
Theoretical and Mathematical Physics, 202(3): 285–294 (2020)

INTEGRATION OF A DEEP FLUID EQUATION WITH A FREE

SURFACE

V. E. Zakharov∗

We show that the Euler equations describing the unsteady potential flow of a two-dimensional deep fluid

with a free surface in the absence of gravity and surface tension can be integrated exactly under a special

choice of boundary conditions at infinity. We assume that the fluid surface at infinity is unperturbed,

while the velocity increase is proportional to distance and inversely proportional to time. This means

that the fluid is compressed according to a self-similar law. We consider perturbations of a self-similarly

compressible fluid and show that their evolution can be accurately described analytically after a conformal

map of the fluid surface to the lower half-plane and the introduction of two arbitrary functions analytic

in this half-plane. If one of these functions is equal to zero, then the solution can be written explicitly.

In the general case, the solution appears to be a rapidly converging series whose terms can be calculated

using recurrence relations.
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1. Problem statement

The results obtained in this paper are not new. They were repeatedly reported at scientific conferences,
the last time at the Russian–French symposium on mathematical hydrodynamics held in August 2016 in
Novosibirsk [1]. But these results are published for the first time. The obtained solution coincides with the
solution recently obtained by Karabut and Zhuravleva [2] in a somewhat different way.

It is well known that the “shallow water” equations generate many integrable systems, in particular,
the Korteweg–de Vries equation, the Boussinesq equation, the Kaup–Broer system of equations, and the
nonlinear Schrödinger equation. The (2+1)-dimensional generalizations of these systems—the Kadomtsev–
Petviashvili equation and the Davey–Stewartson equation—are also integrable. These results can be found
in standard monographs devoted to the method of the inverse scattering problem (see, e.g., [3]). It was
recently shown that a (2+1)-dimensional generalization of the Kaup–Broer model is also integrable [4]. In
this connection, the question naturally arises about the integrability of the equations of a deep fluid.

The hypothesis of the integrability of the deep-fluid equations, moreover in the presence of gravity, was
first formulated in [5], where small-amplitude waves were studied and it was established that in the leading
order of the perturbation theory, waves traveling in one direction cannot generate waves propagating in
the opposite direction. This result was recently strengthened [6]: it turns out that the total wave actions
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of waves propagating in different directions are integrals of motion. It is still unknown whether this result
can be extended to waves of finite amplitude, but it turned out that there are completely different integrals
of motion [7], [8] not yet physically interpreted. Their number is not fixed but depends on the initial
conditions. Nevertheless, their existence is confirmed by detailed numerical experiments. There are also
exact solutions describing capillary waves of arbitrary amplitude [9].

Here, we consider a deep fluid without gravity and surface tension. We show that if several artificial
boundary conditions are imposed at infinity, then the Euler equation describing this fluid can be integrated
exactly. Unfortunately, it is not yet possible to replace the “artificial” boundary conditions with “natural”
ones. But the obtained results are undoubtedly interesting from the standpoint of mathematics. In addi-
tion, we can hope that they can be used to describe the behavior of small-scale perturbations against the
background of large-scale ones, and this will already have significant practical benefits.

2. Basic equations

We consider the potential flow of a deep fluid in (1+1)-geometry. The fluid occupies the area

−∞ < x < ∞, −∞ < y < η(x, t), div v = 0. (1)

The flow is potential, v = ∇Φ, and the potential satisfies the Laplace equation ΔΦ = 0 and the Bernoulli
equation

∂Φ
∂t

+
1
2
(∇Φ)2 + P = 0. (2)

On the surface, the kinematic conditions

∂η

∂t
+

∂Φ
∂x

∂η

∂x
=

∂Φ
∂y

∣
∣
∣
∣
y=η

(3)

and dynamical conditions

P = 0,
∂Φ
∂t

+
1
2
(∇Φ)2 = 0

∣
∣
y=η

(4)

hold. If the fluid surface is flat and stationary (such that η = 0), then the conditions give

∂Φ
∂y

∣
∣
∣
∣
y=0

= 0,
∂Φ
∂t

+
1
2

(
∂Φ
∂x

)
2
∣
∣
∣
∣
y=0

= 0. (5)

The only nontrivial solution of Bernoulli equation (2) satisfying conditions (5) has the form

