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Preface

This book contains a selection of papers presented during the Thirty-Fifth “Work-
shop on Geometric Methods in Physics” (WGMPXXXV) and abstracts of lectures
given during the Fifth “School on Geometry and Physics”, which both took place
in Bia�lowieża, Poland, in the summer 2016. These two coordinated activities are
an annual event. Information on the previous and the upcoming occurrences and
related materials can be found at the URL: http://wgmp.uwb.edu.pl.

The volume is divided into four parts. It opens with a paper dedicated to the
memory of S. Twareque Ali – for many years an active member of the Organizing
Committee of our workshop who died suddenly in 2016. The second part, “Geom-
etry and Physics”, includes papers based on talks delivered during the workshop.
The third part, “Integrability and Geometry”, is based on the eponymous special
session, organized by G.A. Goldin, A. Odesskii, E. Previato, E. Shemyakova and
Th. Voronov. The final part contains extended abstracts of the lecture-series given
during the Fifth “School on Geometry and Physics”.

The WGMP is an international conference organized each year by the De-
partment of Mathematical Physics in the Faculty of Mathematics and Computer
Science of the University of Bia�lystok, Poland. The main theme of the workshops,
consistent with the title, is the application of geometric methods in mathematical
physics and it includes a study of non-commutative systems, Poisson geometry,
completely integrable systems, quantization, infinite-dimensional groups, super-
groups and supersymmetry, quantum groups, Lie groupoids and algebroids as well
as related topics. Participation in the workshops is open; the typical audience con-
sists of physicists and mathematicians from many countries in several continents
with a wide spectrum of interests.

Workshop and School are held in Bia�lowieża, a village located in the east of
Poland near the border with Belarus. Bia�lowieża is situated on the edge of the
Bia�lowieża Forest, shared between Poland and Belarus, which is one of the last
remnants of the primeval forest that covered the European Plain before human
settlement and was designated a UNESCO World Heritage Site. The peaceful at-
mosphere of a small village, combined with natural beauty, yields a unique environ-
ment for learning and cooperating: as a result, the core audience of the WGMPs has
become a strong scientific community, documented by this series of Proceedings.

The Organizing Committee of the 2016 WGMP gratefully acknowledges the
financial support of the University of Bia�lystok and the Belgian Science Policy Of-

http://wgmp.uwb.edu.pl
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fice (BELSPO), IAP Grant P7/18 DYGEST. Thanks also go to the U.S. National
Science Foundation for providing support to participants in the “Integrability and
Geometry” session of the event, Grant DMS 1609812. Last but not least, credit
is due to early-career scholars and students from the University of Bia�lystok, who
contributed limitless time and effort to setting up and hosting the event, aside
from being active participants in the scientific activities.

The Editors

Participants of the XXXV WGMP
(Photo by Tomasz Goliński)
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In Memory of S. Twareque Ali

Gerald A. Goldin

Abstract. We remember a valued colleague and dear friend, S. Twareque Ali,
who passed away unexpectedly in January 2016.

S. Twareque Ali in Bia�lowieża.
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1. Remembering Twareque

Syed Twareque Ali, whom we all knew as Twareque, was born in 1942, and died
in January 2016. This brief tribute is the second one I have prepared for him in
a short period of time. With each sentence I reflect again on his extraordinary
personality, his remarkable career – and, of course, on the profound influence he
had in my life. Twareque was more than a colleague – he was a close friend, a
confidant, and a teacher in the deepest sense.

When I remember Twareque, the first thing that comes to mind is his laugh-
ter. He found humor in his early changes of nationality: born in the British Empire,
a subject of George VI, Emperor of India, he lived in pre-independence India, be-
came a citizen of Pakistan, and then of Bangladesh – all without moving from
home. Eventually he became a Canadian citizen, residing with his family in Mon-
treal for many years.

Twareque’s laughter was a balm. In times of sadness or disappointment, he
was a source of optimism to all around him. His positive view of life was rooted
in deep, almost unconsciously-held wisdom. Although he personally experienced
profound nostalgia for those lost to him, he knew how to live with joy. He could
laugh at himself, never taking difficulties too seriously.

And he loved to tell silly, inappropriate jokes – which, of course, cannot be
repeated publicly. He introduced me to the clever novels by David Lodge, Changing
Places, and Small World, which satirize the academic world mercilessly. In Lodge’s
characters, Twareque and I saw plenty of similarities to academic researchers we
both knew in real life – especially, to ourselves.

Twareque was fluent in several languages, a true “citizen of the world.” He
loved poetry, reciting lengthy passages from memory in English, German, Italian,
or Bengali. In Omar Khayyam’s Rubaiyat, translated by Edward Fitzgerald, he
found verses that spoke to him. These are among them:

. . .

Come, fill the Cup, and in the Fire of Spring
The Winter Garment of Repentance fling:

The Bird of Time has but a little way
To fly – and Lo! the Bird is on the Wing.
. . .

A Book of Verses underneath the Bough,
A Jug of Wine, a Loaf of Bread – and Thou

Beside me singing in the Wilderness
Oh, Wilderness were Paradise enow!
. . .

The Moving Finger writes, and, having writ,
Moves on; nor all your Piety nor Wit

Shall lure it back to cancel half a Line,
Nor all your Tears wash out a Word of it.
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2. A short scientific biography

Twareque obtained his M.Sc. in 1966 in Dhaka (which is now in Bangladesh). He
received his Ph.D. from the University of Rochester, New York, USA, in 1973,
where he studied with Gérard Emch. Professor Emch remained an inspiration to
him for the rest of his life, and Twareque expressed his continuing gratitude. In
2007, together with Kalyan Sinha, he edited a volume in honor of Emch’s 70th
birthday [1]; and in 2015, he organized a memorial session for Emch at the 34th
Workshop on Geometric Methods in Physics in Bia�lowieża.

After earning his doctorate, Twareque held several research positions: at
the International Centre for Theoretical Physics (ICTP) in Trieste, Italy; at the
University of Toronto and at the University of Prince Edward Island in Canada;
and at the Technical University of Clausthal, Germany in the Arnold Sommerfeld
Institute for Mathematical Physics with H.-D. Doebner. He joined the mathematics
faculty of Concordia University in Montreal as an assistant professor in 1981,
becoming an associate professor in 1983 and a full professor in 1990.

During his career as a mathematical physicist, Twareque achieved wide recog-
nition for his scientific achievements. He was known for his studies of quantization
methods, coherent states and symmetries, and wavelet analysis. A short account
cannot do justice to his accomplishments; the reader is referred for more detail to
two published obituaries from which I have drawn [2, 3], and asked to forgive the
many omissions. I cannot do better than to quote the summary in another tribute
I wrote [4]:

“During the 1980s, Twareque worked on measurement problems in phase
space, and on stochastic, Galilean, and Einsteinian quantum mechanics [5,6] Then
he began to study coherent states for the Galilei and Poincaré groups, and col-
laborated with Stephan de Bièvre on quantization on homogeneous spaces for
semidirect product groups.

“There followed his extensive, long-term, and indeed famous collaboration
with Jean-Pierre Antoine and Jean Pierre Gazeau, focusing on square integrable
group representations, continuous frames in Hilbert space, coherent states, and
wavelets. Their joint work culminated in publication of the second edition of their
book in 2014 – a veritable treasure trove of mathematical and physical ideas [7–10].

“Twareque’s work on quantization methods and their meaning is exemplified
by the important review he wrote with M. Englĭs [11], and his work on reproducing
kernel methods with F. Bagarello and Gazeau [12].”

Twareque’s contributions of time and effort helped bring a number of scien-
tific conference series to international prominence. Foremost among these was the
Workshop on Geometric Methods in Physics (WGMP) in Bia�lowieża (organized
by Anatol Odzijewicz). Twareque attended virtually every meeting from 1991 to
2015, where we would see each other each summer. He was a long-time member of
the local organizing committee, and co-edited the Proceedings volumes. Other con-
ference series to which he contributed generously of his energy included the Univer-
sity of Havana International Workshops in Cuba (organized by Reinaldo Rodriguez
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Ramos), and the Contemporary Problems in Mathematical Physics (Copromaph)
series in Cotonou, Benin (organized by M. Norbert Hounkonnou).

He was also an active member of the Standing Committee of the Interna-
tional Colloquium on Group Theoretical Methods in Physics (ICGTMP) series.
Twareque and his wife Fauzia came together to the 29th meeting of ICGTMP in
Tianjin, China in 2012. She attended the special session where Twareque (to his
surprise) was honored on the occasion of his 70th birthday. Their son Nabeel, of
whom he always spoke with great pride, practices pediatric medicine in Montreal.

Twareque was a deep thinker, who sought transcendence through ideas and
imagination. The truths of science and the elegance of mathematics in the quantum
domain were part of the mysterious beauty for which he longed – a longing shared
by many great scientists, a longing that we, too, share.

S. Twareque Ali in thought at WGMP XXXIII,
July 2, 2014. Photograph by G.A. Goldin.

As profoundly as Twareque cared about understanding the meanings of sci-
entific ideas, he cared equally about inspiring his students to succeed. He helped
them with personal as well as professional issues. As Anna Krasowska and Renata
Deptula, two of his more recent students who came from Poland to work with
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him, wrote [2], “If anything in our lives became too complicated it was a clear sign
we needed to talk to Dr. Ali. Every meeting with him provided a big dose of en-
couragement and new energy, never accompanied with any criticism or judgment.”
This was Twareque’s gift – to understand, to inspire, to give of himself.

Twareque died suddenly and unexpectedly January 24, 2016 in Malaysia, af-
ter participating actively in the 8th Expository Quantum Lecture Series (EqualS8)
– indeed, doing the kind of thing he loved most.

3. Concluding thoughts

Twareque believed passionately in world peace, in service to humanity, and in
international cooperation. He understood the broad sweep of history. His tradition
was Islam, as mine is Judaism, and although neither of us adhered to all the rituals
of our traditions, we shared an interest in their history, their commonalities, and
their contributions to world culture. We even researched correspondences between
the roots of words in Arabic and Hebrew. On a first visit to Israel for a conference in
1993, we visited Jerusalem together. Twareque did much to aid the less privileged
and less fortunate – in the best of our traditions, often anonymously.

Often one closes a retrospective on someone’s life with a sunset, marking the
ending of day and the beginning of night. My choice for Twareque is different. He
is someone who joined a scientific mind with a spiritual heart, and for Twareque,
the park and the forest in Bia�lowieża were at the center of his spirituality. So I
imagine him looking at us, even now, and marveling at the beauty of heavenly
clouds reflected in the water.

Reflection of the heavens in Bia�lowieża Park, July 4, 2013.
Photograph by G.A. Goldin.
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Quasi-periodic Algebras and
Their Physical Automorphisms

A. Antonevich and A. Glaz

Abstract. An automorphism of a quasi-periodic algebra on Rm is said to be
physical, if it is generated by a mappings of Rm. The aim of this work is to
give a description of the mappings, corresponding to such automorphisms.

Mathematics Subject Classification (2010). Primary 46J10; Secondary 42A75.

Keywords. Quasi-periodic function, maximal ideal space, automorphism, al-
gebraic unit.

1. Introduction: Invariant subalgebras

Invariant algebra is an important object in different fields of analysis In this paper
we consider quasi-periodic algebras on Rm invariant under mappings of Rm. Quasi-
periodic functions and algebras arise naturally in many fields of analysis. A list
of their applications are given, for example, in [1, 2]. Among them let us single
out integrating of Hamiltonian systems and nonlinear equations, the theory of
conductivity and the theory of quasi-crystals.

Let B(X) be Banach algebra of all bounded functions on X equipped with
sup-norm. Any mapping α : X → X generates the composition operator

Wa(x) = a(α(x)), (1)

acting on B(X). The operator W is linear and multiplicative, i.e., it is an endo-
morphism of B(X). If α is invertible, then W is an automorphism of B(X).

A closed subalgebra A ⊂ B(X) is said to be invariant with respect to α
(shortly α-invariant) if W (A) ⊂ A. Then the operator W is an endomorphism of
A. If W is invertible on A, then it is an automorphism. In this case the algebra A
is called two-sided invariant.

For any given subalgebra A0 ⊂ B(X) there exists the smallest invariant
closed algebra A+ containing A0 and there exists the smallest two-sided invariant
closed algebra A containing A0.
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Among the motivations to construct invariant algebras can be pointed out
the following.

1.1. Investigation of weighted composition operators

A weighted composition operator on B(X) is an operator of the form

Bu(x) = a(x)u(α(x)), (2)

where the coefficient a ∈ B(X) is a given function.
According to Gelfand–Naimark theorem any commutative C∗-algebraA with

unity element is isomorphic to the algebra C(M(A)) of all continuous functions
on a compact space M(A). This space is called maximal ideal space of the algebra
A. The isomorphism

A � a→ â ∈ C(M(A))

is called Gelfand transform.
If A ⊂ B(X) is an α-invariant C∗-subalgebra, then endomorphismW induces

a continuous mapping α̂ : M(A) → M(A).

Proposition 1 ([3]). Let A ⊂ B(X) be an invariant C∗-subalgebra and a ∈ A. For
the spectral radius R(B) of the weighted composition operator (2) the following
variational principle holds

R(B) = max
ν∈Λα̂

exp

(∫
M(A)

ln |â|dν
)
,

where Λα̂ is the set of all α̂-invariant normalized Borel measures on M(A).

Let us consider operator B of the form (2) such that a ∈ A0, where A0 ⊂
B(X) is a C∗-subalgebra. In order to apply the variational principle we need to
find an α-invariant algebra A containing A0.

Example. Let X = R, α(x) = qx, q ∈ R and

Bu(x) = a(x)u(qx), (3)

where a0 is a continuous periodic function with period 1. In this case we need to
construct the smallest algebra, containing all periodic functions with period 1 and
invariant with respect to α(x) = qx.

1.2. Cross-product construction

Let A be a C∗-algebra and τ : A → A be an automorphism. There exists a set of
C∗-algebras B such that

1. A ⊂ B;
2. there exists a unitary element T ∈ B, such that τ(a) = T−1aT ;
3. the algebra B is generated by A and T.

The largest among such algebras, denoted by A ×τ Z, is called cross-product of
A and its automorphism τ . A canonical construction of the cross-product was
proposed by von Neumann.
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There exist a number of generalizations of cross-product construction to the
case of endomorphism τ : A0 → A0 [4,5]. One of them is based on the following. If
we construct by given algebra A0 a larger algebra A such that τ can be extended
to automorphism of A, then cross-product construction is reduced to the classical
case of automorphism.

2. Almost periodic algebras

2.1. Quasi-periodic algebras

Let CB(Rm) be the space of all bounded continuous functions on Rm. The smallest
closed subspace in CB(Rm) containing all functions

ei2π<h,x>, x ∈ Rm, h ∈ Rm

is the algebra CAP (Rm) of continuous almost periodic functions [6].

Any C∗-subalgebra of A ⊂ CAP (Rm) is called almost periodic. A closed
subalgebra A ⊂ CB(Rm) is called quasi-periodic, if it is generated by a finite
number of functions

ei2π〈±hj ,x〉, hj ∈ Rm, j = 1, 2, . . . , N.

To any almost periodic function a corresponds formal Fourier series

a(x) ∼
∞∑
j=1

Cje
i2π〈ξj ,x〉.

The vectors ξj are called frequencies of the function, the set {ξj} is called the
spectrum of the function a.

For a given almost periodic algebra A denote by H(A) the union of spectra
of all functions from A. The set H(A) ⊂ Rm is a subgroup in Rm and is called
the frequencies group of the algebra A.

The subgroup Γ ∈ Rm with a finite number of generators is called the quasi-
lattice. As an abstract group, any quasi-lattice Γ is isomorphic to ZN , where N is
the number of independent generators.

In this terminology a subalgebraA is quasi-periodic, ifH(A) is a quasi-lattice.
If H(A) ≈ ZN then A is called the algebra with N quasi-periods.

2.2. Gelfand transform of almost periodic algebras

Let G be a commutative locally compact group. Any continuous homomorphism
f from G into the unite circle S1 = {z ∈ C : |z| = 1} is called the character of

group G. The set of all characters forms the dual group Ĝ, which is also locally
compact.

According to the Pontryagin duality [7], if G is discrete, then the dual group

Ĝ is compact.
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Theorem 2. Let A be a C∗-subalgebra of CAP (Rm). Then

M(A) = Ĥ(A),

i.e., the space of maximal ideals is the dual group to the frequencies group.

Consider the following examples.

1. Rm can be considered as a discrete group. It is a group with an uncountable

set of generators. The dual group R̂m is called Bohr compact and does not
have an explicit description.

Group Rm is the frequencies group of the algebra CAP (Rm) of all al-
most periodic functions. Therefore the space of maximal ideals of the algebra
CAP (Rm) is the Bohr compact.

2. If A is a quasi-periodic algebra, then H(A) = ZN for some N and the dual

group is a N -dimensional torus: ẐN = TN . It follows that the Gelfand trans-
form gives an isomorphism

A → C(TN ) ∼ CP (RN ),

where CP (RN ) is the space of continuous function on RN periodic with
period 1 for each variable.

The isomorphism CP (RN ) → A (inverse to Gelfand transform) can be con-
structed as follows.

Let us consider a linear embedding Rm → L ⊂ RN , where L is an m-dimen-
sional vector subspace. Then the restrictions of functions from CP (RN ) on the L
form a quasi-periodic algebra AL on Rm whose frequencies group is the orthogonal
projection of the lattice ZN onto L.

A subspace L ⊂ RN is said to be totally irrational, if there are no vectors
from ZN that are orthogonal to L (except zero vector). If the subspace L is to-
tally irrational, then H(AL) ≈ ZN and AL is a quasi-periodic algebra with N
generators.

Using different totally irrational embedding of Rm into RN there can be ob-
tained any quasi-periodic algebra on Rm with N quasi-periods. These algebras are
isomorphic to each other as abstract algebras, but differently realized as subalge-
bras of CAP (Rm).

Like in the paper [1] the space Rm will be called as the physical space and
the space RN as the super-space.

3. Automorphisms of quasi-periodic algebra

3.1. Statement of the problem

Let A be a quasi-periodic algebra on Rm with N quasi-periods. Each automor-
phism τ : A → A is generated by a homeomorphism τ̂ of the torus TN (and by
the corresponding covering mapping τ̃ of the super-space RN ).

An automorphism τ of A is called physical, if it is generated by a mapping
α : Rm → Rm of the physical space. A general problem is to give a description
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of all physical automorphisms of the quasi-periodic algebras. We remark that the
symmetry group of quasi-crystal consists on such mapping and the problem under
consideration is connected with investigation of quasi-crystallographic groups [2].

Here we consider the following case of general problem.
Let A0 be a given quasi-periodic algebra on Rm and α : Rm → Rm be a given

mapping. In general, algebra A0 may be not invariant under α and the smallest
invariant (two-sided invariant) algebra A containing A0 can be not quasi-periodic.

The question is: for which mapping α of the physical space Rm the smallest
invariant (two-sided invariant) algebra containing A0 is quasi-periodic?

3.2. Invariant almost periodic algebras on R
Let us show that this problem is meaningful even for linear mapping of R:

α(x) = qx, q ∈ R.

Let A0 be the algebra of continuous functions on R, periodic with the period
1. We will construct the smallest almost periodic algebra A, containing A0 and
invariant with respect to this α. As we have already noted, these issues are related
to the study of operator (3).

Example 1. Let α(x) = πx. Under the action of operator (Wa)(x) = a(πx) on the
A0 the functions with frequencies π, π2, . . . appear. Due to the fact that number π
is transcendental, there are no relations between these frequencies, and the group
of frequencies of the smallest invariant algebra A+ is a free group with a countable
number of generators π, π2, . . . , πk, . . .:

H(A+) = ZN, M(A+) = TN.

Therefore in this case the smallest invariant almost periodic algebra A+ (and
A) is not quasi-periodic.

Example 2. Let α(x) = 2x. Then W (A0) is the algebra of periodic functions with
a period 1

2 . Since W (A0) ⊂ A0, here A0 is α-invariant and A+ = A0.

But A0 is not a two-sided invariant. Under the action of W−n the algebra
of periodic functions with period 2n is obtained. Therefore the smallest two-sided
invariant algebra A is generated by periodic functions with periods 2n and it is
not quasi-periodic. Here

H(A) =

{
k

2n
: k ∈ Z, n ∈ N

}
⊂ R.

H(A) is a group with a countable number of generators, but it is not free.
For example, the relations 2nhn = h0 = 1 hold for the “natural” generators
hn = 2−n, n = 0, 1, . . . .

The dual group Ĥ(A) is called solenoid.
The solenoid appeared in many areas. The first it has been found by L. Vietor-

ris in 1927 as an example for the cohomology theory. Van Dantzig (1930) analyzed
solenoid as an example of a compact Abelian group with a non-trivial topological
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structure. It arises as an example of the strange attractor for the system of dif-
ferential equations (V.V. Nemytskii, V.V. Stepanov, 1940). The role of solinoid in
the theory of dynamical systems was detected by S. Smale and R.F. Wilson.

