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Abstract—A new algorithm is used for detailed numerical study of the evolution of isotropic swell in a homo-
geneous ocean. It is shown that the Zakharov-Filonenko spectrum occurs in an explosive manner in a short
time. The Kolmogorov constant of the solution is estimated numerically.
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1. INTRODUCTION
This article is a continuation of the previous article

of two authors [1], devoted to the same issue. In both
articles, a numerical solution of the kinetic equation
for water waves (the Hasselmann equation) is per-
formed in the absence of wind forcing, i.e. the evolu-
tion of a free ocean swell is reproduced. The difference
from the article [1] is the use of a new numerical algo-
rithm. In the previous article, we used the Resio-Tracy
code [2], improved and used by our group for a long
time. In this paper, we use a completely new code
developed by one of the authors (V. V. Geogjaev).
Details of the algorithm have not yet been published,
but the new code is significantly more accurate and
faster than the one we already used [3].

The new code allows us to convincingly confirm
the conclusions of the weakly turbulent theory of wind
waves in their full and in the important details. Note
that a comparison with the experiment of the main
predictions of this theory has already been done in [1].
Thus, this article is primarily of theoretical value. The
main results obtained in this article are as follows:

1. For moderate values of initial steepness
( ), the power-law asymptotic spectrum 
arises over several hundred periods of the initial waves,
i.e. almost an order of magnitude faster than dimen-
sional estimates predict. The establishment of the
asymptotic occurs in an explosive way, in a finite time.

2. The Kolmogorov constant found in the numeri-
cal experiments agrees perfectly well with the analyti-

μ < .0 1 −ε ω�

4

14

aSkolkovo Institute of Sicence and Technology, Moscow, 121205 
Russia
bShirshov Institute of Oceanology, Russian Academy of Sciences, 
Moscow, 117997 Russia
*e-mail: vvg@mail.geogjaev.ru
**e-mail: zakharov@math.arizona.edu
***e-mail: badulin.si@ocean.ru
cal estimate of the stationary theory presented in [3].
In addition, the work shows that the new numerical
method for the Hasselmann equation has good pros-
pects.

2. WEAK TURBULENCE THEORY
OF OCEAN WAVES (WTT)

The history of the weak turbulence theory (WTT)
has began with the work of Phillips [4], who suggested
that the four-wave interaction is the main physical
process for the sea surface waves. For four waves (a
quadruplet) to interact their wave vectors should obey
the resonance conditions

(1)

(  is the dispersion law of deep water waves).
In 1962, Klauss Hasselmann derived the kinetic

equation for the wave action spectrum  [5–7]. Tak-
ing into account the wave generation by wind and dis-
sipation due to wave breaking, the kinetic equation
takes the form

(2)

Here  describes the wind wave generation,  is
the term of dissipation by wave breaking,  rep-
resents the effect of nonlinear interactions of waves
obeying the Phillips resonance conditions (1). The 
term naturally splits into “pumping” and “damping”
terms of [8]:
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(5)

The kernel  is a homogeneous function of
degree 3 that obeys the symmetry conditions. Its sim-
plest expression can be found in [3].

The explicit form of the non-conservative terms 
and  was a subject of long-lasted discussion (see,
for example, [2]). However, it has now been decisively
shown [8, 9] that these terms, as a rule, are an order of
magnitude smaller than the partial terms of pumping
and damping  and  in . Therefore, the build-
ing of a consistent analytical theory of wind waves
(such a program was presented in [10], [11]) should
begin with a thorough study of the temporal evolution
of a spatially uniform swell which is a solution to the
equation

(6)

We solved this equation in the general anisotropic
case in [1]. In this paper, we study the isotropic case in
detail. We assume that there is no wave action f lux
from the domain of very short waves. Then the total
wave action

(7)

is a true integral of motion, whereas the energy

(8)

is being lost due to the f lux into the region of large
wave numbers by Kolmogorov cascade. Moreover, the
only solution to the stationary equation  is

(9)

This is the Zakharov–Filonenko spectrum, first
found in [12].  is a dimensionless Kolmogorov con-
stant, according to [3] .

3. NUMERICAL EXPERIMENTS
A numerical study was carried out for the idealized

problem of the evolution of a wave field in a homoge-
neous isotropic ocean in the absence of generation and
dissipation. The initial state corresponds to an isotro-
pic distribution localized in the frequency domain

(10)
Such a formulation allows one to minimize the num-
ber of parameters of the problem and focus oneself on
the quality issues of the algorithm for calculating the
collision integral , without being distracted by
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questions related to the nontrivial dependence of the
solutions on the angle (cf. [1]).

