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Classical vs. quantum measurement

Classical:
• Pointer indicates the value of a 

system variable
• Correlations of different variables can 

be measured straightforwardly

Quantum mechanical:
• Probabilistic and invasive, wavefunction 

collapses to the state of the measured 
eigenvalue (projection)

• Correlations are non-trivial: Measurement 
of non-commuting observables is unclear

A way out: weak measurement preserves the system state
à Measurement of non-commuting observables becomes possible



Quantum mechanical projection postulate: 
A measurement of a quantum variable !" yields one of the eigenvalues (with
some probability) and the state collapses to the corresponding eigenstate!

Why needed
• Quantum dynamics only describes probability amplitudes
• Prediction of experimental results need extra rule
• Correctly predicts „one-click“ results

Why questionable
• Many experiments are not projective
• Collapse of the wave function seemingly contradicts relativity
• Time duration of projection?
• What about correlations?



Order of operators ma#ers! 

Quantum op/cs: 
photodetector measures ‚normal ordered‘ expecta/ons (one click) 
homodyning and heterodyning are highly specific

Textbook (LL Vol. V):

!(#)%(&) →

( [ *+ & , -. # ] /2
*+(&) -. #
-. # *+(&)

*+ & , -. # /2

Correlations?

?



Von Neumann measurement: from strong to weak
Idea: couple system ( !") to a 
pointer wavefunction # $

xP(x)

Ûint = e
igp̂Â

ψ i =α
1
A1 +α 2 A2

ψ i ⊗ P(x)

Strong measurement (large g): projec;ve 
measurement on well separated pointer posi;ons 
implies projec;on of system state

ψ f = A1 ψ f = A2or

Weak measurement (small g): projec;ve measurement of 
pointer state gives almost no informa;on, but correct average. 
The system state in one measurement is almost unchanged!

After reading the pointer

ψ f ≈α1 A1 +α 2 A2 +O(g2 )

x

P(x)

gA1

gA2

Price to pay for non-invasiveness: large uncertainty of the detection
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Quantum dynamics: time evolution of a quantum system

!ℏ ##$ Ψ($) = )* Ψ($) Ψ($) = +→($) Ψ(0)
Forward time-evolution

−!ℏ ##$ ⟨Ψ($)| = ⟨Ψ($)| )* ⟨Ψ($)| = ⟨Ψ(0)|+←($)
Backward time-evolution

Physical expectations

2($) = ⟨Ψ($)| 32 Ψ $ = ⟨Ψ(0)|+← $ 32+→($) Ψ(0)
Backward and Forward

5me-evolu5on

Quantum dynamics requires Forward and Backward 5me-evolu5on à Keldysh contour



The Keldysh contour: expanding the time dimension
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Keldysh contour and measurements: projection
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Keldysh contour and measurments: weak and markovian (instantaneous)
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Keldysh contour and measurements: weak and continuous
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• Full Counting Statistics (FCS) and Cumulant  Generating Function (CGF)
• Keldysh-ordered generating function, interpretation problem
• Examples: Levitov-Lesovik formula, Andreev scattering
• FCS of a quantum point contact under arbitrary time-dependent voltage
• Generalization of Keldysh generating functional to finite 

frequency and Positive Operator Valued Measure (POVM)
formulation of finite-frequency FCS

Literature:
M. Vanevic, Yu. V. Nazarov, and W. Belzig, Phys. Rev. Lett. 99, 076601 (2007)
A. Bednorz and W. Belzig, Phys. Rev. Lett. 101, 206803 (2008)

Overview of 1)



Full Counting Statistics:
probability that a total charge Ne
is transferred in given time t0

C1 - mean

C2 - width

C4 - sharpness

N

P

C3 - skewness

Classical distribution is 
characterized by cumulants:



(equivalent to distribution)

Cumulants follow from derivatives (dropping dependence on t0)

Obtaining the distribution

Cumulant generating function (CGF):



Microscopic justification: time evolution of ideal current detector and projective 
measurement (Projection can be problematic for superconductors, due to 
charge-phase uncertainty)

How to calculate the CGF quantum mechanically?
Quantum mechanical current detection has to account for 
non-commuting current operators!

Important difference
to classical definition
(see also Levitov, Lesovik 93)

Belzig, Nazarov, PRL 01

General result for the CGF of a 
quantum point contact can be 
obtained using Keldysh technique

! " = $% ln 1 + $4
+,-, +,/ − 2



Relation to current correlators:

Average current: 

Zero frequency noise:

Zero frequency third cumulant:

E.g. tunnel junction at zero temperature:

Poisson process Gaussian process

Difference for finite times: Chtchelkatchev&Lesovik (2006)



The interpretation problem:

Quantum CGF predicts outcomes of measurements of charge detector
But: what does the CGF tell us about the transport process?