Solenoid can be constructed like the Möbius strip. Let K be the Cantor
discontinuum. Solenoid as a topological space can be obtained from the product
of [0, 1] × K by identifying {0} × K and {1} × K by means of an invertible map
φ : K → K : (0, ω) ∼ (1, φ(ω)).

Example 3. Let q = 3+2
√
2. Then W (A0) is an algebra with a period q. It is easy

to check that algebra A with the frequencies group

H(A) = {n+ k(3 + 2
√
2) : n, k ∈ Z} = {n+ k2

√
2 : n, k ∈ Z}

is invariant with respect to the corresponding α and it is invariant with respect to
α−1(x) = [3 − 2

√
2]x. We get here the first example of a quasi-periodic algebra,

two-sided invariant under a linear mapping.
Note that if we consider a very similar quasi-periodic algebra with a group

of frequencies

{n+ k
√
2 : n, k ∈ Z},

then there is no linear map with respect to which the algebra is two-sided invariant,
in other words, there are no non-trivial symmetries.

3.3. Physical automorphisms on Rm

The following definitions are similar to the well-known definitions from the number
theory. The matrix Q ∈ Cm×m is called algebraic if there is a polynomial

P (t) = pnt
n + pn−1t

n−1 + · · ·+ p0, pk ∈ Z,

such that P (Q) = 0. It is called the integer algebraic if pn = 1. Integer algebraic
matrix Q is called the algebraic unit if the inverse Q−1 is also an algebraic integer
(which is equivalent to pn = 1 and p0 = ±1).

The different structures of the smallest invariant almost periodic algebras
from the examined above examples are determined by different algebraic properties
of the corresponding numbers q. Indeed, number π is not algebraic, numbers 2 is
algebraic integer but not an algebraic unit, and q = 3 + 2

√
2 is an algebraic unit,

since it is a root of the polynomial t2 − 6t+ 1 = 0.
The next theorem asserts that for arbitrary m the results are similar.
Algebra A0 is called irreducible with respect to Q if minimal vector subspace

S of Rm, containing H(A0) and invariant with respect to the conjugate map
x → QTx is the Rm.

Theorem 3 ([8]). Let A0 be a quasi-periodic algebra on (Rm), α(x) = Qx and A0

is irreducible with respect to Q.
The smallest closed two-sided invariant subalgebra A, that includes A0, is

quasi-periodic if and only if Q is an algebraic unit.
In this case M(A) = TN , and the induced homeomorphism α̂ : TN → TN is

an algebraic automorphism of the torus: the covering mapping of RN is given by a
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matrix MQ ∈ ZN×N with determinant ±1. The algebra A is realized as restriction
of CP (RN ) on an m-dimensional subspace L invariant with respect to MQ.

Theorem 4. For a given invertible mapping α : Rm → Rm there exists a two-sided
α-invariant quasi-periodic algebra A if and only if α can be represented in the
form α(x) = Qx + ϕ(x), where Q is an algebraic unit and the mapping ϕ(x) is
quasi-periodic (all components are quasi-periodic functions).
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1. Introduction

Let V be a finite-dimensional complex Hilbert space and N be a second countable
smooth manifold with a fixed Radon measure μ. We denote by L2(N,V ;μ) the
complex Hilbert space of (equivalence classes of) V-valued functions μ-measurable
on N that are absolutely square integrable with respect to μ. We also endow
the space of smooth functions C∞(N,V) with the Fréchet topology of uniform
convergence on compact sets together with their derivatives of arbitrarily high
degree.

If H ⊆ L2(N,V) is a closed linear subspace with H ⊆ C∞(N,V), then the
inclusion map H ↪→ C∞(N,V) is continuous, hence for every x ∈ N the evaluation
map Kx : H → V , f 
→ f(x), is continuous. The map

K : N ×N → B(V), K(x, y) := KxK
∗
y

is called the reproducing kernel of the Hilbert space H. Then for every linear
operator A ∈ B(H) we define its full symbol as

KA : N ×N → B(V), KA(x, y) := KxAK
∗
y : V → V

The research of the first two named authors has been partially supported by grant of the Ro-

manian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, project
number PN-II-RU-TE-2014-4-0370.
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and KA ∈ C∞(N × N,B(V)). See [12, §I.2] for a detailed discussion of this con-
struction, which goes back to [6] and [7].

Main problem

In the above setting, the full symbol map

B(H) → C∞(N ×N,B(V)), A 
→ KA

is injective, as easily checked (see also Proposition 1(1) below). Therefore it is in-
teresting to find sufficient conditions on a continuous map ι : Γ → N×N , ensuring
that the corresponding ι-restricted symbol map

Sι : B(H) → C(Γ,B(V)), A 
→ KA ◦ ι
is still injective. The case of the diagonal embedding ι : Γ = N ↪→ N × N , x 
→
(x, x), is particularly important and in this case the ι-restricted symbol map is
called the (non-normalized) Berezin covariant symbol map and is denoted simply
by S, hence

S : B(H) → C∞(N,B(V)), (S(A))(x) := KxAK
∗
x : V → V .

In the present paper we will discuss the above problem and we will briefly sketch
an approach to that problem based on results from our forthcoming paper [4]. This
approach blends some techniques of reproducing kernels and some basic ideas of
linear partial differential equations, in order to address a problem motivated by
representation theory of Lie groups (see [8–11]). This problem is also related to
some representations of infinite-dimensional Lie groups that occur in the study
of magnetic fields (see [1] and [3]). Let us also mention that linear differential
operators associated to reproducing kernels have been earlier used in the literature
(see, for instance, [5]).

2. Basic properties of the Berezin covariant symbol map

In the following we denote by Sp(•) the Schatten ideals of compact operators on
Hilbert spaces for 1 ≤ p <∞.

Proposition 1. In the above setting, if A ∈ B(H), then one has:

1. If A ≥ 0, then S(A) ≥ 0, and moreover S(A) = 0 if and only if A = 0.
2. For all f ∈ H and x ∈ N one has

(Af)(x) =

∫
N

KA(x, y)f(y)dμ(y).

3. If {ej}j∈J is an orthonormal basis of H, then for all x, y ∈ N one has

KA(x, y) =
∑
j∈J

Kxej ⊗KyA∗ej =
∑
j∈J

ej(x) ⊗ (A∗ej)(y) ∈ B(V),

where for any v, w ∈ V we define their corresponding rank-one operator v ⊗
w := ( · | w)v ∈ B(V).
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4. If A ∈ S2(H), then

‖A‖2S2(H) =

∫∫
N×N

‖KA(x, y)‖2S2(V)dμ(x)dμ(y)

and if A ∈ S1(H), then

TrA =

∫
N

TrKA(x, x)dμ(x).

Proof. See [4] for more general versions of these assertions, in which in particular
the Hilbert space V is infinite-dimensional. Assertion (1) is a generalization of
[12, Ex. I.2.3(c)], Assertion (1) is a generalization of [12, Prop. I.1.8(b)], while
Assertion (1) is a generalization of [12, Cor. A.I.12]. �

3. Examples of Berezin symbols and specific applications

Here we specialize to the following setting:

1. G is a connected, simply connected, nilpotent Lie group with its Lie algebra
g, whose center is denoted by z, and g∗ is the linear dual space of g, with the
corresponding duality pairing 〈·, ·〉 : g∗ × g → R.

2. π : G → B(H) be a unitary irreducible representation associated with the
coadjoint orbit O ⊆ g∗.

The group G will be identified with g via the exponential map, so that G = (g, ·G),
where ·G is the Baker–Campbell–Hausdorff multiplication.

We use the notation H∞ = H∞(π) for the nuclear Fréchet space of smooth
vectors of π. Let then H−∞ be the space of antilinear continuous functionals
on H∞, B(H∞,H−∞) be the space of continuous linear operators between the
above space (these operators are thought of as possibly unbounded linear operators
in H), and S(•) and S ′(•) for the spaces of Schwartz functions and tempered
distributions, respectively. Then we have that

H∞ ↪→ H ↪→ H−∞.

Let X1, . . . , Xm be a Jordan–Hölder basis in g and e ⊆ {1, . . . ,m} be the set of
jump indices of the coadjoint orbit O. Select ξ0 ∈ O and let g = gξ0 � ge be its
corresponding direct sum decomposition, where ge is the linear span of {Xj | j ∈ e}
and gξ0 := {x ∈ g | [x, g] ⊆ Ker ξ0}.

We need the notation for the Fourier transform. For a ∈ S(O) we set

â(x) =

∫
O

e−i〈ξ,x〉a(ξ)dξ,

where on O we consider the Liouville measure normalized such that the Fourier
transform is unitary when extended to L2(O) → L2(ge). We denote by F̌ the
inverse Fourier transform of F ∈ L2(g0).
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Definition 2. 1. For f ∈ H and φ ∈ H, or f ∈ H−∞ and φ ∈ H∞, let A ∈
C(ge) ∩ S ′(ge) be the coefficient mapping for π, defined by

Aφf(x) = A(f, φ)(x) := (f | π(x)φ), x ∈ ge.

2. For f ∈ H and φ ∈ H, or f ∈ H−∞ and φ ∈ H∞, the cross-Wigner distribu-
tion W(f, φ) ∈ S ′(O) is defined by the formula

Ŵ(f, φ) = Aφf.

Proposition 3. For f, φ ∈ H we have that A(f, φ) ∈ L2(g0), W(f, φ) ∈ L2(O).
Moreover

(A(f1, φ1) | A(f2, φ2))L2(g0) = (f1 | f2)(φ1 | φ2)
(W(f1, φ1) | W(f2, φ2))L2(O) = (f1 | f2)(φ1 | φ2)

for all f1, f2, φ1, φ2 ∈ H.

Proof. This follows from [2, Prop. 2.8(i)]. �

From now on we assume that

φ ∈ H∞ with ‖φ‖ = 1 is fixed.

We let V : H → L2(ge) be the isometry defined by

(V f)(x) := (f | φx) for all x ∈ ge,

where φx := π(x)φ. We denote

K := RanV ⊂ L2(g0).

Then K is a reproducing kernel Hilbert space of smooth functions, with inner
product equal to the L2(g0)-inner product, so the present construction is a special
instance of the general framework of Section 1 with V = C.

The reproducing kernel of K is given by

K(x, y) = (π(x)φ | π(y)φ) = (φx | φy),
and Ky(·) := K(·, y) ∈ RanV , for all y ∈ g0. We also note that

(∀x ∈ g0) Kx = V φx.

The Berezin covariant symbol of an operator T ∈ B(K) is then the bounded
continuous function

S(T ) : ge → C, S(T )(x) = (TKx | Kx)K.

One thus obtains a well-defined bounded linear operator

S : B(K) → C∞(ge) ∩ L∞(ge)

which also gives by restriction a bounded linear operator

S : S2(K) → L2(g0).
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To find accurate descriptions of the kernels of the above operators is a very im-
portant problem for many reasons, as explained in [8–11] also for other classes of
Lie groups than the nilpotent ones.

The case of flat coadjoint orbits of nilpotent Lie groups

We now assume that the coadjoint orbit O is flat, hence its corresponding repre-
sentation π is square integrable modulo the center of G.

Remark 4. Consider the representation ρ : G→ B(K),

ρ(g) = V π(g)V ∗,

that is a unitary representation of G equivalent to π, thus it corresponds to the
same coadjoint orbit O. We denote by Opρ the Weyl calculus corresponding to
this representation. The following then holds:

1. For a ∈ S ′(O) one has Opρ(a) = VOp(a)V ∗ = Ta.
2. For T ∈ B(K) and X ∈ g0, one has

S(ρ(x)−1Tρ(x))(z) = S(T )(x · z), for all z ∈ g0. (1)

Theorem 5. Assume that in the constructions above,

φ ∈ H∞ is such that W(φ, φ) is a cyclic vector for α. (2)

Then S : S2(K) → L2(g0) is injective.

Proof. The method of proof is based on specific properties of the Weyl–Pedersen
calculus from [2]. �

We refer to [4] for a more complete discussion and for proofs of the above
assertions in a much more general setting. To conclude this paper we will just
briefly discuss an important example.

The special case of the Heisenberg groups

Let G be the Heisenberg group of dimension 2n + 1 and H be the center of G.
Let {X1, . . . , Xn, Y1, . . . , Yn, Z} be a basis of g in which the only nontrivial brack-
ets are [Xk , Yk] = Z, 1 ≤ k ≤ n and let {X∗

1 , . . . , X
∗
n, Y

∗
1 , . . . , Y

∗
n , Z

∗} be the
corresponding dual basis of g∗.

For a = (a1, a2, . . . , an) ∈ Rn, b = (b1, b2, . . . , bn) ∈ Rn and c ∈ R, we
denote by [a, b, c] the element expG(

∑n
k=1 akXk +

∑n
k=1 bkYk + cZ) of G. Then

the multiplication of G is given by

[a, b, c][a′, b′, c′] = [a+ a′, b+ b′, c+ c′ +
1

2
(ab′ − a′b)]

and H consists of all elements of the form [0, 0, c] with c ∈ R.
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The coadjoint action of G is then given by

Ad∗([a, b, c])

(
n∑

k=1

αkX
∗
k +

n∑
k=1

βkY
∗
k + γZ∗

)

=

n∑
k=1

(αk + γbk)X
∗
k +

n∑
k=1

(βk − γak)Y
∗
k + γZ∗.

Fix a real number λ > 0. By the Stone–von Neumann theorem, there exists
a unique (up to unitary equivalence) unitary irreducible representation π0 of G
whose restriction to H is the character χ : [0, 0, c] → eiλc. This representation is
realized on H0 = L2(Rn) as

π0([a, b, c])(f)(x) = eiλ(c−bx+ 1
2ab)f(x− a).

Here we take φ to be the function φ(x) =
(
λ
π

)1/4
e−λx2/2. Then we have ‖φ‖2 = 1.

Theorem 5 gives a new proof of the following known fact:

Corollary 6. The map S is a bounded linear operator from S2(H0) to L2(R2n)
which is one-to-one and has dense range.
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[2] I. Beltiţă, D. Beltiţă, Modulation spaces of symbols for representations of nilpotent
Lie groups. J. Fourier Anal. Appl. 17 (2011), no. 2, 290–319.
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A Curious Differential Calculus
on the Quantum Disc and Cones

Abstract. A non-classical differential calculus on the quantum disc and cones
is constructed and the associated integral is calculated.
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1. Introduction

The aim of this note is to present a two-dimensional differential calculus on the
quantum disc algebra, which has no counterpart in the classical limit, but admits
a well-defined (albeit different from the one in [2]) integral, and restricts properly
to the quantum cone algebras. In this way the results of [3] are extended to other
classes of non-commutative surfaces and to higher forms. The presented calculus
is associated to an orthogonal pair of skew-derivations, which arise as a particular
example of skew-derivations on generalized Weyl algebras constructed recently in
[1]. It is also a fundamental ingredient in the construction of the Dirac operator
on the quantum cone [6] that admits a twisted real structure in the sense of [5].

The reader unfamiliar with non-commutative differential geometry notions is
referred to [4].

2. A differential calculus on the quantum disc

Let 0 < q < 1. The coordinate algebra of the quantum disc, or the quantum disc
algebra O(Dq) [8] is a complex ∗-algebra generated by z subject to

z∗z − q2zz∗ = 1− q2. (1)

To describe the algebraic contents of O(Dq) it is convenient to introduce a self-
adjoint element x = 1 − zz∗, which q2-commutes with the generator of O(Dq),

xz = q2zx. A linear basis of O(Dq) is given by monomials xkzl, xkz∗l. We view
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20 T. Brzeziński and L. D ¸abrowski

O(Dq) as a Z-graded algebra, setting deg(z) = 1, deg(z∗) = −1. Associated with
this grading is the degree-counting automorphism σ : O(Dq) → O(Dq), defined

on homogeneous a ∈ O(Dq) by σ(a) = q2 deg(a)a. As explained in [1] there is an
orthogonal pair of skew-derivations ∂, ∂̄ : O(Dq) → O(Dq) twisted by σ and given
on the generators of O(Dq) by

∂(z) = z∗, ∂(z∗) = 0, ∂̄(z) = 0, ∂̄(z∗) = q2z, (2)

and extended to the whole of O(Dq) by the (right) σ-twisted Leibniz rule. There-
fore, there is also a corresponding first-order differential calculus Ω1(Dq) onO(Dq),
defined as follows.

As a left O(Dq)-module, Ω1(Dq) is freely generated by one forms ω, ω̄. The
right O(Dq)-module structure and the differential d : O(Dq) → Ω1(Dq) are de-
fined by

ωa = σ(a)ω, ω̄a = σ(a)ω̄, d(a) = ∂(a)ω + ∂̄(a)ω̄. (3)

In particular,

dz = z∗ω = q2ωz∗, dz∗ = q2zω̄ = ω̄z, (4)

and so, by the commutation rules (3),

ω =
q−2

1− q2
(
dzz − q4zdz

)
, ω̄ =

q−2

1− q2
(
z∗dz∗ − q2dz∗z∗

)
. (5)

Hence Ω1(Dq) = {
∑

i aidbi | ai, bi ∈ O(Dq)}, i.e., (Ω1(Dq), d) is truly a first-order
differential calculus not just a degree-one part of a differential graded algebra. The
appearance of q2− 1 in the denominators in (5) indicates that this calculus has no
classical (i.e., q = 1) counterpart.

The first-order calculus (Ω1(Dq), d) is a ∗-calculus in the sense that the ∗-
structure extends to the bimodule Ω1(Dq) so that (aνb)∗ = b∗ν∗a∗ and (da)∗ =
d(a∗), for all a, b ∈ O(Dq) and ν ∈ Ω1(Dq), provided ω

∗ = ω̄ (this choice of the
∗-structure justifies the appearance of q2 in the definition of ∂̄ in equation (2)).
From now on we view (Ω1(Dq), d) as a ∗-calculus, which allows us to reduce by
half the number of necessary checks.

Next we aim to show that the module of 2-forms Ω2(Dq) obtained by the
universal extension of Ω1(Dq) is generated by the anti-self-adjoint 2-form1

v =
q−6

q2 − 1
(ω∗ω + q8ωω∗), v∗ = −v (6)

and to describe the structure of Ω2(Dq). By (3), for all a ∈ O(Dq),

va = σ2(a)v. (7)

Combining commutation rules (3) with the relations (4) we obtain

z∗dz = q2dzz∗, dzz − q4zdz = q2(1− q2)ω, (8)

1One should remember that the ∗-conjugation takes into account the parity of the forms; see [9].



A Curious Differential Calculus on the Quantum Disc and Cones 21

and their ∗-conjugates. The differentiation of the first of equations (8) together
with (3) and (1) yield

ωω∗ = (1− x)v, ω∗ω = q6(q2x− 1)v, (9)

which means that ωω∗ and ω∗ω are in the module generated by v. Next, by dif-
ferentiating ωz∗ = q−2z∗ω and ωz = q2zω and using (4) and (3) one obtains

dωz∗ = q−2z∗dω + z(ω∗ω + q4ωω∗),

dωz = q2zdω + (q2 + q−2)z∗ω2.
(10)

The differentiation of dz = z∗ω yields

z∗dω = −q2zω∗ω. (11)

Multiplying this relation by z from left and right, and using commutation rules
(1) and (3) one finds that (1 − x)dω = q−4z∗dωz. Developing the right-hand side
of this equality with the help of the second of equations (10) we find

dω =
1 + q−4

q2 − 1
z∗2ω2. (12)

Combining (10) with (12) we can derive

z∗3ω2 = −z q8

q4 + 1

(
ω∗ω + q4ωω∗) . (13)

The multiplication of (13) by z3 from the left and right and the usage of (1), (3)
give

(1− x)(1 − q−2x)(1 − q−4x)ω2 = − q8

q4 + 1
z4

(
ω∗ω + q4ωω∗) , (14a)

(1− q2x)(1 − q4x)(1 − q6x)ω2 = − q8

q4 + 1
z4

(
ω∗ω + q4ωω∗) . (14b)

Comparing the left-hand sides of equations (14), we conclude that

xω2 = 0 = ω2x and, by ∗-conjugation, xω∗2 = 0 = ω∗2x, (15)

and hence in view of either of (14)

ω2 = − q8

q4 + 1
z4

(
ω∗ω + q4ωω∗) . (16)

By (9), the right-hand side of (16) is in the module generated by v, and so is ω2

and its adjoint ω∗2. Thus, the module Ω2(Dq) spanned by all products of pairs of
one-forms is indeed generated by v.

