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LUMP INTERACTIONS WITH PLANE SOLITONS

Yu. A. Stepanyants,1,2 ∗ D. V. Zakharov,3 and
V. E. Zakharov4,5 UDC 530.18 + 532.59 + 538.574

We analyze in detail the interactions of two-dimensional solitary waves called lumps and one-
dimensional line solitons within the framework of the Kadomtsev–Petviashvili equation describing
wave processes in media with positive dispersion. We show that line solitons can emit or absorb
lumps or periodic chains of lumps, as well as interact with each other by means of lumps. Within
a certain time interval, lumps or lump chains can emerge between two line solitons and then
disappear due to absorption by one of the solitons. This phenomenon resembles the appearance of
rogue waves in the oceans. The results obtained are graphically illustrated and can be applicable
to the description of the physical processes occurring in plasmas, fluids, solids, nonlinear optical
media, etc.

1. INTRODUCTION

Slightly more than half a century ago, in 1970, B.B.Kadomtsev and V. I. Petviashvili published a
seminal paper where an equation generalizing the well-known Korteweg–de Vries equation for the two-
dimensional case was derived [1]. This equation, later named the Kadomtsev–Petviashvili equation [2], was
designated for the description of nonlinear dispersive waves traveling primarily in one direction with a smooth
variation in the perpendicular direction. In dimensional form, the Kadomtsev–Petviashvili equation can be
written as
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where v(ξ, η, τ̃ ) is the variable describing the perturbation of a particular field (e. g., the water surface eleva-
tion or plasma density, etc.), c is the speed of linear long waves, α and β are the coefficients of nonlinearity and
dispersion, respectively, which depend on the particular physical problem. Equation (1) can be transformed
to the dimensionless form which is convenient for the further analysis:
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where u = αv/(6β), t = βτ̃ , x = ξ − cτ̃ , y = η
√

6|β|/c, and γ = ±1 is a dispersion parameter that plays an
important role in determining the physical and mathematical properties of the solutions of this equation.
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One of the simplest solutions of the Kadomtsev–Petviashvili equation is a plane soliton which can
propagate at a small angle to the x axis:

u(x, y, t) = A sech2 (kx+ ly − ωt), (3)

where k and l are arbitrary parameters, A = 2k2 is the soliton amplitude, and ω = 4k3 + 3γl2/k. The
velocity of this soliton is written as
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where V is the soliton speed.
Note that in the one-dimensional case where l = 0 and the Kadomtsev–Petviashvili equation reduces

to the Korteweg–de Vries equation, the soliton speed V = VKdV = ω/k = 4k2 = 2A. In the two-dimensional
case, assuming that l � k, we obtain from Eq. (4)
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where ϕ = arctan−1 (l/k) is the angle between the soliton velocity V and the x axis. In accordance with the
Kadomtsev–Petviashvili approximation, the angle ϕ must be small, such that ϕ � 1. Therefore, V ≈ VKdV

up to a small correction of order ∼ ϕ2.
As was shown in [1], plane solitons are stable with respect to small perturbations along their fronts

only if the dispersion parameter γ > 0. Otherwise, they are unstable and undergo a self-focusing instability.
In the case γ > 0, Eq. (2) is called the KP2 equation. It is strongly integrable in the terminology of [3].
In the case γ < 0, Eq. (2) is called the KP1 equation, and it is weakly integrable [3]. The development
of the self-focusing instability of plane solitons leads to the creation of lumps, i. e., completely localized
two-dimensional solitary waves.

The lump solution of the KP1 equation was constructed numerically for the first time by V. I. Petvia-
shvili in his seminal paper [4] (see also [5]). Then such solutions were found analytically in [6]. The solution
of Eq. (2) with γ = −1 describes a symmetric lump moving along the x axis (see Fig. 1a):

u = 12V
9 + V 2y2 − 3V (x− V t)2

[9 + V 2y2 + 3V (x− V t)2]2
, (6)

where A = 4V/3 is the lump amplitude and V > 0 is the lump speed. There are more general solutions
describing lumps traveling at arbitrary angles to the x axis [6–8]. Lumps interact elastically with each
other [6, 7, 9] not even undergoing phase shifts. Due to their nonmonotonic asymptotics with the local
minima, they can create stationary multi-lump formations [8–11]. One of the simplest multi-lump formation,
the bi-lump, is shown in Fig. 1b (the details of solutions can be found in the cited papers).

A single lump is stable with respect to small perturbations [12], whereas multi-lump structures and
periodic chains of lumps are unstable [11]. In particular, under a small periodic perturbation along the chain
front, a periodic lump chain decays into two new chains, which, in turn, are unstable with respect to small
perturbations, and so on. This process repeats again and again with smaller and smaller decay rates [13].
The lifetime of a relatively rarefied chain of lumps with a great distance between them can be fairly long.
Therefore, such chains can be observable both in experiments and in nature. Similarly, if the plane soliton
has a periodic perturbation along its front, then as a result of the focusing instability, a new plane soliton of
a smaller amplitude arises and is accompanied by the periodic chain of lumps moving side by side to each
other [13]. Such an instability occurs only with respect to a long perturbation with the wavelength Λ > Λc

along the y axis, where Λc is inversely proportional to the soliton amplitude and much greater than the
soliton width [14].
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Fig. 1. Three-dimensional plot of the lump solution (6) with V = 3 (a) and the bi-lump solution with V = 3 (b).

