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Overview

@ Special K&hler geometry is geometry of coupling constants of low-energy
supersymmetric effective theories in superstring compactifications.

e Compactified superstring backgrounds have a form R*3 x X° and coupling
constants of low-energy theory are expressed through the geometry of A°.

@ The main result is a method of computation of the special geometry in
superstring compactifications using supersymmetric N=(2,2)
Landau-Ginzburg orbifolds.

@ We also connect our computations with the localization computations in
Gauge Linear Sigma Models (GLSM) via mirror symmetry and the
correspondence between non-linear sigma models and GLSM.



Introduction

Classical worldsheet approach to type Il superstring theory is based on 2d CFT
with N=(2,2) extended supersymmetry. The flat superstring background is
described by a linear sigma model with a target space R>®.

The spectrum of the theory consists of various excitation modes of different
propagating strings. The most interesting states are massless and form a
supergravity multiplet in 10 dimensions. N=(1,1) and N=(2,0) theories are
called superstrings of type IIA and IIB.

HA : (Guw, Bun, @, Cay, i),
1B : (Guw, Bun, ®, C°, Cian, Cuivpq)-

The low-energy dynamics of the massless particles is descibed by
10-dimensional supergravity.

Superstring compactification is curved background target space R x X which
is invariant under 4-dimensional N = 2 super-Poincaré algebra.



Introduction

Metric on the background is Gumy, therefore a curved background is considered
as a coherent state in the superstring theory. The background can be more
complicated and include other coherent states such as branes and fluxes. We
consider the simplest backgrounds since they are required in the more realistic
cases.

Harmonic tensors on X’ produce 4-dimensional particles via Kaluza-Klein
mechanism.

Stl= [, awousdo—~ [ dtxdzons.

RL3x X

10-dimensional fields decompose in eigenfunctions of compact kinetic Laplace
operator

¢(w) = d(x,y) = Z¢ ()fa(2), Axfa(z) = Anfa(2).

Sl =3 /R A 00" + (")

Zero modes are massless and appear in the low-energy 4d theory.



N=2 d=4 supersymmetry

N=2 d=4 superalgebra has 8 superharges Q4, Q% and su(2)r symmetry rotates
them. N=2 super Yang-Mills is a partcular case of N=1 Yang-Mills.

N=1 Yang-Mills have vector multiplets and (anti)chiral multiplets. A N=2
vector multiplet consists of one N=1 vector and one chiral multiplet:

(Am)‘aa S\Q,(Z)) = (Aua )‘a) + (5\a7¢)

N=1 chiral multplet has the following kinetic term
1 in T3 N
5&‘](‘15) "¢ 0, + gij(¢) N DX,
where gz = 0,0;K(¢, ¢).
N=1 vector multiplet kinetic term is
1 i j v i Y4 1 NJ i
o (Im(7y) Fil PP — Re(y) Flu («FY* ) = o= Im(r;) VD,

where 7;(¢) is a holomorphic function of ¢.



Global special geometry

Fermionic kinetic terms are equal via the N=2 su(2)r symmetry which implies

0 _ _ 9PK(¢,9) 59
6()23"7-],( = W - Tij —6,8JF(¢)

The Kahler potential (= the kinetic term) is given by

K(o,d) = i(¢'0iF () — §OiF(8)) = Mi(¢)X"T;(4),

where M = (¢, dF(¢)) and X7 is a symplectic unit.

This geometry describes coupling constants of N=2 d=4 vector multiplets in
terms of a holomorphic prepotential F(¢).



N=2 supergravity with matter

N=2 supergravity multiplet is
Iy -
(EM ’qbltaa’wlhd: A#)-

The graviphoton A,, is mixed with “photons” from vector multiplets.

Introduce n+1 vector multiplets (AL, AL XL, @) and one gauge symmetry

o' — ef® o’ which kills a redundant scalar and fermions. The remaining
gauge field is identified with the graviphoton. On the space with coordinates &’
there is a global special geometry with the metric

K™ (®, ®) = i(d'9;F(d) — ®id;F(d)),
On the physical factor space the induced metric is
e M0 = (D F(®) — PF(®)) = Mi(@)E'T;(9),

Under gauge transformations this metric does not change since K — K + f + f
if ® — e"®. The vector M(¢) consists of 2h + 2 elements.



