
Chaos, Solitons and Fractals 166 (2023) 112951

A
0

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Bound-state soliton gas as a limit of adiabatically growing integrable
turbulence
Dmitry S. Agafontsev a,b,∗, Andrey A. Gelash b,c, Rustam I. Mullyadzhanov d,e,
Vladimir E. Zakharov f

a Shirshov Institute of Oceanology of RAS, Nakhimovskiy prosp. 36, Moscow, 117997, Russia
b Skolkovo Institute of Science and Technology, Bolshoy blvd. 30, bld. 1, Moscow, 121205, Russia
c Institute of Automation and Electrometry SB RAS, Ac. Koptyuga ave. 1, Novosibirsk, 630090, Russia
d Institute of Thermophysics SB RAS, Lavrentyev prosp. 1, Novosibirsk, 630090, Russia
e Novosibirsk State University, Pirogova st., 2, Novosibirsk, 630090, Russia
f Department of Mathematics, University of Arizona, Tucson, 857201, AZ, USA

A R T I C L E I N F O

Keywords:
Integrable turbulence
Rogue waves
Solitons

A B S T R A C T

We study numerically the integrable turbulence in the framework of the one-dimensional nonlinear Schrodinger
equation (1D-NLSE) of the focusing type using a new approach called the ‘‘growing of turbulence’’. In
this approach, we add a small linear pumping term to the equation and start evolution from statistically
homogeneous Gaussian noise. After reaching a certain level of average intensity, we switch off the pumping
and examine the resulting integrable turbulence. For sufficiently small initial noise and pumping coefficient,
and also for not very wide simulation box (basin length), we observe that the turbulence grows in a universal
adiabatic regime, moving successively through the statistically stationary states of the integrable 1D-NLSE,
which do not depend on the pumping coefficient, amplitude of the initial noise or basing length. Waiting longer
in the growth stage, we transit from weakly nonlinear states to strongly nonlinear ones, characterized by a
high frequency of rogue waves. Using the inverse scattering transform (IST) method to monitor the evolution,
we observe that the solitonic part of the wavefield becomes dominant even when the (linear) dispersion
effects are still leading in the dynamics and with increasing average intensity the wavefield approaches a
dense bound-state soliton gas, whose properties are defined by the Fourier spectrum of the initial noise.
Regimes deviating from the universal adiabatic growth also lead to solitonic states, but solitons in these states
have noticeably different velocities and a significantly wider distribution by amplitude, while the statistics of
wavefield indicates a much more frequent appearance of very large waves.
1. Introduction

Statistical analysis of nonlinear integrable systems with random
input, called in general integrable turbulence [1], is a rapidly developing
area of theoretical and experimental research. Its main difference from
the ‘‘ordinary’’ weak turbulence is the absence of resonant interactions,
so that the collision term in the classic kinetic equation equals zero
at any order of the perturbation theory. The analytic approach to
the integrable turbulence is possible in two opposite situations: when
nonlinearity is weak and the modified kinetic equation accounting
for the non-resonant interactions can be written [2,3], or when the
turbulence can be treated as a soliton gas [4–7]. Yet a lot of many
interesting types of integrable turbulence with intermediate level of
nonlinearity remain out of limits of analytic theory and can be studied
by implementation of massive numerical experiments only [8–16].
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Particular attention in the studies of integrable turbulence is paid to
the one-dimensional nonlinear Schrödinger equation (1D-NLSE) of the
focusing type,

𝑖𝜓𝑡 + 𝜓𝑥𝑥 + |𝜓|2𝜓 = 0, (1)

as it is one of the basic nonlinear equations suitable for the description
of rogue waves — extremely large waves that appear unpredictably
from moderate wave background [17–20]. The 1D-NLSE is integrable in
terms of the inverse scattering transform (IST) method [21–23], allowing
transformation to the so-called scattering data which is in one-to-one
correspondence with the wavefield and changes trivially during the
motion. Transformation to the scattering data includes the calculation
of the eigenvalue spectrum for a specific auxiliary linear system, where
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the wavefield of the 1D-NLSE plays the role of the potential. For
spatially localized potentials, the eigenvalue spectrum contains discrete
(solitons) and continuous (nonlinear dispersive waves) parts, and can
be used to completely characterize the wavefield; in this sense, the
IST is often viewed as a nonlinear analogue to the Fourier trans-
form [23]. However, to reconstruct the wavefield from the scattering
data, one needs to find a solution to the nonlinear system of integral
Gelfand–Levitan–Marchenko (GLM) equations. For a general case, this
can only be done numerically, asymptotically at large time, or in the
semi-classical approximation [24,25].

One special property of an integrable system is the conservation of
an infinite series of invariants. This means, in particular, that different
types of initial conditions are characterized by different sets of integrals
of motion and, during the evolution, demonstrate different statistical
behavior even in the long time, see e.g. [8,9]. Until now, the research
of integrable turbulence has been concentrated on studies of evolution
from different types of physically relevant initial conditions, such as
perturbed condensate [9,26,27] and cnoidal waves [14], partially co-
herent wave [8,12,16] and its superposition with the condensate [10,
11], and also soliton gas [28–39]. In such studies, it is implied that
the initial conditions are somehow prepared by an external actor,
that resembles a setting of laboratory experiment. In nature, however,
a different situation often takes place when waves (for instance, on
the surface of water), currently traveling in a system, were generated
from small perturbation in the same system under the influence of a
time-limited external forcing.

In the present paper, developing further the approach suggested
in [40], we mimic this situation and grow turbulence by adding a
small pumping to the 1D-NLSE. Namely, we start from statistically
homogeneous in space Gaussian noise and add a small linear pumping
term to the integrable model (1), making it nonintegrable, and wait
until the average intensity ⟨|𝜓|2⟩ of the wavefield reaches a certain
level. Then, we switch off the pumping and examine the resulting
integrable turbulence.

One of the phenomena actively studied in the integrable turbu-
lence is the statistically stationary state — the state, in which statistical
characteristics of wavefield are independent of time. The existence of
such state was suggested in [1] and later corroborated in numerical
simulations for some initial conditions, see e.g. [8–11,14,35,36]. The
stationary state can be considered as an analogy to thermodynamic
equilibrium in non-integrable systems and, if it exists, must be defined
by the infinite series of integrals of motion, so that different series of
invariants determine different stationary states.

A particular design of our numerical experiments allows us to grow
integrable turbulence adiabatically, moving successively through the
statistically stationary states. We achieve this by making the pumping
term small compared to the dispersion and nonlinearity terms of the
1D-NLSE, so that the dynamics during the growth stage is driven pri-
marily by the 1D-NLSE while the pumping slowly changes the integrals
of motion. Also, we start growth stage from small initial noise, so
that the initial turbulence is very weakly nonlinear and, therefore,
practically stationary. As a natural analogy to our setup, one can
consider an ideal gas in a box, to which one molecule is added from
time to time, so that the system remains in thermodynamic equilibrium
state, and this state changes slowly over time.

The 1D-NLSE model with a weak linear dumping or pumping term
is a common object of studies in nonlinear physics. For instance, this
equation appears when studying slowly varying wave packets on the
surface of deep water under the action of wind, in the context of Bose–
Einstein condensates and in fiber optics; see e.g. [41–46] and references
therein. In contrast to these studies, which were mainly concentrated
on the effects of dissipation or pumping on relatively large waves of
various types over a relatively short time, we focus on the very specific
problem of adiabatic growth of turbulence. As we show, this problem
leads to a formulation, in which we start evolution from small noise,
2

use very small pumping and keep the system in the growth stage for a
very long time until the wavefield is amplified by hundreds of times in
terms of characteristic amplitude ⟨|𝜓|⟩.

In the present paper, we demonstrate that for sufficiently small
initial noise and pumping coefficient, and also for not very wide simu-
lation box (basin length), the turbulence grows in a universal adiabatic
regime. In this regime, when we switch off the pumping, the resulting
integrable turbulence turns out to be stationary and does not depend
on the pumping coefficient, amplitude of the initial noise or basin
length. However, it depends significantly on the Fourier spectrum of
initial noise and the current level of average intensity. In particular,
increasing intensity with a longer evolution in the growth stage, we
transit from weakly nonlinear states to intermediate nonlinearity and
then to strongly nonlinear states characterized by a high frequency
of rogue waves. Monitoring this evolution with the IST method, we
observe that the solitonic part of the wavefield becomes dominant
even when the (linear) dispersion effects are still leading in the dy-
namics and with increasing average intensity the wavefield approaches
a dense bound-state soliton gas, whose properties are defined by the
Fourier spectrum of initial noise. Regimes deviating from the universal
adiabatic growth also lead to solitonic states, but solitons in these
states have noticeably different velocities and a significantly wider
distribution by amplitude, while the statistics of wavefield indicates a
much more frequent appearance of very large waves.

The paper is organized as follows. In the next Section 2 we give a
general overview for the problem of adiabatically growing integrable
turbulence. In Section 3 we discuss our numerical methods and param-
eters. In Section 4 we study statistics of the ‘‘grown-up’’ turbulence and
in Section 5 we examine the corresponding wavefields with the IST
method. The final Section 6 contains conclusions and discussions. The
paper has also several Appendixes discussing the theoretical formalism
and numerical approaches to the IST method, as well as additional
results related to the grown-up turbulence.

2. Growing of integrable turbulence

2.1. Formulation of the problem

We examine the long-time statistics of solutions to the following
problem,

𝛹 |𝜏=0 = 𝐶0ℎ(𝜉), |ℎ|2 = 1,

𝑖𝛹𝜏 + 𝛽𝛹𝜉𝜉 + 𝛾|𝛹 |2𝛹 = 𝑖𝑝𝛹, while |𝛹 |2 < 𝐶2
𝑓 ,

𝑖𝛹𝜏 + 𝛽𝛹𝜉𝜉 + 𝛾|𝛹 |2𝛹 = 0, for |𝛹 |2 = 𝐶2
𝑓 .

Here 𝜏 is time, 𝜉 is spatial coordinate, 𝛹 is wavefield, 𝐶0ℎ(𝜉) is the
initial noise and 𝐶0 is its mean amplitude, the function ℎ(𝜉) has unit
verage intensity |ℎ|2 = 1 and characteristic spatial scale 𝛿𝜉 = 𝓁, 𝐶𝑓
s the final mean amplitude, and the positive coefficients 𝛽, 𝛾 and 𝑝
escribe the dispersion, nonlinearity and pumping, respectively. The
verline denotes spatial averaging,

|ℎ|2 = 1
𝛬 ∫

𝛬∕2

−𝛬∕2
|ℎ|2 𝑑𝜉,

ver a wide simulation box 𝜉 ∈ [−𝛬∕2, 𝛬∕2], 𝛬 ≫ 𝓁, which for
he numerical study is taken with periodic boundaries. The average
ntensity |𝛹 |2 changes from 𝐶2

0 at 𝜏 = 0 to 𝐶2
𝑓 ≫ 𝐶2

0 after turning off
he pumping, and then remains constant, see Eq. (10) below.

After rescaling 𝜏 = 𝑎 𝑡, 𝜉 = 𝑏 𝑥, 𝛹 = 𝐶𝜓 with the coefficients
𝑎 = 𝓁2∕𝛽, 𝑏 = 𝓁 and 𝐶 = (𝛽∕𝛾𝓁2)1∕2, we obtain the same problem
n dimensionless form,

|𝑡=0 = 𝐴0𝑓 (𝑥), |𝑓 |2 = 1, (2)
⎧

⎪

⎨

⎪

𝑖𝜓𝑡 + 𝜓𝑥𝑥 + |𝜓|2𝜓 = 𝑖𝑝0𝜓, while |𝜓|2 < 𝐴2
𝑓 ,

𝑖𝜓𝑡 + 𝜓𝑥𝑥 + |𝜓|2𝜓 = 0, for |𝜓|2 = 𝐴2 ,
(3)
⎩

𝑓
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where the function 𝑓 (𝑥) has unit average intensity and unit character-
stic spatial scale 𝛿𝑥 = 1, while the coefficients 𝐴0 = 𝐶0∕𝐶, 𝐴𝑓 = 𝐶𝑓∕𝐶
nd 𝑝0 = 𝑝𝓁2∕𝛽 denote the rescaled initial and final mean amplitudes
nd pumping, respectively. The boundary conditions are periodic with
large period, 𝑥 ∈ [−𝐿∕2, 𝐿∕2], where 𝐿 = 𝛬∕𝓁 ≫ 1.

.2. Conditions for adiabatic growth

In the present paper, we understand the adiabatic growth of tur-
ulence as a quasistatic process, which runs successively through the
tatistically stationary states of the integrable 1D-NLSE. To engineer
uch a growth, we need to ensure that the dynamics is governed pri-
arily by the terms of Eq. (1), and also start evolution from statistical

tate which is sufficiently close to stationary. One way to achieve the
atter is to start from small noise, since in this case the initial state is
lmost linear and, without the pumping, the linear turbulence would
e stationary. To set the parameters in Eqs. (2)–(3) accordingly, we
nalyze the characteristic time scales associated with the pumping,
ispersion and nonlinearity terms, and also consider Eq. (3) in the
ourier space.

When the pumping is on, the characteristic amplitude increases
xponentially, see e.g. Eqs. (10), (16) below, that defines the charac-
eristic pumping time as 𝑡𝑝 = 1∕𝑝0. The characteristic dispersion time
𝑙 is connected with the characteristic length 𝑙 describing the function

as 𝑡𝑙 = 𝑙2∕2, see e.g. [46]. In our numerical experiments with not
ery large final mean amplitudes 𝐴𝑓 ≲ 1, we observe that the Fourier
pectrum of solution has the same characteristic width as the initial
oise, meaning that 𝑙 does not change with time considerably and we
ay assume 𝑙 ≃ 𝛿𝑥 = 1 at all times. Finally, the characteristic nonlinear

ime is inverse-proportional to the average intensity, 𝑡𝑛𝑙 = 1∕|𝜓|2, and
he latter changes from |𝜓|2 = 𝐴2

0 at 𝑡 = 0 to 𝐴2
𝑓 at the final time.