As was recently shown [15], lump chains moving at an angle to each other can interact undergoing
spatial phase shifts similarly to interacting plane solitons (see, e. g., [16]). Under certain conditions, two
interacting lump chains can form a single lump chain or, vice versa, one lump chain can split into two other
lump chains moving at an angle to each other in space. The entire pattern moves stationarily as a plane
soliton triad under resonance interaction within the framework of the KP2 equation (see [17] and references
therein).

Another interesting observation was made in recent publications [18–20], where it was shown that
within the framework of the KP1 equation, there are solutions that represent lump emission from a plane
soliton or lump absorption by a plane soliton. A lump can be emitted by one plane soliton and absorbed by
another plane soliton. A lump can be obscured between two plane solitons traveling parallel to each other
and having equal amplitudes at infinity. There are many other solutions representing a number of plane
solitons exchanging lumps.

Here, we review such solutions and analyze in detail the interaction of lumps with plane solitons,
using the Grammian form of the τ -function to express the solution of the KP1 equation [15]. We show that
such an approach allows one to present different types of soliton and lump interactions in a relatively simple
and natural way.

2. INTERACTION OF A LINE SOLITON WITH LUMPS

There are two standard formulas for the solution of the KP1 equation in terms of the τ -function, both
of them involving a set of solutions to an auxiliary linear system. Of the two, more commonly forms used
for representing the solution is based on the Wronskian:

u(x, y, t) = 2
∂2 log τ

∂x2
, τ(x, y, t) = Wr(ψ1, . . . , ψM ). (7)

Here, Wr(ψ1, . . . , ψM ) is the Wronskian of a linearly independent set of solutions of the system

ψy = iψxx, ψt = −4ψxxx. (8)

Note that this is a set of linear equations which can be solved by separation of variables. Such an
approach has been used in [21] for the construction of the simplest solutions within the Zakharov–Shabat
general scheme [2].

In our paper, we instead consider solutions defined by the so-called Grammian formula. As before, let
(ψ1, . . . , ψM ) be a set of solutions (not necessarily linearly independent) of Eq. (8), and let cjk be a constant
M ×M matrix. Then the function given by

u(x, y, t) = 2
∂2 log τ

∂x2
, τ(x, y, t) = det

⎡
⎣cjk +

x∫
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⎤
⎦ (9)
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is a solution of the KP1 equation (2). The solution is nonsingular if the Wronskian is everywhere positive,
and we will verify this condition each time when applying this formula.

To construct solutions of Eq. (8), let us denote

φ(x, y, t, λ) = λx+ iλ2y − 4λ3t. (10)

Then, for any value of λ, the function ψ(x, y, t) = exp[φ(x, y, t, λ)] satisfies Eq. (8). More generally, let
ps(x, y, t, λ) denote a homogeneous polynomial of degree s in x, y, and t that is defined by the formula

ps(x, y, t, λ) = exp[−φ(x, y, t, λ)]
∂s

∂λs
exp[φ(x, y, t, λ)], (11)

where p0 = 1, p1 = x+2iλy−12λ2t, p2 = p21+2iy−24λt, . . . It is easy to see that any function of the form
ps(x, y, t, λ) exp[φ(x, y, t, λ)] satisfies Eq. (8). Using Eq. (9), we construct a wide family of solutions of the KP1
equation by choosing the functions ψj as linear combinations of the functions ps(x, y, t, λ) exp[φ(x, y, t, λ)]
for various values of s and λ.

To simplify the exposition, we assume that all λj = aj > 0 are real-valued. Let s1, . . . , sM be
nonnegative integers, and let b1, . . . , bM be real constants. We set

ψj(x, y, t) = bj psj(x, y, t, aj) exp[φ(x, y, t, aj)], j = 1, . . . ,M. (12)

In this case, one can readily calculate
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where pjk(x, y, t, a, a
′) is a nonhomogeneous polynomial of degree j + k, given by
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For future use, we present the first few polynomials pjk:

p00 = 1, p01 = x− 12a2t− 1

a+ a′
− 2iay, p10 = x− 12a′2t− 1

a+ a′
+ 2iay, (15)

p11|a′=a =

(
x− 12a2t− 1

2a

)2

+ 4a2y2 +
1

4a2
. (16)

Inserting Eq. (14) into Eq. (9) and factoring out a common exponential (which disappears after applying the
second logarithmic derivative), we obtain the solution in the form

u(x, y, t) = 2
∂2

∂x2
log det

[
cjk exp[−φ(x, y, t, aj)− φ(x, y, t, ak)] +

bjbk
2(ai + aj)

psjsk(x, y, t, aj , ak)

]
. (17)

