Russian Academy of Sciences

Landau Institute for Theoretical Physics

Publications of modern mathematics problems department

2019

  1. P.G. Grinevich, R.G. Novikov, Moutard transforms for the conductivity equation, Lett. Math. Phys., 109(10), 2209-2222 (2019); arXiv:1801.00295.
  2. S. Abenda, P.G. Grinevich, Reducible M-curves for Le-networks in the totally-nonnegative Grassmannian and KP-II multiline solitons, Selecta Math. New Ser., 25(3), art. 43 (2019); arXiv:1805.05641.
  3. D. P’eranzheli, M. Flammini, Dzh. Maruchchi, A. Dzh. Agranat, P. G. Grinevich, P. M. Santini, K. Konti, E. Del’ Re, Nablyudenie povtoryaemosti Fermi-Pasta-Ulama-Tsingu v opticheskom eksperimente, Okeanologicheskie issledovaniya, 47(1),107-108 (2019).
  4. 2018

    1. S. Abenda, P.G. Grinevich, Rational degenerations of M-curves, totally positive Grassmannians and KP2-solitons, Commun. Math. Phys., 361(3), 1029-1081 (2018); arXiv:1506.00563.
    2. P.G. Grinevich, P.M. Santini, The finite gap method and the analytic description of the exact rogue wave recurrence in the periodic NLS Cauchy problem. 1, Nonlinearity, 31(11), 5258-5308 (2018); arXiv:1707.05659.
    3. P.G. Grinevich, P.M. Santini, The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes, Physics Letters A 382(14), 973-979 (2018); arXiv:1708.04535.
    4. A.Ya. Mal’tsev, Vtoraya granitsa zon ustoichivosti i uglovye diagrammy provodimosti dlya metallov so slozhnymi poverkhnostyami Fermi, ZhETF, 154(6), 1183-1210 (2018) [A.Ya. Maltsev, The second boundaries of stability zones and the angular diagrams of conductivity for metals having complicated Fermi surfaces, JETP, 127(6), 1087-1111 (2018)]; arXiv:1804.10762.
    5. S. Abenda, P.G. Grinevich, Veshchestvennye solitonnye reshetki Kadomtseva–Petviashvili II i desingulyarizatsiya spektral’nykh krivykh, otvechayushchikh GrTP(2,4), Tr. MIAN, 302, 7-22 (2018) [S. Abenda, P.G. Grinevich, Real Soliton Lattices of the Kadomtsev Petviashvili II Equation and Desingularization of Spectral Curves: GrTP(2,4) case, Proc. Steklov Inst. Math., 302, 1-15 (2018)]; arXiv:1803.10968.
    6. A.Ya. Mal’tsev, S.P. Novikov, Teoriya zamknutykh 1-form, urovni kvaziperiodicheskikh funktsii i transportnye yavleniya v elektronnykh sistemakh, Tr. MIAN, 302, 296-315 (2018) [A.Ya. Maltsev, S.P. Novikov, The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems, Proc. Steklov Inst. Math., 302, 279-297 (2018)]; arXiv:1805.05210.
    7. S. Abenda, P.G. Grinevich, KP theory, plane-bipartite networks in the disk and rational degenerations of M-curves, arXiv:1801.00208.
    8. E.A. Zhizhina, V.A. Zagrebnov, Yu.M. Kondrat’ev, V.A. Malyshev, B.S. Nakhapetyan, E.A. Pecherskii, S.A. Pirogov, S.K. Pogosyan, Ya.G. Sinai, Robert Adol’fovich Minlos (28.02.1931 – 9.01.2018), TMF, 195(1), 3-45 (2018) [E.A. Zhizhina, V.A. Zagrebnov, Yu.M. Kondratiev, V.A. Malyshev, B.S. Nakhapetian, E.A. Pechersky, S.A. Pirogov. S.K. Poghosyan, Ya.G. Sinai, Robert Adol’Fovich Minlos (28 February 1931 – 9 January 2018), Theor. Math. Phys., 195(1), 491-493 (2018)].
    9. 2017