Yu. V. Nazarov: 
“The calculation of the FCS is often ‘straightforward’, but the interpretation is a nightmare!”

CGF of a known distribution, e.g. multinomial or Poisson

or

Possible tools:

CGFs of independent processes are independent

Obtaining P(N) by Fourier transformation

usually intransparent



Voltage biased quantum point contact with transmission T between Fermi leads

Levitov and Lesovik, JETPL 93; Lee, Levitov and Lesovik, JMP 96

Example 1: Interpretation of Levitov-Lesovik formula

Trinomial distribution at each energy

Zero temperature limit

Landauer formula

Quantum shot noise suppression

Binomial distribution

One attemptno electron

T

T



Example 2: Interpretation of Andreev scattering (normal/super contact)

Multinomial distribution, pn corresponds 
to elementary event of charge ne, signaled
by counting factors 

Binomial form, despite Cooper pairs are not fermions

Andreev reflection
probability

Muzykantskii and Khmelnitskii, PRB 95

Andreev reflection

Binomial distribution of 2e-transfers



Example 3: Multiple 
Andreev Reflections
(MAR)
Mechanism of charge
transfer between two 
superconductors:
at subgap voltages charges
are transferred by subsequent
Andreev reflections with
threshold voltages (k integer)

Leads to subharmonic gap
structure in the current-
voltage characteristics
Elementary events:
Multiple charges or
Cooper pairs+electron?

Cuevas, Belzig PRL 03



FCS of MAR
at zero temperature

Cumulant generating function reveals multiple charge transfers
(gives expressions for energy resolved probabilities)

Cuevas, Belzig PRL 03
Cuevas, Belzig PRB 04

Low transparency: 



Time-Dependent Counting Statistics of a 
Quantum Point Contact
--
High-Frequency Noise and the 
Probabilistic Interpretation of FCS



“Probability” density functional for given current profile I(t): 

Inverse transformation

Generalization of FCS to 
Time-Dependent Counting:

classical average



Can we interpret this as probability density generating functional? 

No! Analogous to Wigner function we can have negative probabilities

[see also e.g. Nazarov and Kindermann, EPJB 03; Golubev, Zaikin, Galaktionov, PRB 06]

Generalization of standard Keldysh functional to time dependent counting 

Quantum definition of CGF for time-independent FCS

Problem: current operators at different times do not commute
The current cannot be measured at all times, but only up to some uncertainty

Keldysh ordered!



Orthogonal measurements

Probability to find A

State after measurement

Neumarks Theorem: Every POVM corresponds to a projective
measurement in some extended Hilbert space

Handling non-projective (weak) measurements:
Non-projective measurements:
Kraus operators

Positive
Operator
Valued
Measure

See e.g. Milburn & Wiseman, Quantum Measurement and Control (Cambridge, 2009) 



Noise of the detector
+ uncertainty

Kraus operator (instead of projection operator)

Causality

Positive operator valued probability measure (=projection in extended space)

Neumarks theorem

Proposed solution: weak measurement a la POVM

A. Bednorz and W. Belzig, Phys. Rev. Lett. 101, 206803 (2008)

Positive definite probability distribution:



Final result for current generating functional

Current generating functional with additional backaction and noise due to detector

Generalized Keldysh functional

Limiting cases:

full projection Strong backaction

large detector noise Weak measurement

Gaussian noise of the detector

Backaction of the detector (partial projection)

! " = ∫%& '()∫ *+, + -(+)Φ & with Φ & = '1 ,,3 4∫ *+,5(+)/78 9 → 0: Large Gaussian
noise substracted!



Generalized Wigner func0onal

Φ " = $% &,( )%*+, = -. $/∫ 12& 2 34(2) . $/∫ 12& 2 34(2)

WB and Y. V. Nazarov, Phys. Rev. Le7. 87, 197006 (2001)

Phys. Rev. Le7. 87, 067006 (2001)

A. Bednorz and WB, PRL (2008,2010)

The generating function of a markovian quantum measurement is Keldysh-ordered:

The generating function of a non-markovian quantum measurement is ... 

... (even) more complicated

The answer to the question of operator order:      7~9:Φ " /9" < 9" =

>, ? depend on the detector, but arbitrary ordering possible (à engineering)

Markovian: @ < @(=) → BC = , BC < /2

Higher order Markovian: @EF → G
H

BC, 3I, B7

Non-Markovian: @ < @(=) → >⊗ BC(<), BC(=) + ? ⊗ [ BC(<), BC(=)]

Quasiprobability density generating functional! 
No! Analogous to Wigner function we can have negative probabilities



Quasiprobability? 1-Photon-Fock state

po
sit

io
n

momentum

Example: 
Wigner-func?on !(#, %)
= Probability for x and p

Nega?ve!