We now consider several families of solutions of the KP1 equation (2), which are given by the above
formula. These solutions describe the elementary processes of interaction of traveling waves, known as line
solitons, with localized disturbances, known as lumps.
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2.1. Line soliton

The standard line-soliton solution of the KP1 equation is obtained by setting M = 1, a1 = a, c11 = 1,
and s1 = 0. In this case, the solution is written as

u(x, y, t) = 2
∂2

∂x2
log{exp[−2F (x, t, a)] + C0} = 2a2sech2

(
ax− 4a3t+

1

2
logC0

)
, C0 =

b21
2a

, (18)

where
F (x, t, a) = ax− 4a3t. (19)

The terms exp(−2F ) and C0 in the logarithm are equal on the vertical line x = 4a2t − logC0/(2a). The
solution is supported on a narrow strip centered on this line (see the left-hand panel in Fig. 2 below). Away
from the line, one of the two terms in the logarithm is dominant and u(x, y, t) is exponentially small. Hence,
the solution represents a solitary wave traveling to the right with the speed Vs = 4a2.

2.2. One-lump solution

If we put cjk = 0, then the τ -function in Eq. (17) is a polynomial. The solution u(x, y, t) is a rational
function and consists of a set of localized lumps, which may be bound or undergo anomalous scattering. To
obtain the simplest one-lump solution, we set M = 1, a1 = a, and s1 = 1, so that

u(x, y, t) = 2
∂2

∂x2
ln τl(x, y, t, a), (20)

where the τ -function τl of the lump is given by Eq. (16) as

τl(x, y, t, a) = p11(x, y, t, a, a) =

(
x− 12a2t− 1

2a

)2

+ 4a2y2 +
1

4a2
. (21)

The solution is essentially the same as in Eq. (6). It is centered at the point (x, y) = (12a2t+ 1/2a, 0) and
represents a lump traveling to the right with the speed V = 12a2. The solution has a local maximum at the
center and decays algebraically as (x2 + y2)−1 at infinity (see Fig. 3).

2.3. Line soliton absorbing or emitting a lump

Let us consider the following set of parameters: M = 2, a1 = a2 = a, s1 = 0, and s2 = 1. We also
assume that cjk is the rank one matrix

cjk =

(
1 0
0 0

)
. (22)

In this case, after factoring out a constant, the solution reads

u(x, y, t) = 2
∂2

∂x2
log

{
τl(x, y, t, a) + C1 exp[2F (x, t, a)]

}
, C1 =

b21
8a3

. (23)

In contrast to the two previous cases, this solution is nonstationary. For a fixed moment of time t,
consider the curve 2F = log τl − logC1 in the (x, y) plane along which the two terms in the logarithm are
equal. On the right of this curve, the dominant term is exp(2F ), and the solution u is exponentially small.
On the left, the dominant term is τl, which is given by Eq. (21) and produces a lump solution moving along
the x axis with the speed Vl = 12a2. Along the curve, there is a line soliton (deformed near y = 0 by the
term τl) moving to the right with the speed Vs = 4a2. Since the lump moves with the speed Vl = 3Vs, it
eventually merges with the line soliton and is absorbed by it.
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Fig. 2. Slightly perturbed line soliton at t = −100 (a) radiating a lump at t = 0 (b). The vertical scale on both
panels is 5 times greater than the horizontal scale. Panel a: −430 ≤ x ≤ −390. Panel b: −30 ≤ x ≤ 10. On
both panels, −100 ≤ y ≤ 100.

Fig. 3. Line-soliton overtaking by a lump of Eq. (25): t = −200 and −500 ≤ x ≤ −300 (a), t = −85 and
−175 ≤ x ≤ 25 (b), and t = 0 and −150 ≤ x ≤ 50 (c). On all panels, −100 ≤ y ≤ 100.

One can also construct a line soliton emitting a lump. Such a situation occurs if we set M = 2,
a1 = a2 = a, s1 = s2 = 1, and cjk = δjk, where δjk is the Kronecker symbol. Indeed, in this case, we factor
out the exponential function exp(−2F ), which disappears after differentiation, and obtain

u(x, y, t) = 2
∂2

∂x2
log

{
exp[−2F (x, t, a)] +

b21 + b22
2a

τl(x, y, t, a)
}
. (24)

The solution again consists of a line soliton moving with the speed Vs = 4a2 along the curve where the two
terms are equal, and a lump moving with the speed Vl = 12a2. However, unlike the previous case, the term
τl, which produces a lump, is now dominant on the right of the line soliton. Hence, the line soliton radiates
a lump in the process of evolution. Solution (24) is illustrated by the contour lines in Fig. 2 at two time
instances with the following parameters: a = 1, b1 = 0, and b2 = 106. The line soliton with the bent front
shown in Fig. 2b asymptotically becomes straight as in Fig. 2a.
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2.4. Lump passing through a line soliton

As it has been demonstrated above, a Kadomtsev–Petviashvili lump moving with the speed Vl can be
absorbed or emitted by a line soliton moving with the speed Vs if Vl/Vs = 3. If Vl/Vs �= 3, then the lump can
pass through the line soliton or may create together with it a stationary pattern when Vl/Vs = 1.

