5 × 104 8 × 104
УУПЭ — 0.1248(11) 0.1223(13) 0.1219(13)

Таким образом, в области Γ ≤ 0.01 справедливо приближение Дебая–Хюккеля. Однако с

увеличением Γ наличие связанных состояний вызывает проблемы сходимости в моделировании

стандартными подходами МКИТ. Это будет подробно проиллюстрировано для Γ = 0.05.

5.1.2. Проявление связанных состояний в моделировании МКИТ

Какбылопоказано ранее (см. таблицу5.1), с увеличениемпараметраΓнаблюдается появление

связанных состояний. Если такое состояние образуется, энергия на частицу резко уменьшается;
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в то же время, при распаде связанного состояния энергия (на частицу) скачкообразно возрас­

тает (см. рис. 5.2). Это приводит к значительному увеличению статистической ошибки средней

потенциальной энергии.
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Рис. 5.2. Безразмерная потенциальная энергия на частицу и количество связанных состояний в зависимости
отшагаМонте-Карло в моделировании без высокотемпературных разбиений для𝑁 = 100 иΓ = 0.05. Каждое
резкое уменьшение энергии сопровождается появлением частиц в связанном состоянии (или отрицательной
энергии (5.2)). Напротив, каждое резкое увеличение энергии происходит при переходе некоторых частиц в
свободное состояние.
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(а) Статистическая ошибка, определяемая выражени­
ем (3.32), как функция от 𝑛𝑏; каждый блок содержит
𝑚tot⇑𝑛𝑏 = 108 конфигураций. Вопреки ожиданиям, ста­
тистическая ошибка увеличивается с ростом 𝑛𝑏.
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(б) Распределение значений энергии блоков, 𝛽𝐸̄pot⇑𝑁 (см.
уравнение (3.32) и предшествующие рассуждения); всего
используется 𝑛𝑏 = 45 блоков. Данная гистограмма имеет
негауссову форму.

Рис. 5.3. Зависимость статистической ошибки 𝛽𝐸pot⇑𝑁 от числа блоков 𝑛𝑏 для Γ = 0.05 и 𝑁 = 102.
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Для исследования поведения погрешности с ростом выборки была произведена следующая

процедура. Поскольку в ходе моделирования методом МКИТ с числом шагов𝑚tot = 107 на равно­
весном участке при Γ = 0.05 происходит около 300 таких скачков, необходимо увеличить размер

блока. Далее для расчета энергии одного блока используется 𝑚tot⇑𝑛𝑏 = 108 конфигураций. Было

проведено длинное моделирование с общим числом шагов 𝑚tot = 4.5 × 109 для 100 частиц без

высокотемпературных разбиений. Для вычисления статистической ошибки моделирование разде­

лено на 𝑛𝑏 = 45 блоков. В результате было получено 45 значений энергии блоков, 𝛽𝐸̄pot(𝑙)⇑𝑁 , где

𝑙 = 1, . . . ,45, для Γ = 0.05.
Оказалось, что даже такое длительное моделирование все еще имеет значительную статисти­

ческую ошибку. Средняя потенциальная энергия составила 𝛽𝐸pot⇑𝑁 = −0.2 ± 0.1; таким образом,

относительная статистическая погрешность достигла 50%. Для выяснения причин такой высокой

погрешности была рассчитана зависимость ошибки энергии от числа блоков (см. рис. 5.3(a)); при

этом количество конфигураций в каждом блоке оставалось постоянным и равным 108. Иначе го­

воря, при фиксированном отношении 𝑚tot⇑𝑛𝑏 общее число шагов 𝑚tot увеличивалось. Видно, что

статистическая ошибка не только не уменьшается, но, напротив, возрастает с увеличением чис­

ла блоков. На рис. 5.3(b) представлено распределение энергий блоков; это распределение имеет

негауссову форму.

Попробуем теперь объяснить, почему наблюдается рост статистической погрешности мо­

делирования с ростом объема выборки. Для этого необходимо выяснить механизм образования

связанных состояний в произведенном моделировании МК, а именно записать критерий образо­

вания связанных состояний и рассчитать вероятность их образования.

Для этого запишем полную энергию (2.69) некоторой конфигурации в виде суммы одноча­

стичных вкладов для определенной конфигурации частиц:

𝛽𝐸(ℛ, 𝛽) = 𝛽𝑈 a
0 +

1

2

𝑁

∑
𝑖=1
𝛽𝜀𝑖, (5.1)

𝛽𝜀𝑖 = 3(𝑛 + 1) −
𝑛

∑
𝑘=0

𝑚𝑖(r𝑖,𝑘 − r𝑖,𝑘+1)2
ℎ̵2𝜖

+ 𝛽𝑢𝑖. (5.2)

Без учета квантовых эффектов, потенциал некоторой 𝑖-ой частицы выражается через УУПЭ:

𝛽𝑢𝑖 =
𝛽

2

𝑁𝑠,𝑖

∑
𝑗=1
𝑗≠𝑖

𝑞𝑖𝑞𝑗𝜙(𝑟𝑖𝑗). (5.3)

При использовании матрицы плотности с дальнодействием, эта величина рассчитывается с помо­

щью псевдопотенциала Кельбг-УУЭ:

𝛽𝑢𝑖 =
𝜖

2

𝑛

∑
𝑘=0

𝑁𝑠,𝑖

∑
𝑗=1
𝑖≠𝑗

𝑞𝑖𝑞𝑗(Φ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜖) + 𝜖
𝜕Φ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜖)

𝜕𝜖
). (5.4)

Особенность заключается в том, что как УУПЭ, 𝜙(𝑟), так и Кельбг-УУЭ, Φ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜖),
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сдвинуты так, чтобы обращаться в нуль на больших межчастичных расстояниях. Таким образом,

естественно определить связанное состояние для частицы следующим образом.

Если для конфигурации в МКИТ ℛ или классической конфигурации R энергия 𝛽𝜀𝑖, опре­

деляемая уравнением (5.2), для 𝑖-й частицы отрицательна, то 𝑖-я частица находится в связанном

состоянии; если эта энергия положительна, то 𝑖-я частица находится в свободном состоянии.
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Рис. 5.4. Вероятность перехода в связанное состояние для различных значений Γ при случайном смещении
частицы внутри вычислительной ячейки в ходе моделирования методом Монте-Карло. Здесь 𝑟𝑏 — решение
уравнения (5.5). Сплошная линия соответствует УУПЭ, пунктирная линия — кулоновскому потенциалу.
При Γ ≪ 1 оба потенциала дают одинаковую вероятность. При более высоких параметрах неидеальности
результат для кулоновского потенциала расходится; напротив, для УУПЭ вероятность стремится к 1 при
Γ→∞.

Теперьможно оценить вероятность перехода некоторой частицы в связанное состояние при ее

случайном смещении в ходе моделирования методом Монте-Карло. Для этого рассмотрим только

две точечные частицы в ячейке (𝑁𝑒 = 𝑁𝑝 = 1), взаимодействующие через УУПЭ. Следующее

уравнение определяет радиус сферы 𝑟𝑏:

𝛽𝜀1 = 0⇒
3

2
− 𝛽𝑒

2

2𝑟𝑎
× 𝑟𝑎𝜙(𝑟𝑏) = 0. (5.5)

Таким образом, если расстояние между двумя частицами меньше 𝑟𝑏, энергии 𝛽𝜀1 и 𝛽𝜀2 электрона и

протона отрицательны: частицы находятся в связанном состоянии. В противном случае состояние

является свободным. Решая кубическое уравнение (5.5), можно найти следующее выражение для

𝑟𝑏⇑𝑟𝑎, которое зависит только от параметра Γ:

𝑟𝑏⇑𝑟𝑎 =
(1 + 𝑖

⌋︂
3) (Γ3 + 𝑖

⌋︂
2
⌈︂
Γ3(3Γ(Γ + 2) + 4))

2⇑3
+ (1 − 𝑖

⌋︂
3)Γ(Γ + 2)

2Γ
3

⌉︂
Γ3 + 𝑖

⌋︂
2
⌈︂
Γ3(3Γ(Γ + 2) + 4)

. (5.6)
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Мнимая часть уравнения (5.6) равна нулю при Γ > 0, а в пределе Γ→ 0 отношение 𝑟𝑏⇑𝑟𝑎 стремится
к нулю следующим образом:

𝑟𝑏⇑𝑟𝑎 = Γ⇑3 +𝑂(Γ2). (5.7)

Запишем этот радиус также в единицах радиуса Бора:

𝑟𝑏(Γ, 𝜒)⇑𝑎𝐵 =
3
⌈︂

𝜋
6Γ

2

𝜒2⇑3 +𝑂(Γ
3). (5.8)

Объем сферы равен 4𝜋𝑟3𝑏(Γ, 𝜒)⇑3:
4𝜋𝑟3𝑏(Γ, 𝜒)

3𝑎3𝐵
= 2𝜋2Γ6

9𝜒2
+𝑂(Γ7). (5.9)

Если частица случайно смещается, вероятность попадания в сферу (т.е. в связанное состояние)

равна:
4𝜋𝑟3𝑏⇑3
𝐿3

= 𝑟
3
𝑏

𝑟3𝑎
= Γ3

27
+𝑂(Γ4). (5.10)

Отметим, что отношение в (5.10) не зависит от 𝜒; оно зависит только от Γ.