Φ =
1
2

(x − x0)2 − y2

t − t0
, P = − y2

(t − t0)2
, (6)

where x0 and t0 are arbitrary constants.
Formulas (6) give a unique nontrivial solution of the unsteady Bernoulli equation that does not disturb

the free surface of the fluid. We set x0 = 0 and t0 = 0. Then

Φ =
1
2

x2 − y2

t
. (7)

This solution is a special case of a more general class of self-similar solutions

η = tαF

(
x

tα

)

, Φ = t2α−1Φ
(

x

tα
,

y

tα

)

, (8)

where α is an arbitrary real constant. In the considered case, α = 0 and F ≡ 0. The choice α = 3 leads to
a solution of the Dirichlet class with a parabolic surface profile. If α = 2, then self-similar substitution (8)
is compatible with the equation in the presence of gravity.

We note that the equations in this section are invariant under the change t → −t, Φ → −Φ, y → −y,
and η → −η. Therefore, it suffices to consider the case t > 0.
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3. Conformal map

We conformally map the region occupied by the fluid on the physical plane z = x + iy to the complex
half-plane w = u + iv, v < 0, using a function Z = Z(w, t) that is analytic in the lower half-plane. We
assume that such functions have a given power-law asymptotic behavior in the lower half-plane as v → −∞.
They are then completely determined by their values on the real axis, from which they can be continued
to the entire complex plane.

Kinematic boundary condition (3) generates the equation

ZtZu − ZtZu + Φu − Φu = 0. (9)

It is convenient to write dynamical boundary condition (4) in the form

ΨtZu − ΨuZt +
1
2

Φ
2

u

Zu

= 0, (10)

where
Ψ =

1
2
(Φ + Φ ). (11)

A detailed derivation of these equations can be found in [10], [8]. We note that the complex velocity Vz has
the form

V = Φz =
Φu

Zu
. (12)

Equations (9) and (10) have the exact solution

Z = Z0 = (t − t0)u, Φ = Φ0 =
1
2
(t − t0)u2. (13)

In this case, Z = Z and Φ = Φ = Ψ.
Now

V =
x

t − t0
. (14)

Therefore, this solution is a conformal image of the self-similar solution constructed above. We emphasize
that this solution describes a contracting fluid for t < t0 and an expanding fluid for t > t0. In what follows,
we consider only the case of an expandable fluid t > t0. Solutions in the case of a compressible fluid can be
obtained by replacing the variables described above.

At t = t0, the solution has a singularity, and the pressure becomes infinite in the entire volume of the
fluid. Therefore, the solution has a physical meaning only for t �= t0. Nevertheless, solution (13) can be
regarded as the first terms of the Taylor expansion of a more general locally analytic solution of Eqs. (9)
and (10).

We now consider the perturbation Z = Z0 + Z̃(u), Φ = Φ0 + Φ̃(u) of solution (13). The perturbations
Z̃(u) and Φ̃(u) are analytic in the lower half-plane and decrease sufficiently rapidly as u → ∞. Further, we
simplify the notation and set t − t0 = τ and ∂/∂t = ∂/∂τ , τ > 0.

Further, we assume that

Z → uτ + Z, Φ → 1
2

uτ2 + Φ. (15)

The corrections Z and Ψ satisfy the equations

Φu − uZu + τZτ + ZτZu − ZτZu = Φu + τZτ − uZu, (16)

1
2
τΦt − uτZt +

1
2
u2Zu − 1

2
uΦu + ΨtZu + ZtΨu = −τ

2
Φτ +

1
2
uΦu +

1
2

(uτ + Φu)2

τ + Zu

− 1
2
u2τ. (17)
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On the lower half-plane, we introduce the projection operator P− = (1 + iĤ)/2, where Ĥ is the Hilbert
transform. We require that applying the operator P− to Eqs. (16) and (17) lead to the right-hand sides
vanishing. Equations (16) and (17) are then simplified:

Φu − uZu + τZτ = A, (18)

τ
∂

∂τ
(Φ − uZ) = uA − B, (19)

where

A = P−(ZτZu − ZτZu), (20)

B = ΦτZu − ΦuZτ + P−(ΦτZu − ΦuZτ ). (21)

The right-hand sides of Eqs. (16) and (17) vanish if we require that

P−(u2Zu) = 0, (22)

P−(uΦu) = 0. (23)

Equations (18) and (19) have a simple solution that we say is elementary. Let Z and Φ be independent
of τ . Then A = 0, B = 0, and Eq. (19) is satisfied automatically. Equation (18) is satisfied if we set

Z = α(u), Φ = ∂−1uαu(u), (24)

where α(u) is an analytic function in the lower half-plane and satisfies condition (22). Condition (23) is
then automatically satisfied.