To construct such a solution, let us set M = 2, a2 �= a1, s0 = 1, and s1 = 1 and assume that cjk is a
rank one matrix (22). In this case, one can obtain the following solution:

u(x, y, t) = 2
∂2

∂x2
log

{
τl(x, y, t, a2) + C2τl(x− x0, y, t, a2) exp[2F (x, t, a1)]

}
, (25)

where

C2 =
(a1 − a2)

2b21
a1(a1 + a2)2

, x0 =
2a1

a21 − a22
. (26)

In this solution, there is a line soliton along the vertical line 2F = − logC2, which moves with the
speed Vs = 4a21. On both sides of the soliton, there is a one-lump solution moving with the same speed
Vl = 12a22 and having a relative phase shift x0 between them.

If a2 < a1 < a2
√
3, then the solution consists of a

Fig. 4. Two lumps having equal amplitudes and
bounded with a line soliton: −50 ≤ x ≤ 50 and
−50 ≤ y ≤ 50.

lump overtaking a line soliton from the left and reappear-
ing on the right of the line soliton with the phase shift x0.
If a1 > a2

√
3, then the line soliton overtakes the lump,

which reappears behind it. In either case, there exists a
relatively short time interval during which both lumps are
visible. This situation is demonstrated in Fig. 3.

In the intermediate case a1 = a2
√
3, the two lumps

are traveling with the same speed as the line soliton, and
the solution is stationary. The stationary solution is shown
in Fig. 4 for the following parameters:

a1 =
1

2
, a2 =

1√
12

,

b1 =

(√
3 + 1

)2
2

exp

[
−
√
3

2

(√
3 + 1

)]
≈ 0,35,

b2 =
4
√
3.

In this case, the τ -function has the form

τ(ξ, y) = 3(ξ + 3)2 + y2 + 9 + exp(ξ)
[
3(ξ − 3)2 + y2 + 9

]
, (27)

where ξ = x− V t and V = 1. This and some other stationary solutions were obtained in [22]. In particular,
solutions representing a chain of lumps intersecting a plane soliton at an angle were found in that paper.
These solutions will be described in Sec. 3.

In the case a1 → a2, the phase shift x0 indefinitely increases, the line soliton and the right-hand lump
disappear at plus infinity, and only the left-hand lump remains. For a1 < a2, the solution again consists of
a lump overtaking a line soliton.

671



2.5. Two weakly bound line solitons exchanging a lump

We now consider solution (17) with M = 2, a1 = a2 = a, s1 = 0, s2 = 1, and cjk = δjk. In this case,
a straightforward calculation yields

u(x, y, t) = 2
∂2

∂x2
log

{
exp[−2F (x, t, a)] +Q(x, y, t) + C3 exp[2F (x, t, a)]

}
, (28)

where Q and C3 are expressed in terms of the one-lump function τl (see Eq. (21)) as follows:

Q(x, y, t) =
b22
2a

τl(x, y, t, a) +
b21
2a

, C3 =
b21b

2
2

16a4
. (29)

The structure of solution (28) is determined by the relative values of the three terms under the
logarithm. At a fixed moment of time t, the (x, y) plane is divided into three regions, in each of which one
of the three terms in the logarithm of Eq. (28) is dominant:

Δ1(t) =
{
(x, y) : exp(−2F ) ≥ max[Q,C3 exp(2F )]},

Δ2(t) = {(x, y) : Q ≥ max[exp(−2F ), C3 exp(2F )]
}
,

Δ3(t) = {(x, y) : C3 exp(2F ) ≥ max[exp(−2F ), Q]}. (30)

To determine the shape of the regions Δi(t), consider the three functions exp(−2F ), Q, and C3 exp(2F )
on the x axis for fixed values of y and z. It is clear that exp(−2F ) is dominant when x → −∞, whereas
C3 exp(2F ) is dominant when x → +∞. At the same time, there is always an intermediate region where
Q is the dominant term. Indeed, the minimum value of the function max(exp(−2F ), C3 exp(−F )) is

√
C3,

whereas

Q(x, y, t) ≥ 1

2

(
b22
4a3

+
b21
a

)
≥

√
b22
4a3

· b
2
1

a
= 2

√
C3. (31)

The length of this intermediate interval on the x axis is smallest when y = 0 and increases logarithmically
when |y| → ∞. It follows that the region Δ2 is a vertical strip separating the region Δ1 on the left and the
region Δ3 on the right.

Thus, solution (28) is as follows. In the interior of the regions Δ1 and Δ3, where one of the exponential
functions, either exp(−2F ) or C3 exp(2F ), is dominant in Eq. (17), the solution is exponentially small. In
the region Δ2, the solution is approximately equal to u ≈ 2 ∂2 logQ/∂x2. In the limiting case b1/b2 → 0,
it is a lump traveling to the right with the velocity Vl = 12a2, while for b1 > b2, the lump is flattened and
becomes invisible when b1/b2 → +∞. Along the curves Δ1 ∩ Δ2 and Δ2 ∩ Δ3, there are two line solitons
traveling to the right with the same velocity Vs = 4a2. Due to the lump influence, the solitons are deformed
and are closest at y = 0, and the distance between them increases logarithmically as |y| → +∞. Since
Vl = 3Vs as before, the lump is emitted by the left-hand line soliton and absorbed by the right-hand line
soliton. We note that solution (23) can be obtained in the limit b2 → +∞, while solution (24) corresponds
to the limit b1 → 0. In both limits, one of the two line solitons disappears at infinity.