Hence, the turbulence should grow in adiabatic regime (i) when the
haracteristic pumping time is much larger than both the dispersion
nd nonlinear times, 𝑡𝑝 ≫ 𝑡𝑙 and 𝑡𝑝 ≫ 𝑡𝑛𝑙, and (ii) when at the start of the

growth stage the system is almost linear, 𝑡𝑙 ≪ 𝑡𝑛𝑙|𝑡=0. These conditions
are satisfied at all times if
1
2
≪ 1

𝐴2
0

≪ 1
𝑝0

↔ 𝑝0 ≪ 𝐴2
0 ≪ 2. (4)

The above set of inequalities can be relaxed, provided that the
difference between 𝑝0 and 2 is large enough in order of magnitude.
Indeed, let us consider two experiments which differ only by the initial
noise amplitudes 𝐴1 and 𝐴2, where 𝐴1 satisfies the conditions (4),
𝑝0 ≪ 𝐴2

1 ≪ 2, and 𝐴2 is much smaller, 𝐴2
2 ≲ 𝑝0. Then, in the

growth stage of the second experiment, there exists a certain moment
of time 𝑡∗ when the average intensity |𝜓 (2)

|

2 reaches level 𝐴2
1 of the

initial conditions of the first experiment. Meanwhile, the equation of
motion (3) on the time interval [0, 𝑡∗] has dispersion as the dominant
term, i.e., remains practically linear, so that the nonlinear correlation
between the Fourier modes should be negligible and the statistical
state of the second experiment at time 𝑡∗ should not differ from the
initial conditions of the first one. These assumptions, confirmed in our
numerical experiments, lead to the following conditions for adiabatic
growth of turbulence,

𝑝0 ≪ 2, 𝐴2
0 ≪ 2. (5)

Effectively, these conditions mean that, as long as the dispersion term
is dominant in Eq. (3), the ratio between the nonlinearity and pumping
is not important.

At the growth stage, it is also instructive to consider the equation
of motion (3) in the Fourier space, in which there exists an explicit
dependency on the wavenumber,

𝑖
𝜕𝜓𝑘 − 𝑘2𝜓𝑘 + (|𝜓|2𝜓)𝑘 = 𝑖𝑝0𝜓𝑘. (6)
3

𝜕𝑡
Here (|𝜓|2𝜓)𝑘 is the Fourier-transformed nonlinear term of the 1D-
LSE. For adiabatic growth of turbulence, we need to ensure that the
umping term is much smaller than all the other terms present in the
quation, for all wavenumbers 𝑘 = 2𝜋 m∕L, 𝑚 ∈ Z, including the

smallest nonzero ones 𝑘 = ±𝛥𝑘 = ±2𝜋∕𝐿, i.e.,

𝑝0 ≪
(

2𝜋
𝐿

)2
↔ 𝐿 ≪ 2𝜋

√

𝑝0
, (7)

where 𝛥𝑘 = 2𝜋∕𝐿 is distance between neighbor wavenumbers. Note
that, for the zeroth harmonic 𝑘 = 0, the dispersion term in Eq. (6) is
bsent and the condition similar to (7) does not appear. For a wide
asin length 𝐿 ≫ 1, the condition (7) is much more strict for the
umping coefficient 𝑝0 than Eq. (5).

In the adiabatic regime, the turbulence runs successively through
he statistically stationary states, and the result of such an evolution
ust not depend on its speed. Hence, we can use the independence

f the wave statistics on the pumping coefficient 𝑝0 – and, as follows
rom Eq. (7), on the basin length 𝐿 too – as an additional test of
diabaticity. Conversely, if the statistics depends on 𝑝0 and 𝐿, then the

growth regime is non-adiabatic.
Note that the adiabatic regime of the turbulence growth could be

realized if the growth stage begins not with small noise, but with some
other initial state, including an essentially nonlinear one, provided that
this state is sufficiently close to stationary and the condition (7) is
satisfied. The growth trajectory of such an adiabatic regime, i.e., the set
of statistically stationary states through which the growth passes, must
substantially depend on the initial state. In particular, in formulation
of the problem (2)–(3), the noise amplitude might be small enough,
so that the initial state is close to stationary and the adiabatic growth
regime is realized, and at the same time large enough for the growth
trajectory to be affected by the composition of noise, e.g., the presence
of coherent structures such as solitons. In the present paper, we focus
on the universal adiabatic regime, such that the decrease in the initial
noise amplitude does not affect its trajectory at late growth stages.

As we discuss below, our simulations indicate that if the condi-
tions (5), (7) are satisfied and the initial noise does not contain solitons,
then the turbulence grows in this universal adiabatic regime. Moreover,
if the conditions (5), (7) are violated or the initial noise contains
solitons, then the turbulence grows either in a non-adiabatic regime,
which depends on the pumping coefficient 𝑝0 and basin length 𝐿, or in
a ‘‘non-universal’’ adiabatic regime depending on the noise amplitude
𝐴0.

2.3. Invariants of the 1D-NLSE

Without pumping, Eq. (3) reduces to the 1D-NLSE (1), which con-
serves an infinite series of invariants [21,22]. In the present paper, we
write them in a slightly modified form,

𝑗 = 1
𝐿 ∫

𝐿∕2

−𝐿∕2
𝜓 𝑗 𝑑𝑥, (8)

𝑗 =
𝜕𝑗−1

𝜕𝑥
+ 1

2
𝜓

∑

𝑙+𝑚=𝑗−1
𝑙𝑚, (9)

here 1 = 𝜓∗. The first three invariants are wave action (in our
otations equals the average intensity),

= |𝜓|2 = 1
𝐿 ∫

𝐿∕2

−𝐿∕2
|𝜓|2 𝑑𝑥 =

∑

𝑘
|𝜓𝑘|

2, (10)

momentum

 = 𝑖
2𝐿 ∫

𝐿∕2
(𝜓∗

𝑥𝜓 − 𝜓𝑥𝜓∗) 𝑑𝑥 =
∑

𝑘|𝜓𝑘|
2, (11)
−𝐿∕2 𝑘



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 166 (2023) 112951D.S. Agafontsev et al.

H
F

𝜓

T
t
m
𝑝

𝑑

d
m

𝑑

T
a
p

c
t
a
i
t
e
b
t
t

s
t
u
a
o
o
t
d
d

3

3

o
a
F
f
e
t
u
(

a
c

𝑓

H
𝐹
n
t
t
o
𝑠
g
𝑁
s
a
a

p
o
i
E
W
r

r
t

I
p

3

s
u

⟨

w
t

𝑆

w
a

𝑔

I
𝑦
f
u
n

and total energy

 = 𝑙 +𝑛𝑙 , (12)

𝑙 = |𝜓𝑥|2 =
1
𝐿 ∫

𝐿∕2

−𝐿∕2
|𝜓𝑥|

2 𝑑𝑥 =
∑

𝑘
𝑘2|𝜓𝑘|

2, (13)

𝑛𝑙 = −1
2
|𝜓|4 = − 1

2𝐿 ∫

𝐿∕2

−𝐿∕2
|𝜓|4 𝑑𝑥. (14)

ere 𝑙 is the kinetic energy, 𝑛𝑙 is the potential energy and 𝜓𝑘 is the
ourier-transformed wavefield,

𝑘(𝑡) =
1
𝐿 ∫

𝐿∕2

−𝐿∕2
𝜓(𝑡, 𝑥) 𝑒−𝑖𝑘𝑥 𝑑𝑥.

When the pumping is on, the functions (8)–(9) evolve with time.
he integrands in (8) are polynomials of 𝜓 , 𝜓∗ and their space deriva-
ives. Differentiating these integrands over time, using the equation of
otion (3) for the time derivatives and taking into account that for
0 = 0 the functions (8) are invariant, we get

𝑗∕𝑑𝑡 = 𝑝0 ×
1
𝐿 ∫

𝐿∕2

−𝐿∕2
𝑗 𝑑𝑥, (15)

where 𝑗 are polynomials of 𝜓 , 𝜓∗ and their space derivatives, which
o not depend on 𝑝0 explicitly. In particular, for the wave action,
omentum and total energy, the direct calculation yields

𝑑∕𝑑𝑡 = 2𝑝0  , (16)
∕𝑑𝑡 = 2𝑝0 , (17)
𝑑∕𝑑𝑡 = 2𝑝0 ( +𝑛𝑙). (18)

hus, the wave action and momentum grow exponentially with time,
nd since  |𝑡=0 = 𝐴2

0 and  |𝑡=+∞ = 𝐴2
𝑓 , the time 𝑡0 for turning off the

umping is determined as 𝑡0 =
1
𝑝0

ln 𝐴𝑓
𝐴0

.
Evolution of the total energy is less trivial. For the function 𝜓 having

haracteristic spacial scale 𝑙 ≃ 1 and average intensity  = |𝜓|2,
he kinetic and potential energies can be estimated as 𝑙 ∼ ∕𝑙2

nd |𝑛𝑙| ∼  2. Then, at the early growth stage when the intensity
s small  ≪ 1, the potential energy remains small compared to
he kinetic one, |𝑛𝑙| ≪ 𝑙, so that the total energy grows close to
xponentially,  ∝ 𝑒2𝑝0𝑡. Later, when the kinetic and potential energies
ecome comparable, evolution of the total energy depends strongly on
heir interplay. The behavior of the next-order integrals (8) is expected
o be even more complex.

Note that if two different realizations of the initial noise have the
ame values of wave action 0 and the same values of momentum 0,
hen, after turning off the pumping, the two realizations of the grown-
p wavefield will also have equal values of these integrals — 0𝑒2𝑝0𝑡0
nd 0𝑒2𝑝0𝑡0 , respectively. The situation may be different for the next-
rder integrals, including the total energy, as their evolution relies also
n some functions that may depend strongly on specific realization of
he wavefield — for instance, the potential energy in Eq. (18). Thus,
ifferent realizations of the grown-up wavefield are expected to have
ifferent values of the total energy and the next-order integrals (8).

. Numerical methods

.1. Numerical scheme

We solve Eq. (3) using the pseudo-spectral Runge–Kutta fourth-
rder method in adaptive grid, with the grid size 𝛥𝑥 set from the
nalysis of the Fourier spectrum of the solution, see [9] for detail.
or more accurate simulation of the growth stage, we rewrite Eq. (3)
or the function 𝜐 = 𝑒−𝑝0𝑡 ⋅ 𝜓 , eliminating the right-hand side of the
quation. We have checked that after turning off the pumping the first
en integrals of motion (8)–(9) are conserved by our numerical scheme
p to the relative errors from 10−10 (the first three invariants) to 10−6

the tenth invariant) orders.
4

The function 𝑓 (𝑥), that defines statistics of the initial noise in Eq. (2)
nd has unit average intensity and unit characteristic spatial scale, is
onstructed as a superposition of linear waves,

(𝑥) =
∑

𝑘
𝐹𝑘 𝑒

𝑖𝑘𝑥+𝑖𝜙𝑘 , 𝐹𝑘 = 𝐺𝑠 𝑒
−|𝑘|𝑠 . (19)

ere 𝑠 ∈ N is the exponent defining shape of the Fourier spectrum
𝑘, 𝜙𝑘 are random phases for each 𝑘 and each realization of the initial
oise, 𝐺𝑠 = [𝜋 21∕𝑠∕𝐿𝛤1+1∕𝑠]1∕2 is the normalization constant such that
he average intensity is unity, |𝑓 |2 = 1, 𝐿 is the basin length, and 𝛤 is
he Euler Gamma-function. We perform simulations for several profiles
f the noise spectrum (19), including exponential 𝑠 = 1, Gaussian
= 2, and super-Gaussian 𝑠 = 8 and 𝑠 = 32, and also for one

eneric (non-symmetric) Fourier spectrum 𝐹𝑘 (referred to below as
𝑆), which is constructed as discussed in [16]. Specifically, the non-

ymmetric spectrum represents an arbitrary smooth function at small
nd moderate wavenumbers |𝑘| ≲ 1, decays as ∝ 𝑒−𝑘2 at 𝑘 → −∞ and
s ∝ 𝑒−𝑘32 at 𝑘 → +∞, and has zero momentum (11).

For each of the several numerical experiments presented in this
aper, we perform simulations of time evolution in the formulation
f Eqs. (2)–(3) for an ensemble of several hundred realizations of the
nitial noise, which differ only in the set of random Fourier phases 𝜙𝑘 in
q. (19), and then average the statistical results over these realizations.
e have checked that larger ensemble sizes lead to the same statistical

esults.
As a ‘‘base’’ numerical experiment, we consider the one with pa-

ameters 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2, 𝐴𝑓 = 1 and 𝑝0 = 10−5, so that
he pumping is turned off at 𝑡0 = 1

𝑝0
ln 𝐴𝑓

𝐴0
≈ 4.6 × 105; the statistical

results are averaged over 200 random realizations of the initial noise.
As can be easily verified, these parameters satisfy the conditions (5), (7)
needed for the adiabatic growth of turbulence. After turning off the
pumping, the kinetic and potential energies should be of unity order
for this experiment, 𝑙 ∼ ∕𝑙2 ∼ 1 and |𝑛𝑙| ∼  2 = 1, so that the
grown-up turbulence is expected to be strongly nonlinear, 𝑙 ∼ |𝑛𝑙|.
n our experiments, we study how the wave statistics depends on the
umping coefficient 𝑝0, initial and final amplitudes 𝐴0 and 𝐴𝑓 , basin

length 𝐿 and shape of the Fourier spectrum of the initial noise.