Multiplying (12) and (11) by x and using relations (15) we obtain

xzω∗ω = 0 = ω∗ωxz. (17)

Following the same steps but now starting with the differentiation of dz∗=q2zω∗

(see (4)), we obtain the complementary relation

xzωω∗ = 0 = ωω∗xz. (18)
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In view of the definition of v, (17) and (18) yield xzv = 0 = vxz. Next, the
multiplication of, say, the first of these equations from the left and right by z∗

and the use of (1) yield x(1 − x)v = 0 and x(1 − q2x)v = 0. The subtraction of
one of these equations from the suitable scalar multiple of the other produces the
necessary relation

xv = 0 = vx, (19)

which fully characterizes the structure of Ω2(Dq) as an O(Dq)-module generated
by v. In the light of (19), the C-basis of Ω2(Dq) consists of elements vzn, vz∗m,
and hence, for all w ∈ Ω2(Dq), wx = xw = 0, i.e., Ω2(Dq) is a torsion (as a left
and right O(Dq)-module). Since O(Dq) is a domain and Ω2(Dq) is a torsion, the
dual of Ω2(Dq) is the zero module, hence, in particular Ω2(Dq) is not projective.
Again by (19), the annihilator of Ω2(Dq),

Ann(Ω2(Dq)) := {a ∈ O(Dq) | ∀w ∈ Ω2(Dq), aw = wa = 0},
is the ideal of O(Dq) generated by x. The quotient O(Dq)/Ann(Ω

2(Dq)) is the
Laurent polynomial ring in one variable, i.e., the algebra O(S1) of coordinate
functions on the circle. When viewed as a module over O(S1), Ω2(Dq) is free
of rank one, generated by v. Thus, although the module of 2-forms over O(Dq) is
neither free nor projective, it can be identified with sections of a trivial line bundle
once pulled back to the (classical) boundary of the quantum disc.

With (19) at hand, equations (9), (16), (12) and their ∗-conjugates give the
following relations in Ω2(Dq)

dω = q8z2v, dω∗ = −z∗2v, ωω∗ = v, ω∗ω = −q6v, (20a)

ω2 = q12
q2 − 1

q4 + 1
z4v, ω∗2 = q−4 q

2 − 1

q4 + 1
z∗4v. (20b)

One can easily check that (20), (19) and (7) are consistent with (3) with no further
restrictions on v. Setting Ωn(Dq) = 0, for all n > 2, we thus obtain a 2-dimensional
calculus on the quantum disc.

3. Differential calculus on the quantum cone

The quantum cone algebra O(CN
q ) is a subalgebra of O(Dq) consisting of all ele-

ments of the Z-degree congruent to 0 modulo a positive natural number N . Obvi-
ously O(C1

q ) = O(Dq), the case we dealt with in the preceding section, so we may

assume N > 1. O(CN
q ) is a ∗-algebra generated by the self-adjoint x = 1 − zz∗

and by y = zN , which satisfy the following commutation rules

xy = q2Nyx, yy∗ =

N−1∏
l=0

(
1− q−2lx

)
, y∗y =

N∏
l=1

(
1− q2lx

)
. (21)

The calculus Ω(CN
q ) on O(CN

q ) is obtained by restricting of the calculus Ω(Dq),

i.e., Ωn(CN
q ) = {

∑
i a

i
0d(a

i
1) · · · d(ain)ain+1 | aik ∈ O(CN

q )}. Since d is a degree-zero

map Ω(CN
q ) contains only these forms in Ω(Dq), whose Z-degree is a multiple of N .



A Curious Differential Calculus on the Quantum Disc and Cones 23

We will show that all such forms are in Ω(CN
q ). Since deg(ω) = 2, deg(ω∗) = −2

and deg(v) = 0, this is equivalent to

Ω1(CN
q ) = O(Dq)−2 ω ⊕O(Dq)2 ω

∗, Ω2(CN
q ) = O(CN

q )v,

where O(Dq)s = {a ∈ O(Dq) | deg(a) ≡ s modN}.
As an O(CN

q )-module, O(Dq)−2 is generated by zN−2 and z∗2, hence to show

that O(Dq)−2 ω ⊆ Ω1(CN
q ) suffices it to prove that zN−2ω, z∗2ω ∈ Ω1(CN

q ). Using
the Leibniz rule one easily finds that

dy =
([
N ; q2

]
− q−2N+4

[
N ; q4

]
x
)
zN−2ω,

where [n; s] := sn−1
s−1 . Hence, in view of (1) and (3),

y∗dy =
[
N ; q2

](
1− q4

[
N ; q4

]
[N ; q2]

x

)
N∏
l=3

(
1− q2lx

)
z∗2ω, (22a)

dyy∗ = q−2N
[
N ; q2

](
1− q−2N+4

[
N ; q4

]
[N ; q2]

x

)
N−3∏
l=0

(
1− q−2lx

)
z∗2ω. (22b)

The polynomial in x on the right-hand side of (22a) has roots in common with the
polynomial on the right-hand side of (22b) if and only if there exists an integer
k ∈ [−2N + 2,−N − 1] ∪ [2, N − 1] such that

q2k(q2N + 1) = q2 + 1. (23)

Equation (23) is equivalent to q2
[
N + k − 1; q2

]
+
[
k; q2

]
= 0, with the left-hand

side strictly positive if k > 0 and strictly negative if k ≤ −N . So, there are no
solutions within the required range of values of k. Hence the polynomials (22a),
(22b) are coprime, and so there exists a polynomial (in x) combination of the
left-hand sides of equations (22) that gives z∗2ω. This combination is an element

of Ω1(CN
q ) and so is z∗2ω. Next,

z∗2ω y = q2N (1− q2x)(1 − q4x)zN−2ω,

yz∗2ω = (1− q−2N+4x)(1 − q−2N+2x)zN−2ω,

so again there is an x-polynomial combination of the left-hand sides (which are
already in Ω1(CN

q )) giving zN−2ω. Therefore, O(Dq)−2 ω ⊆ Ω1(CN
q ). The case of

O(Dq)2 follows by the ∗-conjugation.
Since z2ω∗, z∗2ω are elements of Ω1(CN

q ),

Ω2(CN
q ) � z2ω∗z∗2ω = q−4(1− x)(1 − q−2x)ω∗ω = −q2v, (24)

by the quantum disc relations and (20) and (19). Consequently, v ∈ Ω2(CN
q ).

Therefore, Ω(CN
q ) can be identified with the subspace of Ω(Dq), of all the elements

whose Z-degree is a multiple of N .



24

4. The integral

Here we construct an algebraic integral associated to the calculus constructed in
Section 2. We start by observing that since σ preserves the Z-degrees of elements
of O(Dq) and ∂ and ∂̄ satisfy the σ-twisted Leibniz rules, the definition (2) implies
that ∂ lowers while ∂̄ raises degrees by 2. Hence, one can equip Ω1(Dq) with the
Z-grading so that d is the degree zero map, provided deg(ω) = 2, deg(ω∗) = −2.
Furthermore, in view of the definition of σ, one easily finds that

σ−1 ◦ ∂ ◦ σ = q4∂, σ−1 ◦ ∂̄ ◦ σ = q−4∂̄, (25)

i.e., ∂ is a q4-derivation and ∂̄ is a q−4-derivation. Therefore, by [7], Ω(Dq) admits
a divergence, for all right O(Dq)-linear maps f : Ω1(Dq) → O(Dq), given by

∇0(f) = q4∂ (f (ω)) + q−4∂̄ (f (ω∗)) . (26)

Since the O(Dq)-module Ω2(Dq) has a trivial dual, ∇0 is flat. Recall that by the
integral associated to ∇0 we understand the cokernel map of ∇0.

Theorem 1. The integral associated to the divergence (26) is a map Λ : O(Dq) →
C, given by

Λ(xkzl) = λ

[
k + 1; q2

]
[k + 1; q4]

δl,0, for all k ∈ N, l ∈ Z, (27)

where, for l < 0, zl means z∗−l and λ ∈ C.

Proof. First we need to calculate the image of ∇0. Using the twisted Leibniz rule
and the quantum disc algebra commutation rules (1), one obtains

∂(xk) = −q−2
[
k; q4

]
xk−1z∗2. (28)

Since ∂(z∗) = 0, (28) means that all monomials xkz∗l+2 are in the image of ∂
hence in the image of ∇0. Using the ∗-conjugation we conclude the xkzl+2 are in
the image of ∂̄ hence in the image of ∇0. So Λ vanishes on (linear combinations
of) all such polynomials. Next note that

∂(z2) = (q2 + 1)− (q4 + 1)x, (29)

hence

∂(z∗z2 − q4z2z∗) = (1 − q4)z∗, ∂(z∗z2 − q2z2z∗) = (1− q2)(1 + q4)xz∗.

This means that z∗ and xz∗ are in the image of ∂, hence of ∇0. In fact, all the
xkz∗ are in this image which can be shown inductively. Assume xkz∗ ∈ Im(∂), for
all k ≤ n. Then using the twisted Leibniz rule, (28) and (29) one finds

∂(xnz2) = −q2
[
N ; q4

]
xn−1 + (q2 + 1)

[
n+ 1; q4

]
xn −

[
n+ 2; q4

]
xn+1. (30)

Since ∂(z∗) = 0, equation (30) implies that ∂(znz2z∗) is a linear combination of
monomials xn−1z∗, xnz∗ and xn+1z∗. Since the first two are in the image of ∂ by
the inductive assumption, so is the third one. Therefore, all linear combinations
of xkz∗ and xkz (by the ∗-conjugation) are in the image of ∇0.

T. Brzeziński and L. D ¸abrowski
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Putting together all this means that Λ vanishes on all the polynomials

n∑
k,l=1

(cklx
kzl + c′klx

kz∗l).

The rest of the formula (27) can be proven by induction. Set λ = Λ(1). Since
Λ vanishes on all elements in the image of ∇0, hence also in the image of ∂, the
application of Λ to the right-hand side of (28) confirms (27) for k = 1. Now assume
that (27) is true for all k ≤ n. Then the application Λ to the right-hand side of
(30) followed by the use of the inductive assumption yields[

n+ 2; q4
]
Λ
(
xn+1

)
= q2

[
N ; q4

]
Λ
(
xn−1

)
− (q2 + 1)

[
n+ 1; q4

]
Λ (xn)

= λ
(
(q2 + 1)

[
n+ 1; q2

]
− q2

[
n; q2

])
= λ

[
n+ 2; q2

]
.

Therefore, the formula (27) is true also for n+ 1, as required. �

The restriction of Λ to the elements of O(Dq), whose Z-degree is a multiple
of N gives an integral on the quantum cone O(CN

q ).
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Nambu Mechanics: Symmetries
and Conserved Quantities

Marián Fecko

Abstract. In Nambu mechanics, continuous symmetry leads to a relative in-
tegral invariant, a differential form which only upon integration over a cycle
provides a conserved real number. This differs sharply from what is the case
in Hamiltonian mechanics, where conserved quantities are functions on (ex-
tended) phase space, which are constant on trajectories. The origin of the
difference may be traced back to a shift in degrees of relevant form present in
action integral for Nambu mechanics.
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1. Introduction

From times when seminal paper of Emmy Noether [1] was published (see also nice
account in [2]), we know that there is close correspondence between symmetries of
action integral and conserved quantities for the dynamics given by the action.

In Hamiltonian mechanics, as an example, the conserved quantity is rep-
resented by a function on the phase space of the system, which is constant on
trajectories (see, e.g., [3, 4] or [5]). In practical applications of Hamiltonian me-
chanics, valuable information may then be obtained by evaluating the function
(say, energy, a component of linear or angular momentum, etc.) in two points of
particular trajectory and using the fact that the two numbers are guaranteed to
be the same.

In 1973, Nambu [6] proposed a different dynamics, which later became known
as Nambu mechanics. It is governed, in its basic version, by two “Nambu Hamilto-
nians” H1 and H2, each of them being a function on “Nambu phase space”. Now,
one easily proves that both H1 and H2 are conserved in the sense described above.
So, one could conjecture that there are two symmetries of the corresponding action
integral which lead to these particular conserved quantities.
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However, construction of action integral for Nambu mechanics turns out to be
a delicate matter (see [7] and [8]). Namely, the action is given by a surface (rather
than line) integral in spite of the fact that equations of motion describe motion
of points along trajectories in phase space (along “world-lines” in extended phase
space; exactly like it is the case for Hamiltonian mechanics). This peculiarity then
leads to the fact, that standard machinery for obtaining conserved quantity from
symmetry leads, in Nambu mechanics, to a strange result: conserved quantity that
one obtains for a continuous symmetry turns out to be a relative integral invariant
rather than a function on the phase space.

2. Nambu mechanics – equations and action integral

In its basic version, Nambu equations read

ẋi = εijk
∂H1

∂xj

∂H2

∂xk
i = 1, 2, 3. (1)

Here, H1 and H2 are, in general, functions of x1, x2, x3 and t.
As was observed in [7] and [8], equations (1) may be rewritten as “vortex

lines equations”

iγ̇dσ̂ = 0, (2)

where

γ̇ = ẋ1∂1 + ẋ2∂2 + ẋ3∂3 + ∂t (3)

is the velocity vector to curve γ on extended Nambu phase space and

σ̂ := x1dx2 ∧ dx3 −H1dH2 ∧ dt (4)

(see also [9]). Formally, Eq. (2) looks exactly like geometrical version of Hamilton
equations

q̇a =
∂H

∂pa
ṗa = −∂H

∂qa
(5)

except for the fact, that for Hamilton equations the role of σ̂ is played by

σ = padq
a −Hdt. (6)

The similarity suggests that one could construct action integral for Nambu me-
chanics simply repeating the way it is done in Hamilton mechanics. Namely, it is
well known (see again [3, 4] or [5]) that the action integral for the Hamiltonian
case reads

S[γ] =

∫
γ

σ =

∫ t2

t1

(paq̇
a −H)dt. (7)

Then, replacing σ by σ̂ might probably lead to the action for the Nambu case.
The idea, however, does not work since one can not integrate two-form over one-
dimensional object (curve). Instead, one is forced to integrate σ̂ over a surface.
A problem then arises how a surface may be naturally associated with Nambu
trajectories.
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Figure 1. A two-chain Σ made up from a one-cycle c1 using solutions
of Nambu equations.

In Takhtajan’s paper [8] it is done by the following trick: The value of action
integral is associated with an appropriate one-parameter family of trajectories
rather than with a single trajectory.

Namely, consider the family constructed as follows: Let, from each point p of
a one-cycle (loop) c1 at the time t1, emanate the solution γ(t) of Nambu equations
(2), fulfilling initial condition γ(t1) = p. At the time t2, the points γ(t2) (for all
p ∈ c1) form a one-cycle (loop) c2 again (image of c1 w.r.t. the Nambu flow for
t2 − t1) and the points γ(t), for all t ∈ 〈t1, t2〉 and all p ∈ c1, form a two-chain
(2-dimensional surface) Σ made of solutions (see Fig. 1; notice that ∂Σ = c1− c2).
The value of the action, assigned to the family, is defined to be

S[Σ] =

∫
Σ

σ̂. (8)

One then verifies [8, 10] that the surface given by the family of solutions of Nambu
equations is indeed an extremal of the action integral (8).

3. Conserved quantity from a symmetry

Having introduced action integral for Nambu mechanics, we can mimic steps which
lead from a symmetry of Hamiltonian action (7) to corresponding conserved quan-
tity (function, there). And see what we get in this way in Nambu mechanics. (See
more details in [10].)
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First, call vector field ξ a symmetry if the action integral (8) evaluated on
Φε(Σ) (the flow Φε corresponds to ξ, here) gives the same number as on Σ itself

S[ΦεΣ] = S[Σ] (9)

(i.e., δS = 0). By direct computation of δS, we obtain

δS = ε

∫
Σ

iξdσ̂ + ε

∮
∂Σ

iξσ̂. (10)

Now, the first integral on the r.h.s. vanishes on the surface Σ given by the family
of solutions of Nambu equations (γ̇ is tangent to Σ and, at the same time, it is
annihilated by dσ̂). The second integral is over ∂Σ = c1 − c2 and so the sum of
both integrals on the r.h.s. of (10) is to vanish. We get

0 =

(∮
c1

−
∮
c2

)
iξσ̂ (11)

or, equivalently, ∮
c1

iξσ̂ =

∮
c2

iξσ̂. (12)

This is, however, nothing but a conservation law : for solutions of Nambu equations,

fξ(t1; c1) = fξ(t2; c2), (13)

where fξ is given by the integral

fξ(ta; ca) :=

∮
ca

iξσ̂ a = 1, 2. (14)

In full analogy with the Hamiltonian case, a more general definition of symme-
try is possible. Rather than using differential version of (9), vanishing of the Lie
derivative

Lξσ̂ = 0 , (15)

we define symmetry of Nambu system as a vector field ξ obeying somewhat weaker
condition,

Lξσ̂ = dχξ (16)

(exactness of the Lie derivative is enough). Or, by Cartan’s formula,

iξdσ̂ = −d(iξσ̂ − χξ). (17)

Upon integration over the surface Σ we get∫
Σ

iξdσ̂ = −
∮
∂Σ

(iξσ̂ − χξ). (18)

Since the l.h.s. vanishes (on solutions), it holds∮
c1

(iξσ̂ − χξ) =

∮
c2

(iξσ̂ − χξ). (19)

So, we obtain the statement

fξ(t1; c1) = fξ(t2; c2), (20)
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where (more general, cf. (14)) fξ is given by the integral

fξ(ta; ca) :=

∮
ca

(iξσ̂ − χξ) a = 1, 2. (21)

In words: Given a symmetry ξ take, at time t1, an arbitrary one-cycle (loop) c1.
Compute the line integral ∫

c1

(iξσ̂ − χξ). (22)

Then, let each point of c1 evolve by Nambu flow up to time t2. You get another
one-cycle (loop), c2. Compute, again, the line integral∫

c2

(iξσ̂ − χξ). (23)

The conservation law says: You get the same number.

4. Conserved quantities as relative integral invariants

In Nambu mechanics, conserved quantity associated with symmetry ξ turns out to
be a relative integral invariant. This is, by definition, a differential p-form α such
that, when integrated over a p-cycle, it gives an invariant w.r.t. the dynamical
flow. Put in another way, if a dynamical vector field V generates the flow Φt (time
evolution) and if c2 is the Φt-image of an arbitrary p-cycle c1, then,∮

c1

α =

∮
c2

α (24)

(see, e.g., [4, 11] and [12]).

In our case, the result (19) may be regarded as the statement that on Nambu
extended phase space endowed with the dynamical vector field V defined by

iV dσ̂ = 0 (25)

(see (2)) we get, as a consequence of existence of a symmetry ξ, a relative integral
invariant. Namely, (24) holds for the one-form

α = iξσ̂ − χξ. (26)

Of course, as is always the case, our relative integral invariant then automatically
yields an absolute integral invariant, integral of the exterior derivative dα of α
over any two-chain (two-dimensional surface) s. So, taking into account (17),∫

s1

iξdσ̂ =

∫
s2

iξdσ̂. (27)
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5. More Nambu Hamiltonians

Already in the original paper [6] Nambu pointed out that the idea of three-
dimensional phase space and two Nambu “Hamiltonians”, H1 and H2, may be
straightforwardly generalized to more dimensions, n-dimensional (Nambu) phase
space and n− 1 Nambu “Hamiltonians”, H1, . . . , Hn−1. (There are also other gen-
eralizations, see Refs. [6, 8].)

And it is easily seen that all constructions discussed in this paper work equally
well in the n-dimensional version. In particular, σ̂ becomes (n−1)-form, c1 becomes
(n − 2)-cycle, Σ is (n − 1)-dimensional surface and so on (see [8, 9]). Conserved
quantities are still integral invariants (formally equally looking formulas (19) and
(27) hold, where ca are (n− 2)-cycles and sa are (n− 1)-chains).

6. Conclusions

Both Hamiltonian and Nambu mechanics study motion of points in phase space
along their trajectories. Therefore it is natural to expect conserved quantities to
be functions on phase space. Once we study particular motion, we evaluate the
function at the time t1 at the point where the motion begins, and then we profit
from the fact that, at the future points of the trajectory, the same value of the
function is guaranteed by the conservation law.

In Hamiltonian mechanics it is really so. In Nambu mechanics, there are
conserved functions as well. Namely, the two “Hamiltonians” H1 and H2 are con-
served.

However, as we have seen, these conserved functions do not directly follow
from symmetries, as we might expect from the Hamiltonian case. Instead, in the
case of symmetries, application of more or less standard machinery results, because
of a peculiar situation with the action integral, in conserved quantities which
have the character of integral invariants rather then usual conserved functions.
(The machinery leads to higher-degree forms rather than usual zero-forms, that
is, functions.) As a reward for finding a symmetry, the conserved number is only
obtained as integral of the form over a one-cycle.

We stress again that the reason lies in the peculiar structure of the action inte-
gral: Since we only can associate the action with a family of trajectories, conserved
quantities also reflect properties of the family and they are, therefore, constructed
using integration “over the family”.

Let us note that there is the whole series of well-known Poincaré–Cartan in-
tegral invariants in Hamiltonian mechanics, where numbers only come out from in-
tegration “over (an appropriate) family” of trajectories. These integral invariants,
however, have nothing to do with symmetries of particular Hamiltonian system
(they hold in general, irrespective of the concrete form of the Hamiltonian).
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The Triple Reduced Product and
Hamiltonian Flows

L. Jeffrey, S. Rayan, G. Seal, P. Selick and J. Weitsman

Abstract. In this paper we study the triple reduced product of three coadjoint
orbits of SU(3) and show that, under suitable hypotheses on the parameters,
it is homeomorphic to S2. Hence by Moser’s method it is symplectomorphic
to a copy of S2 whose symplectic volume equals that of the triple reduced
product.

We outline a method to find a Hamiltonian function on this S2 (with its
non-standard symplectic form) which is the moment map for a circle action.
In other words the period of the Hamiltonian flow is constant except at fixed
points.