We used a logarithmic grid for frequency with an
increment  –  = 1.03344 (141 node). In
total, 49152 resonant quadruplets were chosen in a
special way to provide optimal coverage of the
domains of the most significant interactions [3]. For
the frequency spectrum of energy

(11)

the weakly turbulent Kolmogorov spectrum (the
Zakharov–Filonenko spectrum) has the form

(12)

The initial condition is step-like: , 0.1 <
,  outside this area. The charac-

teristic initial period is about  s. The initial
steepness turbulentdefined through the mean-over-
spectrum frequency 

(13)
A numerical experiment for a physical time of 200000 s
seconds (about 56 h) requires less than 2 h of computer
time and can easily be continued up to several million
seconds. The code is implemented for parallel com-
puting, which brings its performance closer to the
requirements of the today operational models of wind
waves.

As expected, the evolution of this initial condition
leads to the appearance of the Kolmogorov tail spec-
trum described by (12). The Kolmogorov asymptotic
behavior is established “in an explosive manner” in a
finite time. This experimental fact still needs a theo-
retical explanation. Based on the dimensional argu-
ments, one has

(14)

which is an order of magnitude less than the experi-
mentally observed 3000 s. In Fig. 1 the initial spec-
trum and the result of its evolution are combined at

 s. It can be seen that the Kolmogorov asymp-
totic behavior is already fully developed for a time of
about 400 initial periods.

Figure 2 represents the compensated spectrum of
 at time  h. It can be seen that the

asymptotics (12) dominates at frequencies  rad/s
(period of about 1.5 s, wavelength 3.5 m).

It was shown [1] that the evolution of a wide class
of initial conditions leads to the establishment of a
self-similar solution:

(15)
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Fig. 1. Frequency spectra of energy at initial  and at

 s. Establishing a power-law distribution  is
clearly seen.
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Fig. 3. Normalized spectra of energy as functions of the
dimensionless frequency at different times (in legend, in
seconds).
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Our numerical experiment shows that the estab-
lishment of this regime requires a rather long time of
50000 s or more, i.e. more than 7000 initial wave peri-
ods. The establishment of a self-similar regime is
shown in Fig. 3 as the evolution of the spectra normal-
ized to the maximum value vs the dimensionless fre-
quency  (  is the frequency of the spectral
peak). Thus, the tendency to the self-similar spectral
shapes is markedly weaker than the establishment of
the Kolmogorov “tail” and the behavior of the integral
swell parameters. This feature was discussed in detail
in [1].

Figure 4 shows the evolution of the total energy and
frequency of the spectral peak in the conservative
kinetic equation (1). For 200000 s, no more than 30%
of energy is lost, however, this loss rate is enough to
form a weakly turbulent Kolmogorov spectrum. The
decrement  decreases with time.
The estimate of the dimensionless constant  gives

, which is consistent with the theoretical
value found in [1].

4. RESULTS AND CONCLUSIONS
As noted above, the main result is a demonstration

of weakly turbulent asymptotics for the numerical
solutions of the kinetic equation for water waves (the
Hasselmann equation). It is important, that the results
were obtained using a completely new numerical algo-
rithm developed by V. V. Geogjaev. This algorithm
allows one to get closer to the operational model
requirements at incomparably higher accuracy and
resolution of the scale of waves (in frequencies and
directions). Earlier the numerical studies of the prop-
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erties of solutions of the kinetic equation [13, 14] being
consistent with the main results of the theory of weak
turbulence, found fundamental constraints on Webb-
Resio-Tracy algorithm [2, 15] both in terms of accu-
racy and speed.

We emphasize that the developed algorithm uses its
own parametrization of resonant surface (1), which
makes it possible to more accurately describe spectral
f luxes and achieve higher performance with a rela-
tively small number of resonant quadruplets. This dis-
tinguishes it from other approaches, in particular,
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Fig. 4. Evolution of total energy and spectral peak fre-
quency in the conservative kinetic equation (1).

0.5

0.7

1.0

1.3

1000 10 000 100 000
0.5

0.7

1.0

1.3

E, m2 ω, rad/s

ωmax

E
1/11

t, s
from the versions of Discrete Interaction Approxima-
tion used in operational models.
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