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Membrane identity

modified from Jean & Kiger
Nat Rev Mol Cell Biol 2012
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Spira et al. Pathwork organization of the yeast plasma membrane into 
numerous coexisting domains, Nat Cell Biol 14 (2012)

Microdomains



A dynamic picture

modified from Jean & Kiger
Nat Rev Mol Cell Biol 2012
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Molecular crowding induces membrane bending 
and vesicle nucleation

JC Stachowiak et al
Membrane bending 
by protein-protein crowding
Nat Cell Biol 2012

DJ Busch et al

Intrinsically disordered proteins drive 

membrane curvature.

Nat Commun 2015
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Conclusions

a physical model of molecular sorting:

molecular factors become enriched in localized microdomains

microdomains bend the membrane and initiate vesicle nucleation

two control parameters:

molecule flux

aggregation strength

aggregation strength is crucial:

there exist an optimal region where sorting is most efficient
and the number of sorting domains is (close to) minimal

experimental validation:

endocytic sorting observed to take place close to the optimal regime
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quantitative analysis of sorting processes

interfere with interaction strength and other parameters
to check influence on sorting efficiency

low flux / clathrin-dependent (high g?)

high flux / clathrin-independent (low g?)

different mechanisms along the optimal line?
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