Superstring compactifications

Superstring compactification background should be invariant with respect to
d=4 N=2 super-Poincaré algebra. In particular, variations of 2 gravitini should
vanish

(Octhu,a) = (Vuea) =0

which implies that there is a covariantly spinor € on X’. This forces the
holonomy on X to be su(3), that is X' is a complex three-dimensional
Calabi-Yau manifold.

Harmonic forms on Xc generate Kaluza-Klein massless particles and coupling
constants of these particles are proportional to integrals of the corresponding
harmonic forms.

Harmonic forms KerA x <=  Cohomology elements H*(X)



Calabi-Yau cohomology and Special geometry

1
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1
2-forms or Kihler moduli o
w;iydz'dz).

3-forms holomorphic volume form
Q = Q123(2) dztdz?dz?

and complex moduli

XZ-E ledZJ@ = %Q - KfaQ-



Calabi-Yau cohomology and Special geometry

The coupling constants of kinetic terms are equal to

1
Vol/X/\X 8810g/Q/\Q

and do not have instanton corrections in type |IB superstring theory.

- /XQAEZ Mi(¢)ZN;(4) = wi(¢) Clw; (),

where the period integrals or brane amplitudes are

aie)= [ @

g’ form a basis of 3-dimensional cycles in Hz(X) and (C™ 1)/ =¢' n¢'.

(®%]e”T]0")



Hypersurfaces in weighted projective spaces

Consider the following weighted projective space

When k; = 1 we have an ordinary projective space. Each variable has integral
degree (U(1) charge) k;.

W(x) is weighted homogeneous <= W(\ix;) = AYW(x) = its zero
locus X = {W = 0} C P} is well-defined.

W(x) is non-degenerate if dW(x) =0 <= x =0 <= X is not too singular.

W(x) defines a Calabi-Yau manifold <= 3> k; = d. We consider
Calabi-Yau deformations

W(x, 9) = Wo(x) + 3 dres(x).

such that manifolds with different ¢ have different complex structure



Special geometry of CYs in WPS

The holomorphic volume form is explicitly

Q- xsdx1dxodxs 7{ d5x
xg=0 J W=

OW(x, ¢)/Oxa o W(x,0)

o= [ o [ e

A good example of such a Calabi-Yau is s quintic threefold in the ordinary
projective space P*:

The periods of such a form are

X={(a::x)eP"| W(x,¢) =0},
100
W(x, ¢) = +Z¢tet x), Wo(x) =x3 +53 + x5 + X3 + X5
t=0

and e;(x) are the degree 5 monomials such that each variable has the power
that is a non-negative integer less then four.



Landau-Ginzburg orbifold and Special geometry

N=(2,2) supersymmetric Landau-Ginzburg theory has the superspace
Lagrangian

L= /d46' K(X,)?)+/d29 W(X,®)+ h.c.,

where ®? are deformation parameters and the chiral superfields X; are complex
coordinates in C°. Theory is conformal if W(X,®) is weighted homogeneous

WA X) = X W(X).
Consider the discrete gauge symmetry Q : X; — €2™%/9X; and corresponding
Landau-Ginzburg orbifold on C%/Q. Its chiral ring is

RQ _ (C[Xl,...,Xs]Q
T (W, W)

which decomposes as
RY = (1) @ (RY) @ (RY)? @ (HessW).

We choose a basis e,(x) of the chiral ring.



Landau-Ginzburg orbifold and Special geometry

The disk one-point functions (brane amplitudes) in Landau-Ginzburg theory are
given by oscillatory integrals:

/ ea(x)e” V@B,
Q

i
where the cycles Q;" are the steepest descent contours or Lefschetz thimbles
Q" € Hs(C® Re(W) > 0).

The intersection pairing is (C™1)7 = Q, N @ and the Kshler potential of the

tt* metric is
e K= Cij/
Q

This Special geometry coincides with the one on a Calabi-Yau hypersurface
X = {W =0} C P} as follows from the formula

d®x / —W(x,¢) 15
—_— = e AP x
/Q,' W(X>¢) Q,‘Jr

and intersection matrices CY coincide.

e W) g5y / eW(x¢)d5x.
QL

i
+



Periods equality

/ / Xm dXz dX3 dX4 dX5
Wo X ) ’

Consider a nearby Milnor fiber {W(x,$) = w} C C®.