Mathematics Subject Classification (2010). 58F07.

Keywords. Symplectic quotient, moment map, coadjoint orbit, symplectic ge-
ometry.

1. Introduction

Throughout, G will refer to the Lie group SU(3); T , to its maximal torus; and g, to
its Lie algebra. Let λ, μ, ν be diagonal 3×3 traceless matrices with real eigenvalues,
and let iλ, iμ, iν ∈ g so that Oiλ, Oiμ, Oiν are the corresponding orbits (under
the adjoint action on g). We define the triple reduced product to be the quotient

P(λ, μ, ν) := (Oiλ ×Oiμ ×Oiν)//G.

Here, G acts diagonally on the product of orbits (via the adjoint action). The
notation // indicates that we are taking the symplectic quotient Φ−1(0)/G of the
product of the three orbits, where

Φ(X,Y, Z) = X + Y + Z

is the moment map for the diagonal adjoint action of G.

LJ and PS were partially supported by a grant from NSERC

SR was partially supported by University of Toronto
JW was partially supported by NSF grant DMS-12/11819.
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It is straightforward to conclude on general grounds that, at regular values of
the moment map, the triple reduced product is diffeomorphic to S2 (see Theorem
1 below). Nonetheless we want to find explicit coordinates on this 2-sphere, and
so we give an explicit construction. We shall also describe the symplectic form on
the triple reduced product (see §3.1, particularly (25) and the paragraph following
this equation).

The main objective of our program is to find a Hamiltonian function on the
triple reduced product whose Hamiltonian flow generates an S1 action on it. Our
main result is in §3.3. In §3.3 we take an arbitrary function f whose level sets
are circles and construct an S1 action using it. Later we identify the Hamiltonian
whose Hamiltonian vector field is the fundamental vector field associated to this
circle action.

Guillemin and Sternberg [6] showed that on a coadjoint orbit Oλ of SU(n),
there exists a collection μ1, . . . , μn(n−1)/2 of continuous functions, smooth on an
open subset U ⊂ Oiλ, the complement of a collection of high codimensional sub-
manifolds of Oiλ, which are moment maps for a torus action on U . (The formula
for one of these functions is used below, see (60).) The image of the function
μ1, . . . , μn(n−1)/2 : Oiλ → Rn(n−1)/2 is a convex polytope studied by Gelfand and
Cetlin, which is our motivation for considering the Gelfand–Cetlin function later.

Among these functions are the n − 1 moment maps for the maximal torus

T ⊂ SU(n). Therefore, the remaining functions are
(n− 1)(n− 2)

2
T -invariant

functions on Oiλ. These functions therefore give rise to
(n− 1)(n− 2)

2
functions

on the reduced spaces
(
Oiλ ×Oiμ ×Oiν

)
//G when λ, μ, ν are generic: we have(

Oiλ ×Oiμ ×Oiν

)
//G = {x ∈ Oiλ, z ∈ Oiν : x+ iμ+ z = 0}/T.

The reason we need only quotient by the maximal torus is that we can assume
Y is in the Lie algebra of the maximal torus, and we can also assume the stabilizer
of iμ is the maximal torus. This space is called the triple reduced product, since
it is the reduced space at 0 of the product of three orbits Oiλ, Oiμ and Oiν .

The restriction of any of the μi : Oλ → R then gives a function on(
Oiλ×Oiμ×Oiν

)
//G. Since

(n− 1)(n− 2)

2
= (1/2)dim

(
Oiλ×Oiμ×Oiν

)
//G, it

is plausible to suspect that these functions are moment maps for a densely defined

torus action on
(
Oiλ ×Oiμ ×Oiν

)
//G.

When G = SU(3), we see that (Oiλ ×Oiμ ×Oiν) //G = S2 (see Theorem 1
below). This is a toric variety, so a global torus action does in fact exist. It seems
worthwhile to check whether in this case, the Guillemin–Sternberg functions are
moment maps for torus actions on (Oiλ ×Oiμ ×Oiν) //G.

One purpose of this paper is to carry out this check for SU(3). Unfortunately
it appears that this conjecture is false, as we show below.
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This paper is organized as follows. §2 explains why (for suitable choices of
λ, μ, ν) the triple reduced product is a 2-sphere. §3.1 computes the symplectic
structure on the triple reduced product. Our main result is obtained in §3.3, where
we give an integral formula for the moment map for a Hamiltonian S1 action on
the triple reduced product.

§4 explains a method to compute the period of the Hamiltonian flow of a
Hamiltonian function.

All numerical work was done using Mathematica. The code was written by
one of us (P.S.), with assistance from Jesse Bettencourt, who improved and doc-
umented it. It it is availabe at
http://github.com/reducedproduct/triple.

We also thank Jacques Hurtubise for useful discussions.

2. The triple reduced product is a 2-sphere

2.1. Notation conventions

The variable X is a member of the Lie algebra of SU(3), viewed as a 3×3 complex
matrix.

X =

⎛⎝X11 X12 X13

X21 X22 X23

X31 X32 X33

⎞⎠ =

⎛⎝ ia r = p+ iq s = u+ iv
−p+ iq ib t = x+ iy
−u+ iv −x+ iy ic

⎞⎠ . (1)

Our variables are r = p + iq, s = u + iv, t = x + iy, ia and ib, where
a, b, p, q, u, v, x, y are real and c = −a− b.

Recall λ, μ, ν are constants in R3, where iR3 is the Lie algebra of the maximal
torus T of SU(3). We write λ = (λ1, λ2, λ3), and similarly for μ and ν. We impose
the condition that λ1 + λ2 + λ3 = 0 (similarly for μ and ν), so that iλ, iμ, iν will
lie in t, the Lie algebra of T .

2.2. Equations characterizing the triple reduced product

We have

det(X) = X11(X22X33 −X23X32)−X12(X21X33 −X23X31)

+X13(X21X32 −X22X31).

Also the second elementary symmetric polynomial τ2(X) is

τ2(X) = X22X11 +X33X11 +X22X33+ | X12 |2 + | X13 |2 + | X23 |2 .
We are interested in

E := M/G, (2)

where

M := {(X,Y, Z) ∈ Oiλ ×Oiμ ×Oiν : X + Y + Z = 0}. (3)

Note that if 0 is a regular value for the moment map of the diagonal, then E
is a compact smooth manifold.

http://github.com/reducedproduct/triple
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Because we are studying the quotient by the diagonal conjugation action of
G, we have assume Y has been conjugated into the element iμ in the Lie algebra
of the maximal torus. After this conjugation choice we are left with

X ∈ Oiλ and Z = −X − iμ ∈ Oiν .

Henceforth we will write simply X for the triple (X, iμ,−X − iμ) ∈ M. The
statement

X ∈ Oiλ

is equivalent to

i det(X) = λ1λ2λ3, τ2(X) = λ1λ2 + λ1λ3 + λ2λ3. (4)

2.3. The triple reduced product is S2

Theorem 1. Assume 0 is a regular value of the moment map. Then the triple
reduced product is either empty or homeomorphic to S2.

Proof. By a dimension count, the triple reduced product for SU(3) has real di-
mension 2, and we shall demonstrate that it is homeomorphic to a 2-sphere, for
suitable restrictions on λ, μ, ν. For generic values of the moment map, the zero
level set of the moment map is a manifold, and a direct computation shows that
the G action is free, so that the quotient is a manifold. Since the Kirwan map is
surjective, dim H0 ≤ 1, dim H1 = 0, and dim H2 ≤ 1. Therefore the reduced
space, for regular values of the moment map, is either empty or S2. �

The 4-dimensional subvariety M ⊂ su(3) is defined by four equations ob-
tained by X ≈ iλ and −X− iμ ≈ iν, where the symbol “≈” denotes “is conjugate
to”. The variety M is then determined by the equations:

−τ2(−X − iμ) + τ2(X) = τ2(ν)− τ2(λ), (5)

i det(X + iμ)− i det(X) = det(ν)− det(λ), (6)

i det(X) = det(λ), (7)

−τ2(X) = τ2(λ). (8)

Expanding the left-hand side of (5) gives

aμ2 + aμ3 + bμ1 + bμ3 + cμ1 ++cμ2 + μ1μ2 + μ1μ3 + μ2μ3,

which could be simplified by using μ1+μ2+μ3 = 0. Combined with a+ b+ c = 0,
this gives a and b as linear functions of c.

We introduce the notation

μi,j = μj − μi for i, j ∈ {1, 2, 3}. (9)

The maximal torus T acts on g by

diag(eiθ1 , eiθ2 , eiθ3) : Xij 
→ ei(θi−θj)Xij .
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Hence it is always possible to choose an element of T that conjugates X into the
set where the matrix elements X13 ∈ R≥0 and X23 ∈ (1 + i)R≥0. In other words,
we obtain a global transversal T R with T R ∼= E by setting

v = 0, y = x, u ≥ 0, x ≥ 0. (10)

Lemma 2. Given a norm-preserving action on a Riemannian manifold, there is a
canonical Riemannian metric on the quotient.

Proof. Because the action is norm-preserving, the metric on the quotient is inde-
pendent of the choice of representatives. �

We apply this to the action of the maximal torus T on M by diagonal con-
jugation. Note that this action is norm-preserving.

Since elements in the image of the tangent space of T R can be used as the
chosen representatives in computing the metric, the Riemannian metric on the
subspace T R is the same as that on the quotient.

Our space T R has generic dimension two and is given by real variables
p, q, x, u, a satisfying the three equations (11), (12) and (13) below.

After implementing the transversal, the equations become

−μ3|r|2 − μ2u
2 − 2μ1x

2 + P = 0, (11)

2ux(p+ q) + abc− c|r|2 − bu2 − 2ax2 − λ1λ2λ3 = 0, (12)

R− |r|2 − u2 − 2x2 = 0, (13)

where P and R are polynomials in c whose coefficients depend on the parameters
λ, μ and ν. Specifically, P and R are quadratic. Noting that a and b are linear
functions of c, observe that (12) has the form

2ux(p+ q) +Qc +Qr|r|2 +Quu
2 +Qxx

2 = 0

where Qc is cubic and Qr, Qu and Qx are linear. Our transversal makes the
equations (5), (6), (7) and (8) (equivalently (11)–(13)) invariant under p↔ q.

We define a flow on E . We fix a value of c. Let Ψ : E → R be defined by
Ψ(X) = c. Define

S(c) := Ψ−1(c). (14)

If c is a regular value of Ψ, S(c) is a 1-dimensional manifold, which is preserved
by the involution i : p↔ q. Let m(c) and M(c) be respectively the minimum and
maximum values of |r|2 on S(c).

Via equations (11) and (13), we can eliminate the variables x and u. Then
E is parametrized by |r| and c subject to (12). That is, if (12′) is the equation
obtained from (12) after replacing u and x from (11) and (13), then p and q are
the solutions to the simultaneous equations (12′) and

p2 + q2 = |r|2

after which u and x are determined by (11) and (13).
Define

V (c, k) := {(p, q, c) ∈ E | p2 + q2 = k}. (15)
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Given c, solving equation (12’) gives an equation p+ q = f(|r|2). The circle p2 +
q2 = |r|2 intersects p + q = f(|r|2) in at most two points, called A(c, |r|2) and
B(c, |r|2), which are interchanged by the involution p↔ q. Take A(c, |r|2) to have
the smaller value of |r|2. At the extreme values, |r|2 = m(c) and |r|2 = M(c),
the pair A(c,m(c)), B(c,m(c))

(
resp. A

(
c,M(c)

)
, B

(
c,M(c)

))
reduces to a single

point lying on the axis of symmetry p = q. That is, A(c,m(c)) = B(c,m(c)) and
A(c,M(c)) = B(c,M(c)). Thus S(c) is a closed curve which joins A

(
c,m(c)

)
to

A
(
c,M(c)

)
through the points {A(c, |r|2) | m(c) ≤ |r|2 ≤ M(c)} and comes back

through the points B(c, |r|2).
We define a flow on S(c) by sending

A(c,m) 
→ A(c,m+ t) (16)

at time t, where by convention we set A(M + t) = B
(
M + t(M −m)

)
.

Lemma 3. S(c) is a topological circle.

Proof. Write S(c) = SA(c) ∪ SB(c) where SA(c) := {A(c, |r|2) | m(c) ≤ |r|2 ≤
M(c)} and SB(c) is its image under the axis of symmetry p = q. Since the circle
p2 + q2 = |r|2 intersects the line p+ q = f(|r|2) in at most two points, each of SA,
SB is a simple curve. Thus S(c) is a union of n topological circles which intersect
the axis of symmetry p = q at the critical points. To show that n = 1, we show
that there are only two critical points.

Setting p = q gives p2 = |r|2/2. Solving (11) and (13) for x2 and u2 gives

polynomials in c and |r|2 which are linear in |r|2. Thus (12) becomes ±
√
2|r| =

f(|r|2) where f(z) has the form

L1(z)√
L2(z)L3(z)

,

where L1, L2, L3 are linear in |r|2. The solutions of ±
√
2z = f(z) are symmetric

under z 
→ −z and are contained in the solutions of the quintic 2L2
2L

2
3z = L2

1.
Therefore there cannot be more than two positive roots. That is, there cannot be
more than two solutions for |r|.

�

3. Symplectic form and Hamiltonian vector field

3.1. Symplectic form related to inner product

Let X be a point in the Lie algebra of SU(3). Recall that the tangent space TX is
given by

TX = {[X,V ] | V ∈ su(3)}.
For A,B ∈ su(3) let 〈A,B〉 denote the Euclidean inner product, which equals
−Trace(AB). Also let e be a point in su(3). Suppose that

〈[X, e], t〉 = 0 (17)
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for all diagonal t, in other words [X, ·] ∈ it. We wish to find a β(e) which satisfies

[X, e] = [iμ, β(e)]. (18)

Recall that eij denotes the ij-entry of the matrix e whereas μi,j means μj−μi.
If e ∈ su(3), set

β̃(e) := −

⎛⎜⎜⎜⎝
0 − e12

iμ1,2
− e13
iμ1,3

∗ 0 − e23
iμ2,3

∗ ∗ 0

⎞⎟⎟⎟⎠ (19)

where the asterisks are chosen to make β̃ an element of su(3). The element β̃(e)
is defined for all e, but only has the properties we need for e satisfying (17).
This defines a vector field β(e) which also depends on the variable X , assumed to
be in E .

We can define

β(e) = β̃([X, e]), (20)

for all e. If also 〈[X, e], t〉 = 0 for all t, then the function β : su(3) → su(3)
satisfies (18). Calculation is required to see that (19) is the appropriate value for

the function β̃.
Also let the vector field α(e) be defined as

α(e) := −e− β(e).

Now define

V (e) := [X,α(e)] ∈ TX . (21)

If 〈[X, e], t〉 = 0 for all t then V (e) also satisfies

V (e) = [X,α] = −[X, e]− [X, β] = −[iμ, β]− [X, β] = [−X − iμ, β]. (22)

Notice that if 〈[X, e], t〉 = 0 for all t ∈ t, the tangent vector V (e) is a commutator
with both X and −X − iμ and thus lies in the tangent space at X to the triple
reduced product, regarded as a submanifold of su(3).

Given Y = [X, y] for some y – in other words Y is in the tangent space at X
to the orbit of the adjoint action – we have

ωKKS
X

(
V (e), Y

)
= −ωKKS

X

(
Y, V (e)

)
= −〈X, [y, α(e)]〉

= −〈[X, y], α(e)〉 = −〈Y, α〉,
(23)

where we denote the Kirillov–Kostant–Souriau symplectic form on coadjoint orbits
by ωKKS . This is based on the above expression (22) for [X,α].

If also Y is of the form Y = [−X − iμ, ỹ] for some ỹ, then

ωKKS
−X−iμ(V (e), Y ) = −〈−X − iμ, [ỹ, β]〉 = −〈[−X − iμ, ỹ], β〉 = −〈Y, β(e)〉. (24)

Let Ω(·, ·) denote the symplectic form on the triple reduced product. For Y ∈ TXM
Ω
(
V (e), Y

)
= ωKKS

X

(
V (e), Y

)
+ ωKKS

−X−iμ

(
V (e), Y

)
= −〈Y, α(e)〉 − 〈Y, β(e)〉 = −〈Y, α(e) + β(e)〉 = 〈Y, e〉.

(25)
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3.2. Vector fields on M
To show that every vector field on the 4-dimensional variety M is V (e) for some e,
we find a suitable basis of this form for the tangent space TX(M).

With r and s as in §2, set

e1 :=

⎛⎝ 0 r 0
−r̄ 0 0
0 0 0

⎞⎠ e2 :=

⎛⎝ 0 0 s
0 0 0
−s̄ 0 0

⎞⎠ .

Then it is easy to see that V (e1), V (e2), V (iμ), V (iD) are linearly independent,
where D is a vector in t linearly independent from μ.

3.3. Equation satisfied by diffeomorphisms preserving the symplectic form

Let f : E → R be a function whose image is an interval [zmin, zmax] such that
f−1(z) is a topological circle for all but two points zmin and zmax in its image,
and f−1(zmin) and f−1(zmax) are single points, with zmin and zmax as minimum
and maximum respectively. One example is f(X) = GC(X) (as shown in §3.6).
Parametrize f−1(z) by γz : [αz , βz] → f−1(z) for some αz, βz with γz(αz) =
γz(βz). Alternatively we may think of γz as a periodic function γz : R → f−1(z)
with period βz − αz . By abuse of notation we sometimes refer to the circle γz.

Our goal is to define an action φ̄ of S1 on E preserving ω and keeping the
value of f(z) constant, and rotating the topological circle γz . We want to define
an action

φ̄(e2πis, γz(k)) = e2πis · γz(k)
such that

(φ̄s)
∗ω = ω.

Write φ̄s(γz(k)) = γz(φs(k)) for some φs : R → R for k ∈ [αz, βz].
Set

F (z, k) := ωγz(k)

(
∂

∂k
,
∂

∂z

)
.

In other words, in the local coordinates k and z,

ωγz(k) = F (z, k)dk ∧ dz.
Our requirement

(φ̄s)
∗ω = ω,

becomes

Fz(k)dk = Fz(φs(k))
∂φs
∂k

dk. (26)

Note that the subscript z means the value of a function at a specific value of the
parameter z – it does not refer to differentiation with respect to z. Let

∂Gz

∂k
= Fz(k). (27)

Solving the differential equation (26) gives

Cs +Gz(k) = Gz

(
φs(k)

)
(28)
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for some constant Cs depending on the real parameter s but independent of k.
Equation (28) is an implicit formula for φs. It yields the explicit formula

φs,z(k) = gz(Gz(k) + Cs) (29)

for φs, where

gz := Gz
−1. (30)

(This means gz is the inverse function of Gz , not the reciprocal.) Gz is invertible
since its derivative is the symplectic form in the coordinates k and z, which is
nondegenerate. Fix z and write φs(k) for φs,z(k).

We have

φs+t = φs ◦ φt, (31)

φ0 = 1, (32)

φ0 = φ1. (33)

Equations (31) and (32) imply that Cs is a linear function of s.
We define an action φ̄ : S1 × E → E by

φ̄s(γz(k)) = e2πis · γz(k) = γz
(
gz(Gz(k) + λzs)). (34)

The parameter λz is determined by the condition φ0(z) = φ1(z) as follows.

Lemma 4.

λz = Gz(βz)−Gz(αz). (35)

Proof. When s = 0 we have

φ0(k) = gz(Gz(k)) = k,

while for s = 1 we have

φ1(k) = gz(Gz(k) + λz).

The condition φ0 = φ1 implies that

k = gz(Gz(k) + λz), (36)

by taking s = 1 in (34). This in turn is equivalent to

gz(Gz(k)) + βz − αz = k + βz − αz . (37)

We see this because from (34) (with s = 1) we have that

γz(k) = γz
(
gz(Gz(k) + λz)

)
.

Recall that γz is periodic, and so φ0(k) = k but φ1(k) = k + βz − αz.
Because gz is injective it follows using (34) and (37) that

Gz(k) + λz = Gz(k + βz − αz) (38)

for all k. Rearranging, we get

λz = Gz(k + βz − αz)−Gz(k)
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for all k. Letting k = αz , we obtain

λz = Gz(βz)−Gz(αz). (39)

�

Let the moment map for the S1 action be denoted by

Φ : E → R ∼= t∗. (40)

Let s ∈ t ∼= R. Let s# denote the fundamental vector field generated by the action
of R.

In what follows, when f is a function of k and z, we write fz(k) for f(k, z),
and let primes denote differentiation by k.

Lemma 5. The vector field s# is given by

s# = g′zλzs
∂

∂k
, (41)

with λz as in (35) and X = γz(k).

Proof. As was proved in Lemma 5, the vector field generated by the action of R is

s# = g′zλzs
∂

∂k
(42)

in local coordinates. On E , it is s# = γ′z(g′zλzs
∂
∂k ); in other words dγz(g

′
zλzs

∂
∂k ).