Cannot be measured directly, but through a noisy and weak measurement

Signatures of nega?vity (=non-classicality)? 
Viola2on of classical inequali?es, e.g. Bell, CHSH, LeggeO-Garg, weak values....

2) Keldysh-ordered expectations are quasiprobabilities

Bednorz and WB, Phys. Rev. Lett. 2008



| ⟩3| ⟩2| ⟩1

A"empt to define a phase space distribu2on of incompa+ble observables.

Wigner function & ', ) = 1
2+ ∫ -./

012
ℏ ' − .2 ' + .2 = &(7 = ' + 8)

2 )

Alternative definition:
(via generating function)

& 7 = 1
2+ ∫ -

:;/<∗>?<>∗ /<@A<∗@B

Examples: Energy eigenstate of a harmonic oscillator („Fock states“ of photons)

Wigner quasiprobability:

| ⟩0

ΦE(;)



Weak positivity in the markovian scheme

Weak markovian measurement scheme:

Cij = AiAj = 1
2

Âi , Âj{ } =  positive definite correlation matrix

[Bednorz & Belzig, PRB 2011

C can be simulated by classical probability distribution, e.g. 

p(A1,A2,…) ~ e
− AiCij

−1Aj
ij
∑ /2

≥ 0

With symmetrized second order correlation functions a 
violation of classical inequalities is  impossible à the 
corresponding quasiprobability is weakly positive

A2 −1( )2 = 0Note: does not assume dichotomy, corresponding e.g. to



Possible inequality à Cauchy-Bunyakowski-Schwarz (CBS) inequality

!" #" ≥ !# "

à Fullfilled for all posi<ve probabili/es %(!, #)

Weak positivity of the Wignerfunction:
A violation of an inequality by the Wigner function has to invoke 4th-order correlations, 
since all 2nd-order correlators of the Wigner function can be explained classically  
[A. Bednorz and WB, Phys Rev A 83, 052113 (2011)]



Test of CBS with Wigner functional for current fluctuations

Current operator in frequency space: !"# = ∫&'()#* !"(')

We choose: -. = ∫/0 &12 !"#2 !"3# and -4 = ∫/5 &12 !"#2 !"3#
measurement bandwidth Δ7/9 centered at 1:/;

Bednorz and WB, 
Phys. Rev. Le@. 105, (2010)

Phys. Rev. B 81, 125112 (2010)

ViolaIon would be a proof of negaIvity of Wigner funcIonal!

Typical experimental setup

Forgues, Lupien, Reulet, PRL (2014)
See also 

Zakka-Bajjani et al. PRL (2010) .< 4< ≥ .4 <

2nd and 4th-order correlators from tunnel Hamiltonian

.4 ~ 2 !"#?2 !"3#?2 !"#2 !"3#

.< = 2 !"#2 !"3#
< + 2 !"#2 !"3#

<



Violation of CBS for a tunnel junction
Maximally extended non-overlapping frequency intervals !" ≈ Δ", !& ≈ Δ&

[Bednorz, WB, PRB 2010, PRL 2010]

Violation: Quantum many-body entanglement of electrons in different dynamical modes 

!"/!&

() = +,- = 0

() = 2ℏ!&
+,- = 0

() = 0
+,- = ℏ!&

Negative Wigner functional

12 3

13 23

4 = 5+Ω

1

E.g. nonequlibrium many-body wave funcKon, Vanevic, Gabelli, Belzig, Reulet, PRB 2016  





3) Time-reversal symmetry breaking

Measurement Classical Quantum

strong
(invasive)

weak
(non invasive)

Does the observa,on of a system in thermal 
equilibrium show ,me-reversal symmetry (T)?

T is broken
(order of disturbances 

influences the dynamics)

T is broken
(order of projections 
influences the state)

T is observed
(measurement is completely 

independent of the dynamics)
?

Bednorz, Franke, WB, New J. Phys. (2013)



Quantum prediction for 
three measurements? !, #, $

Opposite order:

! → # → $

$ → # → !
≠

$, #, !
Three point correlator  for '(, ' > 0 (e.g. thermal equilibrium)

!, !('), !(' + '() ≠ !, !('′), !(' + '()
time-reversal (and shift by ' + '′)

Classical expectation is not matched:
A quantum system observed weakly in equilibrium

seemingly breaks time-reversal symmetry

Time-resolved weak measurements

Bednorz, Franke, WB, New J. Phys. (2013)



Curic, Richardson, Thekkadath, Flórez,
Giner, Lundeen, Phys. Rev. A (2018)

Experimental confirma0on that 0me-ordering ma5ers in third order weak measurements

!, #, $ ≠ #, !, $!, # = #, ! + third 
measurement



time

a(t)

b(s)

ψ

Two measurements (first A, then B)
Derived using time-non-local Kraus operators 

The measured observable depends on the history!
ψ

time

a(t)
a(t) = dt 'g(t − t ') Â(t ')