/W (7d¢1—W /W 7¢1)Z(W(X7¢1):/7%'

due to weighted homogeneity. Using this and inserting the 1 we have

/ dxidxodxsdxadxs / dxidxodxzdxsdxs
) Wixd1) Ty W 61) —w

_ —w/z P Vo
Z/W>oe </f(’yw) W(x, ¢1) — W> v (1)

Now we take a residue at W = w in the inner integral in (1)

z/ e vz / 7(15)( dw =z / efw/zid%(dw
w0 T(ver) W(x,¢1) — w OW(x, p1)/0xs

Mz:=Uwyw

For any x € T, we have W(x, ¢) = w. The last step is a coordinate change

4
—wz d'xdw _ / —W(x,61)/2 45
z e - =z e d’x.
/r W (x, 1) /x5~ Jr.

z



Oscillatory integral cohomology

We focus on computation of special geometry for a LG orbifold. Stokes formula
for oscillatory integrals implies

/e*WD,a:/e*W(da—dWAa) =0,

so oscillatory integrands e,(x) d°x form a cohomology group H3 (C°)% which
is dual to steepest descent contours Hs(C®, Re(W) > 0)?.

Define a basis of cycles by duality formula

(M, ep(x) d®x) :/ e Mg, (x)dx = 6;.

re

The cycles 'Y are not actual cycles but complex linear combinations of cycles.

Using the duality it is very easy to find an intersection matrix of cycles
. N = (n1)%, where 5/ is a topological residue pairing of
Landau-Ginzburg theory in the appropriate gauge

5
i _ pes EX) &i(x)dx
= S W - - 9 W



Main working formula

We use the formula for the Kahler potential for a Landau-Ginzburg orbifolds in
the basis of cycles I, :

e X =77ij/ P % /7eW(Xv¢)d5x7
r

i 7
+ r

where the last conjugation is due to the fact that ;. are linear combinations of
cycles with complex coefficients.

We denote -
oi(p) == / e WP, T =MiTk
'

for a matrix Mj-‘ which is called a real structure matrix. MM = 1.

Our main formula becomes

e = 0i(¢)n" M, 0;().




Phase symmetry

We consider deformations of symmetric superpotentials/Calabi-Yau manifolds

WO(X) + Z ¢ses(x)7

where Wo(x) has additional discrete symmetry group My, of the form

xi — aix; such that Wo(a - x) = Wo(x). An example is Wo(x) = 327, x? and

Mw, = Z2. We consider the case where the chiral ring decomposes into
different one-dimensional representations.

Such a symmetry gives strong constraints on the formulas.
@ We can pick a monomial basis of R? such that ¥ = antidiag{1,1,...,1}.
@ Real structure matrix Mi = antidiag{ A1, Az, ..., Aopi2}.

o The Kahler potential is

2h+2

e =3 Adoa(9)*.
a=1

Real structure As is computed through integration over simple actual cycles
which decompose into products of one-dimensional integrals.



Special geometry for the quintic

Quintic CY manifold X be given as a solution of the equation

101

W(x,d) = Zx +Z¢5Hx5’—

s=(s1, 52,53,54,55), 0 <57 < 3, deg(s) :=Zf:1 si =5.
The complex structures Kahler potential in this case is

203

oK) _ Z(fl)deg(“)/s 1_[7 <”’ - 1) EAC)E

n=0

r T+n
UH(¢): Z H (r(u,+1 Z H ms I’

N1yeney ng >0 i=1 mex, s
p=(p1, p2, 3, pa; ps), 0 < i <3, 327 pi = 0,5,10,15.

r(x) _ o Bp 4y
m, zn—{ms‘ ;mssr —5n,+,u,}

v(x) =

Konctantun Anewkun (Hayuneiii pykosogutenes A.A. Genasun)



Special geometry for Fermat hypersurfaces

The Fermat hypersurfaces (around 100 threefolds) are given by

5 h
W(x.6) =D x"" + > és[[x7 =0
i=1 s=1 i

s=(s1,52,53,54,55), 0 < 5 < d/ki — 1, deg(s) ;= kisi = d.
The complex structures Kahler potential in this case is