The solution is shown in Fig. 5 for a = 1, b1 = 102, and b2 = 106 and in Fig. 6 for a = 1 and
b1 = b2 = 1. In the former case, a lump is clearly seen between two line solitons (see Fig. 5b), whereas in the
latter case, the lump is flattened and cannot be distinguished from the interacting line solitons.

We now interpret the obtained solution. Two parallel KP1 line solitons having equal amplitudes and
separated by a large distance can be described by the Korteweg–de Vries equation in the ideal case where
their fronts are not perturbed along the y direction. In such a case, they will undergo an exchange-type
interaction: a portion of the energy from the rear soliton will be transmitted to the front soliton. Since
the front soliton has a larger amplitude, the distance between the solitons will increase linearly in time,
proportionally to the amplitude difference.

The solution that we construct consists of two parallel line solitons of equal amplitude that are
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Fig. 5. Two quasi-parallel solitons of equal amplitudes at t = −100 (a). In the process of evolution, the
left-hand soliton radiates a lump at t = −1, which is eventually absorbed by the right-hand soliton. On both
panels, the vertical size is 5 times longer than the horizontal size. Panel a: −431.5 ≤ x ≤ −391.5. Panel b:
−31.5 ≤ x ≤ 8.5. On both panels, −100 ≤ y ≤ 100.

Fig. 6. Two quasi-parallel solitons of equal amplitudes at t = −1000 (a) and t = 0 (b). A flat-head lump is
obscured between the solitons in the field of their tails. The vertical size on both panels is 50 times longer
than the horizontal size. Panel a: −4020 ≤ x ≤ −3980. Panel b: −20 ≤ x ≤ 20. On both panels,
−1000 ≤ y ≤ 1000.

infinitesimally perturbed at t → −∞. In this case, the one-dimensional Korteweg–de Vries equation is
insufficient and the two-dimensional KP1 equation must be used. The perturbation increases with time and
becomes a lump. The distance between the solitons decreases logarithmically with time until the solitons
exchange a lump. Then the solitons diverge logarithmically with time. At t → +∞, we have again two
parallel line solitons of equal amplitude.
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3. INTERACTION OF A LINE SOLITON AND LUMP CHAINS

In Sec. 2, we presented solutions of the KP1 equation in the form of line solitons interacting with
individual lumps. The KP1 equation also has solutions describing infinite sequences of lumps, known as
lump chains [15,23,24]. Lump chains can interact with line solitons in a manner similar to individual lumps.
Below we present several examples of such interactions in terms of the Grammians and the corresponding
τ -functions.

3.1. Lump chain

To construct an isolated lump chain, we follow the method of [15] and consider, as the generating
function, the Grammian τ -function (9) with M = 1 and c11 = 0. Let us choose two real-valued spectral
parameters a1 < a2, real-valued phases ρ1 and ρ2, and the ψ-function in the form

ψ(x, y, t) = ψ1(x, y, t) =
√
2a1 exp[φ(x, y, t, a1) + ρ1] +

√
2a2 exp[φ(x, y, t, a2) + ρ2]. (32)

Then, we can calculate the corresponding τ -function as

τc(x, y, t) =

x∫
−∞

|ψ(x′, y, t)|2 dx = exp(2F1) + exp(2F2) + C4 exp(F1 + F2) cos
[(
a21 − a22

)
y
]
, (33)

where
F1(x, t) = a1x− 4a31t+ ρ1, F2(x, t) = a2x− 4a32t+ ρ2, C4 = 4

√
a1a2

a1 + a2
. (34)

The two exponentials exp(2F1) and exp(2F2) are equal along the vertical line in the (x, y) plane:

x = Vct− ρ12, Vc = 4(a21 + a1a2 + a22), ρ12 =
ρ1 − ρ2
a1 − a2

. (35)

Away from this line, one of the two exponentials is dominant and the corresponding solution u(x, y, t) is
exponentially small. Meanwhile, it can be shown that the term containing the cosine function is never
dominant. Hence, the solution is concentrated in a narrow strip along this line and consists of an evenly
spaced sequence of lumps. The lumps propagate to the right with the speed Vc. By an appropriate choice of
the spectral parameters, this solution can be represented in two forms [22]. One of them describes a line of
lumps periodic in the y direction and moving along the x direction:

τ = cosh
(
kξ

√
Vc

)
−

√
1− 4k2

1− k2
cos

(
y
kVc√
3

√
1− k2

)
, (36)

where ξ = x − Vct and |k| < 1/2. Another solution can be obtained from the previous one by replacing
k = iκ. It describes a line of lumps periodic in the direction of motion (x direction):