Уравнение (5.5) может быть решено для кулоновского потенциала. В результате получа­

ются уравнения (5.7)–(5.10) без каких-либо поправок «𝑂(. . .)». Однако для УУПЭ отношение

𝑟3𝑏⇑𝑟3𝑎(Γ) ≤ 1 для любого Γ имеет смысл вероятности, тогда как для кулоновского потенциала оно

стремится к бесконечности при Γ→∞.

Вероятность 𝑟3𝑏⇑𝑟3𝑎(Γ) представлена для обоих потенциалов как функция Γ на рис. 5.4. Эта

функция позволяет оценить количество переходов в связанное состояние в ходе моделирования

как

(𝑟𝑏⇑𝑟𝑎)3 ×𝑚tot, (5.11)

где𝑚tot обозначает общее число шагов Монте-Карло. Теперь можно объяснить отсутствие связан­

ных состояний при Γ ≤ 0.01, а также число образовавшихся связанных состояний при Γ = 0.05.
В ходе моделирования методом Монте-Карло с классическим потенциалом и моделирования

с использованием интегралов по траекториям не наблюдается образование связанных состоя­

ний частиц при малых значениях параметра Γ ≤ Γmax = 0.01. Это объясняется крайне низкой

вероятностью формирования связанных состояний. Например, при Γ = 0.01 эта вероятность со­

ставляет примерно ∼ 4 × 10−8 (как показано на рис. 5.4). Таким образом, за общее число шагов

Монте-Карло 𝑚tot = 107 практически нельзя наблюдать образование связанных состояний. При

уменьшении значения Γ вероятность образования связанных состояний уменьшается пропорци­

онально Γ3. Следовательно, в моделировании методом Монте-Карло практически невозможно

наблюдать образование связанных состояний при Γ ≤ Γmax = 0.01 для 𝑚tot ∼ 107. При этом, уже

при Γ = 0.02 эта вероятность составляет 3 × 10−7, что приводит к появлению небольшого числа
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атомов в моделировании. Это означает, что метод моделирования с классическим (расходящимся

в нуле) потенциалом может быть использован в области очень слабого взаимодействия, Γ ≤ 0.01,
для получения надежного термодинамического предела, так как вероятность образования связан­

ных состояний пренебрежимо мала при достаточно большом числе шагов Монте-Карло. Таким

образом, можно говорить о том, что классическая двухкомпонентная плазма может на практике

при определенных условиях считаться устойчивой в области Γ ≤ 0.01, даже несмотря на то, что

энергия такой системы не ограничена снизу. Как уже было видно в разделе 5.1.1, при таком слабом

взаимодействии достаточно точный ответ дает приближение Дебая–Хюккеля.

Далее рассмотрим моделирование с диагональным псевдопотенциалом Кельбга при Γ = 0.05.
В процессе моделирования отслеживается количество электронов и протонов с отрицательной

энергией, определяемой уравнением (5.2). Результаты моделирования представлены на рис. 5.2.

В процессе наблюдается, что связанные состояния электронов образуются 39 ± 33 раз за 𝑚tot⇑𝑛𝑏

шагов, а всего 193 раза. Уравнение (5.11) для 𝑚tot → 𝑚tot⇑𝑛𝑏 говорит об образовании 9 связан­

ных состояний, что, хотя и намного меньше 39, но согласуется с результатами моделирования в

пределах погрешности.

Таким образом, получение адекватной выборки конфигураций в методе Монте–Карло при

наличии небольшого числа связанных состояний требует значительных вычислительных затрат.

Одним из возможных решений этой проблемы может быть метод молекулярной динамики с ин­

тегралами по траекториям (PIMD). Благодаря одновременному движению всех бусин, этот метод

позволяет более эффективно выбирать конфигурации, что способствует снижению статистической

погрешности.

В случае невырожденной двухкомпонентной плазмы (когда (− ln𝜒) ≫ 1) результаты моде­

лирования с использованием классического потенциала и МКИТ совпадают как для 𝑛 = 0, так и

для 𝑛 = 10 (см. табл. 5.1). Следовательно, для моделирования невырожденной плазмы может быть

использован классический подход молекулярной динамики с диагональным псевдопотенциалом

Кельбга. В процессе расчета МД каждая частица смещается под действием сил, а не случайным

образом, что повышает эффективность алгоритма. Далее будет рассмотрен именно такой метод

моделирования, с помощью которого будут получены основные результаты данной работы по

термодинамике невырожденной водородной плазмы.
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5.2. Результаты МД моделирования

5.2.1. Зависимость результатов от соотношения масс

Как уже отмечалось выше (3.44), характерное число шагов моделирования, которые необ­

ходимо выполнить, прямо пропорционально корню из соотношения масс протонов и электронов.

Это связано с тем, что протоны, будучи более тяжелыми частицами, двигаются медленно относи­

тельно электронов. Зачастую для повышения эффективности моделирования, соотношение масс

протонов и электронов уменьшается таким образом, чтобы наблюдаемые величины практически

не изменились. Например, в работе [215] используется соотношение масс 200, что приблизительно

в 10 раз меньше реального.

Для исследования влияния𝑚𝑝⇑𝑚𝑒 на результаты моделирования соотношение масс варьиро­

валось от реального до 10 и вычислялась полная энергия водородной плазмы. При этом, можно

выделить два главных случая, требующих изучения: более 52 кК, но менее 150 кК (есть свободные

частицы и атомы), а также менее 52 кК (присутствуют молекулы). Это обусловлено тем, что при

более низких температурах, когда в моделировании образуются молекулы, влияние отличия масс

протонов от реальных может быть велико.
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Рис. 5.5. Зависимость полной энергии водородной плазмы от соотношения масс 𝑚𝑝⇑𝑚𝑒 в МД при двух
условиях: (слева) в отсутствие молекул и (справа) при наличии молекул.

На рис. 5.5 показана зависимость полной энергии системы на один электрон в зависимости

от соотношения масс. Хорошо видно, что для случая высоких температур (𝑇 = 62.5 кК) зависи­

мость очень слабая. Однако при низких температурах при𝑚𝑝⇑𝑚𝑒 ≤ 100 наблюдается немонотонное
поведение энергии и значительные отличия от реального соотношения масс. Таким образом, оп­

тимальным значением является𝑚𝑝⇑𝑚𝑒 = 200, которое используется для моделирования.
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5.2.2. Верификация метода моделирования невырожденной плазмы

Прежде, чем переходить к результатам моделирования невырожденной водородной плазмы

при𝜒 = 10−2, произведем сравнение с результатами работ [113; 214], в которых термодинамические

свойства и состав водородной плазмы были получены с помощьюметодаМКИТ с учетом обменных

эффектов, в том числе при 𝜒 > 0.01.
В работе [214] можно найти таблицы со значениями энергии и давления водородной плазмы

для нескольких изотерм в зависимости от параметра 𝑟𝑠. Эти данные частично приведены в табли­

цах 5.4–5.7 для температур 62500К, 50000 К, 31250 К и 15625 К. В этих таблицах в первом столбце

приведено значение 𝑟𝑠, во втором и третьем значения параметра вырождения 𝜒, умноженное на

100, и неидеальности Γ. В следующих столбцах даны значения энергии в эВ и давления в кбар

(или в бар) из статьи [214]. В следующих трех столбцах приведены энергия, ее статистическая

погрешность и отличия, полученные в данной работе с помощью МД. В последних трех столбцах

приведены аналогичные данные для давления. В данном случае в МД использовалось 68 частиц

(34 электрона), как и в работе [214].

Область применимости МД задается малостью параметра вырождения 𝜒 ≪ 1, поэтому при

значениях 102 × 𝜒 < 1 отличия результатов МД моделирования и МКИТ не должны сильно отли­

чаться. В таблице 5.4 хорошо видно, что при температуре 𝑇 > 𝑇𝐻2 = 52400 К и 𝑟𝑠 ≥ 20 отличия

от расчетов МКИТ [214] составляют менее процента по энергии и давлению. Однако при росте

параметра вырождения (или уменьшения 𝑟𝑠) отличия становятся значительными и достигают 10%

при 𝑟𝑠 = 10.
Рассмотрим далее изотерму 𝑇 = 50 кК (см. таб. 5.5). При 𝑟𝑠 ≥ 25 (или 102 × 𝜒 < 1) отличия

стали более значительными: уже при 𝑟𝑠 = 25 по энергии оно составляет 3%, тогда как по давле­

нию не превышает 1%. Однако на изотерме 𝑇 = 31250 К отличия в области малых вырождений

становятся значительными: при 𝑟𝑠 = 30 отличие по энергии составляют 47%, а при 𝑟𝑠 = 25 уже

100%. Полученное в МД значение меньше полученного в точных расчетах [214] методом МКИТ.