2h+1

e =Syt T (Kl D) )\Gu(qb)\z,
©=0
5 k(,u,+1 +n)
OM(¢) = Z H y,+1) Z H ms '7
n: .,ng >0 i=1 meX, s

p=(p1, p2, p3; pa, ps), 0 < pi < d/ki— 1, S27 pi =0,d,2d,3d.

o ={ms| > mskisi = dn; + kijui}

Konctantun Anewkun (Hayuneiii pykosogutenes A.A. Genasun)



Computation of the periods

Consider a so-called invertible singularty
n n
M;
Wo(x) =>_T1x"
i=1 j=1

where Mj; is an invertible matrix.

We compute the period integrals

/ e_WO(X)+ZS ¢5e5d5x _ Z ¢'1n1 . ()bh h / e—WD(X) H X_E::1 mss; d5X.
r myl- - mp! re !

m1,...,mp>0 : i<5

All the monomials of Wy belong to the Jacobi ideal themselves
TTx"™ =" Mg xdWo(x).
j k

Which allows to shift exponent vectors of the integrands

b mss 5 Myi+a; 15 .
X d°x = Hi§5xi d>x:



Computation of the periods

H XiMk;+a;d5 - D_ Z Mbkl H Xa,+5,bd5X/de _

i<5 i<5
= Z (a6 + DM [ 7 .

i<5

Which implies a formula for the periods

my mpy

o@)= > [l@+omh, 3 20

Viyeeyvg >0 i<5 S mesi=Mjvj+a;
a=(a1,...,as) € Ro,
> Mja; =0, d, 2d, 3d.
i<5
where the Pochhammer symbol is

_Ma+m)
@n ="y



Real structure computation

If a cycle Ly is an actual cycle, then
Im |:/ e (ea(x) d®x 4+ Miey(x) dsx):| =0.
Ly
We find real cycles using a following singular coordinate change
yi = xM = HXJMU
i
The period integral becomes
/ hem TioM ans — et M1 y(k+1)M_1flef Sigry,
Ly Ly

We can pick a contour to be a product of 5 Pochhammer contours in
coordinates y:

z(s) = p(s)e"”®
C >
<<

The integral above decomposes into a product of gamma functions with
complex coefficients which allows to find the real structure M2.




Gauged Linear Sigma Models

2d N=(2,2) supersymmetric GLSM have superspace Lagrangians of the type
N 1 —
— 4 . Qiava R
L —/d (%) (i_gl d),e ¢, Ea 263 zaza) +
41 /d2§§k:t2 +/d29W(¢)+hc
2 a a e b

a=1
where ®; are 2d chiral multiplets which are charged with respect to the 2d
vector multiplets V; of U(1) with the charge matrix Q;, and W(®) is gauge
invariant.
The parameters t, = r, + i, are complexified Fayet-lliopoulos terms. The
theory has the scalars potential

k
U=> (Quleil® ~
a=1

Depending on r, the vacuum manifold can be either a nontrivial manifold or a
point ¢ = 0. In the first case the theory flows to a nonlinear sigma model in the
infrared. In the second case it flows to a Landau-Ginzburg model.

oW |?
i




Vacuum manifolds and toric manifolds

In the nonlinear sigma model case the vacuum manifold is a Hamliltonian
reduction

> Qulot = 1=k }/U().

a=1

Y,:{(¢1,...,¢N yecV

This manifold is isomorphic to a hypersurface dW = 0 in a toric variety
e/,
where the action of (C*)¥ is defined by the k x N charge matrix Q..

The classical way to describe a toric variety is a fan {vji};<n,j<s. Integral
vectors v; satisfy 3% | Qv = 0.

Vectors v; of a fan and spans of several of them (cones) are in one-to-one with
(C*)* invariant cycles in the toric variety Y,.



Supersymmetric localization on S

In the recent years the partition function of GLSM was computed in a
supersymmetric background on S? using the supersymmetric localization:

Zsz = Z/ dUJ ZC/aSS(Uy m) H Z¢;(07 m)7

J<k i<N
where the classical action is

__—Arino;—i6;m;
Zc/ass =€

and the one-loop determinant of a chiral field ®; is

Zo — _H@/2=i%(Quor — mi/2))
Tt = qi/2—iY(Quor 4+ my/2))




Jockers conjecture

Shortly after localization computation there was proposed a conjecture that
Zs2 computes e~ X on the Kihler moduli space of the vacuum manifold ;.