We have

is#ω(
∂

∂z
) = Fg′λzs = λzs (43)

since the second equation comes from the fact that

g′(z) =
dgz
dk

=
1

dGz/dk
=

1

Fz
. (44)

The vector field s# is

(s#)X = lim
ε→0

e2πisε ·X −X

ε
= lim

ε→0

γz

(
gz
(
Gz(k) + λzsε

))
− γz(k)

ε
, (45)

∂

∂s
(γz ◦ φs)|s=0 = lim

ε→0

(γz ◦ φs)(ε)− (γz ◦ φ)(0)
ε

, (46)

which equals the above expression (45) for (s#)X . In other words

γ′z(k)g
′
z(k) = γ′z(k)

(
lim
ε→0

gz

(
Gz(k) + λzsε

)
− k

ε

)
= sγ′z(k) lim

sε→0

gz(Gz(k) + λzsε− gz(Gz(k))

sε

(47)

since k = gz(Gz(k)). (The second equality is obtained by multiplying by s in the
numerator and denominator.) The above quantity is equal to

sγ′z(k)g
′
z(k) lim

u→0

Gz(k) + λzu−Gz(k)

u
= sλzγ

′
z(k)g

′(Gz(k)), (48)
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with the quantity on the left-hand side obtained by substituting sε = u, while
the equality is obtained by canceling two factors Gz(k)) and using the chain rule.

The above quantity is then equal to λzs
γ′
z(k)

G′
z(k)

. This last follows from (44). This

completes the proof. �

We next want to compute the Hamiltonian and moment map. Let Hs be the
Hamiltonian generating the vector field s#.

dHs = d(sΦ) = s
∂Φ

∂z
dz, (49)

sdΦ = dHs = is#ω = λzsdz. (50)

Hence the moment map is

Φ(z) =

∫ z

zmin

λhdh, (51)

where we integrate along the trajectory γz. Note that by analogy with elliptic
integrals, the moment map is defined as the integral of a function, not in closed
form.

We have

φs
′(k) = g′(G(k) + s)G′(k), (52)

φs
′(k) =

G′(k)
G′(G(k) + s)

=
F (k)

F (G(k) + s)
, (53)

ω = Fz(k)dz ∧ dk, (54)

G′
z(k) = Fz(k)gz. (55)

The vector field is given by

(s#)γz(k) = λz
s

G′
z(k)

∂

∂k
=

s

Fz(k)

∂

∂k
(56)

from (35) and (54).

The Hamiltonian is

Hs = sΦ = s

∫ z

zmin

λhdh. (57)

We check via the previous calculation (57) that

dHs = is#ω = sλzdz. (58)

3.4. General formula for the period

We wish to test whether a given function f satisfying the hypothesis of §3.3 is
the Hamiltonian for the circle action defined in that section. Let H be the actual
Hamiltonian, and let XH be the Hamiltonian vector field of H . The level sets of
H are the same as the level sets of f .

Let I = [zmin, zmax].
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The period, which is independent of z, is given by

τ =

∫
γz

1

|XH |dγz (59)

for z ∈ I.
One way to see that this is the equation for the period is to observe that if

we have an equation for the Hamiltonian flow

dz

dt
= H(z),

then this ODE is separable and we can integrate

dz

H(z)
= dt.

Then the period is the value τ for which t completes a circuit, or∫
dc

H(c)
= τ.

3.5. Method to get Hamiltonian vector field

Let f be as in §3.3. Let H be the Hamiltonian associated to the circle action
coming from the foliation {f−1(z)} described in the previous section. Let XH be
its associated Hamiltonian vector field.

By taking directional derivatives of f in various two linearly independent
directions V (e1), V (e2) we find a matrix e ∈ su(3) such that df

(
V (e)

)
= 0. By

construction, H is constant along the circles f = constant. Since we are in two
dimensions, this implies that V (e) is a multiple of XH .

Since we are in two dimensions, Ω( , ) is determined by knowledge of Ω(Y, Z)

for any Y and Z. Set Ω̂ :=
(
Ω(V (e), Tc)

)
= −〈e, Tc〉. If we knew H , comparing(

Ω(V (e), Tc)
)
with Ω(XH , Tc) = dH(Tc) would tell us thatXH = Ω̂

dH(Tc)
V (e). This

gives us the following method of determining whether or not f is the Hamiltonian

associated to the circle action its foliation determines. Set χf := Ω̂
df(Tc)

V (e), and

for z ∈ (zmin, zmax) set τz := 2
∫
γz

1
‖χf‖ dγz. If f = H , then (as shown in the

previous section) τz would be the period of the action, and in particular the value
of τz would be independent of z. This method is used later to show that some
candidates for H are not in fact the Hamiltonians for their associated circle action.

Our knowledge of Ω̂ allows us to write Ω in any local coordinate system. Set
Ezmax
zmin

:= f−1[zmin, zmax]). Using our formula for Ω( , ) in local coordinates we can
compute the symplectic volume

SV OLzmax
zmin

:=

∫
Ezmax
zmin

Ω.

This allows us to construct a table of values forH(z), normalized so thatH(zmin) =

0, as the solution to the equation H(z)−zmin

zmax−zmin
=

SV OLz
zmin

SV OL . Of course, this gives
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another way to test if values of the starting function f agree with those of H . This
algorithm is implemented in our Mathematica code.

3.6. Gelfand–Cetlin satisfies conditions of §3.3
We now check that this class of functions f from §3.3 includes the Gelfand–Cetlin
function. For M a skew-Hermitian square matrix of dimension 3 in a specific
adjoint orbit, the Gelfand–Cetlin function is defined as

HGC(M) = −M11 +
√
−(M22 −M33)2 + 4M23M32. (60)

With our chosen parameters the Gelfand–Cetlin function becomes

GC(X) = −a+
√
−(b− c)2 + 4x2.

As noted earlier, a and b are linear functions of c, using equation (5) and the
condition a+b+c = 0. Thus the curve GC(X) = C is given by a quadratic function
of x and a. Its level sets are conics. For appropriate values of the constants λ, μ,
ν and C, its level sets are therefore circles.

The Gelfand–Cetlin function is obviously not suitable, since it is not sym-
metric under X 
→ X + iμ. Another related function which is symmetric under
this operation is the average Gelfand–Cetlin function, obtained by averaging with
respect to this operation.

4. The period of the average Gelfand–Cetlin function

Let GCave be the average Gelfand–Cetlin function

GCave(X) := (GC(X) +GC(−X − iμ)) /2.

In this section we will simply denote GCave by f . If the level sets of f are not
circles, then f clearly is not the moment map for a circle action on E . We show
that there are values of the parameters for which f is not the Hamiltonian of a
circle action.

Appropriate values of parameters have been chosen so that the level sets are
circles. We compute the period of the Hamiltonian flow. We find numerically that
the period is not constant, hence f is not the moment map for a circle action.

4.1. Generic constants

The integral for the period is too complicated to compute in closed form. To
simplify the figures, we studied particular values of μ, λ, ν. To investigate whether
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or not the period is independent of the value z of f , we choose generic values of
our parameters. We used the following values

λ = (−7/2, 3, 1/2),

μ = (−3, 0, 3),

and ν = (−11/2, 4, 3/2).

These values are chosen somewhat randomly, with a view to simplifying the alge-
bra. For no particular reason we chose μ1 = 3 and μ2 = 0. The values of λ and
ν above were chosen so that the coefficients in the equations defining M would
come out to be integers.

With these values of our parameters, we found that zmin ≈ 3.899 and zmax ≈
5.179, where as before zmin and zmax are the minimum and maximum values of f .

These can be regarded respectively as the north and south poles of our S2.
We note that our algorithm and our Mathematica code enable us to produce

a table of values for the moment map for a circle action. Some representative values
of the period are given by Figure 1.

Figure 1. Image of the parameter
space in H and c for E .

Table 1. GCave

f τ/2

5.079 6.332
4.979 5.072
4.879 4.648
4.779 4.576
4.679 4.806
4.579 4.975
4.479 3.578
4.379 2.786
4.279 2.285
4.179 1.941
4.079 1.695
3.979 1.527

As can be seen from Table 1, the period depends on the value of f and
increases monotonically with decreasing f . The period is not constant, which shows
that f is not the Hamiltonian for a circle action. For the Gelfand–Cetlin function,
the period is also not constant – for example we computed the period for two level
sets and found they are different.



The Triple Reduced Product and Hamiltonian Flows 49

References

[1] M. Atiyah, Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14
(1982 ) 1–15.
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Abstract. We discuss an extremely simple case of ‘shadowing’ when the very
existence of quantum detector deforms the behavior of quantum particles even
if the detection is never performed. In spite of known statistical interpreta-
tions, it may support some recent doubts about the completeness of quantum
theory.
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1. Introduction

While the basic idea of quantum theory, about the linear ‘navigation’ of pure
states in Hilbert spaces owes its origin to Schrödinger’s thought [1], the result-
ing measurement axioms with the unavoidable state collapses were encrusted as
an additional element, against Schrödinger himself. “Diese verdammte Quanten-
springerei” [2] were never completely understood (for was it a sudden jump or
some microobject instability [3], or decoherence [4], some subtle unknown effects
[5] or sudden non-linear catastrophe?). The interpretational doubts inspired the
famous anecdote of Schrödinger’s cat [6], surviving until today. The subsequent
discussions [7–12], illustrate the peculiarity of the problem, without offering a
convincing solution. Almost all hide the Wheeler paradox of “delayed choice ex-
periment” at the bottom [13], treated however as a dark anecdote, which should
not frustrate an intense effort to follow the promising trends. Hence, the multi-
ple decades focused their interest on the non-locality problems, starting from the
historical Einstein–Rosen–Podolski (EPR) work [14] accepted with difficulty by
Einstein himself. Later on, the teleportation effects [15, 16] exhibited new em-
pirical perspectives. Yet, almost from the beginning, the doubt existed, whether
the unique probabilistic interpretation can be formulated for quantum states de-
fined on the relativistic spacelike surfaces, independently on the measurements
performed in the future. The simplest doubt is reported in Figure 1.
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P0
0

1

t t

P

Figure 1. The measurement performed at point P ′ of the plane Σ1

by a moving observer with a simultaneity hyperplane Σ′ can affect the
probability distribution around the point P0 of the hyperplane Σ0.

The story turned even more challenging in an inspired article of Elitzur and
Vaidman (EV) on the ‘interaction free measurement’ [17, 18]. While the (EV) idea
resists too realistic interpretations, it opens unsuspected perspectives to ‘see in
the dark’ [19], with hopes for new age in quantum information permitting the use
of powerful quantum computing [20]. In the parallel development, some ambitious
trends in Quantum Field Theories (QFT) started already to tell about the “Theory
of Everything” as if the end of fundamental research was not too far away.

Yet, some symptoms indicate that the doctrine of quantum theory might be
not so universal as generally believed. To illustrate this, it is enough to consider
again some details of the ‘interaction free measurement’.

2. Interaction free detection?

In their idealized experiment Elitzur and Vaidman consider a photon in a system
of optical fibers, with beam splitters and mirrors of Mach–Zehnder interferometer
(Fig. 2). The photon wave function is divided into two coherent parts by the first
beam splitter, then reflected by two mirrors toward the second splitter, where they
unify again, recovering their original state of motion.

So, if there is no obstacle, the photon recovers its original propagation mo-
mentum, falling into the detector D. However, if one of the branches is blocked,
e.g., by a ‘perfectly absorbing obstacle’ (the terminology used in [17]), then the
system performs the first state reduction. Either the obstacle detects (by absorb-
ing) the photon, which therefore arrives neither to D nor to E. Or it reduces the
whole propagation branch, canceling the blocked trajectory. The second splitter
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E

D

a bomb!

Figure 2. Elitzur and Vaidman ‘interaction free experiment’. An ab-
sorbing obstacle (e.g., a bomb) eliminates one of possible photon tra-
jectories. The photon, moving only along the obstacle-free way, has the
probability 1/4 to fall to the detector E, thus revealing the existence of
an obstacle with which it never collided

will then receive the photon which propagated only along the free path (as if the
other one from the beginning did not exist). Its photonic state is then decomposed
by the second splitter into the superposition of two parts, tentatively reaching D
or E. The choice of one of them is the second state reduction. The peculiar effect is
that the first reduction in 1/2 cases eliminates completely one of the trajectories,
while the second one makes equitative choice between D and E. So in 1/4 of cases
the photon appears in E, thus revealing the existence of an obstacle, to which it
has never approached.

Elitzur and Vaidman choose still a more challenging version of the experi-
ment, assuming that the obstacle is a supersensitive bomb, which would explode
immediately under any contact with the photon. Hence, if the detector E clicks, it
would mean that the bomb was detected (without exploding) by a single photon
which could pass hundred kilometers away!

All this seems quite suggestive, if the photon was just an instantaneous pulse.
However, what is precisely the single photon? Must it propagate always as an
infinitely short pulse? Or perhaps, it can also form a very long, narrow wave
divided by the first splitter into a pair of still weaker but as long components
which laboriously reconstruct their initial form at the second splitter, falling then
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(gradually) into the detector D? The problem nonetheless is, at which moment
precisely the detector responds to the single photon? At the beginning or at the
end of the process?

Worse, because if one of the (EV) trajectories is blocked by the bomb, then
after what time the bomb explodes? If it doesn’t, then after what time the (large
but incomplete) photon wave which tried to cross the bomb is mysteriously annihi-
lated and contributes (again mysteriously), to the other weak component creating
the (complete) one-photon state, which arrives to second beam splitter, but now
with the probability to activate the second detector E? We can only conclude that
the story is incomplete: indeed, it is impossible to form any mental vision of the
obligatory linearly propagating wave if it includes the extinction of the whole prop-
agation arm, detecting finally an obstacle which exists precisely in the place which
the photon could newer approach, neither before nor after the state reduction!
Here, it is worth to remind the point made by Sudbery [21]:

It is often stated that however puzzling some of its features may
be, quantum mechanics does constitute a well-defined algorithm
for calculating physical quantities. Unless some form of continuous
projection postulate is included as a part of the algorithm, this is
not true.

While this seems true, it does not yet offer any concrete image of the ‘slow
reduction’ which could explain the Elitzur–Vaidman effect (if it indeed occurs!).
However, if the story is incomplete at this fundamental point, then, except for some
simple cases, it can be as questionable to solve the photon behavior in topologically
complicated nets, associated with some macroscopic detectors. Incidentally, the
description of photon waves propagating in fibers is already known from the paper
of I. Bia�lynicki-Birula [22], described not by plane, but by Bessel waves (indeed, a
significant progress comparing to the visions of quarks as the plane waves inside of
the nucleon surfaces – mind you, without any credible model to explain the quark
confinement!). Yet, even this might be insufficient to solve the problem of the linear
propagation corrected by the sudden collapses. The intense combinatorial studies
to attend the challenge are developed with hopes to program the efficient quantum
computing in the topologically nontrivial net of the optical fibers [23–25].

Meanwhile, a sequence of studies of the imperfect cases of (EV) bombs was
also undertaken [26–29]. Yet, at least one [26] indicates that the experiments with
linearly propagating entangled states can affect the past. The similar paradoxical
conclusion on quantum steering into the past seems to emerge from the 2012 study
of Vienna-Innsbruck group [30]. In spite of the ‘benign’ teleportation without the
causality dangers, one might wonder whether the insistence about the linear nav-
igation of the entangled states in the tensor product spaces does not cross some
consistency limits. In what follows, our aim is to postpone the locality problems,
returning to the traditional quantum paradoxes still waiting for credible solutions.
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3. Half full, half empty

Our story concerns a quantum system in a superposed energy state, which will be
reduced – though not when the experimentalist decides, but when the system itself
decides by emitting a photon (compare with the ‘time of arrival’ [31–34]). As a
simplified model, let us consider a bottle containing an atom in a state of equitative
superposition of two lowest energy levels, ground state φ0 and an excited state φ1.

In some distant past, the experimentalists examining the spectral lines imag-
ined an atom always in one of the energy eigenstates. Today the picture changed.
The existence of the superposed (but pure) energy states is (or seems?) unavoid-
able if one takes seriously the quantum mechanical formalism. Now, if the atom is
in the excited state, we shall say that ‘the bottle is full’, but if in the ground state,
‘the bottle is empty’. The bottle is just to assure that the atom is left in peace, iso-
lated from the external perturbations, as well as from the other bottles. It should
be ample enough to neglect the influence of its surface onto the atom behavior,
but be able to detect the events of radiation. So, at the top of each bottle, at some
safe distance, there is a sensitive screen, prepared to detect the photon, should the
atom radiate. If it does, the top of its cell turns black (it is burned!). For purely
illustrative reasons, the bottles in Figure 3, are painted hexagonal, resembling the
bee hive. By observing the detectors which turned black, we can see, how many
photons already ‘incubated’.

Now, in almost all studies of the atom radiation one can find the description
of the process starting from the excited state φ1 but not from the superposed
one. This includes the suggestive representation of the excited states as some
narrow superpositions of slightly different energy eigenstates, forming an unstable
composition, with the average lifetime τ inverse to the (little) energy width δE,
in agreement with the time-energy uncertainty (even though, the last point awoke
a lot of unfinished discussions [31–33]). Anyhow, by reading the literature you
can always find the considerations in which the beginning of the decay process is
an excited state, with a slightly diffused spectral line, which seems to confirm the
validity of the idea. However, what about the decay starting from the superposition
of two very distant levels? Perhaps, the difference is superfluous, but it may be
worth to examine.

To fix attention, let us thus assume that our initial state φ is an equitative su-
perposition φ = a0φ0+a1φ1, with |a0|2 = |a1|2 = 1/2 (bottle half full, half empty).
From a credible phenomenology we know the behavior of an atom in its ground
state φ0. If unperturbed, it just remains in φ0 forever, φ0(t) = exp(−itE0)φ0. We
also know something about the behavior of the excited state φ1. On the level of
purely quantum mechanical approximation, this state is as stationary

φ1(t) = exp(−itE1)φ1 (1)

In reality, though, the stationary evolution is corrected by an unpredictable
photon emission with a transition to the ground state φ0. The probabilities of these
events include some sequence of calculations which I skip. What can be noticed,
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N-bottles

Figure 3. Idealized bottles, half full – half empty

however, is that the energy and momentum balance for each single radiation act
obeys the conservation laws, which makes reasonable to describe the evolution of
each single atom (with or without the sudden radiation).

However, what happens for atoms with an initial superposed state φ = a0φ0+
a1φ1 (the bottle neither full, nor empty)? At the first sight, it may seem that there
is hardly any problem here: just apply another ‘standard calculations’, and the
problem is over. However, what if we try to visualize the story, trying to test once
again the idea, that the quantum system in presence of a detector performs first
a unitary evolution (an extremely linear picture?), until bam!, it is interrupted by
the sudden act of detection (an extreme non-linear picture?). So, the evolution
until some moment would obey the simple minded law

φ(t) = a0e
−iE0tφ0 + a1e

−iE1tφ1, (2)

granted by the superposition principle, until emitting a photon of energy E1−E0,
falling into the ground state φ0. This picture seems extremely naive, but remember
that the whole quantum theory was conceived by naive pictures of linear navigation
interrupted by sudden collapses. Naive or not, our picture contains this time certain
additional information. Indeed, in the superposed initial state φ the average energy
is 1

2 (E1−E0) but nobody observed the photons emitted with (incomplete) energies
smaller than ΔE = E1 −E0. Does it mean that before radiating, the atoms must
perform first of all a spontaneous (introspective?) state reduction, making up (or
making down) their minds whether they are or are not in the excited state φ1?
The question then is, whether they must ask for some energy credit from their
detector? If so, is the detector’s favor due to its very existence, even if the photon
was not yet emitted [16], or is it a kind of shadowing [5], or some friendly help of the
‘polarized vacuum’? Yet, let us remind an ambiguous sense of the polarized vacuum
used, perhaps, too abundantly to heal all QFT emergencies, see R. Penrose [35].
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Inversely, if the spontaneous reduction failed to bring some extra energy – locating
the semi-excited atom on the ground state φ0 then it will stay there forever without
emitting anything. Even if the total energy balance is not violated, the single atom
behavior hides still some mystery.

4. The principle of vanishing hope? . . .

It may be interesting to imagine a population of N atoms in the initial state φ =
a0φ0+a1φ1, each closed in its own bottle, in form of a little, mesoscopic cell. We still
assume, that the top surface of each cell is simultaneously a detector, sensitive to
the photons of the particular energy �ω = E1−E0. By calculating the (increasing)
number of the black cells, we know how many atoms have already radiated (Fig. 3).
If all atoms are initially in an identical superposed state φ = a0φ0 + a1φ1, then
if somebody performed a check at the very beginning, he would find 50% of them
in the ground state φ0, and henceforth, unable to radiate. However, if no initial
test was performed at t = 0, then anyhow 50% of the atoms will never radiate.
Thus, for t → +∞ all atoms must end up in the ground state φ0, though for
different reasons: 1/2 of them, since they have radiated and settled down in φ0;
the remaining 1/2, even though no photon was emitted.

Even if the global energy balance is not affected, the situation seems ex-
tremely strange. While the atoms which have radiated cause already some trouble,
the ones which didn’t contain a puzzle! Their superposed energy state vanished,
giving place to φ0. The bottle was half full, half empty, nothing escaped, and the
bottle is empty! What has caused the state collapse in this last case, was not any
active external intervence. No detector clicked, neither the top of any bottle turned
black. The only external factor was our vanishing hope (take it as a rhetoric figure
if you dislike!). Indeed, supposing that the average lifetime of the atom in the ex-
cited state φ1 is, e.g., 10−10 sec., but the atom in the initial state φ did not radiate
over 10 years, then, we can be certain that it will never radiate. According to quite
orthodox statistical interpretation, this certainty means that the atom state can
no longer correspond to φ, but it must be practically identical to φ0.