Однако такое отличие не связано с образованием нефизических кластеров со связанными состо­

яниями электронов с одинаковой проекцией спина, как объяснялось в [166]. Это можно видеть

на рис. 5.6, на котором изображены радиальные функции распределения электронов одинаковой

проекцией спина; характерный для кластеров пик (см. рис. 2.3) на расстояниях порядка тепловой

длины волны отсутствует. Для объяснения этого поведения требуется произвести анализ состава

водородной плазмы, который будет выполнен далее.

Рассмотрим также изотерму 𝑇 = 15625 К (см. таб. 5.7). В этом случае во всей области

рассмотренных параметров наблюдается значительное занижение энергии на десятки процентов
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Рис. 5.6. Радиальная функция распределения для электронов с одинаковой проекцией спина для изотермы
𝑇 = 31250 К, полученная с помощью МД. Хорошо видно, что принцип Паули выполняется: отсутствует
характерный пик (см. рис. 2.3), отражающий связанное состояние двух электронов с одинаковой проекцией
спина.

в сравнении с точными результатами. Отметим, что отличие по давлению, хоть и велико, но в

несколько раз меньше по сравнению с энергией.

Проанализируем теперь состав водородной плазмы, полученной в МД моделировании, а так­

же степень ионизации. Результаты расчетов приведены на рис. 5.7, а для степени ионизации на

нескольких изотермах и на рис. 5.7, б для состава плазмы при 𝑇 = 31250 К. Значения МКИТ

моделирования были взяты из работ [113; 214]. Также на рис. 5.7 приведены данные химической

модели водородной плазмы из работ [214].

Рассмотрим поведение степени ионизации на рис. 5.7, а. Видно, что значения 𝛼𝑒 хорошо

согласуются при 𝑟𝑠 > 20, то есть в области слабого вырождения, для температур на обеих изотермах
𝑇 = 62500 К и 𝑇 = 31250 К. Это означает, что критерий (см. раздел 5.2.5) выбора расстояния 𝑑𝐻
для определения электронов, находящихся в связанном состоянии, является корректным в области

невырожденной плазмы. Тем не менее, на изотерме 𝑇 = 15625 К степень ионизации значительно

(в 2 раза) меньше в сравнении с расчетами МКИТ. Это означает, что большее число электронов

участвует в образовании связанных состояний, чем необходимо. Такое поведение указывает на то,

что силы притяжения между электронами и протонами слишком велики для данных условий, что

приводит к чрезмерному образованию связанных состояний.
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(а) Степень ионизации в зависимости от параметра 𝑟𝑠 на
трех изотермах: 𝑇 = 62500 К, 𝑇 = 31250 К и 𝑇 = 15625
К. Пустыми символами показаны данные из рис. 23 рабо­
ты [113], который был получен на основании данных мо­
делирования [214]. Закрашенными символами показаны
данные МД, полученные в этой работе. Сплошные линии
показывают данные, полученные с помощью модели хи­
мической плазмы из работы [214]. Закрашенные символы
с черной каемкой показывают значение при 𝜒 = 0.01; сле­
ва от такого символа 𝜒 < 0.01, справа — 𝜒 > 0.01.
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(б) Процентное соотношение свободных протонов 𝐻+,
атомов 𝐻 и молекул 𝐻2 при температуре 𝑇 = 31250 К
в зависимости от 𝑟𝑠. Пустыми символами показаны дан­
ные из рис. 17 работы [214]. Сплошные линии показывают
данные, полученные с помощью модели химической плаз­
мы из работы [214]. Закрашенными символами показаны
данныеМД, полученные в этой работе. Закрашенные сим­
волы с черной каемкой показывают значение при 𝜒 = 0.01;
слева от такого символа 𝜒 < 0.01, справа — 𝜒 > 0.01.

Рис. 5.7. Степень ионизации водородной плазмы и ее состав для различных изотерм в зависимости от
𝑟𝑠. Пустые символы — данные МКИТ моделирования работы [214], сплошные линии — данные модели
химической плазмы работы [214], закрашенные символы — данные МД моделирования этой работы. В
моделировании использовано 𝑁 = 68 частиц.

Рассмотрим теперь зависимость состава от 𝑟𝑠 на изотерме 𝑇 = 31250К. На рис. 5.7, б показана

зависимость свободных протонов, атомов и молекул от параметра 𝑟𝑠, которые были получены из

моделирования МД в сравнении с данными [214]. Хорошо видно, что в области 𝜒 < 0.01 (или

𝑟𝑠 ≥ 25) состав из МД хорошо согласуется с данными МКИТ. Однако в диапазоне 𝑟𝑠 ≤ 30, при

уменьшении 𝑟𝑠, в МД наблюдается появление молекул, которые отсутствуют в данныхМКИТ. При

этом значительно уменьшается доля атомов, что говорит о переходе значительного числа атомов

в молекулярные соединения. Это снова сигнализирует об чрезмерном притяжении протонов и

электронов. Стоит также отметить, что, помимо молекул, в расчете МД наблюдается появление

комплексов 𝐻+2 , которые для удобства не показаны на рис. 5.7, б .

О том, что моделирование МД с помощью улучшенного псевдопотенциала Кельбга приводит

к чрезмерному падению энергии, сообщалось 20 лет назад в самой первой работе, в которой

был представлен этот псевдопотенциал [166]. В их расчетах также нарушался принцип Паули, что

приводило к образованию связанных состояний электронов с одинаковой проекцией спина. Однако

в работе [166] был рассмотрен случай плазмы умеренного вырождения, из-за чего авторы пришли



160

к выводу, что такое поведение связано с многочастичными квантовыми эффектами, которые не

учитываются в псевдопотенциале.

В данной работе рассматривается случай невырожденной системы 𝜒 ≪ 1, когда многоча­

стичные квантовые эффекты не важны: в молекуле на малых расстояниях находятся только два

электрона с разной проекцией спина, тогда как расстояние между электронами с одинаковой

проекцией спина значительно больше межчастичного расстояния. Для того, чтобы избежать их

сближения в МД, в данной работе был предложен учет конечного значения тепловой длины волны

де Бройля электронов, что позволило исключить неправильное в случае невырожденной плазмы

сближение электронов с одинаковой проекцией спина. Так во всех рассматриваемых в данной

главе расчетах не наблюдается образования нефизических комплексов, о которых говорилось в

работе [166]. Тем не менее, энергия системы оказывается значительно ниже корректной, а рост

плотности приводит к образованию чрезмерного числа молекулярных соединений.

В силу отсутствия связанных состояний электронов с одинаковой проекцией спина, объяс­

нением занижения значений энергии может служить гипотеза о неправильном поведении улуч­

шенного псевдопотенциала Кельбга при образовании молекул. В работе [166] показано, что этот

псевдопотенциал достаточно хорошо воспроизводит поведение точной матрицы плотности даже в

случае относительно низких температур до 5 кК (см. рис. 5 в [166]). Тем не менее, возможно, что

более тонкие изменения потенциала, которые не охватываются выражением улучшенного псевдо­

потенциала Кельбга, оказывают значительное влияние на конфигурации, которые формируются

под действием межчастичных сил. Иными словами, если обозначить за Φex
0 (𝑟;𝛽) точный псевдо­

потенциал, полученный из матрицы плотности, то Φex
0 (r, r;𝛽) ≈ ΦI

0(r, r;𝛽), но ∇Φex
0 (r, r;𝛽) сильно

отличается ∇ΦI
0(r, r;𝛽). В данной работе не приводится доказательство этой гипотезы, так как

расчет точной кулоновской матрицы плотности при любых температурах выходит за рамки дан­

ной работы. Стоит также отметить, что косвенно о неточностях в улучшенном псевдопотенциале

Кельбга свидетельствует необходимость выставления большего параметра 𝛼𝑇
𝑒𝑒 для электронов с

ростом неидеальности.

Тем не менее, далее будут рассмотрены результаты, полученные с помощью улучшенного

псевдопотенциала Кельбга с учетом дальнодействия в зависимости от параметра неидеальности Γ

при фиксированном параметре вырождения 𝜒 = 0.01. Хотя в области низких температур, как пока­
зано выше, результаты такого моделирования имеют малую точность, будет получено качественное

поведение системы в таких условиях, а также возможные проблемы даже в случае моделирования

с точным псевдопотенциалом и его градиентом.
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5.2.3. Радиальные функции распределения при 𝜒 = 0.01

Для иллюстрации структуры водородной плазмы, а также последующего анализа состава

плазмы рассмотрим радиальные функции распределения между протонами (𝑔𝑝−𝑝(𝑟)), электрона­
ми и протонами (𝑔𝑝−𝑒(𝑟)), электронами с различной проекцией спина (𝑔↑↓𝑒−𝑒(𝑟)) и электронами с

одинаковой проекцией спина (𝑔↑↑𝑒−𝑒(𝑟)).
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(а) РФР 𝑔𝑝−𝑝(𝑟) между всеми протонами в системе.
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(б) РФР 𝑔𝑝−𝑒(𝑟) между всеми протонами и электронами в
системе.
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(в) РФР 𝑔↑↓𝑒−𝑒(𝑟) между всеми электронами с различной
проекцией спина в системе.
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проекцией спина в системе.