τ = cos
(
κξ

√
Vc

)
+

√
1 + 4κ2

1 + κ2
cosh

(
y
κVc√
3

√
1 + κ2

)
. (37)

Both of these solutions reduce to the solution for a lump when k → 0 or κ → 0. Then the degenerate solution
becomes

τ = 3V ξ2 + V 2y2 + 9. (38)
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3.2. Line soliton radiating a lump chain

Let us choose again two real-valued spectral parameters a1 < a2 and real-valued phases ρ1 and ρ2,
but now we modify the τ -function in Eq. (33) by setting c11 = 1:

u(x, y, t) = 2
∂2

∂x2
log

{
1 + exp(2F1) + exp(2F2) + C4 exp(F1 + F2) cos

[(
a21 − a22

)
y
]}

. (39)

The new τ -function τ(x, y, t) = 1 + τc(x, y, t) has three terms that may be dominant, namely, 1, exp(2F1),
and exp(2F2). The relative values of these terms depend on the relationship between x and t:

exp[2F2(x, t)] > exp[2F1(x, t)] if x > Vct− ρ12,
exp[2F2(x, t)] < exp[2F1(x, t)] if x < Vct− ρ12;

exp[2F1(x, t)] > 1 if x > 4a21t− ρ1/a1,
exp[2F1(x, t)] < 1 if x > 4a21t− ρ1/a1;
exp[2F2(x, t)] > 1 if x > 4a22t− ρ2/a2,
exp[2F2(x, t)] < 1 if x > 4a22t− ρ2/a2.

Since 4a21 < 4a22 < Vc ≡ 4(a21 + a1a2 + a22), for sufficiently large positive t, the dominant terms in the
τ -function are as follows in the order of increasing x:

1 if x < 4a21t− ρ1/a1;
exp(2F1) if 4a21t− ρ1/a1 < x < Vct− ρ12;
exp(2F2) if x > Vct− ρ12.

(40)

Along the vertical line x = 4a21t− ρ1/a1, we have 1 ∼ exp(2F1)  exp(2F2). This corresponds to a
line soliton moving with the speed Vs1 = 4a21. Similarly, along the vertical line x = 4a21t − ρ1/a1, we have
exp(2F1) ∼ exp(2F2)  1, so that τ(x, y, t) ≈ τc(x, y, t), which corresponds to a lump chain moving with
the speed Vc. Away from these two lines, the solution is exponentially small.

For sufficiently large negative t, the dominant terms in the τ -function are

1 if x < 4a22t− ρ2/a2; exp(2F2) if x > 4a22t− ρ2/a2. (41)

This corresponds to a line soliton moving with the speed Vs2 = 4a22 along the vertical line x > 4a22t− ρ2/a2
where 1 = exp(2F2)  exp(2F1). The solution is exponentially small away from this line.

Hence, the solution has the following structure. For t < 0, there is a line soliton traveling with the
speed Vs2 = 4a22. At a certain moment of time, the soliton radiates a vertical chain of lumps periodic in
the y direction, which propagates away from the original soliton with the speed Vc > Vs2 and the other line
soliton moving with the lower speed Vs1 = 4a21. Such a solution was obtained for the first time in [13]. We
note that if the spectral parameters λ1 and λ2 are complex-valued, then the solution consists of a bent line
soliton emitting a lump chain at an angle (see [15]). As λ1 and λ2 become real-valued, the triple point at
which the lump chain is emitted goes to infinity.

3.3. Line soliton absorbing a lump chain

There is an inverse process when a line soliton absorbs a periodic lump chain. To derive such a
solution, we choose the following parameters: a1 < a2, the real phases ρ1 and ρ2, and M = 2. We also
assume that cjk is a rank one matrix with c22 = 1 and the other elements cjk = 0. Then we choose the
following auxiliary functions:

ψ1(x, y, t) =
√
2a1 exp[φ(x, y, t, a1)] +

√
2a2 exp[φ(x, y, t, a2)],

ψ2 =
√
2a1 exp[φ(x, y, t, a1)]. (42)
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Fig. 7. Absorption of a periodic chain of lumps by a line soliton. The amplitudes of lumps are Al = 3.2,
the amplitude of the initial line soliton is As1 = 2a21 = 0.32, the amplitude of the resulting line soliton is
As2 = 2a22 = 0.5, t = −30, and −100 ≤ x ≤ 0 (a), t = 0 and −50 ≤ x ≤ 50 (b), and t = 30 and
−25 ≤ x ≤ 75 (c). On all panels, −100 ≤ y ≤ 100.

A straightforward calculation shows that the τ -function in this case is given by

τ(x, y, t) = exp(2F1) + exp(2F2) + C4 exp(F1 + F2) cos
[(
a21 − a22

)
y
]
+ C5 exp(2F1 + 2F2), C5 =

(a1 − a2)
2

(a1 + a2)2
.