.2. Measurement of statistical functions

After turning off the pumping, we start measurement of the basic
tatistical functions, averaging them over the ensemble of the grown-
p wavefields. We examine the ensemble-averaged kinetic ⟨𝑙(𝑡)⟩ and

potential ⟨𝑛𝑙(𝑡)⟩ energies, the fourth-order moment of amplitude 𝜅4 =
|𝜓|4⟩∕⟨|𝜓|2⟩2, the probability density function (PDF) (𝐼, 𝑡) of relative
ave intensity 𝐼 = |𝜓|2∕⟨|𝜓|2⟩ where ⟨|𝜓|2⟩ is the average intensity,

he wave-action spectrum,

𝑘(𝑡) = ⟨|𝜓𝑘|
2
⟩∕𝛥𝑘, (20)

here 𝛥𝑘 = 2𝜋∕𝐿 is distance between neighbor wavenumbers, and the
utocorrelation of the intensity,

2(𝑥, 𝑡) =
⟨|𝜓(𝑦 + 𝑥, 𝑡)|2 ⋅ |𝜓(𝑦, 𝑡)|2⟩

⟨|𝜓(𝑦, 𝑡)|2⟩2
. (21)

n the latter relation, the overline denotes spatial averaging over the
coordinate. Note that, at 𝑥 = 0, the autocorrelation equals the

ourth-order moment, 𝑔2(0, 𝑡) = 𝜅4(𝑡), and at 𝑥 → ∞ it must approach
nity, 𝑔2(𝑥, 𝑡) → 1. For the wave-action spectrum and the PDF, we use
ormalization conditions ∫ 𝑆𝑘 𝑑𝑘 =  and ∫ (𝐼) 𝑑𝐼 = 1, respectively.

4. Grown-up turbulence

4.1. Universal adiabatic regime

We start this Section with a discussion of our results for the base
numerical experiment with parameters 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2,

−5
𝐴𝑓 = 1 and 𝑝0 = 10 .
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Fig. 1. (Color on-line) (a) Amplitude |𝜓| for a single realization of wavefield at the end of the growth stage 𝑡 = 𝑡0 and (b) its subsequent space–time evolution after turning off
the pumping, 𝑡 ≥ 𝑡0, for the base numerical experiment with parameters 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2, 𝐴𝑓 = 1 and 𝑝0 = 10−5; the universal adiabatic regime. The inset in panel (a)
shows fit for one of the pulses with the one-soliton solution (22). Note that both panels demonstrate only the central quarter of the basin length.
Fig. 2. (Color on-line) (a) Evolution of the ensemble-averaged kinetic energy ⟨𝑙⟩, potential energy ⟨𝑛𝑙⟩ and fourth-order moment of amplitude 𝜅4 after turning off the pumping,
𝑡 ≥ 𝑡0. (b-d) Statistical functions averaged over the ensemble and different time intervals 𝑡 − 𝑡0 ∈ [0, 20] and 𝑡 − 𝑡0 ∈ [80, 100]: (b) the wave-action spectrum 𝑆𝑘, (c) the PDF (𝐼)
of relative wave intensity 𝐼 = |𝜓|2∕⟨|𝜓|2⟩ and (d) the autocorrelation of intensity 𝑔2(𝑥). The results relate to the base numerical experiment representing the universal adiabatic
regime: 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2, 𝐴𝑓 = 1 and 𝑝0 = 10−5. The dashed lines in panel (a) and black dashed lines in panels (b-d) demonstrate the corresponding statistical functions
for the experiment with the partially coherent wave (PCW) initial conditions 𝐴0 = 𝐴𝑓 = 1 and other parameters the same as for the base experiment; in panels (b-d), these statistical
functions are averaged over both the ensemble of initial conditions and time interval 𝑡 − 𝑡0 ∈ [80, 100]. The inset in panel (a) shows zoom at smaller times, in panel (b) — the
wave-action spectrum at smaller wavenumbers, and the green dash–dot line in panel (c) indicates the exponential PDF (23).
Fig. 1 illustrates a typical realization of wavefield at the end of the
growth stage 𝑡 = 𝑡0, as well as its subsequent space–time evolution
after turning off the pumping, 𝑡 ≥ 𝑡0. Note that the two panels of
the figure show only the central quarter of the basin length. The
wavefield in Fig. 1(a) contains several peaks of amplitude |𝜓| ≃ 3.5
having characteristic width 𝛿𝑥 ≃ 1. The spatio-temporal dynamics
demonstrated in Fig. 1(b) reveals that these peaks represent persistent
structures which do not change their positions, suggesting that they are
in fact solitons having zero velocities. The one-soliton solution of the
1D-NLSE (1) can be written as,

𝜓s(𝑥, 𝑡) = 𝜒
exp

[

𝑖𝑉 (𝑥 − 𝑥′) + 𝑖𝜃′
]

cosh𝜒 (𝑥 − 𝑥′)
, (22)

𝑥′ = 𝑥′ + 𝑉 𝑡, 𝜃′ = 𝜃′ + 1 (𝜒2 + 𝑉 2)𝑡,
5

0 0 2
where 𝜒 > 0, 𝑉 , 𝑥′ and 𝜃′ are real-valued soliton amplitude, velocity
and current position and phase, while the constants 𝑥′0 and 𝜃′0 stand
for the position and phase at 𝑡 = 0. The function (22) indeed fits the
observed peaks very well, as demonstrated in the inset of Fig. 1(a) for
one of the pulses. The figure contains 8 pulses satisfying the rogue wave
criterion 𝐼 = |𝜓|2∕⟨|𝜓|2⟩ > 8, see e.g. [17–20], where ⟨|𝜓|2⟩ = 𝐴2

𝑓 = 1.
This means that rogue waves emerge very frequently in the grown-up
turbulence, and many of these waves, apparently, are standing solitons.

As shown with the solid lines in Fig. 2(a), after turning off the
pumping 𝑡 ≥ 𝑡0, the ensemble-averaged kinetic energy ⟨𝑙⟩, potential
energy ⟨𝑛𝑙⟩ and fourth-order moment of amplitude 𝜅4 do not change
with time. The other statistical functions do not change with time
either, meaning that in addition to averaging over ensemble of initial
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noise we can use time-averaging as well, in order to improve accuracy
of the measurement. Averaging over time intervals 𝑡 − 𝑡0 ∈ [0, 20]
and 𝑡 − 𝑡0 ∈ [80, 100] does not lead to a difference in the results
for the wave-action spectrum, the PDF of relative wave intensity and
the autocorrelation of intensity, see the solid lines in Fig. 2(b–d).
Turning off the pumping at intermediate states — before the average
intensity |𝜓|2 reaches 𝐴2

𝑓 = 1, we observe the same effect, i.e., that
he statistical functions do not show dependency on time. Hence, we
onclude that, after turning off the pumping at intermediate or final
tates, the resulting integrable turbulence turns out to be stationary for
he given set of experimental parameters.

The statistically stationary state at the end of the base experiment
s characterized by the kinetic energy ⟨𝑙⟩ = 1.23, potential energy
𝑛𝑙⟩ = −2.43 and the fourth-order moment 𝜅4 = 4.9; here and below all
he statistical functions are averaged over both the ensemble of initial
onditions and time interval 𝑡− 𝑡0 ∈ [0, 20]. Hence, this state is strongly
onlinear: the potential energy related to the nonlinear term of the
D-NLSE is almost twice larger than the kinetic one related to (linear)
ispersion, and the fourth-order moment exceeds significantly the value
f 𝜅4 = 2 characterizing a random superposition of linear waves, see
.g. [47, chapter 5]. The wave-action spectrum of this stationary state
epresents a continuous function, which decays slightly slower than
xponentially at large wavenumbers |𝑘|≫ 1 and has a sharp triangular
hape at small and moderate wavenumbers |𝑘| ≲ 1, see Fig. 2(b).
ompared to the exponential distribution,

𝑅(𝐼) = 𝑒−𝐼 , (23)

he PDF turns out to be smaller at moderate intensities 𝐼 ≲ 4 and larger
y orders of magnitude at large intensities 𝐼 ≳ 10, see Fig. 2(c). Note
hat the exponential PDF (23) describes the intensity distribution for a
andom superposition of linear waves, see e.g. [47, chapter 5] and [48,
hapter 3], and therefore can be used as a benchmark. At 4 ≲ 𝐼 ≲
8, the PDF has a pronounced ‘‘hump’’ corresponding to amplitudes
≲ |𝜓| ≲ 4; compare with Fig. 1, where many standing pulses have

mplitudes from this region. The probability to meet intensity above
he rogue wave threshold 𝐼 > 8 can be calculated as the corresponding
ntegral of the PDF,

𝑅𝑊 = ∫

+∞

8
(𝐼) 𝑑𝐼. (24)

or the grown-up turbulence, the result 𝑃𝑅𝑊 = 2.2 × 10−2 is almost
wo orders of magnitude larger than for a random superposition of
inear waves 𝑃 (𝑅)

𝑅𝑊 = 3.4 × 10−4. The autocorrelation of intensity has
bell shape at moderate distances |𝑥| ≲ 1.5, which is characterized

y the full width at half maximum 𝛥𝐹𝑊𝐻𝑀 = 1.1 and the maximum
2(0) = 𝜅4 = 4.9, and at larger distances it practically reaches unity,
2(𝑥) ≈ 1 at |𝑥| ≳ 4.

It is instructive to compare the grown-up turbulence with the tur-
ulence developing from the so-called partially coherent wave (PCW)
nitial conditions, when, in terms of Eqs. (2)–(3), the initial wavefield
|𝑡=0 = 𝐴0𝑓 (𝑥) has unit average intensity, 𝐴0 = 𝐴𝑓 = 1, and the
rowth stage is absent. For comparison, we take the other parameters
he same as for the base experiment: the initial wavefield is described
y the function 𝑓 (𝑥) having Gaussian Fourier spectrum 𝑠 = 2, see
q. (19), and the basin length equals 𝐿 = 128𝜋. As shown with the
ashed lines in Fig. 2(a), after beginning of evolution, the ensemble-
veraged kinetic and potential energies and the fourth-order moment
hange pronouncedly with time, see e.g. [8,12,49,50] for detail, as the
nitial PCW does not represent a stationary state. After 𝑡 ≳ 4, the three
unctions freeze at ⟨𝑙⟩ = 1.06, ⟨𝑛𝑙⟩ = −1.8 and 𝜅4 = 3.6; hence, the
tatistically stationary state developed from the PCW is characterized
ith a smaller potential-to-kinetic energy ratio |⟨𝑛𝑙⟩|∕⟨𝑙⟩ = 1.7 and
smaller fourth-order moment 𝜅4 = 3.6 compared to 1.98 and 4.9

espectively for the grown-up turbulence.
For the PCW experiment, the stationary wave-action spectrum, PDF

nd autocorrelation of intensity are shown in Fig. 2(b–d) with the
6

n

lack dashed lines; these functions are averaged over both the ensemble
f initial conditions and time interval 𝑡 ∈ [80, 100]. The wave-action
pectrum has a smooth bell shape at small wavenumbers |𝑘| ≲ 1
ompared to a sharp triangular one for the grown-up turbulence; at
arge wavenumbers |𝑘| ≳ 10, the spectrum for the PCW experiment
as slightly higher tails. The PDF for the PCW case is smaller than
or the grown-up turbulence at 4 ≲ 𝐼 ≲ 16 and larger otherwise.
he probability to meet intensity above the rogue wave threshold (24)
or the PCW case equals 𝑃𝑅𝑊 = 10−2, that is twice smaller than for
he grown-up turbulence; at the same time, extremely large waves
≳ 20 are much more frequent for the PCW case. The autocorrelation

f intensity for the PCW case looks similar to that for the grown-up
urbulence, but has a smaller main peak 𝑔2(0) = 𝜅4 = 3.6 with the
maller full width at half maximum 𝛥𝐹𝑊𝐻𝑀 = 1; at |𝑥| ≳ 4, it also
ractically reaches unity.

Repeating the experiment with the growing of turbulence for dif-
erent sets of simulation parameters, we come to the same statistically
tationary state as shown in Fig. 2, provided that the conditions (5), (7)
or adiabatic growth of turbulence are satisfied. In particular, Fig. 3(a–
) shows results for the experiments with different pumping coefficients
rom 𝑝0 = 10−5 to 32 × 10−5 and other parameters the same as for
he base experiment. As demonstrated in the figure, the wave-action
pectrum, PDF and autocorrelation of intensity are the same for all
xperiments with 𝑝0 ≤ 8 × 10−5. Note that we have done experiments
ith 𝑝0 < 10−5 not shown in Fig. 3(a–c) and came to the same

esults. Also note that the ensemble-averaged kinetic energy, potential
nergy and fourth-order moment are uniquely defined by the wave-
ction spectrum, PDF and autocorrelation of intensity respectively; see
qs. (13), (14), (20) and (21).

Experiments with different basin lengths from 𝐿 = 64𝜋 to 512𝜋
nd other parameters the same as for the base experiment demonstrate
oinciding results for 𝐿 ≤ 256𝜋, see Fig. 3(d–f). For these experiments,
e have chosen the ensemble size inverse-proportional to the basin

ength 𝐿 in order to make the ‘‘total length’’ of all realizations the
ame: 400 for 𝐿 = 64𝜋, 200 for 𝐿 = 128𝜋, 100 for 𝐿 = 256𝜋 and 50
or 𝐿 = 512𝜋.