The way to avoid the trouble would be to answer that we have postselected
our ensemble. The principle of ‘don’t postselect’ (equivalently, ‘don’t retrospect’)
is reasonable if some microobjects were submitted to a measurement. Their initial
states (in general) were reduced and it makes no sense to look for their past. The
principle is not so clear if the micro-objects escaped the detection. In their fascinat-
ing paper the Swiss group considers the non-orthogonal transformations of pure
→ pure states for an ensemble whose particles escaped absorption [16]. The (EV)
story of interaction free experiment also contains an obvious element of retrospec-
tion. The same, the famous ‘delayed choice measurements’ of J.A. Wheeler [13].
Similarly, all paradoxes implying the reduction of the past states. So have we to
restrict our theory only to strictly pragmatic rules, like ensemble and only ensem-
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ble, correlation and only correlations, or other ‘don’t think principles?’ Moreover,
the naive ideas are still the true source of our sophisticated theories!

Note also that all difficulties would vanish if we simply assumed that no
coherent superposition of two distant bound states can exist (remember Einstein
boxes [36]?) Yet, all this might be premature conclusions. They show only that our
theories are still not close to the proud image of the Theory of Everything. They
seem closer to the ‘Shadows of the mind’ [37], perhaps a hidden allusion of R. Pen-
rose to Platonic cave, containing our mental images (like the linear navigation,
etc.). Why they sometimes help and sometimes not, we still ignore!
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Poisson Transforms for Tensor Products
in Compact Picture
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Abstract. We write explicitly differential operators (Poisson transforms)
which intertwine irreducible representations of the group SL(2,R) with the
tensor product of two irreducible representations, one of them is infinite-
dimensional and the other is finite-dimensional
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We continue the study of tensor products for the group G = SL(2,R). Earlier
[1] we considered the product of two infinite-dimensional representations, then
in [2, 3] we studied the product of two finite-dimensional representations. Now
we write explicitly operators (Poisson transforms) which intertwine the tensor
product Tσ,ε⊗πm and its irreducible constituents Tτ,ν . These transforms turn out
to be differential operators. The representation Tσ,ε is infinite-dimensional, the
representation πm is finite-dimensional (of dimension 2m+1). We use eigenvectors
of the product of raising and lowering operators.

Let us introduce some notation and conventions.
We use the following notation for a character of the group R∗ = R \ {0}:

tλ,ν = |t|λ(sgn t)ν , t ∈ R∗, λ ∈ C, ν ∈ Z.

This character depends on ν modulo 2 rather than ν itself. For a manifold M ,
D(M) denotes the space of compactly supported infinitely differentiable complex-
valued functions on M , with the usual topology. For a representation of a Lie
group, we retain the same symbol for the corresponding representations of its Lie
algebra. We use the following notation for “generalized powers”:

a[m] = a(a+ 1) . . . (a+m− 1), a(m) = a(a− 1) . . . (a−m+ 1),

where a is a number or an operator. The congruence≡means congruence modulo 2.
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Let us recall some material on representations of the group G. This group
consists of real 2× 2 matrices with determinant 1. The Lie algebra g of G consists
of real 2×2 trace zero matrices. Let us take in its complexification gC the following
basis:

L0 =

(
0 −1
1 0

)
, E+ = −1

2

(
1 −i
−i −1

)
, E− = −1

2

(
1 i
i −1

)
.

The center of the universal enveloping algebra Env(g) is generated by the Casimir
element

Δg = −1

4
(L0)2 +

1

2
(E+E− + E−E+).

Let σ ∈ C, ε = 0, 1. We consider the principal series of representations Tσ,ε of
the group G in compact picture. This group acts on the plane R2 from the right,

so we write vectors in R2 in row form. Let |x| =
√
x21 + x22 be the Euclidean length

of a vector x = (x1, x2). Let us denote by S the circle |x| = 1. Let Dε(S) be the
subspace in D(S) of functions ϕ on S of parity ε:

ϕ(−s) = (−1)εϕ(s).

The representation Tσ,ε acts on Dε(S) as follows:

(Tσ,ε(g)ϕ)(s) = ϕ

(
sg

|sg|

)
|sg|2σ.

Let us take on S the coordinate α: a point s ∈ S is s = (sinα, cosα). Sometimes
we write ϕ(α) instead of ϕ(s).

Introduce in Dε(S) an operator Aσ,ε:

(Aσ,εϕ)(α) =
1

2

∫ 2π

0

[sin(α− β)]−2σ−2, ε ϕ(β) dβ.

It intertwines Tσ,ε and T−σ−1, ε. The integral converges absolutely when Reσ <
−1/2 and can be extended to the whole σ-plane as a meromorphic function.

Let us take in Dε(S) a basis consisting of exponents:

ϕr(α) = eirα, r ∈ Z, r ≡ ε.

The operator Aσ,ε moves ϕr in ϕr with a factor:

Aσ,εϕr = a(σ, ε; r)ϕr ,

where

a(σ, ε; r) = i−r π−1 22σ+1 [(−1)ε − cos 2σπ] Γ(−2σ − 1)

× Γ (σ − r/2 + 1) Γ (σ + r/2 + 1) .

Differential operators corresponding to elements of the Lie algebra g in the
representation Tσ,ε are independent on ε, so we omit index ε here. For elements
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L0, E± and Δg we have:

Tσ(L
0) =

d

dα
,

Tσ(E
+) = e2iα ·

(
σ +

i

2

d

dα

)
,

Tσ(E
−) = e−2iα ·

(
σ − i

2

d

dα

)
,

Tσ(Δg) = σ(σ + 1) · id.

Exponents ϕr are eigenfunctions for the operator Tσ(L
0):

Tσ(L
0)ϕr = ir ϕr ,

and operators Tσ(E
±) act on them as follows:

Tσ(E
±)ϕr = (σ ∓ r/2)ϕr±2 . (1)

Representations Tσ,ε are irreducible except when 2σ ∈ Z and 2σ ≡ ε. Let
2m ∈ N = {0, 1, 2, . . .}. Then the representation Tm,ε has an invariant irreducible
finite-dimensional subspace

Vm = {ϕr : −2m � r � 2m, r ≡ ε} ,

so that dimVσ = 2m + 1. Denote by πm the restriction to Vm of the representa-
tion Tm,ε. Representations πm, 2m ∈ N, exhaust all irreducible finite-dimensional
representations of G.

Consider the tensor product Tσ,ε ⊗ πm. For definiteness, we take generic σ,
i.e., 2σ /∈ N. We suppose that k ranges over the set {0, 1, 2, . . . , 2m}. Let us denote

τ = σ −m+ k. (2)

The tensor product Tσ,ε⊗πm acts on the space Dε(S)⊗Vm consisting of functions
f(s, t) of parity

ν ≡ ε+ 2m

on the direct product S × S of two circles: f(−s,−t) = (−1)νf(s, t). Denote

v = α− β.

Theorem 1. The tensor product Tσ,ε ⊗ πm decomposes into the direct multiplicity
free sum of irreducible representations:

Tσ,ε ⊗ πm =

2m∑
k=0

Tτ,ν. (3)

Accordingly, Dε(S) ⊗ Vm decomposes into the direct sum of irreducible subspaces

W
(σ)
k . The subspace W

(σ)
k is the image of a Poisson transform M

(σ)
k mapping the
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space Dν(S) to the space Dε(S)⊗Vm and intertwining the representation Tτ,ν with
the tensor product Tσ,ε ⊗ πm. The Poisson transform is a differential operator:

M
(σ)
k = (sin v)2m−k (−1)k

k∑
r=0

(
k

r

)
(2τ − r)(k−r)

× ei(k−r)v (−2i sin v)r ·
(
τ − i

2

d

dα

)(r)

.

(4)

It can be present as a product of k linear differential operators (they do not
commute):

M
(σ)
k = (sin v)2m−k

[
(sin v)

∂

∂α
− (2τ − k + 1) cos v

]
×
[
(sin v)

∂

∂α
− (2τ − k + 2) cos v

]
· · ·

×
[
(sin v)

∂

∂α
− 2τ cos v

]
.

(5)

Proof. For simplicity, we denote Dε(S) ⊗ Vm = D̃ and Tσ,ε ⊗ πm = T̃ , we do
not show indices σ, ε, m. For points (s, t) ∈ S × S we take parameters α and β
respectively, so that s = (sinα, cosα) and t = (sinβ, cosβ).

To elements X ∈ g, the representation T̃ assigns operators T̃ (X), for brevity

we denote them X̃, we have X̃ = Tσ,ε(X) ⊗ 1 + 1 ⊗ πm(X). Let us take in D̃ a
basis consisting of exponents:

ϕr,h(α, β) = eirαeihβ ,

so that r + h ≡ ν. These exponents are eigenvectors for L̃0:

L̃0ϕr,h = i(r + h)ϕr,h.

Operators Ẽ± act as follows:

Ẽ±ϕr,h = (σ ∓ r/2) · ϕr±2,h + (m∓ h/2) · ϕr,h±2.

Denote by Hp the subspace in D̃ spanned by ϕr,h, r+h = 2p, so that 2p ≡ ν

and dimHp = 2m+ 1. This subspace is an eigenspace for L̃0 with eigenvalue 2π.

The whole space D̃ decomposes into the direct multiplicity free sum of subspaces

Hp, 2p ∈ Z, 2p ≡ ν. Denote by Ẽ±
p the restriction to Hp of operators Ẽ±.

The Ẽ±
p maps Hp to Hp±1. The composition Rp = Ẽ−

p+1Ẽ
+
p (first we do Ẽ+

p

and then Ẽ−
p+1) maps Hp to Hp. We want to find eigenvectors and eigenvalues

of Rp.

Let us take in Hp the following basis {ξ(p)k }:

ξ
(p)
k = e2piα eikv

[
eiv − e−iv

]2m−k
, k = 0, 1, . . . , 2m. (6)
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In it, operators Ẽ±
p act as follows (we use notation (2)):

Ẽ+
p ξ

(p)
k = (τ − p) ξ

(p+1)
k − k ξ

(p+1)
k−1 , (7)

Ẽ−
p ξ

(p)
k = (τ + p) ξ

(p−1)
k . (8)

It follows from (7) and (8) that

Rp ξ
(p)
k = (τ + p+ 1)(τ − p)ξ

(p)
k − k(τ + p)ξ

(p)
k−1 .

It means that in the basis {ξ(p)k } in Hp the operator Rp has upper triangular
two-diagonal matrix. Therefore, the eigenvector of Rp with number k is

w
(p)
k = bk

k∑
r=0

(−1)k−r

(
k

r

)
(τ + p)(k−r)(2τ − k + 1)[r] ξ (p)

r , (9)

where bk is some coefficient (notice that the superscript (p) is not a generalized
power), and the corresponding eigenvalue is

λ
(p)
k = (τ − p)(τ + p+ 1),

so that

Rpw
(p)
k = λ

(p)
k w

(p)
k .

Let us substitute in (9) expressions (6) for ξ
(p)
r and take the following coef-

ficient bk = (−1)k(2i)−2m+k, we obtain

w
(p)
k = e2piα (sin v)2m−k (−1)k

k∑
r=0

(
k

r

)
(2τ − r)(k−r)

× ei(k−r)v (−2i sin v)r · (τ + p)(r) .

(10)

Let us find how operators Ẽ±
p act on w

(p)
k ∈ Hp.

Let w ∈ Hp be an eigenvector of Rp, i.e., Rpw = λw. From the commutation
relation [E+, E−] = −iL0 we obtain

E+E−E+ = E−E+E+ − iL0E+.

Hence Ẽ+
p Rpw = Rp+1Ẽ

+
p w − iL̃0Ẽ+

p w. The vector Ẽ+
p w belongs to the space

Hp+1, it is an eigenspace for iL̃0 with the eigenvalue 2p+ 2. Therefore, λẼ+
p w =

Rp+1Ẽ
+
p w + (2p+ 2)Ẽ+

p w. Hence

Rp+1Ẽ
+
p w = (λ− 2p− 2)Ẽ+

p w.

Thus, the operator Ẽ+
p maps an eigenvector of Rp to an eigenvector of Rp+1. For

eigenvalues λ we have

λ
(p)
k − 2p− 2 = λ

(p+1)
k ,
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so Ẽ+
p maps w

(p)
k just to w

(p+1)
k – with some factor. In order to find this factor,

one has to trace to the summand of w
(p)
k containing ξ

(p)
k ; here a coefficient does

not depend on p. Similarly we deal with Ẽ−
p . Finally we have

Ẽ±
p w

(p)
k = (τ ∓ p)w

(p±1)
k . (11)

LetWk be the subspace in D̃ spanned by w
(p)
k , 2p ∈ Z, 2p ≡ ν. It is isomorphic

to Dν(S). The whole space D̃ decomposes into the direct multiplicity free sum of
subspaces Wk.

Formulae (11) show that operators Ẽ± act on vectors w
(p)
k exactly as opera-

tors Tτ,ν(E
±) act on exponents ϕ2p(s) in Dν(S), see (1). The operator correspond-

ing to the Casimir element multiplies w
(p)
k by τ(τ + 1). Therefore, the restriction

of T̃ to Wk is equivalent to Tτ,ν, and T̃ itself is the direct multiplicity free sum
given by (3).

Now let us construct an operator M
(σ)
k : Dν(S) → Wk intertwining Tτ,ν and

T̃ . This operator has to move the exponent ϕ2p(α) to the function w
(p)
k . Since

p e2piα = − i

2

d

dα
e2piα,

then (10) gives (4).
Finally let us prove (5). Introduce a differential operator

Z = 2τ − i
d

dα
.

Besides it, introduce the 2-step generalized power:

x〈〈n〉〉 = x(x − 2)(x− 4) . . . (x− 2n+ 2)

(n factors). Then the operator (4) can be written as follows:

M
(σ)
k = (sin v)2m−k Q

(σ)
k ,

where

Q
(σ)
k =

k∑
r=0

(2τ − k + 1)[k−r] ·
(
k

r

)
(−1)k−r · (i sin v)rei(k−r)v · Z〈〈r〉〉

The operator Q
(σ)
k can be decomposed into the following product of k linear op-

erators (not commuting):

Q
(σ)
k = [i(sin v) (Z − k + 1)− (2τ − k + 1) eiv]

× [i(sin v) (Z − k + 2)− (2τ − k + 2) eiv]

· · ·
× [i(sin v) (Z − 1)− (2τ − 1) eiv]

× [i(sin v)Z − 2τ eiv].

(12)
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This statement is proved by induction on k. The inductive step means:

Q
(σ)
k+1 = [i(sin v) (Z − k)− (2τ − k) eiv]Q

(σ)
k .

To compute the right-hand side we use the following relation of operators:

{i(sin v) (Z − k)} ◦
{
(i sin v)rei(k−r)v

}
= r (i sin v)rei(k+1−r)v + (i sin v)r+1ei(k−r)v(Z − 2r).

Therefore, the factor in (12) with number q = 0, 1, . . . , k − 1 is

i(sin v) (Z − q)− (2τ − q) eiv = sin v
∂

∂α
− (2τ − q) cos v.

It proves (5). �
In conclusion we notice the interaction of Poisson transforms with intertwin-

ing operators:

(Aσ,ε ⊗ 1)M
(σ)
k = b(σ, k) ·M (−σ−1)

2m−k Aτ,ν ,

where
b(σ, k) = 2 4m−4k Γ(−2σ − 1)/Γ(−2τ − 1) .
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Conformal Symmetry Breaking Operators
for Anti-de Sitter Spaces
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Abstract. For a pseudo-Riemannian manifold X and a totally geodesic hy-
persurface Y , we consider the problem of constructing and classifying all
linear differential operators E i(X) → Ej(Y ) between the spaces of differ-
ential forms that intertwine multiplier representations of the Lie algebra of
conformal vector fields. Extending the recent results in the Riemannian set-
ting by Kobayashi–Kubo–Pevzner [Lecture Notes in Math. 2170, (2016)], we
construct such differential operators and give a classification of them in the
pseudo-Riemannian setting where both X and Y are of constant sectional
curvature, illustrated by the examples of anti-de Sitter spaces and hyperbolic
spaces.
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53C10, 22E70.
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1. Introduction

Let X be a manifold endowed with a pseudo-Riemannian metric g. A vector field
Z on X is called conformal if there exists ρ(Z, ·) ∈ C∞(X) (conformal factor)
such that

LZg = ρ(Z, ·)g,
where LZ stands for the Lie derivative with respect to the vector field Z. We
denote by conf(X) the Lie algebra of conformal vector fields on X .

Let E i(X) be the space of (complex-valued) smooth i-forms on X . We define
a family of multiplier representations of the Lie algebra conf(X) on E i(X) (0 ≤
i ≤ dimX) with parameter u ∈ C by

Π(i)
u (Z)α := LZα+

1

2
uρ(Z, ·)α for α ∈ E i(X). (1)

For simplicity, we write E i(X)u for the representation Π
(i)
u of conf(X) on E i(X).



70 T. Kobayashi, T. Kubo and M. Pevzner

For a submanifold Y of X , conformal vector fields along Y form a subalgebra

conf(X ;Y ) := {Z ∈ conf(X) : Zy ∈ TyY for all y ∈ Y }.
If the metric tensor g is nondegenerate when restricted to the submanifold

Y , then Y carries a pseudo-Riemannian metric g|Y and there is a natural Lie
algebra homomorphism conf(X ;Y ) → conf(Y ), Z 
→ Z|Y . In this case we compare

the representation Π
(i)
u of the Lie algebra conf(X) on E i(X) with an analogous

representation denoted by the lowercase letter π
(j)
v of the Lie algebra conf(Y ) on

Ej(Y ) for u, v ∈ C. For this, we analyze conformal symmetry breaking operators,
that is, linear maps T : E i(X) → Ej(Y ) satisfying

π(j)
v (Z|Y ) ◦ T = T ◦Π(i)

u (Z) for all Z ∈ conf(X ;Y ). (2)

Some of such operators are given as differential operators (e.g., [3, 6, 12, 14, 15]),
and others are integral operators and their analytic continuation (e.g., [16]). We
denote by Diffconf(X;Y )(E i(X)u, Ej(Y )v) the space of differential operators satis-
fying (2).

In the case X = Y and i = j = 0, the Yamabe operator, the Paneitz operator
[18], which appears in four-dimensional supergravity [4], or more generally, the so-
called GJMS operators [5] are such differential operators. Branson and Gover [1, 2]
extended such operators to differential forms when i = j. The exterior derivative
d and the codifferential d∗ also give examples of such operators for j = i + 1 and
i− 1, respectively. Maxwell’s equations in a vacuum can be expressed in terms of
conformally covariant operators on 2-forms in the Minkowski space R1,3 (see [17]
for a bibliography). All these classical examples concern the case where X = Y .
On the other hand, the more general setting where X � Y is closely related to
branching laws of infinite-dimensional representations (cf. “Stage C” of branching
problems in [11]). In recent years, for (X,Y ) = (Sn, Sn−1), such operators in the
scalar-valued case (i = j = 0) were classified by Juhl [6], see also [3, 10, 14] for
different approaches. More generally, such operators have been constructed and
classified also in the matrix-valued case (i, j arbitrary) by the authors [12]. In this
paper, we give a variant of [12] by extending the framework as follows:

the group of

conformal diffeomorphisms =⇒ the Lie algebra of conformal vector fields;

homogeneous spaces =⇒ locally homogeneous spaces;

Riemannian setting =⇒ pseudo-Riemannian setting.

Let Rp,q denote the space Rp+q endowed with the flat pseudo-Riemannian
metric:

gRp,q = dx21 + · · ·+ dx2p − dy2p+1 − · · · − dy2p+q. (3)

For p, q ∈ N, we define a hypersurface Sp,q of R1+p+q by

Sp,q :=

{
{(ω0, ω, η) ∈ R1+p+q : ω2

0 + |ω|2 − |η|2 = 1} (p > 0),

{(ω0, η) ∈ R1+q : ω0 > 0, ω2
0 − |η|2 = 1} (p = 0).

(4)
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Then, the metric gR1+p,q on the ambient space R1+p+q induces a pseudo-Riemann-
ian structure on the hypersurface Sp,q of signature (p, q) with constant sectional
curvature +1, which is sometimes referred to as the (positively curved) space
form of a pseudo-Riemannian manifold. We may regard Sp,q also as a pseudo-
Riemannian manifold of signature (q, p) with constant curvature −1 by using
−gR1+p,q instead, giving rise to the negatively curved space form.

Example 1 (Riemannian and Lorentzian cases).

Sn,0 = Sn (sphere), S0,n = Hn (hyperbolic space),

Sn−1,1 = dSn (de Sitter space), S1,n−1 = AdSn (anti-de Sitter space).