Рис. 5.8. Радиальные функции распределения невырожденной водородной плазмы при 𝜒 = 0.01, полученные
с помощью МД. На графиках (а)–(в) используется логарифмический масштаб по горизонтальной оси; по
вертикальной оси от 0 до 1 используется линейный масштаб, а при 𝑔(𝑟) ≥ 1 — логарифмический. Также на
графиках (а)–(в) в правом верхнем углу приведены вставки в линейном масштабе по обеим осям. В расчете
использовано 𝑁 = 103 частиц.

На графике 𝑔𝑝−𝑝(𝑟) хорошо видно, что молекулы полностью отсутствуют при Γ ≤ 0.25. Это
связано с тем, что в этих случаях температура выше 𝑇𝐻2 = 52400 К, являющегося энергией
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диссоциации. Уже при Γ = 0.5 хорошо виден резкий пик, отражающий появление связанных

состояний двух протонов (молекулярных соединений). В то же время при Γ ≤ 0.5 радиальная

функция всегда больше нуля при 𝑟 ≥ 0.1𝑟𝑎. Эта ситуация меняется кардинальным образом при

Γ ≥ 0.8, когда после пика в окрестности 𝑟 ≈ 0.07𝑟𝑎 функция 𝑔𝑝−𝑝(𝑟) резко падает до нуля и

выходит на единицу только при 𝑟 > 𝑟𝑎. Это связано с тем, что с ростом Γ система становится

более разреженной, и молекулярные соединения практически не сталкиваются друг с другом. При

Γ ≥ 2 на больших расстояниях начинает проявляться максимум и минимум радиальной функции

распределения, что свидетельствует об образовании ближнего порядка.

Радиальные функции распределения между электронами и протонами, а также электронами

с разной проекцией спина ведут себя похожим образом на больших расстояниях: при увеличении

Γ наблюдается участок нулевого значения 𝑔(𝑟), а при Γ ≥ 2 можно видеть появление первых

максимумов при 𝑟 > 𝑟𝑎. Основное отличие на малых расстояниях заключается в том, что пик,

отвечающий за связанное состояние, не падает до нуля при 𝑟 = 0.01. Этот факт отражается тем,

что псевдопотенциал взаимодействия между этими парами частиц конечен в нуле, из-за чего

частицы могут подходить очень близко друг к другу.

Напротив, электроны с одинаковой проекцией спина не могут находиться в одном связанном

состоянии, из-за чего функция распределения достаточно быстро выходит на единицу, в том

числе при Γ ≤ 1.5. Снова при Γ ≥ 2 можно видеть появление максимумов и минимумов, которые

свидетельствуют о появлении ближнего порядка.

Таким образом, из-за провала на РФР при 0.2 < 𝑟⇑𝑟𝑎 < 0.4 можно ожидать, что при Γ ≥ 1

в системе устанавливается некоторый постоянный состав, который не меняется на протяжении

всего времени моделирования.

5.2.4. Анализ состава невырожденной плазмы

В соответствии с процедурой, описанной в разделе 3.5, был рассчитан состав и степень

ионизации 𝛼𝑒 невырожденной водородной плазмы в зависимости от параметра неидеальности Γ.

На рис. 5.9, а можно видеть, что 𝛼𝑒 равен единице при 𝑇 > 𝑇𝐻 и уменьшается при 𝑇 < 𝑇𝐻 . При
этом после уменьшения температуры до 𝑇𝐻2 степень ионизации уменьшается быстрее, достигая

значения 0.5 при 30 кК (или Γ = 0.4). Далее 𝛼𝑒 зануляется при Γ = 0.8.
На рис. 5.9 приведена зависимость состава невырожденной водородной плазмы, а именно

зависимость соотношения компонент плазмы в процентах от температуры и параметра неидеаль­

ности. Хорошо видно, что процент свободных протонов ведет себя аналогично степени ионизации.

При этом в области температур 𝑇𝐻 < 𝑇 < 𝑇𝐻2 свободные электроны и протоны тратятся только на
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Рис. 5.9. Результаты анализа ионизации и состава невырожденной водородной плазмы при 𝜒 = 0.01. Пред­
ставлены расчеты для 𝑁 = 103.

образование атомов; молекулы и прочие комплексы отсутствуют. Однако при понижении темпе­

ратуры с 40 до 25 кК начинается образование молекул, а также очень небольшого числа ионизиро­

ванных комплексов𝐻− и𝐻+2 . При понижении температуры с 25 до 10 кК атомарная часть плазмы

достаточно быстро уменьшается, а число молекул значительно растет и достигает своего макси­

мума к 6 кК (Γ = 1). При достижении еще более низких температур молекул становится меньше, а

доля ионизированных комплексов𝐻+3 и𝐻− вырастает в несколько раз. Таким образом, при Γ ≥ 0.8
свободные электроны и протоны полностью отсутствуют, а число молекул и комплексов начинает

доминировать над числом атомов.

Стоит еще раз напомнить, что полученные результаты имеют качественный характер из-за

чрезмерного притяжения, которое показывает улучшенный псевдопотенциал Кельбга. Тем не ме­

нее, из представленных результатов можно видеть качественную картину поведения различных

характеристик невырожденной плазмы с ростом параметра неидеальности. Также необходимо от­

метить, что при Γ ≥ 0.8 в моделировании действительно устанавливается некоторый постоянный

состав и число компонент плазмы не меняется в процессе моделирования. Это создает некоторые

трудности в получении термодинамического предела при Γ ≥ 0.8, так как состав плазмы может

немного зависеть от числа частиц при 𝑁 ≤ 103 из-за невозможности сформировать необходимый

состав из доступного числа частиц.
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5.2.5. Зависимость от числа частиц и термодинамический предел энергии и давления

невырожденной плазмы

Рассмотрим в данном разделе расчет термодинамического предела энергии невырожденной

водородной плазмы при различных значениях параметра неидеальности, а также с учетом и без

учета дальнодействия. Обсудим также особенности расчета термодинамического предела при Γ ≥
0.8.

Для начала рассмотрим расчет энергии в ТД пределе при Γ ≤ 0.5, когда столкновения между

частицами происходят часто. В этом случае зависимость от числа частиц является достаточно

плавной и неплохо описывается линейной аппроксимацией. На рис. 5.10 приведена зависимость

энергии на один электрон от числа частиц и соответствующие аппроксимации для улучшенного

псевдопотенциала Кельбга с учетом и без учета дальнодействия. Отметим, что аппроксимации

подбирались таким образом, чтобы термодинамический предел для двух потенциалов совпадал

между собой и кривые проходили через точки в пределах погрешности.

Как было видно на рис 5.1, при Γ = 0.01 учет дальнодействия не привел к улучшению схо­

димости по числу частиц и, более того, расчет с обычным псевдопотенциалом Кельбга сходится

немного быстрее. Аналогичное поведение можно видеть на зависимости от числа частиц для

Γ = 0.1 и Γ = 0.25 на рис. 5.10, а и 5.10, б соответственно. При Γ = 0.4,0.5, когда в расчете при­

сутствуют атомы и небольшое число молекул, отличий в сходимости практически не наблюдается.

Аналогичное поведение наблюдалось в случае ОКП (см. рис. 4.3, б), где при Γ = 1 сходимость с

учетом и без учета дальнодействия практически не отличалась. Таким образом, при Γ ≤ 0.5 учет

дальнодействия в псевдопотенциале Кельбга не дает преимуществ в сходимости по числу частиц

в случае невырожденной водородной плазмы.

Теперь рассмотрим область параметра неидеальности Γ > 0.5, когда система является доста­

точно разреженной (𝑛𝑒 ≤ 1020 см−3), а столкновения между комплексами и молекулами происходят
достаточно редко или отсутствуют (при Γ ≥ 1 в моделировании устанавливается некоторый посто­
янный состав для некоторого числа частиц). Другими словами, на РФР для протонов появляется

участок с нулевым (или около нулевым) значением. Зависимость энергии от числа частиц при

Γ ≥ 0.65 приведена на рис. 5.11.
На рис. 5.11 хорошо видно, что плавная зависимость от числа частиц, наблюдавшаяся при

Γ ≤ 0.5, исчезает. Видна скачкообразная зависимость энергии от числа частиц, так как точки

на графике расположены достаточно хаотично (особенно в области малых 𝑁 ). Существует, как

минимум, две возможные причины такого поведения.

Во-первых, в моделировании достигается термодинамическое равновесие, а не химическое.
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Рис. 5.10. Зависимость полной энергии на один электрон невырожденной водородной плазмы от обратного
числа частиц в области 0.1 ≤ Γ ≤ 0.5 при 𝜒 = 0.01. По горизонтальной оси в промежутке (10−4,0.014)
используется логарифмический масштаб; при 1⇑𝑁 < 10−4 используется линейный масштаб.