      1. S.V. Savchenko, On the number of 7-cycles in regular n-tournaments, Discrete Mathematics, 340(2), 264-285 (2017).
      2. A.Ya. Mal’tsev, Ob analiticheskikh svoistvakh magnitoprovodimosti pri nalichii ustoichivykh otkrytykh elektronnykh traektorii na slozhnoi poverkhnosti Fermi, ZhETF, 151(5), 944-973 (2017) [A.Ya. Maltsev, On the analytical properties of the magneto-conductivity in the case of presence of stable open electron trajectories on a complex Fermi surface, JETP 124(5), 805-831 (2017)]; arXiv:1610.00292.
      3. A.Ya. Mal’tsev, Ostsillyatsionnye yavleniya i eksperimental’noe opredelenie tochnykh matematicheskikh zon ustoichivosti dlya magnitoprovodimosti v metallakh, imeyushchikh slozhnye poverkhnosti Fermi, ZhETF, 152(5), 1053-1064 (2017) [A.Ya. Maltsev, Oscillation phenomena and experimental determination of exact mathematical Stability Zones for magneto-conductivity in metals having complicated Fermi surfaces, JETP 125(5), 896-905 (2017)]; arXiv:1706.09750.
      4. P.G. Grinevich, R.G. Novikov, Mnogotochechnye rasseivateli so svyazannymi sostoyaniyami pri nulevoi energii, TMF, 193(2), 309-314 (2017) [P.G. Grinevich, R.G. Novikov, Multipoint scatterers with bound states at zero energy, Theor. Math. Phys., 193(2), 1675-1679 (2017)]; arXiv:1610.02319.
      5. P.G. Grinevich, S.P. Novikov, Singulyarnye solitony i spektral’naya meromorfnost’, Uspekhi mat. nauk, 72(6), 113-138 (2017) [P.G. Grinevich, S.P. Novikov, Singular solitons and spectral meromorphy, Russ. Math. Surv., 72(6), 1083-1107 (2017)].
      6. 2016

        1. P.G. Grinevich, R.G. Novikov, Moutard transform approach to generalized analytic functions with contour poles, Bull. Sci. Math., 140(6), 638-656 (2016); arXiv:1512.08874.
        2. P.G. Grinevich, R.G. Novikov, Moutard transform for the generalized analytic functions, J. Geom. Anal., 26(4), 2984-2995 (2016); arXiv:1510.08764.
        3. S.V. Savchenko, On 5-Cycles and 6-Cycles in Regular n-Tournaments, J. Graph Theory, 83(1), 44-77 (2016).
        4. A.Ya. Maltsev, On the canonical forms of the multi-dimensional averaged Poisson brackets, J. Math. Phys. 57, 053501 (2016); arXiv:1502.04468.
        5. P.G. Grinevich, P.M. Santini, Nonlocality and the inverse scattering transform for the Pavlov equation, Stud. Appl. Math., 137(1), 10-27 (2016); arXiv:1507.08205.
        6. M. Avdeeva, F. Cellarosi, Ya.G. Sinai, Ergodic and statistical properties of B-free numbers, Teoriya veroyatn. i ee primen., 61(4), 805-829 (2016) [Theory Probab. Appl., 61(4), 569–589 (2017)].
        7. P.G. Grinevich, P.M. Santini, Odna lemma iz integral’noi geometrii i eyo prilozheniya: nelokal’nost’ v uravnenii Pavlova i tomograficheskaya zadacha s neprozrachnym parabolicheskim ob’ektom, TMF, 189(1), 59-68 (2016) [P.G. Grinevich, P.M. Santini, An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects, Theor. Math. Phys., 189(1), 1450-1458 (2016)]; arXiv:1511.04436.
        8. P.G. Grinevich, S.P. Novikov, Ob s-meromorfnykh obyknovennykh differentsial’nykh operatorakh, Uspekhi matem. nauk, 71:6(432), 161-162 (2016) [P.G. Grinevich, S.P. Novikov, On s-meromorphic ordinary differential operators, Russ. Math. Surv., 71(6), 1143-1145 (2016)]; arXiv:1510.06770.
        9. P.G. Grinevich, R.G. Novikov, Obobshchennye analiticheskie funktsii, preobrazovaniya tipa Mutara i golomorfnye otobrazheniya, Funkts. analiz i ego pril., 50(2), 81-84 (2016) [P.G. Grinevich, R.G. Novikov, Generalized analytic functions, Moutard-type transforms and holomorphic maps, Funct. Anal. Appl., 50(2), 150-152 (2016)]; arXiv:1512.00343.
        10. 2015

          1. A.Ya. Maltsev, On the minimal set of conservation laws and the Hamiltonian structure of the Whitham equations, J. Math. Phys. 56, 023510 (2015); arXiv:1403.3935.
          2. P.G. Grinevich, P.M. Santini, D. Wu, The Cauchy problem for the Pavlov equation, Nonlinearity, 28(11), 3709-3754 (2015); arXiv:1310.5834.
          3. P.G. Grinevich, A.E. Mironov, S.P. Novikov, O nerelyativistskom dvumernom chisto magnitnom supersimmetrichnom operatore Pauli, Uspekhi matem. nauk, 70:2(422), 109-140 (2015) [P.G. Grinevich, A.E. Mironov, S.P. Novikov, On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator, Russ. Math. Surveys, 70(2), 299–329 (2015)]; arXiv:1101.5678.
          4. I.M. Krichever, Kommutiruyushchie raznostnye operatory i kombinatornoe preobrazovanie Geila, Funkts. analiz i ego pril., 49(3), 22–40 ( 2015) [I.M. Krichever, Commuting difference operators and the combinatorial Gale transform, Funct. Anal. Appl., 49(3), 175-188 (2015)]; arXiv:1403.4629.
          5. 2014