(43)
The three terms to be compared in the τ -function are exp(2F1), exp(2F2), and C5 exp(2F1 + 2F2). An
analysis similar to that presented above shows that for the large positive t there exists a single line soliton
moving with the speed Vs2 = 4a22, while for the large negative t there exists a line soliton moving with the
speed Vs1 = 4a21 and a lump chain moving with the speed Vc. At a certain moment of time, the lump chain
is absorbed by the line soliton, causing its speed to increase from Vs1 to Vs2. This process is illustrated by
Fig. 7. In Fig. 7a for t = −30, one can see a fragment containing two lumps on the left and a line soliton at a
long distance from the lump chain on the right. In Fig. 7b for t = 0, one can see the lump chain approaching
the line soliton which becomes noticeably modulated. In Fig. 7c for t = 30, there is only one line soliton
which has absorbed the lump chain and now moves with a higher speed and a larger amplitude.

3.4. Line solitons exchanging a lump chain

Finally, let us construct a solution consisting of two line solitons exchanging a chain of lumps in the
process of their interaction. As above, we set M = 2, choose the spectral parameters a1 < a2 and the real
phases ρ1, ρ2, and ρ3, and use the auxiliary functions

ψ1(x, y, t) =
√
2a1 exp[φ(x, y, t, a1) + ρ1] +

√
2a2 exp[φ(x, y, t, a2) + ρ2],

ψ2(x, y, t) =
√
2a1 exp[φ(x, y, t, a1) + ρ3]. (44)

We now set cjk = δjk. A calculation shows that the τ -function in this case is

τ(x, y, t) = 1 + (1 + C6) exp(2F1) + exp(2F2) + C4 exp(F1 + F2) cos
[(
a21 − a22

)
y
]

+C5C6 exp(2F1 + 2F2), (45)

where

C4 = 4

√
a1a2

a1 + a2
, C5 =

(a1 − a2)
2

(a1 + a2)2
, C6 = exp[2(ρ3 − ρ1)].

The four terms in the τ -function that may be dominant are 1, (1 + C6) exp(2F1), exp(2F2), and
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Fig. 8. Exchange-type interaction of two line solitons with the parameters a1 = 0.4 and a2 = 0.5 (the
corresponding amplitudes As1 = 0.32 and As2 = 0.5) if the lump amplitudes amount to Al = 3.2: t = −80
and −90 ≤ x ≤ 10 (a), t = 16 and −14.4 ≤ x ≤ 85.6 (b), and t = 120 and 50 ≤ x ≤ 150 (c). On all panels,
−100 ≤ y ≤ 100.

C5C6 exp(2F1 + 2F2), and the solution is nonvanishing near the lines along which two of these terms are
equal and greater than the other two.

To simplify the exposition, we set ρ1 = − log(1 + C6)/2 and ρ2 = 0, which can be achieved by
translating in x and t. To find the dominant term, we analyze the possible equalities (we consider only the
case where C6 is small, so the dominant pair cannot be 1 and C5C6 exp(2F1 + 2F2)):

1 = (1 + C6) exp(2F1) when x = x1(t) = 4a21t;
1 = exp(2F2) when x = x2(t) = 4a22t;

(1 + C6) exp(2F1) = C5C6 exp(2F1 + 2F2) when x = x3(t) = 4a22t+ [log(1 + C−1
6 )− logC5]/(2a2);

exp(2F2) = C5C6 exp(2F1 + 2F2) when x = x4(t) = 4a21t+ [log(1 + C−1
6 )− logC5]/(2a1);

(1 +C6) exp(2F1) = exp(2F2) when x = x5(t) = Vct.

Carefully analyzing the relative values of the terms for different x, we see that there are three possi-
bilities, depending on the time t.

1. If t < 0, then 1 is dominant for x < x2(t), exp(2F2) is dominant for x2(t) < x < x4(t), and
C5C6 exp(2F1 + 2F2) is dominant for x4(t) < x. Then it follows that there exist a line soliton moving with
the speed Vs2 = 4a22 on the vertical line x = x2(t) and a parallel soliton moving with the speed Vs1 = 4a21
along x = x4(t), as is seen in Fig. a.

2. Let t0 =
(
log(1 + C−1

6 )− logC5

)
/8a1a2(a1 + a2). If 0 < t < t0, then 1 is dominant for x < x1(t),

(1 + C6) exp(2F1) is dominant for x1(t) < x < x5(t), exp(2F2) is dominant for x5(t) < x < x4(t), and
C5C6 exp(2F1 + 2F2) is dominant for x4(t) < x. Then there are line solitons moving along x = x1(t) and
x = x4(t) with the same speed Vl = 4a21, while along the line x = x5(t) there is a lump chain moving with
the speed Vc, as is seen in Fig. 8b.

3. If t > t0, then 1 is dominant for x < x1(t), (1 + C6) exp(2F1) is dominant for x1(t) < x3(t), and
C5C6 exp(2F1 + 2F2) is dominant for x3(t) < t. Hence, there exist a line soliton moving with the speed
Vs1 = 4a21 along x = x1(t) and a line soliton moving with the speed Vs2 = 4a22 along x = x3(t), as is seen in
Fig. 8c.