Это означает, что случайным образом устанавливается определенный состав, который затем оста­

ется неизменным из-за высокой разреженности системы. Можно предположить, что длительность

МД-моделирования оказалась недостаточной для достижения химически равновесного состава.

Однако стоит отметить, что типичное время моделирования (3.43) на равновесном участке в дан­

ной работе составляет
⌋︂
200

⌋︂
3

2𝜋 10
7 × 5 × 10−4𝜏𝑝 = 19000𝜏𝑝, то есть десятки тысяч плазменных

периодов. Для проверки длительность моделирования некоторых точек была увеличена на поря­

док; при этом состав на протяжении такого большого времени не менялся. Таким образом, можно

считать, что химическое равновесие все же было достигнуто в моделировании, включая точки,

представленные на рис. 5.11.

Вторая причина, влияющая на поведение более существенно, заключается в неоптималь­
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Рис. 5.11. Зависимость полной энергии на один электрон невырожденной водородной плазмы от обратного
числа частиц в области 0.65 ≤ Γ ≤ 2 при 𝜒 = 0.01. По горизонтальной оси в промежутке (10−4,0.014)
используется логарифмический масштаб; при 1⇑𝑁 < 10−4 используется линейный масштаб. Хорошо видно,
что при сильной неидеальности зависимость от числа частиц является скачкообразной, из-за чего получить
надежный термодинамический предел не представляется возможным при использовании 𝑁 ≤ 103.

ном выборе числа частиц для заданных термодинамических параметров. Под этим понимается

следующее: при малом и постоянном числе частиц в моделировании может не сформироваться

необходимый состав из-за недостатка частиц того или иного типа. Вследствие этого процентное

содержание компонентов может резко меняться с увеличением𝑁 либо вообще не меняться, вместо

ожидаемого плавного стремления к предельному значению.

Это обстоятельство может быть исправлено либо за счет использования большого числа ча­

стиц (𝑁 ≥ 103), либо путем использования методов моделирования с переменным числом частиц

(то есть в рамках большого канонического ансамбля). Однако моделирование более тысячи частиц

является достаточно трудоемким из-за длительного времени установления химического равнове­

сия, а моделирование с переменным числом частиц выходит за рамки диссертационной работы.
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Следует также отметить, что, хотя на рис. 5.11 отсутствует плавная зависимость энергии от

числа частиц, отличия в энергии между различными 𝑁 очень малы (примерно 0.1% при Γ ≥ 1).
Поэтому предлагается использовать значение энергии при максимальном числе частиц в моде­

лировании в качестве оценки термодинамического предела, либо провести аппроксимацию через

некоторые выбранные точки. На рис. 5.11 можно увидеть пунктирные линии, проведенные через

такие точки; для этого использовались линейная и квадратичная по 1⇑𝑁 функции.

Стоит также отметить, что при Γ ≥ 0.65 трудно говорить о преимуществах учета или не

учета дальнодействия, так как основная часть энергии определяется поведениемпсевдопотенциала

на малых расстояниях. Именно поэтому значения энергии мало отличаются друг от друга при

использовании улучшенного псевдопотенциала Кельбга без учета или с учетом дальнодействия.

Таблица 5.8. Значения энергии и давления невырожденной водородной плазмы при 𝜒 = 0.01 в термодина­
мическом пределе. В скобках показана погрешность последних цифр.

Γ 𝑇 , кК 𝑛𝑒, см−3 (𝐸⇑𝑁𝑒)∞, эВ (𝑃 )∞, бар 𝑟𝑠
0.01 60617 1.14 × 1025 15657.80(7) 190.6656(4) × 109 0.52
0.1 606 1.14 × 1022 152.87(2) 1885.7(4) × 103 5.21
0.25 97.0 7.29 × 1020 22.17(2) 18.509(8) × 103 13.0
0.4 37.9 1.78 × 1020 4.1(1) 1725(6) 20.8
0.5 24.2 9.12 × 1019 −6.03(9) 456(2) 26.0
0.65 14.3 4.15 × 1019 −20.21(3) 82.4(13) 33.9
0.8 9.47 2.23 × 1019 −22.60(1) 34.0(12) 41.7
1 6.06 1.14 × 1019 −23.59(2) 12.6(3) 52.1
1.5 2.69 3.38 × 1018 −24.715(3) 2.939(8) 78.1
2 1.52 1.42 × 1018 −25.3068(3) 1.18(2) 104
2.5 0.97 7.29 × 1017 −25.623(5) 0.632(9) 130

В результате, можно заключить, что при моделировании невырожденной водородной плазмы

учет дальнодействия не приводит к улучшению сходимости энергии по числу частиц, так как при

малых Γ, как и в случае ОКП, более быструю сходимость обеспечивает псевдопотенциал без даль­

нодействия, а при больших Γ энергия в основном определяется поведением на малых расстояниях,

которое одинаково для обоих псевдопотенциалов. В таблице 5.8 можно видеть полученный термо­

динамический предел для энергии и давления; давление было получено без учета дальнодействия.

5.3. Основные результаты и заключение главы

В данной главе были представлены результаты по моделированию невырожденной водород­

ной плазмы методами Монте–Карло, в том числе с интегралами по траекториям, а также методом

молекулярной динамики. Было проанализировано появление связанных состояний в моделирова­

нии Монте–Карло и показано их влияние на статистическую погрешность энергии. Оказалось, что
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стандартный метод обновления конфигураций приводит к растущей зависимости погрешности

при увеличении статистики, что говорит о неэффективности такого метода моделирования. Также

была произведена оценка вероятности образования связанного состояния в процессе моделирова­

ния Монте–Карло в широком диапазоне параметра неидеальности и показано, что в режиме очень

слабой неидеальности (Γ ≤ 0.01) связанные состояния практически никогда не образуются. Это

позволяет использовать в моделировании сингулярный в нуле потенциал Кулона или Эвальда, хотя

формально такая система является неустойчивой. В случае Γ = 0.01 был получен термодинами­

ческий предел энергии, а также показано, что различные методы моделирования (с кулоновским

потенциалом, псевдопотенциалом Кельбга с учетом и без учета дальнодействия, а также исполь­

зование интегралов по траекториям) дают одинаковый результат.

Молекулярно-динамическое моделирование с улучшенным псевдопотенциалом Кельбга с

учетом дальнодействия было верифицировано на точных расчетах Филинова и Боница [214]. Было

показано, что отличия в энергии и давлении малы при температурах более 50 кК и 𝜒 ≤ 0.01. Однако
при более низких температурах эти отличия значительно возрастают, так как энергия существен­

но занижается. Аналогичный результат был продемонстрирован задолго до этих расчетов теми же

авторами в работе [166], где в качестве объяснения предполагалось нарушение принципа Паули,

что приводило к образованию связанных состояний электронов с одинаковыми проекциями спина.

В настоящем исследовании такие состояния не формируются благодаря учету конечного значения

тепловой длины волны де Бройля электронов в межчастичных силах. Как показало дальнейшее

сравнение степени ионизации и состава на изотерме 𝑇 = 31250 К, межчастичные силы в слу­

чае использования улучшенного псевдопотенциала Кельбга приводят к чрезмерному притяжению

электронов и протонов, что приводит к излишнему образованию молекулярных соединений (при

соблюдении принципа Паули). Таким образом, выдвинуто предположение, что хотя сам псевдо­

потенциал Кельбга хорошо воспроизводит точную матрицу плотности [166], его градиент может

существенно отличаться от точного. Проверка этого предположения требует вычисления точной

кулоновской матрицы плотности, что выходит за рамки диссертации.

Далее были рассчитаны радиальные функции распределения невырожденной водородной

плазмы в области параметра неидеальности 0.1 ≤ Γ ≤ 3, что соответствует температурному диапа­
зону от 606 кК до 670 К. Показано, что с уменьшением температуры (или увеличением параметра

неидеальности) на РФР протонов возникает пик, отвечающий за связанные состояния в молеку­

лярных соединениях. При достижении параметра Γ = 0.65 на 𝑔(𝑟) возникает провал, отражающий

сильную разреженность плазмы. При Γ ≥ 2можно видеть появление за этим провалом максимума и

минимума, свидетельствующих о возникновении ближнего порядка. Также показано, что функции

распределения для электронов с одинаковым спином на малых расстояниях достаточно быстро
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стремятся к нулю, что отражает выполнение принципа Паули.

Анализ степени ионизации и состава невырожденной плазмы показывает рост доли атомов

до 50% и при достижении Γ = 0.5 их уменьшение, которое сопровождается ростом доли моле­

кулярных соединений. При достижении Γ = 1 свободные электроны и протоны отсутствуют в

системе. Стоит отметить, что такой резкий и значительный рост молекулярных соединений может

быть артефактом улучшенного псевдопотенциала Кельбга и требует проверки расчетом с точной

матрицей плотности.