Note that, for the case 𝑝0 = 8 × 10−5 in Fig. 3(a–c), which leads to
he same statistical state as the base experiment, the criterion (7) for
diabatic growth of turbulence is satisfied poorly, as 𝑝0∕𝛥𝑘2 ≈ 0.33.
he same applies to the case 𝐿 = 256𝜋 in Fig. 3(d–f), as 𝑝0∕𝛥𝑘2 ≈ 0.16.
ncreasing the pumping coefficient to 𝑝0 = 16 × 10−5 in Fig. 3(a–c) or
he basing length to 𝐿 = 512𝜋 in Fig. 3(d–f), we amplify the ratio to
0∕𝛥𝑘2 ≈ 0.66, so that the criterion (7) becomes violated. Experiments
ith the corresponding parameters show coinciding statistical results –

ompare the magenta lines in Fig. 3(a–c) and red lines in Fig. 3(d–f) –
hich differ from those of the base experiment.

For the experiments with different initial noise amplitudes from
0 = 10−3 to 6 × 10−2 and other parameters the same as for the base
xperiment, the results coincide for 𝐴0 ≤ 10−2, see Fig. 3(g–i). For
0 ≥ 3×10−2, the wave statistics becomes dependent on 𝐴0. By checking

he intermediate and final states of the latter experiments in the same
ay as shown in Fig. 2, we observe that they are stationary, so that

he adiabatic growth regime is realized. As an additional test, we have
erformed several more experiments for the same noise amplitudes and
ncreased pumping coefficient (i.e., increased speed of the turbulence
rowth), and came to the same statistical results for 𝑝0 ≤ 8 × 10−5;
ee Section 2.2 for the discussion of such an adiabaticity test. Hence,
he experiments in Fig. 3(g–i) with 𝐴0 ≥ 3 × 10−2 represent the ‘‘non-
niversal’’ adiabatic regime depending on the initial noise amplitude
0. Apparently, this means that for 𝐴0 ≥ 3 × 10−2 the composition of
oise changes. As we discuss below in Section 5, this is indeed the case,
ince the initial noise contains solitons for 𝐴0 ≳ 3 × 10−2 and does not
ontain them for 𝐴0 ≲ 10−2.

Thus, for the two sets of experiments with (i) different pumping
oefficients, Fig. 3(a–c), and (ii) different basin lengths, Fig. 3(d–f), the

−5
on-adiabatic regime is realized for the parameters 𝑝0 ≳ 16 × 10 and
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Fig. 3. (Color on-line) Statistical functions averaged over the ensemble and time interval 𝑡− 𝑡0 ∈ [0, 20] for different sets of numerical experiments: (a,d,g) the wave-action spectrum
𝑆𝑘, (b,e,h) the PDF (𝐼) of relative wave intensity 𝐼 = |𝜓|2∕⟨|𝜓|2⟩ and (c,f,i) the autocorrelation of intensity 𝑔2(𝑥). For all experiments, the initial spectrum is Gaussian, 𝑠 = 2,
nd the final mean amplitude equals unity, 𝐴𝑓 = 1. Panels (a-c) illustrate experiments with different pumping coefficients 𝑝0 and fixed 𝐴0 = 10−2 and 𝐿 = 128𝜋. Panels (d-f) show

experiments with different basin lengths 𝐿 and fixed 𝑝0 = 10−5 and 𝐴0 = 10−2. Panels (g-i) demonstrate experiments with different initial noise amplitudes 𝐴0 and fixed 𝑝0 = 10−5

and 𝐿 = 128𝜋. The experiments with 𝑝0 ≤ 8×10−5 in panels (a-c), 𝐿 ≤ 256𝜋 in panels (d-f) and 𝐴0 ≤ 10−2 in panels (g-i) represent the universal adiabatic regime, with 𝑝0 ≥ 16×10−5

n panels (a-c) and 𝐿 = 512𝜋 in panels (d-f) – the non-adiabatic regime, with 𝐴0 ≥ 3 × 10−2 in panels (g-i) – the non-universal adiabatic regime. The insets in panels (a,d,g) show
ave-action spectrum at smaller wavenumbers, the black dash–dot lines in panels (b,e,h) indicate the exponential PDF (23).
Fig. 4. (Color on-line) Statistical functions averaged over the ensemble and time interval 𝑡 − 𝑡0 ∈ [0, 20] for four super-Gaussian initial spectra with the exponents 𝑠 = 1, 2, 8
nd 32, and one non-symmetric initial spectrum 𝑁𝑆, see Section 3.1: (a) the wave-action spectrum 𝑆𝑘, (b) the PDF (𝐼) of relative wave intensity 𝐼 = |𝜓|2∕⟨|𝜓|2⟩ and (c) the
utocorrelation of intensity 𝑔2(𝑥). The other parameters match those of the base experiment and lead to the universal adiabatic regime: 𝐿 = 128𝜋, 𝐴0 = 10−2, 𝐴𝑓 = 1 and 𝑝0 = 10−5.
he insets in panel (a) show (left) the wave-action spectrum at smaller wavenumbers and (right) the non-symmetric initial spectrum 𝑁𝑆, 𝐹 2

𝑘 ∕𝛥𝑘, see Eqs. (19), (20). The inset in
anel (c) shows autocorrelation of intensity at larger distances. The black dash–dot line in panel (b) indicates the exponential PDF (23).
𝐴
m
w
r
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w
s

≳ 512𝜋, respectively. For the third set of experiments with different
nitial noise amplitudes, Fig. 3(g–i), the turbulence grows adiabatically,
ut this growth becomes dependent on 𝐴0 for 𝐴0 ≳ 3 × 10−2. The
niversal adiabatic regime is realized in Fig. 3(a–c) for 𝑝0 ≤ 8×10−5, in
ig. 3(d–f) for 𝐿 ≤ 256𝜋 and in Fig. 3(g–i) for 𝐴0 ≤ 10−2, when the wave
tatistics does not depend on the pumping coefficient, basin length or
oise amplitude. Note that, in Fig. 3, both the non-universal adiabatic
nd non-adiabatic regimes lead to the statistical states characterized
y a substantially higher far tail of the PDF, reflecting a much more
requent appearance of very large waves compared to the universal
diabatic regime.
7

t

The experiments discussed so far have fixed parameters 𝑠 = 2 and
𝑓 = 1 describing the shape of the initial Fourier spectrum and the final
ean amplitude respectively. We have done other sets of experiments
ith different 𝑠 and 𝐴𝑓 and come to the same conclusions on the

egimes of the turbulence growth, as discussed above.

.2. Dependency on the noise spectrum

The linear pumping term in Eq. (6) pumps in the same spectrum,
hich is already present in the system. Then, the resulting statistical

tate should depend on the shape of the initial noise spectrum. To test

his hypothesis, in addition to the experiment with the Gaussian 𝑠 = 2
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Fig. 5. (Color on-line) Statistical functions averaged over the ensemble and time interval 𝑡 − 𝑡0 ∈ [0, 20] at different mean amplitudes 𝐴𝑓 = 0.125, 0.177, 0.25, 0.35, 0.5, 0.71
and 1: (a) the wave-action spectrum 𝑆𝑘, (b) the PDF (𝐼) of relative wave intensity 𝐼 = |𝜓|2∕⟨|𝜓|2⟩ and (c) the autocorrelation of intensity 𝑔2(𝑥). The results relate to the base
umerical experiment representing the universal adiabatic regime: 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2 and 𝑝0 = 10−5. The insets in panels show the same functions at smaller scales. The

black dash–dot line in panel (b) indicates the exponential PDF (23).
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noise spectrum discussed above, we have done three more experiments
with the exponential 𝑠 = 1 and super-Gaussian 𝑠 = 8 and 𝑠 = 32 spectra,
nd also one experiment with the non-symmetric spectrum 𝑁𝑆, see
ection 3.1. In all these experiments, the characteristic noise spectral
idth was the same, 𝛿𝑘 = 1, and the other parameters coincided with

hose of the base experiment: 𝐿 = 128𝜋, 𝐴0 = 10−2, 𝐴𝑓 = 1 and
0 = 10−5.

The statistical functions shown in Fig. 4 demonstrate a clear depen-
ency on the initial noise spectrum. For symmetric cases 𝑠 = 1, 2, 8 and
2, with increasing exponent 𝑠, the wave-action spectrum at small and
oderate wavenumbers |𝑘| ≲ 1 changes its shape from a sharp triangle

nto a bell-like, while at large wavenumbers |𝑘| ≫ 1 the decay of the
pectrum with 𝑘 becomes much faster, see Fig. 4(a). The similar effect
s observed for the far tail of the PDF at 𝐼 ≳ 20, where the tail is lower
or larger 𝑠, see Fig. 4(b). At 𝐼 ≳ 20, the tail of the PDF for 𝑠 = 1 is
y several orders of magnitude higher than for 𝑠 = 32, meaning that
he emergence of very large waves 𝐼 ≳ 20 is by orders of magnitude
ore frequent for the 𝑠 = 1 case. Note that, for 𝑠 = 32, the PDF is

ery similar to the PDF for the long-time statistically stationary state
f the modulational instability of cnoidal waves [14]; we will discuss
his similarity in more detail in Appendix C.

For the experiments 𝑠 = 1, 2, 8 and 32, the fourth-order moment of
mplitude, which determines the maximum of the autocorrelation of
ntensity 𝑔2(0) = 𝜅4, takes values 𝜅4 = 4.6, 4.9, 3.8 and 3.4 respectively,
ee Fig. 4(c). Meanwhile, the central peak of the autocorrelation func-
ion widens moderately with increasing 𝑠. For the cases 𝑠 = 1 and 2, the
entral peak at |𝑥| ≲ 1 is followed by a short trough at |𝑥| ≃ 1.5, after
hich the function becomes practically indistinguishable from unity at
𝑥| ≳ 4. For 𝑠 = 32, the autocorrelation tends to unity in the form of
amped oscillations with a period of about 2𝜋, which are visible even at
arge enough distances |𝑥| ∼ 10𝜋. Thus, the case 𝑠 = 32 is distinguished
y a significantly more distant correlation of intensity compared to
= 1 and 2. The experiment 𝑠 = 8 looks as a transitional one between
= 2 and 32.

Interesting results have been obtained for the experiment with
he non-symmetric noise spectrum 𝑁𝑆. In particular, the wave-action
pectrum turns out to be practically symmetric, almost coinciding with
hat for the symmetric 𝑠 = 2 case, see Fig. 4(a). The ‘‘symmetrization’’ of
pectrum can only occur due to strong nonlinearity, since the nonlinear
erm (|𝜓|2𝜓)𝑘 in Eq. (6) is the only one capable to it, while at small
verage intensities |𝜓|2 ≪ 1 the spectrum remains non-symmetric. The
DF turns out to be very similar to the 𝑠 = 2 case either, Fig. 4(b),
nd the autocorrelation function almost coincides with that for 𝑠 = 2
xcept at very small distances |𝑥|≪ 1, where the non-symmetric noise
pectrum leads to smaller fourth-order moment 𝜅4 = 4.4 versus 4.9 for
= 2, see Fig. 4(c). We remind that at 𝑘 → −∞ the decay of the non-

ymmetric spectrum is the same as for the 𝑠 = 2 case, ∝ 𝑒−𝑘2 , while at
→ +∞ it is much faster, ∝ 𝑒−𝑘32 .
8

4.3. Intermediate stages of the pumping

Turning off the pumping at intermediate states, corresponding to
the mean amplitude 𝐴𝑓 = 0.125, 0.177, 0.25, 0.35, 0.5 and 0.71, we
observe in Fig. 5 evolution of the wave statistics for the base experi-
ment. At these 𝐴𝑓 , the ratio of the potential energy to the kinetic one
quals ⟨|𝑛𝑙|⟩∕⟨𝑙⟩ = 0.0625, 0.125, 0.25, 0.5, 1 and 1.74, respectively,

reaching 1.98 for 𝐴𝑓 = 1. Thus, in line with discussion in Section 2.3,
at the early growth stage the potential-to-kinetic energy ratio increases
proportionally to the average intensity, ⟨|𝑛𝑙|⟩∕⟨𝑙⟩ ∝ 𝐴2

𝑓 , and for 𝐴𝑓 ≥
0.5 the statistical state becomes essentially nonlinear, ⟨|𝑛𝑙|⟩∕⟨𝑙⟩ ≥ 1.
At late growth stages, the energy ratio saturates at ⟨|𝑛𝑙|⟩∕⟨𝑙⟩ ≈ 2; this
value is known empirically as the maximum possible for the statistically
stationary states of the 1D-NLSE, see e.g. [9,14,16], which has yet to
be explained theoretically.

With increasing mean amplitude 𝐴𝑓 , the wave-action spectrum at
mall and moderate wavenumbers |𝑘| ≲ 1 changes its shape from a
ell-like, corresponding to the initial Gaussian spectrum, to a sharp
riangular one at 𝐴𝑓 = 1, see Fig. 5(a). Simultaneously, the tails of the
pectrum at |𝑘| ≫ 1 grow noticeably. These two processes accelerate
harply in the region 0.35 ≲ 𝐴𝑓 ≲ 0.5, when the statistical state becomes
ssentially nonlinear.

Until 𝐴𝑓 ≤ 0.5, the PDF coincides with the exponential distri-
ution (23), see Fig. 5(b), even despite the significant nonlinearity,
|𝑛𝑙|⟩∕⟨𝑙⟩ = 1, at 𝐴𝑓 = 0.5. With a further increase in the mean
mplitude, the PDF decreases at moderate intensities 𝐼 ≃ 2 and
ncreases greatly at large intensities 𝐼 ≳ 10.