            1. D. Li, Ya.G. Sinai, An application of the renormalization group method to stable limit laws, J. Stat. Phys., 157(4-5), 915-930 (2014).
            2. P.G. Grinevich, S.P. Novikov, Spektral’no meromorfnye operatory i nelineinye sistemy, Uspekhi mat. nauk, 69:5(419), 163–164 (2014) [P.G. Grinevich, S. Novikov, Spectral Meromorphic Operators and Nonlinear Systems, Russ. Math. Surv., 69(5), 924-926 (2014)]; arXiv:1409.6349.
            3. V.M. Buchstaber, B.A. Dubrovin, I.M. Krichever (Eds.), Topology, Geometry, Integral Systems, and Mathematical Physics. Novikov’s Seminar 2012-2014, AMS, 2014, xii,393 pp. ISBN 978-1-4704-1871-7 [American Mathematical Society Translations - Series 2, Advances in the Mathematical Sciences, Vol. 234 (2014)].
            4. I. Krichever, Amoebas, Ronkin function, and Monge–Ampère measures of algebraic curves with marked points, American Mathematical Society Translations - Series 2, Advances in the Mathematical Sciences, 234, 265-278 (2014) [Topology, Geometry, Integral Systems, and Mathematical Physics. Novikov’s Seminar 2012-2014. Ed. by V.M. Buchstaber, B.A. Dubrovin, I.M. Krichever. AMS, 2014, xii,393pp. ISBN 978-1-4704-1871-7]; arXiv:1310.8472.
            5. A.Ya. Maltsev, The averaging of multi-dimensional Poisson brackets for systems having pseudo-phases, American Mathematical Society Translations - Series 2, Advances in the Mathematical Sciences, 234, 279-307 (2014) [Topology, Geometry, Integral Systems, and Mathematical Physics. Novikov’s Seminar 2012-2014. Ed. by V.M. Buchstaber, B.A. Dubrovin, I.M. Krichever. AMS, 2014, xii,393pp. ISBN 978-1-4704-1871-7]; arXiv:1402.3686.
            6. P.G. Grinevich, Elementy teorii rimanovykh poverkhnosttei i teorema Rimana-Rokha, V sbornike: Geometricheskie metody matematicheskoi fiziki 2. Lektsii letnei shkoly. Voskresenskoe 25-29.06.2012- M.:MAKS Press 2014, s. 29-60.
            7. 2013

              1. P.G. Grinevich, S.P. Novikov, Singular soliton operators and indefinite metrics, Bull. Brazil. Math. Soc., New Series, 44 (4), 809-840 (2013); arXiv:1103.2505.
              2. P.G. Grinevich, R.G. Novikov, Faddeev eigenfunctions for multipoint potentials, Eurasian Journal of Mathematical and Computer Applications, 1(2), 76-91 (2013); arXiv:1211.0292.
              3. P.G. Grinevich, P.M. Santini, Holomorphic eigenfunctions of the vector field associated with the dispersionless Kadomtsev-Petviashvili equation, J. Diff. Equations, 255(7), 1469-1491 (2013); arXiv:1111.4446.
              4. A.Ya. Maltsev, The multi-dimensional Hamiltonian structures in the Whitham method, J. Math. Phys., 54, 053507 (2013); arXiv:1211.5756.
              5. P.G. Grinevich, S.P. Novikov, Diskretnye SLn-svyaznosti i samosopryazhennye raznostnye operatory na dvumernykh mnogoobraziyakh, Uspekhi mat. nauk, 68:5(413), 81–110 (2013) [P.G. Grinevich, S.P. Novikov, Discrete SLn-connections and self-adjoint difference operators on 2-dimensional manifolds, Russ. Math. Surv., 68(5), 861-887 (2013)].
              6. I. Krichever, T. Shiota, Soliton equations and the Riemann-Schottky problem, In: Handbook of Moduli, Vol. II, 205-258 (2013). Ed. by G. Farkas, I. Morrison, Intl. Press, 594 pp., 2013. ISBN: 9781571462589 [Advanced Lectures in Mathematics, Volume 25]; arXiv:1111.0164.