Далее был получен термодинамический предел для энергии и давления невырожденной во­

дородной плазмы. Было показано, что учет дальнодействия не приводит к улучшению сходимости

энергии по числу частиц во всем рассмотренном диапазоне параметра неидеальности. Также с

ростом неидеальности и появлением молекулярных соединений зависимость от числа частиц пе­

рестает быть плавной в области𝑁 ≤ 103, из-за чего провести аппроксимацию через все полученные

точки оказывается возможным только при Γ ≤ 0.5. Решение этой проблемы, видимо, заключается

в моделировании с переменным числом частиц, что выходит за рамки диссертации.

Были вычислены значения энергии и давления невырожденной водородной плазмы в диапа­

зоне 0.1 ≤ Γ ≤ 2.5 при параметре неидеальности 𝜒 = 10−2 в табличном виде.

Результаты главы были опубликованы в рецензируемых изданиях [6; 9], препринте [216] и

сборниках тезисов.
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Заключение
В этой работе были получены следующие основные результаты:
1. Получен аналитический вид усредненного по углам потенциала Эвальда для одно- и двух­

компонентных кулоновских систем и соответствующие формулы потенциальной энергии, фор­

мула потенциальной энергии однокомпонентной плазмы с усеченным кулоновским потенциалом

без учета дальнодействия, а также поправки к вириальному давлению для зависимого от объема

потенциала в случаях обычного и усредненного по углам потенциала Эвальда.

2. Реализован и отлажен численный метод для моделирования Монте–Карло с различными

потенциалами взаимодействия однокомпонентной и водородной плазмы, в том числе с интегра­

лами по траекториям, позволяющий рассчитывать среднее значение потенциальной энергии и

радиальные функции распределения при последующей обработке.

3. Выполнено моделирование Монте–Карло однокомпонентной плазмы, в ходе которого рас­

считан ее термодинамический предел, получено уравнение состояния в табличном и аппроксими­

рованном виде и показано преимущество учета дальнодействия при моделировании.

4. Получен аналитический вид кулоновской высокотемпературной матрицы плотности с уче­

том дальнодействия и связанный с ней псевдопотенциал для невырожденной водородной плазмы.

5. Реализован и протестирован программный код KelbgLIP для расчета кулоновской матрицы

плотности с учетом дальнодействия, действия и энергии водородной плазмы с интегралами по

траекториям, а также псевдопотенциалов взаимодействия между всеми частицами водородной

плазмы, в том числе с учетом температурных и дальнодействующих эффектов.

6. Произведено моделирование невырожденной слабонеидеальной водородной плазмы с по­

мощьюметодовМонте–Карло, в том числе с интегралами по траекториям, оценена вероятность об­

разования связанных состояний, а также получен термодинамический предел энергии приΓ = 0.01,
который совпал со значением из теории Дебая–Хюккеля.

7. Предложено решение проблемы нефизической кластеризации водородной плазмы при тем­

пературах меньше 52 кК с помощью учета конечного значения тепловой длины волны де Бройля

электронов в силах взаимодействия между электронами с одинаковой проекцией спина, что поз­

воляет приближенно учесть принцип Паули и избежать коллапса системы «в точку».

8. Произведеномоделирование невырожденной водородной плазмыпри𝜒 = 0.01 в диапазоне

неидеальности 0.1 ≤ Γ ≤ 3, получены зависимости степени ионизации, состава и радиальных функ­

ций распределения от Γ, а также получено табличное уравнение состояния в термодинамическом

пределе.
Результаты работы опубликованы в 9 статьях в рецензируемых журналах [1—8; 162], 2

препринтах [209; 216] и 11 тезисах докладов.
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Приложение А

Приложение: Описание программы KelbgLIP

Чтобы предотвратить слипание частиц разного заряда, вызванного расходимостью кулонов­

ского потенциала на малых расстояниях, при расчете термодинамических свойств двухкомпо­

нентных кулоновских систем используется формализм матрицы плотности. В случае потенциала

Эвальда для прямого учета дальнодействующих взаимодействий кулоновского потенциала с пери­

одическими граничными условиями необходимо решить уравнение Блоха на матрицу плотности.

Однако из-за достаточно сложной формы потенциала Эвальда обычно используется только реше­

ние для кулоновского потенциала, то есть без учета всех дальнодействующих эффектов.

Усредненный по углам потенциал Эвальда может быть использован для решения уравнения

Блоха с учетом дальнодействующих эффектов. При конечном радиусе взаимодействия простая

аналитическаяформа этого потенциала эффективно учитывает дальнодействующие эффекты ори­

гинального потенциала Эвальда. Подход Кельбга [92], который получил решение для кулоновского

потенциала в пределе высоких температур, используется для решения уравнения Блоха с УУПЭ.

Далее, полученная матрица плотности Кельбга с учетом дальнодействия может быть использована

в классическом моделировании с использованием диагональных матричных элементов, а также в

квантовом моделировании с использованием метода Монте-Карло с интегралами по траекториям.

Далее будет уделено внимание вычислениям с использованием недиагонального псевдопотенциала

с учетом дальнодействия. Пакет Kelbg-matrix with Long Interactions Package (KelbgLIP) вычисля­

ет действие, кинетическую энергию, потенциальную энергию, двухчастичную матрицу плотности

Кельбга и диагональный псевдопотенциал Кельбга с учетом температурных эффектов на корот­

ких расстояниях [166]. Эти процедуры особенно полезны для моделирования двухкомпонентных

кулоновских систем, поскольку их легко интегрировать в другие кодыМонте-Карло с интегралами

по траекториям или коды молекулярной динамики, предназначенные для фермионов и бозонов.

Программа опубликована в виде открытого исходного кода [217].

Для определения взаимодействия между ближайшими периодическими изображениями ча­

стиц используется правило БИ для расчета действия (2.68), кинетической (2.70) и потенциаль­

ной (2.71) энергии для конкретной конфигурации. В результате каждая бусина, r𝑖,𝑘, представляет

собой отдельную «частицу». Чтобы траектория могла выходить за пределы основной ячейки, это

правило также применяется к кинетической энергии. Если разность ⋃︀r𝑖,𝑘 − r𝑖,𝑘+1⋃︀ вычисляется на­

прямую (без использования правила БИ), действие (2.68) может значительно увеличиться в ходе

моделирования. Другими словами, в этом случае все траектории заблокированы внутри основной
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ячейки.

Далее будут представлены три подпрограммы пакета KelbgLIP. Диагональный псевдопотен­

циал Кельбга, необходимый для классического моделирования, такого как молекулярная динами­

ка, рассчитывается первой подпрограммой (KelbgLIP_pp). Двухчастичная матрица плотности для

двух частиц с зарядами 𝑞1 и 𝑞2, массами 𝑚1 и 𝑚2 и температурой 𝑇 может быть рассчитана вто­

рой подпрограммой (KelbgLIP_dm). Действие, кинетическая и потенциальная энергии водородной

плазмы при заданной температуре 𝑇 определяются третьей подпрограммой (KelbgLIP_action).

В следующих разделах будут приведены примеры использования этих подпрограмм.

В коде используются атомные единицы; масса отнесена к массе электрона (𝑚𝑒), энергия и

температура к энергии Хартри (𝐸𝐻), а длина к радиусу Бора (𝑎𝐵). Тильда указывает на безразмер­

ность величины, например, r = r̃𝑎𝐵. Характерный размер волнового пакета частиц соответствует

тепловой длине волны де Бройля: 𝜆̃𝑖 = 𝜆𝑖⇑𝑎𝐵 =
⌈︂
𝛽𝐸𝐻⇑𝑚̃𝑖.

А.1. Расчет диагонального псевдопотенциала Кельбга с учетом

дальнодействия (Кельбг-УУЭ)

Далее будет показано, как использовать уравнение (2.42) для расчета диагонального псевдо­

потенциала Кельбга-УУЭ для двух частиц. Для выполнения этого вычисления необходимо опреде­

лить безразмерную температуру 𝑘𝐵𝑇 ⇑𝐸𝐻 , радиус взаимодействия 𝑟𝑚 и массы взаимодействующих

частиц𝑚𝑖 и𝑚𝑗 . Программа KelbgLIP_pp выполняет расчет псевдопотенциала.