With increasing 𝐴𝑓 , the autocorrelation of intensity does not change
ntil 𝐴𝑓 ≃ 0.1; as discussed in Section 5, we detect solitons in the
avefield for the first time staring from approximately this mean ampli-

ude. At larger mean amplitudes, the autocorrelation function gradually
hrinks, see Fig. 5(c), while its maximum stays at 𝑔2(0) = 𝜅4 = 2 until
𝑓 ≤ 0.5 and only then starts to grow, reaching 𝜅4 = 4.9 at 𝐴𝑓 = 1.

.4. Invariants of the 1D-NLSE during the growth stage

As we have noted in Section 2.3, the invariants of the 1D-NLSE (8)–
9) evolve with time during the growth stage; in particular, the wave
ction and momentum grow exponentially,  = 0 𝑒2𝑝0𝑡 and  =
0 𝑒2𝑝0𝑡. For the initial noise (19), we have 0 = 𝐴2

0 and 0 =
, with the latter relation calculated easily in the Fourier space, see
q. (11). Thus, at the end of the growth stage 𝑡0 = 1

𝑝0
ln 𝐴𝑓

𝐴0
, all

realizations of the wavefield have the same wave action  = 𝐴2
𝑓

and zero momentum  = 0. Evolution of the next-order invariants
is nontrivial, see e.g. Eq. (18) for the total energy, so that different
realizations may have different values of these invariants.

However, surprisingly, our experiments indicate very close values
of the next-order invariants for the universal adiabatic regime of the
turbulence growth. For instance, at the end of the growth stage of the
base experiment, the third-, fifth- and ninth-order invariants averaged

over the ensemble of 200 realizations equal ⟨3⟩ = (1.2022 ± 0.0002),
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Fig. 6. (Color on-line) Evolution of the ensemble-averaged invariants (8)–(9) of the 1D-NLSE during the growth stage versus the rescaled time 2𝑝0(𝑡− 𝑡0) for the experiments with
different pumping coefficients: (a) ⟨3⟩, (b) ⟨5⟩ and (c) ⟨9⟩. The other parameters match those of the base experiment: 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2 and 𝐴𝑓 = 1; the final states
are shown in Fig. 3(a–c). The experiments with 𝑝0 ≤ 8 × 10−5 represent the universal adiabatic regime, with 𝑝0 ≥ 16 × 10−5 — the non-adiabatic regime. Note that the third-order
invariant equals minus total energy (12), 3 = − . The insets in panels show the same functions near the end of the growth stage.
Fig. 7. (Color on-line) Standard deviations 𝜎𝑗 of the ensemble-averaged 1D-NLSE invariants (8)–(9)⟨𝑗 ⟩ of orders 𝑗 = 3, 4, 5, 6, 9 and 10, at the end of the growth stage 𝐴𝑓 = 1
for three sets of numerical experiments shown in Fig. 3; the initial noise has Gaussian Fourier spectrum 𝑠 = 2. Panel (a) illustrates experiments with different pumping coefficients
𝑝0 and fixed 𝐿 = 128𝜋 and 𝐴0 = 10−2, see Fig. 3(a–c). Panel (b) shows experiments with different basin lengths 𝐿 and fixed 𝐴0 = 10−2 and 𝑝0 = 10−5, see Fig. 3(d–f). Panel (c)
demonstrates experiments with different initial noise amplitudes 𝐴0 and fixed 𝐿 = 128𝜋 and 𝑝0 = 10−5, see Fig. 3(g–i). The experiments with 𝑝0 ≤ 8 × 10−5 in panel (a), 𝐿 ≤ 256𝜋
n panel (b) and 𝐴0 ≤ 10−2 in panel (c) represent the universal adiabatic regime, with 𝑝0 ≥ 16 × 10−5 in panel (a) and 𝐿 = 512𝜋 in panel (b) – the non-adiabatic regime, with
0 ≥ 3 × 10−2 in panel (c) – the non-universal adiabatic regime.
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5⟩ = (3.541 ± 0.002) and ⟨9⟩ = (58.1 ± 0.1). Note that the third-order
nvariant equals minus total energy, 3 = − . The standard deviations
or the invariants of even orders are similar, but the invariants them-
elves practically equal zero; for instance, ⟨4⟩ = 𝑖(0.1 ± 2.9) × 10−5,
6⟩ = 𝑖(0.0±2.3)×10−4 and ⟨10⟩ = 𝑖(0.0±1.1)×10−2. We have checked
hat at intermediate states of the pumping the different realizations of
he grown-up wavefield also have very close values of the higher-order
nvariants and the invariants of even orders practically equal zero as
ell.

Evolution of the ensemble-averaged third-, fifth- and ninth-order
nvariants ⟨3⟩, ⟨5⟩ and ⟨9⟩ during the growth stage is shown in Fig. 6
or the same set of experiments with different pumping coefficients
0, which has been illustrated in Fig. 3(a–c). As follows from Fig. 6,
or sufficiently small pumping coefficient 𝑝0 ≤ 8 × 10−5, the invariants
volve self-similarly versus the rescaled time 2𝑝0(𝑡− 𝑡0); the time rescal-
ng is applied according to Eq. (15). For larger pumping coefficient,
volution of the invariants becomes non-self-similar and their values
ecome dependent on 𝑝0. This result corroborates Fig. 3(a–c), where the
tatistical functions also become dependent on the pumping coefficient
or 𝑝0 ≳ 16 × 10−5.

We have checked that the same self-similarity of the invariants
ersus time is valid for the other two sets of experiments with different
asin lengths 𝐿 and different noise amplitudes 𝐴0, shown in Fig. 3(d–
) and (g-i) respectively, if only the turbulence grows in the adiabatic
egime, regardless of whether this regime is universal (i.e., independent
f 𝐴0), or not. For the non-adiabatic regime, the self-similarity is absent.

The standard deviations of the invariants increase with increasing
umping coefficient, see Fig. 7(a), or basin length, Fig. 7(b), or ini-
ial noise amplitude, Fig. 7(c). For the non-adiabatic or non-universal
diabatic regimes, realized in Fig. 7 at 𝑝0 ≥ 16 × 10−5, 𝐿 ≥ 512𝜋,
r 𝐴0 ≥ 3 × 10−2, the standard deviations become fairly noticeable,
specially for the higher-order invariants. Thus, another distinction of
he universal adiabatic regime versus the non-universal adiabatic and
on-adiabatic ones is the very small differences in the invariant values
etween different realizations of the grown-up wavefield.
9

. IST analysis

.1. Methods

Following the modern theoretical-numerical approach to the studies
f nonlinear waves [51–55], we find the scattering data of the grown-
p wavefields by solving the direct scattering problem for the auxiliary
akharov–Shabat (ZS) system [21], in which these wavefields play
he role of the potential. As we demonstrate below, already at 𝐴𝑓 =
0.25, when the statistics of waves does not differ much from that
of a random superposition of linear waves, the fraction of nonlinear
dispersive waves (the continuous spectrum) in the total wave action
 turns out to be small, meaning that the corresponding wavefields
represent almost pure solitonic states. For this reason, we focus on the
solitonic part of the IST spectrum and do not consider the continuous
part.

Using the efficient numerical tools developed by us recently in [56–
58], we accurately identify the complete set of soliton parameters –
their amplitudes 𝜒 , velocities 𝑉 , positions 𝑥′ and phases 𝜃′ – that
represents a challenging numerical problem. In particular, to cope
with computational instabilities when computing soliton positions and
phases, we use a fine numerical grid and perform arithmetic opera-
tions with high precision. The corresponding theoretical formalism and
numerical methods are outlined in Appendix A and B, where the IST
method is discussed for localized wavefields.

Note that we grow turbulence under periodic boundary conditions,
so that one formally needs another IST technique for finite-band scat-
tering data [22,59,60]. However, the characteristic width of coherent
structures in our wavefields turns out to be small compared to the
basin length and we neglect the periodicity effects. A similar idea
was suggested in [61], where a soliton gas was considered as a limit
of finite-band solutions; later, we have used this approach in [62]
for analysis of rogue waves in a bound-state soliton gas. Below we
demonstrate that the grown-up wavefields are very well approximated
by exact multi-soliton solutions reconstructed from the solitonic part
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Fig. 8. Soliton amplitudes and velocities for simulation from a single realization of initial conditions at different stages of the pumping: (a) 𝐴𝑓 = 0.125, (b) 𝐴𝑓 = 0.177, (c)
𝐴𝑓 = 0.25, (d) 𝐴𝑓 = 0.35, (e) 𝐴𝑓 = 0.5, (f) 𝐴𝑓 = 0.71 and (g) 𝐴𝑓 = 1. The results relate to the base numerical experiment representing the universal adiabatic regime: 𝐿 = 128𝜋,
= 2, 𝐴0 = 10−2 and 𝑝0 = 10−5; panel (g) refers to the wavefield from Fig. 1(a). Each dot represents a soliton within the studied wavefield, 𝑛𝑠 shows the total number of solitons
etected, 𝑠∕ demonstrates the ratio between the wave action of the solitonic part 𝑠, see Eq. (26), and the total wave action  , and ⟨𝜒⟩ indicates the mean soliton amplitude.
g
a

s
c
⟨

n
v
f
i
l
p
s
b
a

o
a
m
i
s
a
p
g
w
p
t

l
F
g
a
F
i
d
t
t
a

m
a

f the scattering data, meaning that the impact of periodicity effects
n our analysis is indeed small.

Before discussion of the results, we confirm that the initial noise
oes not contain solitons and consists entirely of nonlinear dispersive
aves, provided that its amplitude is sufficiently small. In particular,

or the basin length 𝐿 = 128𝜋 and noise amplitude 𝐴0 = 10−2,
e do not detect solitons, as expected for low-amplitude oscillating
avefield [63,64]. For 𝐴0 = 3×10−2, some realizations of noise contain
ne or two solitons immersed in the dispersive background. These
olitons have small characteristic amplitude 𝜒 ≃ 0.015 ∼ 𝐴0, so that
heir width 𝜒−1 ≃ 70 approaches the whole basin length 𝐿 = 128𝜋

in order of magnitude. For larger noise amplitude, e.g. 𝐴0 = 10−1, we
observe that all noise realizations contain several solitons. Thus, we can
suppose that solitons are present in the initial noise if 1∕𝐴0 ≪ 𝐿 and
absent if

𝐴0𝐿 ≲ 1. (25)

Assuming that solitons and nonlinear dispersive waves may react dif-
ferently to the pumping, see e.g. [44,65,66], we think that the presence
of solitons may explain the observed in Section 4.1 dependency of the
statistical results on the noise amplitude for 𝐴0 ≥ 3 × 10−2. Then,
or the universal adiabatic growth, the conditions (5), (7) should be
upplemented with the condition (25) of the absence of solitons in the
nitial noise.

.2. Universal adiabatic regime

We now discuss the IST analysis of the base numerical experiment
ith parameters 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2 and 𝑝0 = 10−5, which
emonstrates the universal adiabatic regime of the turbulence growth.

Fig. 8 shows amplitudes and velocities of solitons found in the
cattering data for simulation from a single realization of initial noise
t different stages of the pumping from 𝐴𝑓 = 0.125 to 1; each dot in

the figure represents a soliton. Note that at 𝐴𝑓 = 0.06 we do not detect
olitons for all realizations of the grown-up wavefield (i.e., this state
lready differs from the initial noise of the same amplitude 𝐴0 = 0.06,

which typically contains a few solitons), while at 𝐴𝑓 = 0.09 we find
nly 3 − 4 solitons per a realization.

For the first stage 𝐴𝑓 = 0.125 shown in Fig. 8(a), in total 𝑛𝑠 = 27
olitons are detected; these solitons have mean amplitude ⟨𝜒⟩ = 0.07
nd a broad distribution of velocities within the interval |𝑉 | ≤ 1. Their
ollective impact on the wavefield can be estimated through the wave
ction of the solitonic part, which can be found analytically by known
oliton amplitudes,

𝑠 =
2
𝐿

𝑛𝑠
∑

𝑛=1
𝜒𝑛, (26)

see [21] and Appendix A. The ratio to the total wave action yields
𝑠∕ = 0.6, meaning that this wavefield is already essentially influ-
10

enced by solitons. Note that, for the corresponding statistical state, the s
ratio of the potential energy to the kinetic one is small, ⟨|𝑛𝑙|⟩∕⟨𝑙⟩ =
0.0625, see Section 4.3, so that the nonlinearity is weak; also, the PDF
of relative wave intensity is exponential, see Fig. 5(b). This situation
is possible since solitons have relatively large velocities, so that their
kinetic energy is much larger than the potential one; see [35], where
the same effect has been observed for a dense soliton gas.

With increasing mean amplitude 𝐴𝑓 , the number of solitons to-
ether with their mean amplitude and the fraction in the total wave
ction increase, see Fig. 8, reaching 𝑛𝑠 = 95, ⟨𝜒⟩ = 1.5 and 𝑠∕ = 0.99

at 𝐴𝑓 = 1. Solitons dominate the wavefield, 𝑠∕ ≥ 0.9, already
tarting from 𝐴𝑓 = 0.25, see Fig. 8(c); in the corresponding statisti-
al state, the potential-to-kinetic energy ratio is still relatively small,
|𝑛𝑙|⟩∕⟨𝑙⟩ = 0.25, and the PDF is still exponential, see Section 4.3.