Summarizing the described process of the soliton interaction, we see that the solution has the following
structure. A line soliton with the speed Vs2 = 4a22 at minus infinity approaches a slower moving soliton with
the speed Vs1 = 4a21. At t = 0, the left-hand soliton emits a lump chain and slows down to Vs1 = 4a21. The
lump chain propagates with the speed Vc and at t = t0 is absorbed by the right-hand soliton, accelerating it
up to the speed Vs2 = 4a22. The lifespan t0 of the lump chain increases logarithmically, as C6 → 0. In this
limiting case, the solution based on the τ -function (45) reduces to the solution (39) describing radiation of
a lump chain by a line soliton.
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The solution describing absorption of a lump chain by a line soliton and based on the τ -function (43)
can be obtained in another limiting case. To this end, we present the τ -function (45) in the form

τ(x, y, t) = C6

{
1

C6
[1 + exp(2F1) + exp(2F2)] + exp(2F1)

+
C4

C6
exp(F1 + F2) cos

[(
a21 − a22

)
y
]
+C5 exp(2F1 + 2F2)

}
,

assuming that the coordinate x in the functions F1(x, t) and F2(x, t) is shifted to the right by an arbitrary
value x0. The constant factor C6 can be omitted as it does not contribute to the solution in terms of u(x, y, t).
Consider then the limit when ρ3 → ∞, ρ2 → −∞, ρ1 → ∞, and x0 → −∞ such that ρ1 = ρ3 − p1 + p2,
ρ2 = a2(−ρ3 + 2p1 − p2)/a1 − p3, and x0 = (−ρ3 + 2p1 − p2)/a1, where p1, p2, and p3 are some constants.
Then, C6 → ∞ and the τ -function reduces to Eq. (43).

Note that the described process of exchange-type interaction of two line solitons is very similar to the
interaction of two line solitons within the framework of the Korteweg–de Vries equation when the ratio of
their amplitudes at infinity is such that A1/A2 < 2.62. Within the framework of the KP1 equation, both
of these processes can occur. The interaction of the Korteweg–de Vries type occurs when two line solitons
are unperturbed at infinity, whereas the interaction of the Kadomtsev–Petviashvili type by means of a lump
chain is apparently a special case where one of the line solitons has a specific infinitesimal modulation along
its front. However, there is one important feature that demonstrates a large difference in the interaction
of line solitons of the Korteweg–de Vries type and the Kadomtsev–Petviashvili type. It is well known (see,
e. g., [16]) that Korteweg–de Vries solitons undergo a phase shift after interaction, and the phase shift of each
soliton is determined entirely by the spectral parameters a1 and a2:

(ΔxKdV)1,2 =
1

a1,2
log

∣∣∣∣a1 − a2
a1 + a2

∣∣∣∣. (46)

However, when two KP1 line solitons exchange a lump chain, the phase shift is determined by not only the
spectral parameters, but also the parameters ρ1 and ρ3:

(ΔxKP)i = (ΔxKdV)i −
1

2ai
log

{
1 + exp[2(ρ1 − ρ3)]

}
, i = 1, 2. (47)

This phase shift may be arbitrarily large. By analyzing the phase shift at plus and minus infinity, we are
able to recognize whether the KP1 solitons interacted according to the Korteweg–de Vries approximation or
they exchanged a lump chain.

4. CONCLUSIONS

Thus, in this paper, we have described the elementary acts of interactions of line solitons with lumps
and with each other by means of lumps within the framework of the KP1 equation. Such interactions are
impossible within the framework of the KP2 equation applicable to media with the negative dispersion. Our
description is based on the presentation of solutions in terms of the τ -function and the Grammian. We have
studied lump emission and absorption by a line soliton, interaction of a lump and a line soliton, resonant
interaction of line solitons through a lump and a lump chain, and emission and absorption of a periodic
chain of lumps by a line soliton. In a similar way, one can study more complex dynamics of line solitons and
lumps. Some results in this direction have been obtained in [18–20].

Note that the “sudden” appearance of a lump between two line solitons and its subsequent disappear-
ance after absorption by the second line soliton can be treated formally as the rogue-wave formation. Indeed,
in our variables, the lump amplitude is eight times greater than the amplitude of a plane soliton, whereas
according to the widely accepted criterion [25], the rogue wave is such a wave whose amplitude is two or
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more times greater than the average amplitude of background waves.
In conclusion, it is worth noting that the KP1 equation has infinitely many integrals of motion,

although the set of such integrals is apparently incomplete [3]. The first integrals of this set (mass, mo-
mentum, and energy) play an important role in physical applications. In this set, the simplest one is the
mass-conservation integral over the whole (x, y) plane:

Im =

∫∫
D

u(x, y, t) dx dy.

This improper double integral does not satisfy the condition of the Fubini theorem for the lump solution (6)
because the function u(x, y, t) does not vanish sufficiently rapidly when x2 + y2 → ∞. Therefore, the result
of integration depends on the order of integration over x and y. The higher-order integrals, including the
integral of energy and the Hamiltonian, which contain u(x, y, t) in degrees higher than 2, are well defined
and can be evaluated with the help of the Fubini theorem.
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