Вот пример запуска программы:

./KelbgLIP_pp -t 0.25 -rm 5 -m1 1 -m2 1 -rmin 0 -rmax 10 -rstep 1

Массы частиц в этом примере равны массе электронов, а температура установлена равной 0.25

от энергии Хартри (то есть 𝑇 = 78944 K). С шагом в 𝑎𝐵 задана сетка расстояний от 0 до 10

радиусов Бора. Сначала код отображает информацию о входных параметрах. Вывод программы

после первого раздела выглядит следующим образом:

Temperature T/E_H = 0.25

Reduced de Broglie wavelength lambda_ij/a_B = 2

Interaction radius r_m/lambda_ij = 2.5
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r_ij/a_B a_B*Phi a_Bˆ2*|-grad*Phi| a_B*F r_ij/lambda_ij lambda_ij*Phi

0 0.602221 0.25 0.175064 0 1.20444

1 0.366129 0.213227 0.169552 0.5 0.732258

2 0.187363 0.142212 0.133211 1 0.374727

3 0.0796732 0.0763215 0.0789539 1.5 0.159346

4 0.0270111 0.0328964 0.0361642 2 0.0540221

5 0.00691109 0.0103448 0.0131356 2.5 0.0138222

6 0.00135991 0.00239711 0.00371218 3 0.00271982

7 0.000200375 0.000415642 0.000777058 3.5 0.000400751

8 2.11953e-05 5.13819e-05 0.000114548 4 4.23905e-05

9 1.55527e-06 4.36175e-06 1.14295e-05 4.5 3.11055e-06

10 7.70707e-08 2.47266e-07 7.50507e-07 5 1.54141e-07

Таблица содержит шесть столбцов. Первый столбец показывает сетку с расстоянием, измеренным

в атомных единицах. Второй столбец показывает псевдопотенциал взаимодействия Кельбг-УУЭ

также в атомных единицах, 𝑎𝐵Φ(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽). Следующий столбец представляет собой абсолют­

ное значение градиента диагонального псевдопотенциала Кельбга-УУЭ, ⋃︀ − ∇r𝑖𝑗Φ(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽)⋃︀,
т.е. силу взаимодействия между частицами, используемую в МД моделировании. Четвертый стол­

бец содержит функцию ℱ(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽) (см. уравнение (2.72) для расчета потенциальной энергии

с помощью уравнения (2.75)). Последние два столбца показывают расстояние между частицами,

𝑟𝑖𝑗⇑𝜆𝑖𝑗 , и Кельбг-УУЭ, 𝜆𝑖𝑗Φ(r𝑖𝑗, r𝑖𝑗; 𝑟𝑚, 𝛽), выраженные в единицах приведенной тепловой длины

волны де Бройля, обозначаемой как 𝜆𝑖𝑗 .

Чтобы получить диагональный псевдопотенциал Кельбга-УУЭ, как на рис. 2.1, необходимо

выполнить следующую команду:

./KelbgLIP_pp -t 1 -rm 5 -m1 1 -m2 1 -rmin 0 -rmax 10 -rstep 0.1

Программа также позволяет учитывать улучшение псевдопотенциала Кельбга (2.82) на малых

расстояниях. Для этого необходимо запустить программу с ключом -i 1:

./KelbgLIP_pp -t 0.25 -rm 5 -rmin 0 -rmax 10 -rstep 1 -i 1

Программа создаст две аналогичные таблицы для электрон-протонного и электрон-электронного

взаимодействия согласно уравнению (2.82). Для взаимодействия электронов с различной проек­

цией спина необходимо также добавить вклады, соответствующие уравнению (2.88).

А.2. Двухчастичная матрица плотности

Одна из основных задач программы KelbgLIP— вычисление парной матрицы плотности для

двух частиц 𝑖 и 𝑗 с зарядами 𝑞𝑎 = 𝑧𝑎𝑒 и массами𝑚𝑎 = 𝑚̃𝑎𝑚𝑒, 𝑎 = 𝑖, 𝑗, при некоторой температуре 𝑇 .
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Этот расчет реализован в подпрограмме KelbgLIP_dm. Безразмерная матрица плотности 𝜌 имеет

следующий вид:

𝜌 = 𝑎6𝐵 𝜌 ((r𝑖, r𝑗), (r′𝑖, r′𝑗); 𝑟𝑚, 𝛽)

= (2𝜋𝜆̃𝑖𝜆̃𝑗)
−3
exp{−(r̃𝑖 − r̃

′
𝑖)2

2𝜆̃2𝑖
(︀ exp

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
−
(r̃𝑗 − r̃′𝑗)2

2𝜆̃2𝑗

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
× exp{3𝛽𝐸𝐻

4𝑟𝑚
(𝑧2𝑖 + 𝑧2𝑗 ) − 𝛽𝐸𝐻𝑧𝑖𝑧𝑗 × 𝑎𝐵Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) , (А.1)

где безразмерный п/пКельбга-УУЭ 𝑎𝐵Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) выражается через безразмерные 𝑑𝑖𝑗 = 𝑑𝑖𝑗⇑𝑎𝐵
и 𝑟𝑚 = 𝑟𝑚⇑𝑎𝐵:

𝑎𝐵Φ(r𝑖𝑗, r′𝑖𝑗; 𝑟𝑚, 𝛽) =
1∫
0

𝑑𝛼

𝑑𝑖𝑗(𝛼)

⎨⎝⎝⎝⎝⎪
erf

⎛
⎜⎜
⎝

𝑑𝑖𝑗(𝛼)⇑𝜆̃𝑖𝑗(𝛽)

2
⌈︂
𝛼(1 − 𝛼)

⎞
⎟⎟
⎠

+ 𝜋−1𝐼 (𝑑𝑖𝑗(𝛼)
𝜆̃𝑖𝑗

,
𝑟𝑚

𝜆̃𝑖𝑗
, 𝛼)

⎬⎠⎠⎠⎠⎮
, 𝜆̃2𝑖𝑗 = 𝛽𝐸𝐻

2 (𝑚̃−1𝑖 + 𝑚̃−1𝑗 ). (А.2)

Интеграл по 𝛼 в уравнении (А.2) вычисляется с помощью библиотеки GSL [218]. Из-за

разницы 𝑓1(𝑥𝑖𝑗(𝛼)) − 𝑓1(−𝑥𝑖𝑗(𝛼)) и 𝑓2(𝑥𝑖𝑗(𝛼)) − 𝑓2(−𝑥𝑖𝑗(𝛼)) в уравнении (2.45) подынтегральная

функция в (А.2) может меняться скачком (но непрерывно) в зависимости от параметра 𝛼 ∈ (0,1).
Для получения правильного ответа с заданной точностью используется адаптивная схема интегри­

рования с особенностями (см. функцию gsl_integration_qags в библиотеке GSL).

При расчете расстояния между любыми двумя бусинами используется правило БИ, поскольку

на систему наложены ПГУ. Например, для r𝑖⇑𝐿 = (0.01,0.02,0.03) и r′𝑖⇑𝐿 = (0.91,0.92,0.93) вектор
(r𝑖 − r′𝑖) имеет следующие координаты: (r𝑖 − r′𝑖)⇑𝐿 = (0.1,0.1,0.1), но не (−0.9,−0.9,−0.9). Затем
длина этого вектора вычисляется как обычно, поэтому ⋃︀(r𝑖 − r′𝑖)⋃︀⇑𝐿 = 0.1

⌋︂
3, но не 0.9

⌋︂
3.

Пример запуска программы для расчета матрицы плотности имеет следующий вид:

./KelbgLIP_dm -z1 -1 -z2 1 -t 51 -rm 0.62035049 -m1 1 -m2 1836.15266969 -r1

0.9795 0.7545 0.6652 -r1p 0.9038 0.7463 0.7626 -r2 0.5666 0.6105 0.8424 -r2p

0.5657 0.6107 0.8425

Здесь задаются две частицы с зарядами −𝑒 и +𝑒 > 0, при этом температура составляет

𝑘𝐵𝑇 ⇑𝐸𝐻 = 51, а радиус взаимодействия соответствует единичной длине элементарной ячейки. Так­
же были заданы следующие координаты: r1 = (0.9795,0.7545,0.6652), r′1 = (0.9038,0.7463,0.7626),
r2 = (0.5666,0.6105,0.8424), r′2 = (0.5657,0.6107,0.8425). Массы частиц соответствуют массе элек­

трона и протона.

Запуск приводит к следующему результату:

Calculated cell length = 1

lambda_1/a_B = 0.140028
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lambda_2/a_B = 0.00326784

1/(2*Pi*lambda_1*lambda_2/a_Bˆ2)ˆ3 = 4.2076e+07

(r1-r1’)ˆ2/(2*lambda_1ˆ2) = 0.389754

(r2-r2’)ˆ2/(2*lambda_2ˆ2) = 0.0402668

beta*U_0 = -0.0474115

Reduced de Broglie wavelength lambda_12/a_B = 0.0990417

beta*E_H*z1*z2*a_B*Phi = -0.00706886

a_Bˆ6*rho = 2.89027e+07, ln(a_Bˆ6*rho) = 17.1794

В результате, были рассчитаны тепловая длина волны де Бройля для обеих частиц, 𝜆̃1 и 𝜆̃2, и

соответствующий префактор (2𝜋𝜆̃1𝜆̃2)−3. Кинетические вклады рассчитаны для заданных коорди­

нат: (r1 − r′1)2⇑(2𝜆21) и (r2 − r′2)2⇑(2𝜆22). Затем вычисляются постоянный вклад в потенциальную

энергию 𝛽𝑈0, приведенная тепловая длина волны де Бройля 𝜆𝑖𝑗 и парная потенциальная энергия

𝛽𝐸𝐻𝑧1𝑧2𝑎𝐵Φ(r12, r′12; 𝑟𝑚, 𝛽). Выводятся безразмерная матрица плотности 𝜌 (А.1) и ее натуральный
логарифм ln(𝜌).