During the growth stage, small solitons continuously emerge with
onzero velocities. Between 𝐴𝑓 = 0.125 and 0.35, the interval of soliton
elocities expands, as if a wedge-shaped formation of solitons emerges
rom the lower half-plane of the spectral parameter; see the correspond-
ng discussion in [67]. Having emerged, solitons gain amplitude and
oose velocity; at 𝐴𝑓 ≳ 0.5, a bound state of the largest solitons with
ractically zero velocities is starting to form. At the end of the growth
tage in Fig. 8(g), 64 solitons (67%) containing 95% of wave action 
elong to this bound state. Hence, during the growth, the wavefield
pproaches a bound-state soliton gas.

Using the complete set of soliton parameters determined at the end
f the growth stage 𝐴𝑓 = 1, see Fig. 8(g), we compute the wavefield for
pure multi-soliton solution 𝜓𝑠 constructed from these solitons with the
ethods discussed in Appendix A, see also [35,36], and observe that

t approximates the original grown-up wavefield remarkably well. As
hown in Fig. 9, the approximation is especially good in amplitude |𝜓|
t its peaks and lacks accuracy near the troughs and in the complex
hase arg𝜓 . Similar results are obtained for all realizations of the
rown-up wavefield. Note that, at the edges of the simulation box,
e cannot approximate the wavefield with a multi-soliton solution
roperly, since the former is periodic and the latter is localized; see
he corresponding discussion in Appendix A.

Soliton amplitudes and velocities turn out to be strongly corre-
ated between different realizations of the grown-up wavefield — see
ig. 10(a), where two different realizations are shown at the end of the
rowth stage of the base experiment. We observe the same correlation
t intermediate stages of the pumping as well, so that the presented in
ig. 8 soliton distributions for a single realization of initial noise fully
llustrate the general picture. This observation means, in essence, that
espite the different random sets of Fourier phases 𝜙𝑘 which determine
he specific realization of the initial noise (19), the adiabatic regime of
he turbulence growth always leads to the same collection of solitons
s the average intensity increases.

For a pure solitonic state, soliton amplitudes and velocities deter-
ine all the invariants (8)–(9) of the 1D-NLSE, see Appendix A. Since

t the end of the growth stage 𝐴𝑓 = 1 the wavefield is almost purely

olitonic, the observed in Fig. 10(a) correlation explains why different
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Fig. 9. (Color on-line) Typical grown-up wavefield and its approximation with the multi-soliton solution 𝜓𝑠 generated from the discrete part of the scattering data, for the base
umerical experiment representing the universal adiabatic regime: 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2, 𝐴𝑓 = 1 and 𝑝0 = 10−5. Panel (a) shows absolute value |𝜓| of the grown-up wavefield

(solid blue) and multi-soliton solution (dashed red), while panel (b) represents zoom of panel (a) at the central region. Also, panel (b) illustrates complex phase arg𝜓 of the
grown-up wavefield (solid green) and multi-soliton solution (dashed black). Note that panel (a) shows the same grown-up wavefield as in Fig. 1(a), but over the entire basin
length.
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Fig. 10. (Color on-line) Solitons at the end of the base experiment (𝐿 = 128𝜋, 𝑠 = 2,
𝐴0 = 10−2, 𝐴𝑓 = 1, 𝑝0 = 10−5), which represents the universal adiabatic regime: (a)
soliton amplitudes 𝜒 and velocities 𝑉 , and (b) soliton positions 𝑥′ and phases 𝜃′. Blue
dots and red circles represent solitons for two different realizations of the grown-up
wavefield; red circles correspond to the same realization as in Figs. 1(a), 8(g), 9. The
left inset in panel (a) shows zoom of the main figure, indicating that sufficiently large
solitons have very small velocities and their amplitudes are strongly correlated between
different realizations. The right inset in panel (a) demonstrates the ensemble-averaged
PDF of soliton amplitudes (𝜒), which looks rough since different realizations have
very close sets of soliton amplitudes.

realizations have very close values of the higher-order invariants, see
Section 4.4. Then, close values of the invariants at intermediate stages
of the pumping indicate to a correlation of soliton amplitudes and
velocities (which we observe) and a correlation of nonlinear dispersive
waves between different realizations of the grown-up wavefield.

Unlike amplitudes and velocities, soliton positions 𝑥′ and phases
𝜃′ represent different random sets of values for each realization of
the grown-up wavefield, see the examples in Fig. 10(b). However,
these sets of values indicate very similar statistical distributions of
positions and phases for different realizations. Note that the computed
with the direct scattering transform position 𝑥′ and phase 𝜃′ coincide
with those observed in the physical space only for the one-soliton
solution (22). In presence of other solitons or dispersive waves, the
11
observed position and phase may differ considerably from 𝑥′ and 𝜃′. In
he IST theory, the so-called norming constants have a clearer meaning;
n the dressing method formalism, the norming constants are connected
ith the positions and phases as

𝑗 = −exp
[

2𝑖𝜆𝑗𝑥′𝑗 + 𝑖𝜃
′
𝑗

]

, (27)

where 𝑗 is the soliton index number, see Appendix A. In the present
paper, we use soliton positions and phases as a particular representation
of the norming constants.

The ensemble-averaged joint PDF (𝜃′, 𝑥′) of soliton phases and
ositions, shown at the end of the growth stage in Fig. 11(a), indicates
uniform profile over phase 𝜃′ at each position 𝑥′. Similarly, the

nsemble-averaged PDF of soliton phases on the interval 𝜃′ ∈ [0, 2𝜋) is
ery close to uniform (𝜃′) ≃ 1∕2𝜋, see Fig. 11(b). The same properties
f these PDFs are observed at intermediate stages of the pumping as
ell.

The adiabatic regime of the turbulence growth moves successively
hrough the statistically stationary states, and for this reason we think
hat, within the wavefield, there is no correlation between phases of
ifferent solitons. Indeed, if the phases are correlated, then turning off
he pumping should lead to their randomization due to the different
ates of their change with time for different solitons, see Eqs. (37)–(38)
n Appendix A. This randomization should change the statistical state,
o that the existing correlation of phases should mean a statistical state
hich is not yet stationary. Note that in [36] this hypothesis has been
sed in a different way, demonstrating that a bound-state soliton gas
ith random phases of solitons rests in a statistically stationary state. In
ig. 10(b), one can see a few groups of solitons having simultaneously
lose positions and phases; without further study of their temporal
volution, it is difficult to conclude whether this is a phase-locking or
coincidence.

The ensemble-averaged PDF (𝑥′) of soliton positions, shown at the
nd of the growth stage in Fig. 11(c), is close to symmetric and has a
harp triangular shape near the center of the simulation box 𝑥 = 0. We
elieve that the slight asymmetry observed in the figure is related to
he finite ensemble size and will vanish if the latter increases. The full
idth at half maximum of (𝑥′) equals 𝐿0 = 13, that is much smaller

han the basin length, 𝐿0 ≪ 𝐿, indicating a rather high spatial density
f solitons,

=
𝑛𝑠
𝐿
. (28)

Indeed, for a rarefied multi-soliton solution, the physical positions
of solitons coincide with parameters 𝑥′ up to the pairwise space
shifts [22], so that the characteristic width 𝐿0 of the distribution (𝑥′)
should be close to the total width 𝐿 in order of magnitude, 𝐿0 ∼ 𝐿.
With decreasing 𝐿0, the multi-soliton solution should shrink and the
soliton density should increase. Hence, the situation when 𝐿0 ≪ 𝐿
should mean a dense soliton gas. Note that according to the empirical
observations [35,36] the soliton density increases when the distribution
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Fig. 11. (Color on-line) Ensemble-averaged PDFs of soliton phases 𝜃′ and positions 𝑥′
at the end of the growth stage of the base experiment (𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2,
𝐴𝑓 = 1, 𝑝0 = 10−5), which represents the universal adiabatic regime: (a) joint PDF
(𝜃′ , 𝑥′) of soliton phases and positions, (b) PDF (𝜃′) of soliton phases and (c) PDF
(𝑥′) of soliton positions. The red dashed line in panel (b) indicates the uniform PDF
(𝜃′) = 1∕2𝜋.

of positions (𝑥′) becomes more concentrated, although we are not
aware of a rigorous proof of this dependency.

For comparison, the solitonic part of the plain wave solution of unit
intensity 𝜓 = 1 has all the solitons located at a single point (i.e., 𝐿0 = 0)
and spatial density 𝜌 ≈ 1∕

√

2𝜋 ≈ 0.23, see [68] (note that in that paper
a different normalization of the 1D-NLSE was used). At the end of the
growth stage of the base experiment, the ensemble-averaged soliton
density reaches 𝜌 = 0.24. In [35], we have used a slightly different
definition of density, which accounts for the mean soliton amplitude,

𝜌̃ =
2𝑛𝑠
𝐿⟨𝜒⟩

. (29)

With this definition, the solitonic content of the plain wave has density
𝜌̃ ≈ 2

√

2∕𝜋2 ≈ 0.29, while of the grown-up turbulence – 𝜌̃ = 0.32. Thus,
in our experiments we observe a fairly dense soliton gases.

The existence of different density definitions (28) and (29) reflects
the fact that the spatial characteristics of a soliton gas depend on a
particular distribution of soliton eigenvalues (amplitudes and veloci-
ties). In the rigorous spectral theory of soliton gas, the product of local
12
spatial density and density of eigenvalues represents a fundamental
quantity called the density of states, see e.g. [5], for which there
exists a critical (maximum) value [6,7,32]. In the present paper, we
use definitions (28) and (29) only to compare our results with those
previously reported in [35,36,68] and conclude that we deal with a
dense soliton ensembles.

As has been discussed in Section 4.2, the grown-up turbulence
depends significantly on the Fourier spectrum of initial noise. Repeating
our IST analysis for the experiments with other noise spectra, we come
to the same conclusions as discussed above with the exception that soli-
ton amplitudes and velocities turn out to be distributed differently. In
particular, for the super-Gaussian initial spectrum 𝑠 = 32, the majority
of solitons have practically equal amplitudes, so that, with increasing
mean amplitude 𝐴𝑓 , the wavefield tends to a dense bound-state soliton
gas which consists of identical solitons; see Appendix C.

5.3. Deviations from the universal adiabatic regime

Although in the present paper we focus on the universal adiabatic
regime of the turbulence growth, in this subsection we briefly outline
the main distinctions which we observe analyzing the scattering data
for the experiments deviating from this regime.

First, while the wavefield still tends to a soliton gas in these ex-
periments and at the end of the growth stage 𝐴𝑓 = 1 the fraction
of solitons reaches 95 − 99% in the wave action, the distribution of
soliton amplitudes becomes significantly wider. In particular, for the
non-universal adiabatic experiment with increased initial noise ampli-
tude 𝐴0 = 6 × 10−2 and the non-adiabatic experiment with increased
pumping coefficient 𝑝0 = 32 × 10−5 (the other parameters are the same
as for the base experiment), the maximum soliton amplitude reaches
max𝜒 ≃ 6, see Fig. 12(a, b), versus 3.5 for the base experiment with
the universal adiabatic regime, see Fig. 10(a). The total number of
solitons in Fig. 12(a, b) stays roughly the same at 95 − 105, so that
the soliton density and mean amplitude remain virtually unchanged
compared to the base experiment. For the non-universal adiabatic
regime in Fig. 12(a), the increased distance between soliton amplitudes
should be the result of the presence of solitons in the initial noise, since
these solitons are affected by pumping from the very beginning of the
growth stage, in contrast to the rest of the solitons, which have not
yet emerged. Concerning the non-adiabatic regime in Fig. 12(b), we
think that solitons are affected by self-organization, which is known to
occur in non-integrable and dissipative systems [69–71], when solitons
collide inelastically and the larger solitons grow while the smaller ones
decay.

Second, even at the end of the growth stage of the two experiments
in Fig. 12(a, b), large solitons still have noticeable velocities; hence,
the wavefields for these experiments are almost purely solitonic states,
which are still relatively far from being bound. Note that, at the
same mean amplitude 𝐴𝑓 , the universal adiabatic regime produces
practically a bound state of solitons: see Figs. 8(g), 10 and also Fig. 14
in Appendix C for the super-Gaussian initial spectrum 𝑠 = 32.

Third, for both experiments shown in Fig. 12(a, b), different realiza-
tions of the grown-up wavefield exhibit rather different sets of soliton
amplitudes and velocities. This difference explains large deviations in
the higher-order invariants (8)–(9) between different realizations of
the grown-up wavefield, observed for the non-universal adiabatic and
non-adiabatic regimes in Section 4.4.

Note that, in terms of the presented IST analysis, the non-universal
adiabatic and non-adiabatic regimes do not differ qualitatively. We
think that their difference lies in the correlation between phases of
different solitons within the wavefield; this correlation should be ab-
sent for the non-universal adiabatic regime and present for the non-
adiabatic regime.