We study the elementary solutions in the next section. In the meantime, we consider more general
solutions. We assume that the general solution is represented by a series in inverse powers of τ :

Z =
∞∑

n=0

Zn

τn
, Φ =

∞∑

n=0

Φn

τn
. (25)

The nonlinear terms A and B can also be expanded in inverse powers of τ , but their expansion contains
only lower-order terms,

Zn =
1

n − 1
An +

1
n(n − 1)

∂

∂u
(Bn − uAn). (26)

The term Φn is determined from the equation

Φn = uZn − 1
n

(uAn − Bn). (27)

The nonlinear terms An and Bn include the coefficients Zk and Φk for k ≤ n − 1, and the expressions for
Zn and Φn are therefore recurrence relations. As n → ∞, the expressions for Zn and Φn arise as a result
of division by large numbers. They therefore decrease exponentially as n increases, and series (25) hence
converge at any finite value of τ .

For n = 2, we have

A2 = −P−(Z1α − ᾱZ1), B2 = −P−(ūZ1α − uᾱZ1), (28)

and the remaining terms in the expression for B2 cancel.
The rapid decay of Zn and Φn means that the general solution is constructed explicitly from two

arbitrary analytic functions α(u) and Z1(u).
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4. Elementary solutions

We consider the elementary solution determined by the function α(u). Because this function continues
analytically to the lower half-plane, we use the notation α(w), w = u + iv. In the general case,

Z = w(t − t0) + α(w), Zw = t − t0 + αw, (29)

Φ =
1
2

w2(t − t0) + ∂−1wαw, Φw = w(t − t0 + αw), (30)

ΦZ = V =
Φw

Zw
= w, (31)

where V = ux − ivy is the complex velocity, which turns out to coincide with the conformal variable w in
the case of elementary solutions.

Equation (29) defines w = w(z, t). This is a function defined on the physical plane and analytic in the
area occupied by the fluid.

We differentiate Eq. (29) with respect to z and t sequentially:

∂w

∂z
(t − t0 + α′(w)) = 1,

w + (t − t0 + α′(u)wt) = 0.

(32)

The equation
∂w

∂t
+ w

∂w

∂z
= 0 (33)

follows from relations (32), i.e.,
∂V

∂t
+ V

∂V

∂z
= 0. (34)

Identities (33) and (34) extend to the entire area of the physical plane occupied by the fluid. In addition,
the boundary condition

V → z

t − t0
, |z| → ∞, (35)

is satisfied.
In Eq. (34). we separate the real and imaginary parts using the relations

∂Vx

∂x
= −∂Vy

∂y
,

∂Vx

∂y
=

∂Vy

∂x
. (36)

We obtain
∂Vx

∂t
+ Vx

∂Vx

∂x
− Vy

∂Vx

∂y
= 0,

∂Vy

∂t
+ Vx

∂Vy

∂x
− Vy

∂Vy

∂y
= 0.

(37)

Comparing with the standard Euler equations, we obtain the results

∂

∂x
(P + V y2) = 0,

∂

∂y
(P + V 2

y ) = 0. (38)
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Integrating relations (38) gives P = −Vy.
Equation (34) was independently obtained by Karabut and Zhuravleva [1]. We do not use this equation

further and return to Eq. (29) considering it on the real axis, i.e., setting w = u.
We now have

Z = u(t − t0) + α(u). (39)

Let

α(u) =
N∑

n=0

An

u − iv
(40)

be a rational function (we do not consider the case of multiple poles). If α(u) is a rational function, then the
real and imaginary parts of Z are related by an algebraic curve of genus zero for which there are inevitably
singular points. On the real plane (x, y), they are manifested as points of self-intersection. Therefore,
Eq. (39) in this case naturally describes the appearance of drops and bubbles.