In Theorems A–C below, we assume n = p+ q ≥ 3 and consider

(X,Y ) = (Sp,q, Sp−1,q), (Sp,q, Sp,q−1), (Rp,q,Rp−1,q), or (Rp,q,Rp,q−1). (5)

Example 2. conf(X ;Y ) � o(p, q + 1) if (X,Y ) = (Sp,q, Sp−1,q) or (Rp,q,Rp−1,q).

Theorem A below addresses the question if any conformal symmetry breaking
operator defined locally can be extended globally.

Theorem A (automatic continuity). Let V be any open set of X such that V ∩ Y
is connected and nonempty. Suppose u, v ∈ C. Then the map taking the restriction
to V induces a bijection:

Diffconf(X;Y )(E i(X)u, Ej(Y )v)
∼−→ Diffconf(V,V ∩Y )(E i(V )u, Ej(V ∩ Y )v).

We recall from [19, Chap. II] that the pseudo-Riemannian manifolds Rp,q and
Sp,q have a common conformal compactification:

Rp,q � �

����
���

���
���

Sp,q� �

�����
���

���
��

(Sp × Sq)/Z2

where (Sp×Sq)/Z2 denotes the direct product of p- and q-spheres equipped with the
pseudo-Riemannian metric gSp ⊕ (−gSq), modulo the direct product of antipodal
maps, see also [13, II, Lem. 6.2 and III, Sect. 2.8]. For X = Rp,q or Sp,q, we denote
by X this conformal compactification of X .

Theorem B.

(1) (Automatic continuity to the conformal compactification.) Suppose u, v ∈ C
and 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1. Then the map taking the restriction to X is a
bijection

Diffconf(X;Y )(E i(X)u, Ej(Y )v)
∼−→ Diffconf(X;Y )(E i(X)u, Ej(Y )v).

(2) If n ≥ 3, all these spaces are isomorphic to each other for (X,Y ) in (5) as
far as (p, q) satisfies p+ q = n.
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By Theorems A and B, we see that all conformal symmetry breaking opera-
tors given locally in some open sets in the pseudo-Riemannian case (5) are derived
from the Riemannian case (i.e., p = 0 or q = 0). We note that our represen-

tation (1) is normalized in a way that Π
(i)
u coincides with the differential of the

representation �
(i)
u,δ (δ ∈ Z/2Z) of the conformal group Conf(X) introduced in

[12, (1.1)]. In particular, we can read from [12, Thms. 1.1 and 2.10] the dimension
of Diffconf(X;Y )(E i(X)u, Ej(Y )v) for any i, j, u, v. For simplicity of exposition, we
present a coarse feature as follows.

Theorem C. Suppose (X,Y ) is as in (5), and V any open set of X such that V ∩Y
is connected and nonempty. Let u, v ∈ C, 0 ≤ i ≤ n, and 0 ≤ j ≤ n− 1.

(1) For any u, v ∈ C and 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1,

dimCDiffconf(V ;V ∩Y )(E i(V )u, Ej(V ∩ Y )v) ≤ 2.

(2) Diffconf(V ;V ∩Y )(E i(V )u, Ej(V ∩ Y )v) �= {0} only if u, v, i, j satisfy

(v + j)− (u + i) ∈ N and
(
− 1 ≤ i− j ≤ 2 or n− 2 ≤ i+ j ≤ n+ 1

)
. (6)

A precise condition when the equality holds in Theorem C (1) will be ex-
plained in Section 7 in the case n = 4. We shall give explicit formulæ of generators
of Diffconf(X;Y )(E i(X)u, Ej(Y )v) in Theorem D in Section 2 for the flat pseudo-
Riemannian manifolds, and in Theorem E in Section 3 for positively (or negatively)
curved space forms. These operators (with “renormalization”) and their composi-
tions by the Hodge star operators with respect to the pseudo-Riemannian metric
exhaust all differential symmetry breaking operators (Remark 4). The proof of
Theorems A–C will be given in Section 5.

Notation. N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}.

2. Conformally covariant symmetry breaking operators – flat case

In this section, we give explicit formulæ of conformal symmetry breaking opera-
tors in the flat pseudo-Riemannian case (X,Y ) = (Rp,q,Rp−1,q) or (Rp,q,Rp,q−1).
This extends the results in [12] that dealt with the Riemannian case (X,Y ) =
(Rn,Rn−1).

We note that the signature of the metric restricted to nondegenerate hyper-
planes of Rp,q is either (p − 1, q) or (p, q − 1). Thus it is convenient to introduce
two types of coordinates in Rp+q accordingly. We set

Rp,q
+ = {(y, x) ∈ Rq+p} with − dy21 − · · · − dy2q + dx2q+1 + · · ·+ dx2p+q,

Rp,q
− = {(x, y) ∈ Rp+q} with dx21 + · · ·+ dx2p − dy2p+1 − · · · − dy2p+q.

Then by letting the last coordinate to be zero, we get hypersurfaces of Rp,q of two
types:

Rp−1,q
+ ⊂ Rp,q

+ (p ≥ 1), Rp,q−1
− ⊂ Rp,q

− (q ≥ 1).
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For � ∈ N and μ ∈ C, we define a family of differential operators on Rp+q by
using the above coordinates:

(Dμ
� )+ ≡ (Dμ

� )Rp,q
+

:=

[ �2 ]∑
k=0

ak(μ, �)

(
q∑

j=1

∂2

∂y2
j

−
n−1∑

j=q+1

∂2

∂x2
j

)k (
∂

∂xn

)�−2k

on Rp,q
+ ,

(Dμ
� )− ≡ (Dμ

� )Rp,q
−

:=

[ �2 ]∑
k=0

ak(μ, �)

(
p∑

j=1

∂2

∂x2
j

−
n−1∑

j=p+1

∂2

∂y2
j

)k (
∂

∂yn

)�−2k

on Rp,q
− ,

where we set for k ∈ N with 0 ≤ 2k ≤ �

ak(μ, �) :=
(−1)k2�−2kΓ(�− k + μ)

Γ(μ+
[
�+1
2

]
)k!(� − 2k)!

. (7)

In the case (p, q, ε) = (n, 0,+), (Dμ
� )Rp,q

ε
coincides with the differential operator

Dμ
� in [12, (1.2)], which was originally introduced in [6] (up to scalar).

The coefficients ak(μ, �) arise from a hypergeometric polynomial

C̃μ
� (t) :=

[ �2 ]∑
k=0

ak(μ, �)t
�−2k.

This is a “renormalized” Gegenbauer polynomial [15, II, (11.16)] in the sense that

C̃μ
� (t) is nonzero for all μ ∈ C and � ∈ N and satisfies the Gegenbauer differential

equation: (
(1− t2)

d2

dt2
− (2μ+ 1)t

d

dt
+ �(�+ 2μ)

)
f(t) = 0.

We set μ =: u+ i− 1
2 (n− 1) and γ(μ, a) := 1 (a: odd), μ+ a

2 (a: even).
For parameters u ∈ C and � ∈ N, we define a family of linear operators

(Di→j
u,� )− : E i(Rp,q) → Ej(Rp,q−1)

in the coordinates (x1, . . . , xp, yp+1, . . . , yp+q) of R
p,q
− as follows: For j = i− 1 or i,

(Di→i−1
u,� )Rp,q

−
:= Restyn=0 ◦

(
(Dμ+1

�−2 )− dd∗ι ∂
∂yn

+ γ(μ, a)(Dμ+1
�−1 )− d∗

+
u+ 2i− n

2
(Dμ

� )− ι ∂
∂yn

)
,

(Di→i
u,� )Rp,q

−
:= Restyn=0 ◦

(
−(Dμ+1

�−2 )− dd∗ − γ(μ− 1

2
, �)(Dμ

�−1)− dι ∂
∂yn

+
u+ �

2
(Dμ

� )−

)
.

Here d∗ : E i(Rp,q
− ) → E i−1(Rp,q

− ) is the codifferential d∗
R

p,q
−

= (−1)i ∗−1 d∗, where
∗ ≡ ∗Rp,q

−
is the Hodge operator with respect to the pseudo-Riemannian structure

on Rp,q
− , ι ∂

∂yn
is the interior multiplication by the vector field ∂

∂yn
, and (Dμ

� )− acts

on E i(Rp,q
− ) as a scalar differential operator.
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In contrast to the case j = i − 1 or i where the family of operators Di→j
u,�

contains a continuous parameter u ∈ C and discrete one � ∈ N, it turns out that
the remaining case where j /∈ {i−1, i} or its Hodge dual j /∈ {n−i+1, n−i} is not
abundant in conformal symmetry breaking operators. Actually, for j ∈ {i−2, i+1},
we define (Di→j

u,� )Rp,q
−

only for special values of (i, u, �) as follows:

(Di→i−2
n−2i,1)Rp,q

− := −Restyn=0 ◦ ι ∂
∂yn

d∗ (2 ≤ i ≤ n− 1),

(Dn→n−2
1−n−�,�)Rp,q

− := −Restyn=0 ◦
(
D

3−n
2

−�

�−1

)
−
ι ∂
∂yn

d∗ (� ∈ N+),

(Di→i+1
0,1 )Rp,q

−
:= Restyn=0 ◦ d (1 ≤ i ≤ n− 2),

(D0→1
1−�,�)Rp,q

− := Restyn=0 ◦
(
D

3−n
2 −�

�−1

)
−
d (� ∈ N+).

Likewise, for Rp,q
+ , we define a family of linear operators

(Di→j
u,� )+ : E i(Rp,q) → Ej(Rp−1,q)

in the coordinates (y1, . . . , yq, xq+1, . . . , xp+q) of R
p,q
+ with parameters u ∈ C and

� ∈ N. In this case, the formulæ are essentially the same as those in the Riemann-
ian case (q = 0) which were introduced in [12, (1.4)–(1.12)]. (The changes from

(Di→j
u,� )Rp,q

− to (Di→j
u,� )Rp,q

+
are made by replacing yn = 0 with xn = 0, ∂

∂yn
with

∂
∂xn

, and d∗
R

p,q
−

with −d∗
R

p,q
+

.) For the convenience of the reader, we give formulæ

for j = i− 1 or i and omit the case j = i− 2 and i+ 1:

(Di→i−1
u,� )+ := Restxn=0 ◦

(
−(Dμ+1

�−2 )+dd
∗ι ∂

∂xn
− γ(μ, �)(Dμ+1

�−1 )+d
∗

+
u+ 2i− n

2
(Dμ

� )+ι ∂
∂xn

)
,

(Di→i
u,� )+ := Restxn=0 ◦

(
(Dμ+1

�−2 )+dd
∗ − γ(μ− 1

2
, �)(Dμ

�−1)+dι ∂
∂xn

+
u+ �

2
(Dμ

� )+

)
.

If i = j = 0, the operators (Di→j
u,� )Rp,q

+
reduce to scalar-valued differential

operators that are proportional to (Dμ
� )+ because d∗ and ι ∂

∂xn
are identically zero

on E0(X) = C∞(X).

Theorem D below gives conformal symmetry breaking operators on the flat
pseudo-Riemannian manifolds:

Theorem D. Let p+ q ≥ 3, 0 ≤ i ≤ p+ q, 0 ≤ j ≤ p+ q− 1, and u, v ∈ C. Assume
j ∈ {i − 2, i − 1, i, i + 1} and � := (v + j) − (u + i) ∈ N. (For j ∈ {i − 2, i + 1},
we need an additional condition on the quadruple (i, j, u, v), or equivalently, on
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(i, j, u, �) as indicated in the Rp,q
− case.) Then

(Di→j
u,� )+ ∈ Diffconf(Rp,q ;Rp−1,q)(E i(Rp,q)u, Ej(Rp−1,q)v) for p ≥ 1,

(Di→j
u,� )− ∈ Diffconf(Rp,q ;Rp,q−1)(E i(Rp,q)u, Ej(Rp,q−1)v) for q ≥ 1.

Remark 3. In recent years, special cases of Theorem D have been obtained as
below.

1. i = j = 0, ε = +, q = 0: [6], see also [3, 10, 14] for different approaches.
2. i = j = 0, ε = +, p and q are arbitrary: [14, Thm. 4.3].
3. i and j are arbitrary, ε = +, q = 0: [12, Thms. 1.5, 1.6, 1.7 and 1.8].

The main machinery of finding symmetry breaking operators in various geo-
metric settings in [12], [14], and [15, II] is the “algebraic Fourier transform of
generalized Verma modules” (F-method [9]), see [15, I] for a detailed exposition of
the F-method.

The proof of Theorem D will be given in Section 6.

Remark 4. There are a few values of parameters (u, �, i, j) for which (Di→j
u,� )+ or

(Di→j
u,� )− vanishes, but we can define nonzero conformal symmetry breaking oper-

ators for such values by “renormalization” as in [12, (1.9), (1.10)]. The “renormal-

ized” operators (D̃i→j
u,� )± and the compositions ∗◦ (D̃i→j

u,� )± by the Hodge operator

∗ for Rp−1,q or Rp,q−1 exhaust all conformal differential symmetry breaking opera-
tors in our framework, as is followed from Theorem B (2) and from the classification
theorem [12, Thms. 1.1 and 2.10] in the Riemannian setting.

3. Symmetry breaking operators in the space forms

In this section we explain how to transfer the formulæ for symmetry breaking oper-
ators in the flat case (Theorem D) to the ones in the space form Sp,q (see Theorem
E). In particular, Theorem E gives conformal symmetry breaking operators in the
anti-de Sitter space (Example 6).

We consider the following open dense subsets of the flat space Rp,q and the
space form Sp,q (see (4)), respectively:

(Rp,q
− )′ := {(x, y) ∈ Rp+q : |x|2 − |y|2 �= −4},

(Sp,q)′ := {(ω0, ω, η) ∈ Sp,q : ω0 �= −1} ⊂ R1+p+q.

We define a variant of the stereographic projection and its inverse by

Ψ: (Sp,q)′ −→ (Rp,q
− )′, (ω0, ω, η) 
→

2

1 + ω0
(ω, η),

Φ: (Rp,q
− )′ −→ (Sp,q)′, (x, y) 
→ 1

|x|2 − |y|2 + 4
(4− |x|2 + |y|2, 4x, 4y).
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Lemma 5. The map Φ is a conformal diffeomorphism from (Rp,q
− )′ onto (Sp,q)′

with its inverse Ψ, and the conformal factor is given by

Φ∗gSp,q =
16

(|x|2 − |y|2 + 4)2
gRp,q

− , Ψ∗gRp,q
− =

4

(1 + ω0)2
gSp,q .

Proof. See [13, I, Lem. 3.3], for instance. �

The pseudo-Riemannian spaces Rp,q
+ and Rp,q

− are obviously isomorphic to
each other by switch of the coordinates

s : Rp,q
+

∼−→ Rp,q
− (y, x) 
→ (x, y).

We set

Φ− := Φ, Φ+ := Φ ◦ s, Ψ− := Ψ, Ψ+ := s ◦Ψ.
For v ∈ C, we define the “twisted pull-back” of differential forms according to
[13, I, (2.3.2)]:

(Φ±)∗v : Ej
(
(Rp,q

± )′
)
−→ Ej((Sp,q)′), α 
→

(
1 + ω0

2

)−v

Φ∗α, (8)

(Ψ±)∗v : Ej((Sp,q)′) −→ Ej((Rp,q
± )′), β 
→

(
|x|2 − |y|2 + 4

4

)−v

Ψ∗β. (9)

Then (Ψ±)∗v is the inverse of (Φ±)∗v in accordance with Ψ± = (Φ±)−1.
We realize the space forms Sp−1,q (p ≥ 1) and Sp,q−1 (q ≥ 1) as totally

geodesic hypersurfaces of Sp,q by letting ωp = 0 and ηq = 0, respectively. Then Φ±
induce the following diffeomorphisms between hypersurfaces.

(Rp,q
− )′ ∼

Φ−
�� (Sp,q)′ (Rp,q

+ )′ ∼
Φ+

�� (Sp,q)′

∪ ∪ ∪ ∪

(Rp,q−1
− )′ ∼ �� (Sp,q−1)′, (Rp−1,q

+ )′ ∼ �� (Sp−1,q)′

We are ready to transfer the formulæ of conformal symmetry breaking oper-
ators for the flat case (Theorem D) to those for negatively (or positively) curved
spaces:

Theorem E. For ε = ±, let (Di→j
u,� )ε be as in Theorem D. Then the operator

(Φε)
∗
v ◦ (D

i→j
u,� )ε ◦ (Ψε)

∗
u, originally defined in the open dense set (Sp,q)′ of the space

form Sp,q, extends uniquely to the whole Sp,q and gives an element in

Diffconf(X;Y )(E i(X)u, Ej(Y )v)

where (X,Y ) = (Sp,q, Sp,q−1) for ε = − and (X,Y ) = (Sp,q, Sp−1,q) for ε = +.

Here, by a little abuse of notation, we have used the symbol (Φε)
∗
v to denote

the operator in the (n− 1)-dimensional case.

Admitting Theorem A, we give a proof of Theorem E.
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Proof of Theorem E. Similarly to [12, Prop. 11.3] in the Riemannian case (q =

0 and ε = +), the composition (Φε)
∗
v ◦ (Di→j

u,� )ε ◦ (Φε)
∗
u gives an element in

Diffconf(V ;V ∩Y )(E i(V )u, Ej(V ∩ Y )v) for V = (Sp,q)′. Then this operator extends
to the whole X = Sp,q by Theorem A. �

The n-dimensional anti-de Sitter space AdSn(= S1,n−1) contains the hyper-

bolic space Hn−1(= S0,n−1) and the anti-de Sitter space AdSn−1(= S1,n−2) as
totally geodesic hypersurfaces.

Example 6 (hypersurfaces in the anti-de Sitter space). For (p, q) = (1, n− 1), the
formulæ in Theorem E give conformal symmetry breaking operators as follows.

E i(AdSn)u −→ Ej(Hn−1)v for ε = +,

E i(AdSn)u −→ Ej(AdSn−1)v for ε = −.

4. Idea of holomorphic continuation

In this section we explain an idea of holomorphic continuation that will bridge
between differential symmetry breaking operators in the Riemannian setting and
those in the non-Riemannian setting.

We begin with an observation from Example 2 that, for any p, q with p ≥ 1,
the Lie algebras

conf(Sp,q; Sp−1,q) � conf(Rp,q;Rp−1,q) � o(p, q + 1)

have the same complexification o(n+1,C) as far as p+q = n. In turn to geometry,
we shall compare (real) conformal vector fields on pseudo-Riemannian manifolds
Sp,q or Rp,q of various signatures (p, q) via holomorphic vector fields on a complex
manifold which contains Sp,q or Rp,q as totally real submanifolds.

Let XC be a connected complex manifold, and Ωi(XC) the space of holo-
morphic i-forms on XC. If X is a totally real submanifold, then the restriction
map

RestX : Ωi(XC) −→ E i(X)

is obviously injective.

Definition-Lemma 7. Suppose DC : Ω
i(XC) → Ωj(XC) is a holomorphic differential

operator. Then there is a unique differential operator E : E i(X) → Ej(X), such
that

E|V ∩X ◦ RestV ∩Xα = RestV ∩X ◦DC|V α
for any open set V of XC with V ∩X �= ∅ and for any α ∈ Ωi(V ). We say that DC

is the holomorphic extension of E. We write (RestX)∗DC for E.

If X is a real analytic, pseudo-Riemannian manifold with complexification
XC, then a holomorphic analogue of the action (1) makes sense by analytic con-
tinuation for Z ∈ conf(X) ⊗R C: LZ being understood as the holomorphic Lie
derivative with respect to a holomorphic extension of the vector field Z in a com-
plex neighbourhood U of X , which acts on α ∈ Ωi(U); and the conformal factor
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ρ(·, ·) being understood as its holomorphic extension (complex linear in the first
argument). Likewise for the pair X ⊃ Y of pseudo-Riemannian manifolds with
complexification XC ⊃ YC, we may consider a holomorphic analogue of the covari-
ance condition (2). Then we have:

Lemma 8. Suppose DC : Ω
i(XC) → Ωj(YC) is a holomorphic differential opera-

tor, and D = (RestX)∗(DC). Then D : E i(X) → Ej(Y ) satisfies the conformal
covariance (2) if and only if

π(j)
v (Z|YC

) ◦DC α = DC ◦Π(i)
u (Z)α

for any Z ∈ conf(X ;Y )⊗R C, any open subset U of XC with U ∩ YC �= ∅ and any
α ∈ Ωi(U).

We define a family of totally real vector spaces of Cn by embedding the space
Rn = Rp

x ⊕ Rq
y as

ι+ : Rq
y⊕Rp

x
∼→
√
−1Rq⊕Rp=

{
(
√
−1y1,...,

√
−1yq,xq+1,...,xp+q) :xj ,yj∈R

}
,

ι− : Rp
x⊕Rq

y
∼→Rp⊕

√
−1Rq=

{
(x1,...,xp,

√
−1yp+1,...,

√
−1yp+q) :xj ,yj∈R

}
.

Let us apply Lemma 8 to the following setting where n = p+ q.