Finally, in Fig. 12(c) we demonstrate solitons for the experiment
with the PCW initial conditions discussed previously in Section 4.1.
Compared to the base experiment, solitons of the PCW have slightly
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Fig. 12. (Color on-line) Amplitudes and velocities of solitons at the end of the growth
tage for the experiments with (a) non-universal adiabatic regime with increased
mplitude of the initial noise 𝐴0 = 6 × 10−2, see red lines in Fig. 3(g–i) and (b) non-
diabatic regime with increased pumping coefficient 𝑝0 = 32 × 10−5, see red lines in

Fig. 3(a–c) and Fig. 6. Panel (c) shows solitonic content for the experiment with the
PCW initial conditions 𝐴0 = 𝐴𝑓 = 1 (note the different scale for the velocity axis),
see the dashed lines in Fig. 2. Blue dots and red circles represent solitons from two
different realizations of the ensembles. For the realizations illustrated with red circles,
𝑛𝑠 shows the total number of solitons detected, 𝑠∕ demonstrates the ratio between
the wave action of the solitonic part 𝑠, see Eq. (26), and the total wave action  ,
and ⟨𝜒⟩ indicates the mean soliton amplitude.

wider distribution by amplitude with the maximum amplitude reaching
max𝜒 ≃ 4, while the number of solitons is slightly larger, 𝑛𝑠 ≃ 120, and
the mean soliton amplitude is slightly smaller, ⟨𝜒⟩ ≃ 1.2. The fraction
of solitons reaches 95% in the wave action; apparently, this means that
wavefields with average intensity |𝜓|2 ≃ 1 and characteristic spatial
scale 𝛿𝑥 ≃ 1 are predominantly solitonic. Note that we have verified
that the pure multi-soliton solution constructed from the solitonic
content demonstrated in Fig. 12(c) approximates the original PCW very
well. Also, for the PCW case, the distribution of soliton velocities is
significantly wider than for both the non-universal adiabatic and non-
adiabatic experiments in Fig. 12(a, b), and different realizations of the
PCW exhibit rather different sets of soliton amplitudes and velocities. In
line with discussion in Section 5.2, we think that soliton phases within
the wavefield are correlated for the initial PCW and uncorrelated for
13
the long-time statistically stationary state developed from these initial
conditions.

6. Conclusions and discussions

We have studied numerically the integrable turbulence in the frame-
work of the 1D-NLSE model using a new approach called the ‘‘growing
of turbulence’’. In this approach, a small linear pumping term is added
to the equation and the evolution is started from statistically homo-
geneous Gaussian noise of small amplitude. After reaching a certain
level of average intensity, the pumping is switched off and the resulting
integrable turbulence is examined.

For sufficiently small initial noise and pumping coefficient, and
also for not very wide simulation box (basin length), we have found
that the turbulence grows in a universal adiabatic regime. In this
regime, when we switch off the pumping, the resulting integrable
turbulence turns out to be stationary and does not depend on the
pumping coefficient, amplitude of the initial noise or basing length.
Focusing on this regime and turning off the pumping at different mo-
ments of time, we have studied the whole family of novel statistically
stationary states, which lie on the trajectory of adiabatic growth from
weak nonlinearity through the states of intermediate nonlinearity to
strongly nonlinear states. Analyzing these states, we have observed how
the wave statistics changes from Gaussian when the nonlinearity is
weak towards essentially non-Gaussian with a strong presence of rogue
waves when the nonlinearity becomes strong. Using the IST method
to monitor this evolution, we have found that the solitonic part of
the wavefield becomes dominant even when the (linear) dispersion
effects are still leading in the dynamics and with increasing average
intensity the wavefield approaches a dense bound-state soliton gas,
whose properties are defined by the Fourier spectrum of the initial
noise. Regimes deviating from the universal adiabatic growth also lead
to solitonic states, but solitons in these states have noticeably different
velocities and a significantly wider distribution by amplitude, while the
wave statistics indicates a much more frequent appearance of very large
waves.

The conditions (5), (7) for adiabatic growth of turbulence have been
suggested by us analytically from two requirements: (i) the pumping
term must be small compared to the dispersion and nonlinearity terms
of the 1D-NLSE and (ii) the initial state must be very weakly nonlinear
and, therefore, practically stationary. In Section 4, we have checked
numerically that when these conditions are satisfied the turbulence
indeed grows adiabatically, and if not, then a non-adiabatic regime
is realized. In particular, according to the condition (7), the adiabatic
regime is very difficult to implement for large basins, since the upper
bound on the pumping coefficient decreases as inverse square of the
basin length. For large basins, a non-adiabatic regime may be realized,
which is characterized by a stronger presence of rogue waves with their
frequency increasing with the pumping coefficient or basin length. We
also have found that, for a sufficiently small initial noise, the adiabatic
regime turns out to be universal, as its growth trajectory does not
depend on the noise amplitude. For such a regime, apparently, an
additional condition (25) is needed for the absence of solitons in the
initial noise. Experimentally, adiabatic and non-adiabatic regimes could
be studied, for instance, in the context of water waves under wind
forcing or propagation of light in optical fiber amplifiers, see e.g. [72–
74]; the setups similar to the one used in [26] with recirculating fiber
loop and distributed Raman amplification look especially promising.
Note that a dense soliton gas – the state to which our wavefield tends
during the turbulence growth – has been reported recently in a water
wave experiment [39].

In the universal adiabatic regime, different realizations of the
grown-up wavefield demonstrate a very close values of the 1D-NLSE
invariants (8)–(9). This is rather surprising, since, as we have discussed
in Section 2.3, evolution equations for the higher-order invariants at
the growth stage contain functions dependent on specific wavefield;
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see e.g. Eq. (18) for the total energy, which contains potential energy.
The fact that, in the universal adiabatic regime, the invariants of
different realizations actually coincide at all stages of the pumping
apparently means that, during the time evolution, such wavefield-
dependent functions are effectively averaged over time to identical
time-dependent functions and lead to the same corrections to the
evolving invariants. If true, this observation allows one to consider the
conditions for adiabatic growth from another point of view, namely,
that the time necessary for such an averaging must be much smaller
than the characteristic pumping time. In terms of the analogy with
an ideal gas in a box, to which one molecule is added from time to
time, this condition is equivalent to the time interval between additions
being sufficient for the system to reach a modified thermodynamic
equilibrium. In turn, this allows one to understand the self-similarity
of the adiabatic regime with time 2𝑝0(𝑡 − 𝑡0) discussed in Section 4.4:
indeed, if this time interval is sufficient, then a twice larger interval
(equivalent to twice smaller pumping coefficient) will lead to the same
equilibriums and growth trajectory.

In our experiments, we have observed that, as the average intensity
increases in the universal adiabatic regime, the wavefield tends to a
bound-state soliton gas, in which solitons have zero velocities. More-
over, different realizations of the grown-up wavefield show (i) almost
identical sets of soliton amplitudes and velocities and (ii) a very similar
statistical distributions of soliton positions and phases, see Fig. 10.
Hence, we can suggest that the universal adiabatic regime always grows
the same soliton gas, which is defined by the Fourier spectrum of the
initial noise and does not depend on the specific realization of the
Fourier phases 𝜙𝑘 in Eq. (19).

The IST analysis of the non-universal adiabatic regime (which de-
pends on the noise amplitude 𝐴0) and non-adiabatic regime reveals co-
inciding patterns: in both cases, soliton amplitudes have a significantly
wider distribution by amplitude, soliton velocities are noticeable, and
different realizations of the grown-up wavefield show rather different
sets of soliton amplitudes and velocities. We think that these distinc-
tions from the universal adiabatic regime are caused by (i) the presence
of solitons in the initial noise for the non-universal adiabatic regime
and (ii) the process of self-organization of solitons for the non-adiabatic
regime. A more comprehensive analysis of this problem can be done in
the future within the IST perturbation theory [65,75,76], which allows
one to predict the successive small changes in the soliton eigenvalues
during the pumping stage.

Since the adiabatic regime differs from the non-adiabatic one in
that the former evolves through the statistically stationary states of the
integrable 1D-NLSE, and the latter through the non-stationary ones, we
have suggested that the phase correlation between different solitons
within the wavefield is indeed absent in the adiabatic regime and is
present in the non-adiabatic one. To verify this hypothesis and exclude
random coincidences of phases, we are going to explore in detail the
time evolution of soliton parameters in a separate publication.

Our experiments have shown that the shape of the initial noise
spectrum affects the wave statistics and the distribution of solitons in
amplitude and velocity, but the main conclusions of the IST analysis
remain unchanged. For instance, as shown in Appendix C for the
super-Gaussian initial spectrum 𝑠 = 32, the wavefield tends to a bound-
state soliton gas as the average intensity increases, just like for the
𝑠 = 2 case. The only difference which we observe is that soliton
amplitudes and velocities become distributed differently: almost all
solitons have practically equal amplitudes and soliton velocities are
distributed approximately uniformly within an interval which shrinks
towards zero velocity with increasing average intensity. The possible
future applications of our work may require the study of other examples
of the initial noise spectrum. In such a case, we expect that the main
conclusions of the IST analysis will remain valid, while the noise
spectrum will determine the wave statistics and a particular distribution
of solitons in amplitude and velocity.
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Appendix A. Theoretical formalism of the IST method

In this Appendix, we outline the concept of scattering data and the
IST method for localized wavefields.

For the 1D-NLSE (1), the scattering data is found with the direct
scattering transform (DST) procedure based on the Zakharov–Shabat
(ZS) system of equations [21]. At a fixed moment of time, the latter
represents the following auxiliary linear system for a vector wave
function Φ(𝑥, 𝜆) = (𝜙1, 𝜙2)T,

𝑥 = 1
√

2

(

−𝑖𝜆 𝜓
−𝜓∗ 𝑖𝜆

)

Φ, (30)

where 𝜆 = 𝜉+𝑖𝜂 is a complex-valued spectral parameter (the eigenvalue)
and the superscript T stands for the matrix transpose. Without loss of
generality, we consider the spectral parameter in the upper half of the
complex plane only, 𝜂 = Im 𝜆 ≥ 0, see e.g. [22] for detail.

Similarly to quantum mechanics [77], the scattering problem (30)
for the wave function Φ is introduced with the following asymptotics
at infinity (the so-called ‘‘right’’ scattering problem, in contrast to the
left scattering problem; see e.g. [78]):

lim
𝑥→−∞

{

Φ −
(

𝑒−𝑖𝜆𝑥

0

)}

= 0, (31)

lim
𝑥→+∞

{

Φ −
(

𝑎(𝜆) 𝑒−𝑖𝜆𝑥

𝑏(𝜆) 𝑒𝑖𝜆𝑥

)}

= 0. (32)

n this problem, the wavefield 𝜓(𝑥) of the 1D-NLSE is considered as a
otential for the scattering wave Φ, while 𝑎(𝜆) and 𝑏(𝜆) represent scat-
ering coefficients. Its bounded solutions exist for real-valued spectral
arameter, 𝜆 = 𝜉 ∈ R, and also for complex-valued 𝜆, 𝜂 = Im 𝜆 > 0, if
nd only if 𝑎 = 0.

In the present paper, we consider only the wavefields with compact
upport, i.e., non-zero in a finite region of space. Then, the eigenvalues
of the ZS system are presented by a finite number of discrete points
𝑗 (discrete spectrum) with 𝜂𝑗 = Im 𝜆𝑗 > 0, 𝑗 = 1,… , 𝑛𝑠, and the real

line 𝜆 = 𝜉 ∈ R (continuous spectrum), see [22]. Using the scattering

coefficients 𝑎 and 𝑏 defined at 𝜆𝑗 and 𝜆 = 𝜉 ∈ R, we can construct
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functions 𝑎(𝜆) and 𝑏(𝜆) as analytic continuations to the upper half of the
-plane [79]. Then, the function 𝑎(𝜆) has simple zeros at the eigenvalue

points, 𝑎(𝜆𝑛) = 0 (we do not consider the degenerate case when an
eigenvalue point represents a multiple zero).

The full set of the scattering data is a combination of the discrete
{𝜆𝑗 , 𝜌𝑗} and continuous {𝑟} spectra,
{

𝜆𝑗 ∣ 𝑎(𝜆𝑗 ) = 0, Im 𝜆𝑗 > 0
}

, 𝜌𝑗 =
𝑏(𝜆𝑗 )
𝑎′(𝜆𝑗 )

, 𝑟(𝜉) =
𝑏(𝜉)
𝑎(𝜉)

, (33)

where 𝑎′(𝜆) is complex derivative of 𝑎(𝜆) with respect to 𝜆, 𝜌𝑗 are the
so-called norming constants associated with the eigenvalues 𝜆𝑗 , and
𝑟(𝜉) is the reflection coefficient defined at the real line 𝜉 ∈ R. Most
importantly, if the potential 𝜓 is governed by the 1D-NLSE (1), then
the time evolution of the scattering data (33) is trivial,

∀𝑗 ∶ 𝜆𝑗 = const, 𝜌𝑗 (𝑡) = 𝜌𝑗 (0)𝑒
2𝑖𝜆2𝑗 𝑡, 𝑟(𝜉, 𝑡) = 𝑟(𝜉, 0)𝑒2𝑖𝜉

2𝑡, (34)

and the wavefield 𝜓 can be recovered from it with the inverse scattering
transform (IST) by solving the integral GLM equations [22]. Note that,
in the general case, this can only be done numerically, asymptotically
at large time, or in the semi-classical approximation [24,25].

The reflection coefficient 𝑟(𝜉) corresponds to nonlinear dispersive
waves, while the discrete eigenvalues 𝜆𝑗 together with the norming
constants 𝜌𝑗 represent solitons. In particular, for 𝑗 = 1,… , 𝑛𝑠, the
eigenvalues 𝜆𝑗 = 𝜉𝑗 + 𝑖𝜂𝑗 contain information about soliton amplitudes
𝜒𝑗 = 2𝜂𝑗 and velocities 𝑉𝑗 = −2𝜉𝑗 , while the soliton norming constants
are connected to their positions in space 𝑥′𝑗 ∈ R and phases 𝜃′𝑗 ∈ [0, 2𝜋).