To satisfy condition (22), we must require the condition

∑

An = 0, (41)

but this condition can be relaxed if at least one of the poles tends to infinity. We consider the simplest
case of a single pole located on the imaginary axis. We assume that the residue at this pole is real. Then
Eq. (39) becomes

Z = ut +
A

u − ia
, a > 0. (42)

Separating the real and imaginary parts, we obtain

x = ut +
Au

u2 + a2
, (43)

y =
aA

u2 + a2
. (44)

The coordinates x and y satisfy the equation of an algebraic curve F (x, y) = 0,

F (x, y) = ay[x2 + (y + at)2] − A(y + at)2 = 0. (45)

The function x(u) is odd, while the function y(u) is even. As a result, we find that y(x) is also an even
function, y(−x) = y(x).

Formula (44) shows that y(x) has the same sign as A. If A > 0, then

0 < y(x) < ymax, ymax =
A

a
, (46)

and as |x| → ∞, we have the asymptotic behavior

y → aAt2

x2 + a2t2
. (47)
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We consider the equation x(u) = 0 and recall that t > 0. If A > 0, then this equation has a unique
solution u = 0. But if A is negative, A = −|A|, then in the time interval

0 < t <
|A|
a2

, (48)

there are two more solutions

u = ±
√

A

a2
− t. (49)

In this time interval, curve point (45) is located on the negative segment of the imaginary axis at the point

y0 = −at > −ymax. (50)

At this point, the self-intersection of the surface occurs, and conformal transformation (42) ceases to be
reversible. Until now in [10], [8], we avoided ambiguous reversible conformal transformations, but this does
not mean that they have no physical meaning. Physically, the ambiguity of a conformal transformation
means the existence of a bubble. At t = 0, the bubble has the shape of a circle touching the horizontal
surface from below (we recall that we consider the case A < 0). As time increases, the bubble decreases
and completely disappears at

t0 = − A

a2
. (51)

At this instant, a singularity that looks like a Whitney fold forms on the surface,

y = −ymax +
(

A

a
x2

)1/3

. (52)

For A > 0, the conformal transformation is nonsingular for all t > 0, but there is a singularity at the time
t = 0. The surface is a round drop of radius A/(2a). Curve (45) takes the simple form

F (x, y) = y

[

x2 +
(

y − 1
2

A

a

)2

− 1
4

A2

a2

]

= 0. (53)

For t > 0, x(u) is a single-valued function, and the drop turns out to be connected with the main surface
by a “stem.” To describe the formation of a drop at negative times, we can use the reflection of time and
the vertical coordinate described in Sec. 2. The end result is that we can set A = a = 1 and at all times
use the equations

x = u

(

t +
1

u2 + a2

)

, y =
1

u2 + a2
. (54)

The numerical solution of these equations is shown in Figs. 1 and 2.
For A < 0, solution (42) describes the formation of a bubble. The corresponding plots can be obtained

by replacing y → −y and t → −t.
We note that in the region of times satisfying condition (48), the conformal map

Z = wt +
A

w − ia
(55)
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Fig. 1. The appearance of a drop.

stops mapping the negative half-plane Imw < 0 onto a simply connected region because the expression

∂Z

∂w
= t − A

(w − ia)2
(56)

acquires a zero in the negative half-plane.
The question of the physical realizability of the obtained solutions in the domain of ambiguous re-

versibility of conformal transformation (55) needs additional research. But in the domain of its uniqueness
outside interval (48), it is beyond doubt. In this domain, the inverse transformation, which determines the
complex velocity, is given by solving quadratic equation (55),

w =
Z + iat +

√

(Z − iat)2 − 4At

2t
, (57)

as Z → ∞ and w → Z/t in accordance with the above theory. In this paper, we do not discuss the question
of whether the second solution of this equation has a physical meaning.
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Fig. 2. The disappearance of a drop.

5. Conclusion

Although the results are somewhat exotic, they are a strong argument in favor of the hypothesis that
deep-fluid equations are integrable, at least in the absence of gravity and surface tension. The solution
previously obtained by Karabut and Zhuravleva [11]–[13], which is also somewhat exotic, agrees with our
result here. In both cases, exact solutions of the Euler equations are obtained. And as L. D. Landau said,
exact solutions adorn life.

We note that the Hopf equation for a deep fluid already existed in [14]. It was not “exotic,” because
the boundary conditions were standard. But it is approximate.

Some of the results published here were independently obtained by Zubarev and Karabut [15].
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