А.3. Расчет действия и энергии водородной плазмы в представлении

интегралов по траекториям

Расчет действия (2.68), кинетической (2.70) и потенциальной (2.71) энергии в представлении

интегралов по траекториям был реализован только для случая электрон-протонной (водородной)

плазмы (𝑚𝑖 = 𝑚𝑒 или 𝑚𝑖 = 𝑚𝑝, 𝑧𝑖 = ±1). Для этой цели используется тип IonConfT, определенный

в исходном коде KelbgLIP в файле definitions.h. Он представляет собой многомерный массив.

Первый аргумент задает тип частицы, т.е. IonConfT[0] содержит координаты всех электронов,

а IonConfT[1] — координаты всех протонов. Второй аргумент определяет число электронов

IonConfT[0][i] или число протонов IonConfT[1][i]; здесь 0 ≤ 𝑖 < 𝑁⇑2. Следующий индекс

определяет номер высокотемпературного разбиения 0 ≤ 𝑘 ≤ 𝑛 (для числа электронов 𝑖, например,

IonConfT[0][i][k] ≡ r̃𝑖,𝑘). Последний аргумент 𝛼 определяет три пространственные координаты

выбранных частиц IonConfT[0][i][k][𝛼], 0 ≤ 𝛼 < 3.
Снова отметим, что радиус взаимодействия псевдопотенциала 𝑟𝑚 > 0.5𝐿. Это означает, что

электростатическое взаимодействие некоторых бусин следует учитывать дважды, рассматривая

как исходные заряды, так и соответствующие им фантомные изображения. В этом случае для

вычисления сумм в уравнениях (2.68), (2.71) используется алгоритм, аналогичный классическому

случаю (см. раздел 3.1.2 и [54]). Псевдокод дляметода первого слоя (3.12) приведен вАлгоритмах 2

и 3.
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Алгоритм 2 Основная процедура вычисления потенциальной энергии
∑𝑛

𝑘=0∑𝑁
𝑖=1∑

𝑁𝑠,𝑖
𝑗=1
𝑖≠𝑗

𝑧𝑖𝑧𝑗ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘+1; 𝑟𝑚, 𝜖). Все координаты безразмерные; тильды опущены для
удобства. Строка 16 вызывает алгоритм 3 для расчета взаимодействия между бусинами
r𝑖,𝑘,r𝑖,𝑘′ , r𝑗,𝑘, r𝑗,𝑘′ .
1: MPI_Comm_rank(MPI_COMM_WORLD, &rank); ▷ rank — номер процесса
2: MPI_Comm_size(MPI_COMM_WORLD, &size); ▷ size — полное число процессов
3: full_sum = 0 ▷ Здесь будет храниться полная сумма
4: for 𝑘 = 0, 𝑛 do
5: 𝑘′ = 𝑘 + 1
6: if 𝑘′ == 𝑛 + 1 then 𝑘′ = 0
7: end if
8: for 𝑖 = 1,𝑁 do
9: result = 0
10: 𝑁𝑠,𝑖,𝑘 = 1 ▷ (Сразу же учитываем 𝑖-ый ион)
11: for 𝑗 = 1,𝑁 do ▷ (Суммируем до 𝑁 ; общее количество бусин в сфере, 𝑁𝑠,𝑖,𝑘 = 𝑁𝑠(r𝑖,𝑘),

будет подсчитано позже)
12: 𝑁𝑠,𝑖𝑗,𝑘 = 0
13: 𝐹𝑖𝑗,𝑘 = 0
14: if 𝑗 ≠ 𝑖 then
15: if 𝑗 % size == rank then
16: (𝐹𝑖𝑗,𝑘,𝑁𝑠,𝑖𝑗,𝑘) ← Kelbg_AAEPP(r𝑖,𝑘, r𝑖,𝑘′ , r𝑗,𝑘, r𝑗,𝑘′)
17: end if
18: end if
19: 𝑁𝑠,𝑖,𝑘 += 𝑁𝑠,𝑖𝑗,𝑘

20: result += 𝑧𝑖𝑧𝑗𝐹𝑖𝑗,𝑘

21: end for
22: MPI_Allreduce for 𝑁𝑠,𝑖,𝑘 and result
23: full_sum += result ▷ Здесь 𝑁𝑠,𝑖,𝑘 равно полному числу бусин на 𝑘-ом слое в сфере с

центром в r𝑖,𝑘
24: end for
25: end for

Вычисление суммы потенциальной энергии может выполняться параллельно с помощью ин­

терфейса передачи сообщений MPI. Для этого сумма по 𝑗 равномерно распределяется по всем

процессам с числом size с помощью строки 15 в алгоритме 2. После вычисления в каждом процес­

се значения всех процессов суммируются, и результат распределяется обратно по всем процессам

с помощью функции MPI_Allreduce (см. строку 22 в алгоритме 2). В то же время, программа

KelbgLIP может быть скомпилирована без MPI и выполнена в последовательном режиме.

В алгоритме 3 используется массив units, как и в классическом случае (см. уравнение (3.4)).

Этот массив содержит 26 векторов n для суммирования по соседним ячейкам. Кроме того, нулевой

вектор 0 = (0,0,0) исключен из units. Все векторы units можно найти в заголовочном файле

definitions.h исходного кода программы KelbgLIP.

Программа для расчета действия и энергии запускается следующим образом:

./KelbgLIP_action -t 1 -L 5.93862913415 -in IonConf
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Алгоритм 3 Подпрограмма для расчета всех взаимодействий между бусинами r𝑖,𝑘,r𝑖,𝑘′ , r𝑗,𝑘, r𝑗,𝑘′ ,
включая некоторые их изображения. Все координаты безразмерные; тильды опущены для удобства.
1: procedure Kelbg_AAEPP(r𝑖,𝑘, r𝑖,𝑘′ , r𝑗,𝑘, r𝑗,𝑘′)
2: 𝐹𝑖𝑗,𝑘 = 0
3: 𝑁𝑠,𝑖𝑗,𝑘 = 0
4: r𝑖𝑗,𝑘 ←vec_pbc(r𝑖,𝑘 − r𝑗,𝑘)
5: r𝑖𝑗,𝑘′ ←vec_pbc(r𝑖,𝑘′ − r𝑗,𝑘′)
6: if ⋃︀r𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚 then ▷Метод первого слоя (3.12)
7: 𝐹𝑖𝑗,𝑘 += ℱ(r𝑖𝑗,𝑘, r𝑖𝑗,𝑘′ ; 𝑟𝑚, 𝜖)
8: 𝑁𝑠,𝑖𝑗,𝑘 += 1
9: if ⋃︀r𝑖𝑗,𝑘⋃︀ > 𝐿 − 𝑟𝑚 then ▷ См. рис. 3.1
10: for n in units do ▷ См. определение units в уравнении (3.4)
11: q𝑖𝑗,𝑘 = r𝑖𝑗,𝑘 + n𝐿
12: q𝑖𝑗,𝑘′ = r𝑖𝑗,𝑘′ + n𝐿
13: if ⋃︀q𝑖𝑗,𝑘⋃︀ ≤ 𝑟𝑚 then ▷Метод первого слоя (3.12)
14: 𝐹𝑖𝑗,𝑘 += ℱ(q𝑖𝑗,𝑘,q𝑖𝑗,𝑘′ ; 𝑟𝑚, 𝜖)
15: 𝑁𝑠,𝑖𝑗,𝑘 += 1
16: end if
17: end for
18: end if
19: end if
20: return (𝐹𝑖𝑗,𝑘, 𝑁𝑠,𝑖𝑗,𝑘)
21: end procedure

Таким образом, длина кубической ячейки равна 𝐿⇑𝑎𝐵 = 5.93862913415, температура равна

1 энергии Хартри, а координаты частиц считываются из файла IonConf.txt. В результате для

конфигурации получается следующий вывод:

Calculated interaction radius r_m/a_B = 3.68403

Number of electrons N_e = 50

Number of protons N_p = 50

Number of partitions n = 10

Dimensionless action S = 1495.96

Dimensionless kinetic energy beta*E_kin = 176.883

Dimensionless potential energy beta*E_pot = 2.56067

Сначала выводится краткая информация о конфигурации электронов и протонов из вход­

ного файла и параметрах: радиус взаимодействия 𝑟𝑚, число электронов и протонов, а также

число высокотемпературных разбиений 𝑛. Для данной конфигурации безразмерное действие

𝑆(ℛ; 𝑟𝑚, 𝛽), определяемое в уравнении (2.68), равно 1495.96. Полная кинетическая энергия, за­

данная уравнением (2.70), равна 𝛽𝐸kin(ℛ, 𝛽) = 176.883, а полная потенциальная энергия (2.71)

равна 𝛽𝐸pot(ℛ; 𝑟𝑚, 𝛽) = 2.56067.
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