−∞

t

∫

A single measurement (of A):

Bednorz, Bruder, Reulet, WB, PRL 2013

Result:    Introducing memory function allows measurement of the commutator
à non-Markovian scheme

Standard Markovian

memory 
functions

!(#)%(&) = ( ⊗ *+, -. #, &
+0 ⊗ [ *+, -.] #, &

4) General non-markovian weak measurement



• One system, two detectors weakly coupled: !" = !"$%$ + !"' + !"( + !")*+
• Initial product state of the density matrices

• Unitary time evolution, interrupted by readout of the detectors (Kraus operators 

à talke as weak measurments)

• Expansion of the time evolution to 2nd order in the coupling constant

• Final density matrix provides probability for the correlation function

Microscopic picture of non-Markovian weak measurments

Non-Markovian: ,(.)0(1) → 3⊗ 56, 89 ., 1 + : ⊗ [ 56, 89] ., 1

J. Bülte, A. Bednorz, C. Bruder, and WB, Phys. Rev. Lett. 120, 140407 (2018).

Result: Separation into three processes = = ,(.)0(1) = =$%> + ='?@+ + =(?@+



Interaction Hamiltonian

Da

Db

Ma

Mb

! = #(%)'(() = 1
*+*,

{ ./+ % , ./, ( }

.2345 = *+ .6+ 78 + *, .6, :;

The meter variables are ./+( ./,):

Interaction:



Da

Ma

Db
Mb

• Symmetrized noise

• Response function

Decomposition into elementary processes

All contribu9ons are expressed by (! = #, %, &'&)



The markovian (symmetrized) contribution

Da

Ma

Db
Mb

“! ⊗ #$, &' (, ) “

à Corresponds to classical frequency filter!



Da

Ma

Db
Mb

The non-markovian (non-symmetrized) contribution

! " #(%) ~ ( ⊗ [ +,, ./] ", %

System-mediated detector-detector interaction:
The noise of detector a measured by the response
of the system seen by detector b.



The non-markovian (non-symmetrized) contribution (part II)

Da

Ma

Db
Mb

System-mediateddetector-detectorinteraction:
The noiseof detectorb measuredbytheresponseof 
of thesystemseenbydetectora

The other way round......

! " #(%) ~ ( ⊗ [ +,, ./] ", %



Result of microscopic treatment

! = #(%)'(() = !)*+ + !-./0 + !1./0
= 2-21 ⊗ 4)*) + 2-2)*) ⊗ 41 + 212)*) ⊗ 4-

Frequency-filtered 
markovian response

System-mediated 
detector-detector interaction 

#(%)'(()

56 ( , 89 % /2 < [ 56 ( , 89 % ] /2?) 56 ( , 89 % + <?- [ 56 ( , 89 % ]

Detector engineering

Corresponds to a family of quasiprobabili<es (Wigner, Q, P,….)

Symmetrized noise

Response function

Expressed by noises and responses of the system and the detectors:

J. Bülte, A. Bednorz, C. Bruder, and WB, Phys. Rev. Lett. 120, 140407 (2018).



Proposed implementation: two double-dot detectors

Sy
st

em

tbta

n1,a

n2,a n2,b

n1,b

n+

Ia Ib n-

Occupa2on recorded by a bypassing current

• Double dot characterized by occupation difference 
of the energy eigenlevels

• Tuning Δ"# from positive to negative switches the 
detector from absorption to emission mode 



Example: double quantum dot detectors

Sy
st

em

tbta

n1,a

n2,a n2,b

n1,b

n+

Ia Ib n-

Occupation recorded by a bypassing current

• Double dot characterized by occupation difference 
of the energy eigenlevels

• Tuning          from positive to negative switches the 
detector from absorption to emission mode 

ResulAng noise and response funcAons:

Important:                             and

in



Measurement of a bosonic system: ! = #
$ (& + ())

Δna

Δnb

By tuning Δna and Δnb different system 
operator orders are obtained
• Wigner
• normal
• antinormal
• Kubo

J. Bülte, A. Bednorz, C. Bruder, and W. Belzig, 
Phys. Rev. Lett. 120, 140407 (2018).



Conclusion
• Quantum measurement: projection and weak measurments

- (Noisy) non-invasive measurements offer another (new) 
perspective on the quantum measurement problem

• Quantum dynamics: Keldysh contour
• Quantum Transport and Full Counting Statistics

Generalized Keldysh-ordered functional
• Keldysh-ordered expectations are quasiprobabilities

- Weakly measured non-commuting variables violate 
classicality

• Time-reversal symmetry breaking
- Weak third order correlations reflect measured order (even if 

they shouldn’t)
• General non-markovian weak measurement

- System mediated detector-detector interaction
- Detector engineering allows tailored operator order
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