In the present paper, we also use soliton norming constants cor-
responding to the formalism alternative to the IST procedure — the
so-called dressing method (DM) [22], also known as the Darboux trans-
formation [80,81]. The DM norming constants are more favorable for
the scattering data analysis, see [35,36,68]. For the reflectionless case
𝑟(𝜉) = 0, the nonlinear dispersive waves are absent and both the IST
and DM procedures can be performed analytically, leading to an exact
𝑛𝑠-soliton solution (𝑛𝑠-SS) 𝜓𝑛𝑠 (𝑥, 𝑡). The DM norming constants 𝐶𝑗 are
then related to the IST norming constants 𝜌𝑗 as follows (see [57,82]),

𝐶𝑗 (𝑡) =
1

𝜌𝑗 (𝑡)

𝑛𝑠
∏

𝑚=1
(𝜆𝑗 − 𝜆∗𝑚) ×

𝑛𝑠
∏

𝑙≠𝑗

1
𝜆𝑗 − 𝜆𝑙

. (35)

For an 𝑛𝑠-SS, the dressing method represents a pure algebraic recursive
procedure [22,81,83], with the outcome which can be written as ratio
of two determinants,

𝜓𝑛𝑠 (𝑥, 𝑡) = −2𝑖det𝐌̃
det𝐌

, 𝑀𝑚𝑙 =
(𝐪𝑚 ⋅ 𝐪∗𝑙 )
𝜆𝑚 − 𝜆∗𝑙

,

𝐌̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝑞1,2 ⋯ 𝑞𝑁,2
𝑞∗1,1
⋮

𝑞∗𝑁,1

𝐌𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (36)

where 𝐪𝑗 are two-component vectors,

𝐪𝑗 (𝑥, 𝑡) =
(

𝑞𝑗,1
𝑞𝑗,2

)

=
⎛

⎜

⎜

⎝

𝐶−1∕2
𝑗 𝑒𝑖𝜆𝑗𝑥

𝐶1∕2
𝑗 𝑒−𝑖𝜆𝑗𝑥

⎞

⎟

⎟

⎠

,

nd the dot in (𝐪𝑚 ⋅ 𝐪∗𝑙 ) = 𝑞𝑚,1𝑞∗𝑙,1 + 𝑞𝑚,2𝑞∗𝑙,2 corresponds to the real-
ymmetric vector scalar product.

Within the DM formalism, the norming constants are related to the
oliton positions and phases as

𝑗 = −exp
[

2𝑖𝜆𝑗𝑥′𝑗 + 𝑖𝜃
′
𝑗

]

, (37)

nd evolve with time as

𝑗 (𝑡) = 𝐶𝑗 (0)𝑒
−2𝑖𝜆2𝑗 𝑡. (38)

he parameters 𝑥′𝑗 and 𝜃′𝑗 equal the observed in the physical space
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osition and phase of a soliton only for the one-soliton solution (22). i
Fig. 13. (Color on-line) Eigenvalues 𝜆 = 𝜉 + 𝑖𝜂 of the ZS system (30) computed with
he FC method in the regions 𝑥 ∈ [−3𝐿∕4, 3𝐿∕4] (red circles) and 𝑥 ∈ [−𝐿,𝐿] (blue
ots): (a) full eigenvalue spectrum for a single realization of wavefield grown with
arameters 𝐿 = 128𝜋, 𝑠 = 2, 𝐴0 = 10−2, 𝐴𝑓 = 0.5 and 𝑝0 = 10−5 (the same wavefield as

in Fig. 8(e)), and (b) zoom of panel (a) at small values of 𝜂. The eigenvalues which
oincide in the calculations over the two different regions [−3𝐿∕4, 3𝐿∕4] and [−𝐿,𝐿]

correspond to solitons, while the other eigenvalues represent the continuous spectrum
artificially shifted to the upper half-plane as a result of the wavefield periodization.
The black dashed line in panel (b) indicates the threshold above which we assume the
eigenvalues as belonging to the discrete spectrum for other realizations of the grown-up
wavefield.

In presence of other solitons or dispersive waves, the observed position
and phase may differ considerably from 𝑥′𝑗 and 𝜃′𝑗 .

Finally, we note that, for a pure 𝑛𝑠-SS, the IST formalism allows one
to find the 1D-NLSE invariants (8)–(9) straightforwardly via the soliton
eigenvalues [22],

𝑚 =
(2𝑖)𝑚

𝑚𝐿

𝑛𝑠
∑

𝑗=1
[(𝜆𝑚𝑗 )

∗ − 𝜆𝑚𝑗 ]. (39)

Appendix B. Numerical approaches to the IST method

We compute the discrete spectrum (33) numerically using the
standard DST algorithms [66,84,85] supplemented by our latest stud-
ies [56–58]. Although the soliton eigenvalues can be found with
many variations of the DST methods [66,86,87], the calculation of the
norming constants is a challenging problem leading to several types of
numerical instabilities, including the so-called anomalous errors [57].
Here we use the following scheme, which guarantees an accurate
identification of the full discrete spectrum.

First, we endow a wavefield with a compact support, assuming
it to be zero outside the simulation box [−𝐿∕2, 𝐿∕2]. Due to such a
formulation, a few solitons located at the box edges split into two
parts and introduce an inaccuracy in the scattering data. The dissected
solitons affect the continuous spectrum and may lead to the appearance
of artificial solitons smaller than them. However, the total number of
solitons in each of our wavefields is relatively large, 𝑛𝑠 ≳ 50, and we
eglect this error. Also, to mitigate the discontinuity at 𝑥 = ±𝐿∕2,
e smooth the wavefield at the box edges. The smoothing window

s comparable with the characteristic width of solitons, i.e., it is of
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Fig. 14. Soliton amplitudes and velocities for simulation from a single realization of initial conditions at different stages of the pumping: (a) 𝐴𝑓 = 0.125, (b) 𝐴𝑓 = 0.177, (c)
𝐴𝑓 = 0.25, (d) 𝐴𝑓 = 0.35, (e) 𝐴𝑓 = 0.5, (f) 𝐴𝑓 = 0.71 and (g) 𝐴𝑓 = 1. The simulation parameters correspond to the universal adiabatic regime: 𝐿 = 128𝜋, 𝑠 = 32, 𝐴0 = 10−2 and
𝑝0 = 10−5. Each dot represents a soliton within the studied wavefield, 𝑛𝑠 shows the total number of solitons detected, 𝑠∕ demonstrates the ratio between the wave action of
the solitonic part 𝑠, see Eq. (26), and the total wave action  , and ⟨𝜒⟩ indicates the mean soliton amplitude.
Fig. 15. (Color on-line) Typical grown-up wavefield and its approximation with the multi-soliton solution 𝜓𝑠 generated from the discrete part of the scattering data, for the
numerical experiment with parameters 𝐿 = 128𝜋, 𝑠 = 32, 𝐴0 = 10−2, 𝐴𝑓 = 1 and 𝑝0 = 10−5 corresponding to the universal adiabatic regime. Panel (a) shows absolute value |𝜓| of
the grown-up wavefield (solid blue) and multi-soliton solution (dashed red), while panel (b) represents zoom of panel (a) at the central region. Also, panel (b) illustrates complex
phase arg𝜓 of the grown-up wavefield (solid green) and multi-soliton solution (dashed black).
the same order as the region where solitons are dissected by the edge
splitting. This means that the smoothing affects accuracy in a similar
way as endowing wavefield with a compact support, that allows us to
neglect the corresponding inaccuracy either.

Second, we compute soliton eigenvalues with the standard Fourier
collocation (FC) method [66], which is fast and does not require more
than ≃ 213 sampling points in our data processing. The FC method uses
Fourier decomposition of wavefield, which leads to an artificial shift of
the continuous spectrum eigenvalues to the upper half-plane as a result
of the wavefield periodization. Additionally, the FC method does not
distinguish between the eigenvalues of discrete and continuous spectra,
leading to the problem of identifying low-amplitude solitons.

Third, to cope with this problem, we consider the wavefield in
two different regions. The first region [−3𝐿∕4, 3𝐿∕4] is constructed by
adding zeros 𝜓 = 0 in the intervals [−3𝐿∕4,−𝐿∕2] and [𝐿∕2, 3𝐿∕4].
The second region [−𝐿,𝐿] is obtained similarly, only the width of
the added intervals is larger. Then, we execute the FC method over
both regions and select those eigenvalues as belonging to the discrete
spectrum, which coincide in these calculations, see Fig. 13. To optimize
computational resources, we consider several realizations of the grown-
up wavefield for each numerical experiment and determine a threshold
𝜂𝑡ℎ, above which all eigenvalues belong to the discrete spectrum; in
Fig. 13, it is at 𝜂𝑡ℎ = 0.015. For subsequent realizations, we no longer
check the eigenvalues using the two different regions above, but simply
ignore all eigenvalues below the threshold and assume all eigenvalues
above as belonging to the discrete spectrum.

The FC method provides a good approximation of the eigenvalues
of the ZS system, i.e., zeros of the coefficient 𝑎(𝜆). However, it has
fundamental limitations due to the use of the Fourier approximation
for a spatially localized wavefield with a compact support. To mitigate
the anomalous DST errors [57], the subsequent steps of our procedure
require knowledge of roots 𝑎(𝜆𝑛) = 0 to hundreds of digits. The
latter is not possible within the FC method, so that we use the cal-
culated eigenvalues as seeding values for a high-accuracy root-finding
16

procedure.
Thus, at the fourth step, we perform the main DST procedure
using the standard second-order Boffetta–Osborne (BO) method [84],
supplemented by high-precision arithmetic operations executed on a
fine grid, as suggested in [56,57]. For high-precision operations, we use
the Wolfram Mathematica software. High precision and a fine grid allow
us to avoid (i) the round-off errors when calculating the wave function
Φ for the ZS system, (ii) the anomalous errors in the calculation of
the norming constants, and (iii) the numerical instability of the wave
scattering through a large potential; see [56,57] for detail. With the
BO method, we can find 𝑎(𝜆) and 𝑏(𝜆) for any value of 𝜆 by discrete
integration of the ZS system on the interval [−𝐿∕2, 𝐿∕2] and with
boundary conditions (31). We run the BO method together with the
Newton method, using the eigenvalues obtained by the FC method as
seeding values, and find the set of zeros 𝜆𝑗 of the function 𝑎(𝜆) with the
requested precision.

Finally, we compute the soliton norming constants according to
their definition given in Eq. (33). Note that instead of calculating
the derivative 𝑎′(𝜆𝑗 ) straightforwardly, we find it from the extended
scattering matrix of the BO method, see [84].

Our grid for the BO method consists of 5 × 104 points, obtained using
interpolation of the grown-up wavefield with the standard built-in
procedures of the Wolfram Mathematica software. Numerical precision
of all our arithmetic operations, including the accuracy goal for the
root-finding, corresponds to 700 digits. We have checked that reducing
the grid to 4 × 104 points, as well as reducing the accuracy to 500 digits,
does not change our results for the soliton norming constants.

Appendix C. Universal adiabatic regime with the super-Gaussian
initial spectrum

Repeating our IST analysis for the experiment with the super-
Gaussian initial spectrum 𝑠 = 32, see Eq. (19), and other parameters
the same as for the base experiment 𝐿 = 128𝜋, 𝐴0 = 10−2, 𝐴𝑓 = 1 and
𝑝0 = 10−5, we come to the same conclusions as have been discussed

in Section 5.2 with only one exception. Namely, as demonstrated
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in Fig. 14, solitons become distributed differently in amplitude and
velocity.

First, the total number of solitons 𝑛𝑠 evolves differently during the
growth stage. In particular, at 𝐴𝑓 ≤ 0.1 we do not detect solitons within
the wavefield, at 𝐴𝑓 = 0.125 we find already 𝑛𝑠 = 35 of them, at
𝐴𝑓 = 0.177 this number increases to 54 and then stays at 60− 65 for all
later stages, see Fig. 14. As shown in Fig. 8, the process of appearance
of solitons for the 𝑠 = 2 case is smoother and longer. Different number
of solitons at the end of the growth stage leads to different mean soliton
amplitude, ⟨𝜒⟩ = 2.1 versus 1.5, and different soliton density, 𝜌 = 0.16
versus 0.24, for the experiments 𝑠 = 32 and 𝑠 = 2 respectively.

Second, in contrast to the 𝑠 = 2 case where solitons are fairly
densely distributed in amplitude from zero to maximum amplitude,
almost all solitons for the 𝑠 = 32 experiment have practically identical
amplitude. For the 𝑠 = 2 case, starting from sufficiently large mean
amplitude 𝐴𝑓 ≥ 0.5, large solitons form a bound state with practically
zero velocities, see Fig. 8, while for the 𝑠 = 32 experiment we observe
that solitons are approximately uniformly distributed in the velocity
interval, which shrinks towards zero velocity with increasing 𝐴𝑓 , see
Fig. 14.

Thus, during the growth stage of the experiment 𝑠 = 32, the
wavefield tends to a bound-state soliton gas which consists of identical
solitons. The latter resembles the asymptotic stationary state that devel-
ops from the noise-induced modulational instability (MI) of a cnoidal
wave, in the limit when this cnoidal wave represents a uniform lattice
of large and narrow solitons which practically do not overlap with each
other. In particular, a typical realization of wavefield at the end of the
growth stage of the 𝑠 = 32 experiment, shown in Fig. 15 together with
its reconstruction with the pure multi-soliton solution, is quite similar
to the wavefield demonstrated in Fig. 16 of [14] for the MI of a cnoidal
wave at long time. For the 𝑠 = 32 experiment, the PDF of relative
wave intensity in Fig. 4(b) (red line) is also quite similar to the PDF
reported in Fig. 21(a) of [14]. However, the wave-action spectrum in
Fig. 4(a) (red line) does not demonstrate the characteristic peaks at
equally spaced wavenumbers, which mark the asymptotic stationary
state developed from the MI of a cnoidal wave, see Fig. 19(a) in [14].
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