The mirror symmetry relates special geometry on the moduli spaces of Kahler
and complex structure defomations of two different families of Calabi-Yau
manifolds Y, and Xy through a mirror map r = r(¢).

We proved the mirror version of the Jockers et al conjecture by direct
computations in the cases where we are able to compute special geometry
using our method.

The mirror version should state that

/ Q /\ﬁ: Zsz(yr).
X

Under a suitable mirror map.



Mirror symmetry

We use a version of Batyrev mirror symmetry for hypersurfaces in toric varieties.
Consider a family of Calabi-Yau varieties defined by the equation (for example
the quintic)

101

5 106 5
W(x,0) =Y 37+ dex) =Y C(o) [[ %7,
i=1 =1 i=1 Jj=1

where we introduced the exponent matrix vj;. Vectors v; define integral points
of a polytope in R5.

The Batyrev mirror symmetry implies that to get a mirror manifold we need to
consider a fan with vectors v;, construct a toric variety with this fan and a
hypersurface Y, inside this toric variety is a mirror quintic.



Mirror quintic as a GLSM

For the quintic the vectors of the fan are

56, 1<i<B5,
Vij =
7 \sizsy, 6<i<106.

We build a GLSM whose vacuum manifold is a mirror quintic. We easily
reconstruct the charge matrix Q.

Q. — Sai, 1< <5,
" —56iis., 6<i<106.
such that
Z Qaivi = 0.
<106

Elements Q.; form a basis in linear relations among v; and force >~ m,Q. € Z
due to the charge quantization condition.



Mirror quintic as a GLSM

To write the superpotential of the GLSM it is convenient to separate the chiral
fields as

The superpotential is
Wy = P1 G(Sl, ey 55; Pz, ey P101).
And the scalar potential whose zeroes define a mirror quintic is

101

1
U(o) Z (Zs,,55|P| >4|G(51,...,55;Pz,...,Pml)I2+

=1
1 > 9G
4Pl Z ‘%

101

7| 1|Z aG |?




Partition function for the mirror quintic

The partition function of the GLSM above is given by a 101-fold contour
integral

01

dT/ —TI+5 = ‘rf—
Zsz:E / i) z,/zz,/ X
v}
m eV C1 C101/ 1

r(l —5 T1 — ﬂ 5 Z,S/Q(T/ m’)) 101 r(—5(7'/ — % )
T (5(m + =) 1:[1 M1 -5 su(n+ %) & I1 Lrassm+ o))

where

—(2 i0
z=e (2mry+i /)7

and summation is over m; such that > m.Q.; € Z for all i.

To connect with our previous computations we compute the integral at

ra << 0, |zs] >> 0. The contours can be deformed to the right picking up the
residues at

p=12 ..., p=0,1,... sothat p +5m >0.



Partition function for the mirror quintic

After computing the residues the partition function reduces to

zemet 3 ST

p1>0,p >0 pex, |
1L 1 T o
H r (5 ZSHP/> r (5 Z&iﬁ/) sin (5 Z&iﬁ/) ;
i-1 1=1 =1 =1
where the set ¥, - is a set of all {5/} such that

Za(ﬁa - pa)Qai/5 = Za maQai €Z.

After a rearrangement this formula becomes

Zsz = Z )\a\ H El)a, |0'a(z)|27

where

r(Z+n 101 qyeip
Z):ZH(F(;,-)) > U%

n;>0 i=1



Conclusion

The formula for partition function on S? coincides with the special geometry on
the moduli space of the quintic itself after a simple mirror map

-5
zo=—¢; .

We constructed an explicit correspondence between a family of Calabi-Yau
manifolds X and the Gauge Linear Sigma Model whose vacuum manifold Y; is
a mirror of Xy and checked that special geometries coincide after a very simple
mirror map.

The partition function gives an analytic continutation of the special geometry
and may be used to compute various correlation functions in superstring theory.



Conclusion

Thank you for your attention!