Rn � Rp,q
+ ↪−−−−→

ι+
XC = Cn←−−−−↩

ι−
Rp,q

− � Rn

∪ ∪ ∪
Rn−1 � Rp−1,q

+ ↪−−→YC = Cn−1 ←−−↩Rp,q−1
− � Rn−1

The holomorphic symmetric 2-tensor

ds2 = dz21 + · · ·+ dz2n

on Cn induces a flat pseudo-Riemannian structure on Rn of signature (p, q) by
restriction via ι±. The resulting pseudo-Riemannian structures (and coordinates)
on Rn are nothing but those of Rp,q

+ and Rp,q
− given in Section 2.

5. Proof of Theorems A, B, and C

This section gives a proof of Theorems A, B, and C. The key machinery for differ-
ential symmetry breaking operators (SBOs for short) is in threefold:

(1) holomorphic extension of differential SBOs (Section 4);
(2) duality theorem between differential SBOs and homomorphisms for general-

ized Verma modules that encode branching laws [15, I, Thm. 2.9];
(3) automatic continuity theorem of differential SBOs in the Hermitian symmet-

ric setting [15, I, Thm. 5.3].

We note that both (1) and (2) indicate the independence of real forms as
formulated in Theorem B (2), whereas (3) appeals to the theory of admissible
restrictions of real reductive groups [7] for a specific choice of real forms of complex
reductive Lie groups.
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Let G be SO0(p+1, q+1), the identity component of the indefinite orthogonal
group O(p + 1, q + 1), P = LN a maximal parabolic subgroup of G with Levi
subalgebra Lie(L) � so(p, q)+R, and H the identity component of P . Then G acts
conformally on G/H � Sp × Sq equipped with the pseudo-Riemannian structure
gSp ⊕ (−gSq). Similarly, H ′ is defined by taking G′ := SO0(p, q + 1) (ε = +) or
SO0(p+ 1, q) (ε = −).

Applying the duality theorem [15, I, Theorem 2.9] to the quadruple

(G,H,G′, H ′),

we see that any element in

Homg′
C
(U(g′C)⊗U(p′

C
) (
∧n−1−j(Cn−1)⊗C−v−j),U(gC)⊗U(pC) (

∧n−i(Cn)⊗C−u−i))

(10)

with notation as in [12, Sect. 2.6] induces a differential symmetry breaking opera-
tor D ∈ Diffconf(X;Y )(E i(X)u, Ej(Y )v) on the conformal compactification X, and

hence the one on any open subset V of X with V ∩ Y �= ∅ by restriction. In order
to prove Theorem A and Theorem B (1), it is then sufficient to show the following
converse statement.

Claim 9. Any D ∈ Diffconf(V ;V ∩Y )(E i(V )u, Ej(V ∩Y )v) is derived from an element
in (10).

Let us prove Claim 9.

• Step 1. Reduction to the flat case

By using the twisted pull-backs (Φ±)∗v and (Ψ±)∗v (see (8)), we may and do
assume that X = Rp,q (� Rn) and that Y is the hypersurface Rn−1 given by the
condition that the last coordinate is zero. By replacing V with an open subset V ′

of Rn with V ∩ Rn−1 = V ′ ∩ Rn−1 if necessary, we may further assume that V is
a convex neighbourhood of V ∩ Rn−1 in Rn.

• Step 2. Holomorphic extension

With the coordinates x = (x′, xn) ≡ (x1, . . . , xn−1, xn) of X = Rn, any
differential operator D : E i(Rn) → Ej(Rn−1) takes the form

D = Restxn=0 ◦
∑
α∈Nn

aα(x
′)

∂|α|

∂xα1
1 · · · ∂xαn

n

where aα ∈ C∞(Rn−1) ⊗ HomC

(∧
i(Cn),

∧
j(Cn−1)

)
(see [15, I, Ex. 2.4]). Since

Zk := ∂
∂xk

(1 ≤ k ≤ n− 1) is a Killing vector filed, namely, Zk ∈ conf(X ;Y ) with

ρ(Zk, ·) ≡ 0, the conformal covariance (2) reduces to L ∂
∂xk

◦D = D ◦L ∂
∂xk

, which

implies that the matrix-valued function aα(x
′) is independent of x′ for every α. We

shall denote aα(x
′) simply by aα. Then D extends to a holomorphic differential

operator DC : Ω
i(Cn) → Ωj(Cn−1), by setting

DC := Restzn=0 ◦
∑
α∈Nn

aα
∂|α|

∂zα1
1 · · · ∂zαn

n
.
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If D satisfies the conformal covariance condition (2) on E i(V ) for all Z ∈
conf(V ;V ∩ Y ) � o(p, q + 1) or o(p + 1, q), then by Lemma 8, DC satisfies the
holomorphic extension of the condition (2) on Ωi(Cn) for all Z ∈ conf(V ;V ∩
Y )⊗R C � o(n+ 1,C).

• Step 3. Automatic continuity in the Hermitian symmetric spaces GR/KR ⊃
G′

R/K
′
R

The automatic continuity theorem is known for holomorphic differential SBOs
in the Hermitian symmetric setting [15, I, Thm. 5.3]. Then our strategy to prove
Claim 9 is to utilize the automatic continuity theorem in the Hermitian symmetric
setting by embedding a pair (GR/KR, G

′
R/K

′
R) of Hermitian symmetric spaces into

the pair (Cn,Cn−1) of the affine spaces as in Step 2. For this, we shall choose
a specific real form GR of GC := SO(n + 2,C) such that GR is the group of
biholomorphic transformations of a bounded symmetric domain in Cn as below.

Let Q(x̃) := −x20 + x21 + · · ·+ x2n − x2n+1 be the quadratic form on Rn+2, and
GR the identity component of the isotropy group

{h ∈ GL(n+ 2,R) : Q(h · x̃) = Q(x̃) for all x̃ ∈ Rn+2}.
Then KR := GR ∩ SO(n + 2) is a maximal compact subgroup of GR � SO0(n, 2)

such that GR/KR is the Hermitian symmetric space of type IV in the É. Cartan
classification. We take G′

R to be the stabilizer of xn. Then G
′
R � SO0(n− 1, 2).

We use the notation as in [15, II, Sect. 6], and identify Cn with the open
Bruhat cell of the complex quadric

QnC = {z̃ ∈ Cn+2 \ {0} : Q(z̃) = 0}/C× � GC/PC.

Then GR/KR is realized as the Lie ball

U = {z ∈ Cn : |z tz|2 + 1− 2z̄ tz > 0, |z tz| < 1}.
We compare the real form G of GC with Lie algebra conf(X) � o(p+ 1, q + 1) in
Step 1 and another real form GR � SO0(n, 2) in Step 3 (n = p+q). The point here
is that the G-orbit G · o � G/P through the origin o = ePC ∈ GC/PC is closed in
GC/PC, while the GR-orbit GR · o � GR/KR is open in GC/PC, as is summarized
in the figure below.

GR/KR � U ⊂
open

Cn ⊂
Bruhat cell

QnC � GC/PC

∪ ∪ ∪ totally real

Rp,q ⊂
conformal compactfication

(Sp × Sq)/Z2 � G/P

We note that the G′
R-orbit G

′
R ·o � G′

R/K
′
R is realized as the subsymmetric domain

U ∩ {zn = 0} � Cn−1. Since the holomorphic differential operator DC is defined
on Ωi(Cn), DC induces a holomorphic differential operator

DC|GR/KR
: Ωi(GR/KR) −→ Ωj(G′

R/K
′
R) (11)

via the inclusion GR/KR � U ⊂ Cn.
Then the automatic continuity theorem [15, I, Thm. 5.3 (2)] (and its proof),

applied to (11) implies that DC|GR/KR
is derived from an element of (10) via the
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duality theorem in the holomorphic setting (see [15, I, Thm. 2.12]). Thus the proof
of Claim 9 is completed. Therefore Theorem A and Theorem B (1) follow from
[15, I, Thm. 2.9].

Since (10) is independent of the choice of real forms, Theorem B (2) is now
clear.

Proof of Theorem C. Owing to Theorems A and B, Theorem C is reduced to the
Riemannian case p = 0 and ε = − or q = 0 and ε = +. Then the assertion follows
from the classification results [12, Thm. 1.1] for the (disconnected) conformal group
and from a discussion on the connected group case (see [12, Thm. 2.10]). �

6. Proof of Theorem D

In this section, we give a proof of Theorem D in Section 2 by reducing it to
the Riemannian case (p, q, ε) = (n, 0,+) or (0, n,−) which was established in
[12, Thms. 1.5, 1.6, 1.7 and 1.8]. For this, we apply Definition-Lemma 7 to the
totally real embedding ι± : Rp,q

± ↪→ Cp+q.
With the coefficients ak(μ, �) given in (7), we define a family of (scalar-valued)

holomorphic differential operators on Cn by

(Dμ
� )C :=

[ �2 ]∑
k=0

ak(μ, �)

⎛⎝−
n−1∑
j=1

∂2

∂z2j

⎞⎠k (
∂

∂zn

)�−2k

,

which are the holomorphic extensions of the operators (Dμ
� )Rn,0

+
defined in the

Riemannian case, that is, (Rest
R

n,0
+

)∗
(
(Dμ

� )C
)
= (Dμ

� )Rn,0
+

. Likewise, we extend

(Di→j
u,� )

R
n,0
+

to a (matrix-valued) holomorphic differential operator

(Di→j
u,� )C : Ω

i(Cn) −→ Ωj(Cn−1)

in such a way that (Rest
R

n,0
+

)∗(Di→j
u,� )C coincides with (Di→j

u,� )
R

n,0
+

. By definition of

(Di→j
u,� )Rp,q

+
, it is readily seen that (RestRp,q

+
)∗(Di→j

u,� )C = (Di→j
u,� )Rp,q

+
for all (p, q)

with p+ q = n. Concerning the other real form Rp,q
− , we have the following.

Lemma 10. (RestRp,q
− )∗(Di→j

u,� )C = e−
π
√−1(�+i−j)

2 (Di→j
u,� )Rp,q

− .

Proof. The assertion is deduced from the formulæ of (RestRp,q
−

)∗ for the following

basic operators. (For the convenience of the reader, we also list the cases Rp,q
+ as

well.)

dC d∗C
∂

∂zn
ι ∂
∂zn

(Dμ
� )C

(RestRp,q
+

)∗ dRp,q
+

d∗
R

p,q
+

∂
∂xn

ι ∂
∂xn

(Dμ
� )Rp,q

+

(RestRp,q
− )∗ dRp,q

− d∗
R

p,q
−

1√−1
∂

∂yn

1√−1
ι ∂
∂yn

e−
π
√−1�
2 (Dμ

� )Rp,q
−

�
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We are ready to complete the proof of Theorem D.

Proof of Theorem D. Since (Di→j
u,� )

R
n,0
+

∈ Diffconf(Rn;Rn−1)(E i(Rn)u, Ej(Rn−1)v) by

[12, Thms. 1.5, 1.6, 1.7, 1.8], the holomorphic differential operator (Di→j
u,� )C satis-

fies the holomorphic and covariance condition by Lemma 8. In turn, we conclude
Theorem D by Lemmas 10 and 8. �

7. Four-dimensional example

In contrast to the multiplicity-free theorem ([12, Thm. 1.1]) for differential SBOs
for (disconnected) conformal groups (Conf(X),Conf(X ;Y )) when

(X,Y ) = (Sn, Sn−1) (n ≥ 3),

it may happen that an analogous statement for the Lie algebras

(conf(X), conf(X ;Y ))

does not hold anymore. In fact, for some u, v, i, j, one has

dimC Diffconf(X;Y )(E i(X)u, Ej(Y )v) > 1 (12)

(or equivalently, = 2).
In this section we first address the question when and how (12) happens and

then describe the corresponding generators when (X,Y ) = (Rp,q,Rp−1,q) with p+q
(= n) = 4.

As we have seen in Theorems C and D, there are two types of conditions on
(i, j), namely,

−1 ≤ i− j ≤ 2 or n− 2 ≤ i+ j ≤ n+ 1,

for which nontrivial differential symmetry breaking operators E i(X)u → Ej(Y )v
exist for some u, v ∈ C. (The latter inequality arises from the composition of the
Hodge star operator with respect to the pseudo-Riemannian metric.) It turns out
that (12) happens only if these two conditions are simultaneously fulfilled, that is,
only if

−1 ≤ i− j ≤ n and n− 2 ≤ i+ j ≤ n+ 1.

The four-dimensional case is illustrative to understand (12) for the arbitrary
dimension n. We give a complete list of parameters (i, j, u, v) for which (12) hap-
pens together with explicit generators of Diffconf(X;Y )(E i(X)u, Ej(Y )v).

Let X = Rp,q
+ and Y = Rp−1,q

+ with n = p+ q = 4. We shall simply write as

(X,Y ) = (Rp,q,Rp−1,q). (The case (X,Y ) = (Rp,q
− ,Rp,q−1

− ) is essentially the same
and we omit it.) We set

A := Restx4=0◦ d, B := Restx4=0◦ d∗,
C := Restx4=0◦ ι ∂

∂x4

d, D := Restx4=0◦ ι ∂
∂x4

d∗.

By using the formulæ in [12, Ch. 8. Sect. 5], we readily see that

D ◦ ∗Rp,q = ± ∗Rp−1,q ◦A, C ◦ ∗Rp,q = ± ∗Rp−1,q ◦B. (13)
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Theorem F. Suppose (X,Y ) = (Rp,q,Rp−1,q) with p+ q = 4 and p ≥ 1. Then (12)
occurs if and only if (i, j, u, v) appears in the nonempty boxes in the table below.
Moreover, the pairs of operators in the table provide generators of

Diffconf(X;Y )(E i(X)u, Ej(Y )v).

i
j

0 1 2 3

0

u = 0, v = 1, u = v = 0,

� = 1 � = 1

1
∗Rp−1,q ◦A, A,

C ∗Rp−1,q ◦ C

u = 0, v = 3, v − u ∈ N+, v − u ∈ N, u = v = 0,

� = 1 � = v − u− 1 � = v − u � = 1

2
D, (D2→1

u,� )+, (D2→2
u,� )+, A,

∗Rp−1,q ◦A ∗Rp−1,q ◦ (D2→2
u,� )+ ∗Rp−1,q ◦ (D2→1

u,� )+ ∗Rp−1,q ◦D

u = −2, v = 1, u = −2, v = 0,

� = 1 � = 1

3
D, B,

∗Rp−1,q ◦B ∗Rp−1,q ◦D

4

Remark 11.

(1) By the duality theorem [15, I, Thm. 9], the multiplicity in the branching
laws of the generalized Verma modules, given as the dimension of (10) is also
equal to 2 for the parameters in Theorem F (cf. [8]).

(2) For (p, q) = (1, 3), Maxwell’s equations are expressed as dα = 0 and d∗α = 0
for α ∈ E2(R1,3), see [17] for instance.

(3) D2→1
u,� reduces to −Restx4=0 ◦ d∗ if (u, �) = (0, 1).

Proof of Theorem F. The assertions follow from [12, Thms. 1.1 and 2.10] owing to
Theorems B and D. �
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Abstract. There is devised a general differential-algebraic approach to con-
structing multi-component Hamiltonian operators as classical Lie–Poisson
structures on the suitably constructed adjacent loop Lie co-algebras. The
related Novikov–Leibniz type algebraic structures are derived, a new non-
associative right Leibniz and Riemann algebra is constructed, deeply related
with infinite multi-component Riemann type integrable hydrodynamic hier-
archies.
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Keywords. Poisson brackets, Hamiltonian operators, differential algebras, dif-
ferentiations, loop-algebra, Novikov algebra, right Leibniz algebra, Riemann
algebra, Riemann type hydrodynamic hierarchy, integrability.

1. Introduction

As it is well known [4–6], many of integrable Hamiltonian systems, discovered dur-
ing the last decades, were understood owing to the Lie-algebraic properties of their
internal hidden symmetry structures. A first account of the Hamiltonian operators
and related differential-algebraic structures, lying in the background of integrable
systems, was given by I. Gelfand and I. Dorfman [7] and later was extended by
S. Novikov and A. Balinsky [1, 3]. In our work we have devised a simple algorithm
allowing to construct new algebraic structures within which the corresponding
Hamiltonian operators exist and generate integrable multi-component dynamical
systems. We show, as examples, that the well-known Novikov algebraic structure,

This work was completed with the support of AGH University local grant.
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obtained before in [3, 7] as a condition for a matrix differential expression to
be Hamiltonian, appears within the devised approach as a classical Lie–Poisson
structure on a suitably adjacent Lie co-algebra, naturally associated with the con-
structed non-associative and non-commutative differential loop algebra.

2. The Hamiltonian operators and related algebraic structures
within the differential-algebraic approach

Assume (A; ◦) to be a finite-dimensional algebra of the dimension N = dimA ∈ Z+

(in general non-commutative and non-associative) over an algebraically closed field

K. Based on the algebra A one can construct the related loop algebra Ã of smooth
mappings u : S1 → A and endow it with the suitably generalized natural con-

volution ≺ ·, · $ on Ã∗ × Ã → K, where Ã∗ is the corresponding adjoint to Ã
space.

First, we will consider a general scheme of constructing nontrivial ultra-local

and local [6] Poisson structures on the adjoint space Ã∗, compatible with the

internal multiplication in the loop algebra Ã. Consider a basis {es ∈ A : s = 1, N}
of the algebra A and its dual {us ∈ A∗ : s = 1, N} with respect to the natural

convolution ≺ ·, · $ on A∗ × A, that is ≺ uj, ei $:= = δji for all i, j = 1, N ,

and such that for any u(x) =
∑

s=1,N us(x)u
s ∈ Ã∗, x ∈ S1, the quantities

us(x) :=≺ u(x), es $ ∈ K for all s = 1, N, x ∈ S1. Denote by Ã∧Ã := Skew(Ã⊗Ã)
and let ϑ∗ : Ã ∧ Ã → Symm(Ã) be a skew-symmetric bi-linear mapping. Then
the expression

{ui(x) , uj(x)} := ≺ u(x), ϑ∗(ei ∧ ej) $ (1)

defines for any x, y ∈ S1 and all i, j = 1, N an ultra-local linear skew-symmetric

pre-Poisson bracket on Ã∗. Since the algebra Ã possesses its internal multiplicative
structure “◦”, the important problem arises: under what conditions is the pre-

Poisson bracket (1) a Poisson one, compatible with this internal structure on Ã?
To proceed with elucidating this question, let us define a co-multiplication Δ :

Ã∗ → Ã∗ ⊗ Ã∗ on any element u ∈ Ã∗ by means of the relationship

≺ Δ(u), (a⊗ b) $:=≺ u, a ◦ b $ (2)

for arbitrary a, b ∈ Ã. Remind also that the co-multiplication Δ : Ã∗ → Ã∗ ⊗ Ã∗,
defined this way, is a homomorphism of the tensor algebra T(Ã∗) and the linear

pre-Poisson structure {·, ·} (1) on Ã∗ is called compatible with the multiplication

“◦” on the algebra Ã, if the following invariance condition

Δ{ui(x), uj(x)} = {Δ(ui(x)),Δ(uj(x))}, (3)

holds for any x ∈ S1 and all i, j = 1, N . Now, taking into account that multiplica-
tion in the algebra A is given for any i, j = 1, N by the condition

ei ◦ ej :=
∑

s=1,N

σs
ijes, (4)
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where the quantities σs
ij ∈ Kfor all i, j and k = 1, N are constant, the related co-

multiplication Δ : A∗ → A∗⊗A∗ acts on the basic functionals us ∈ A∗, s = 1, N , as

Δ(us) =
∑

i,j=1,N

σs
iju

i ⊗ uj. (5)

Additionally, if the mapping ϑ∗ : Ã ∧ Ã → Symm(Ã) is given, for instance, in the
simple linear form

ϑ∗ : (ei ⊗ ej − ej ⊗ ei) →
∑

s=1,N

(csij − csji)es, (6)

where quantities csij ∈ K are constant for all i, j and s = 1, N , then for the adjoint

to (6) mapping ϑ : Symm(Ã∗) → Ã∗ ∧ Ã∗ one obtains the expression

ϑ : us →
∑

i,j=1,N

(csij − csji)u
i ⊗ uj. (7)

For the pre-Poisson bracket (1) to be a Poisson bracket on Ã∗, it should satisfy
additionally the Jacobi identity. To find the corresponding additional constraints

on the internal multiplication “◦” on the algebra Ã, define for any u(x) ∈ Ã∗ the
skew-symmetric linear mapping

ϑ(u) : Ã → Ã∗, (8)

called [7] by the Hamiltonian operator, via the identity

≺ ϑ(u)a, b $:=≺ ϑ u(x), a ∧ b $ (9)

for any a, b ∈ Ã, where the mapping ϑ : Symm(Ã∗) → Ã∗ ∧ Ã∗ is determined
by the expression (7), being adjoint to it. Then it is well known [7] that the pre-
Poisson bracket (1) is a Poisson one iff the Hamiltonian operator (8) satisfies the
Schouten–Nijenhuis condition:

[[ϑ(u), ϑ(u)]] = 0 (10)

for any u(x) ∈ Ã∗. Having observed that the following action

ϑ(u)ei =
∑

s,k=1,N

(csik − cski)us(x)u
k (11)

holds for any basis element ei ∈ A, i = 1, N , the resulting pre-Poisson bracket (1)
becomes equal to

{ui(x) , uj(x)} =≺ ϑ(u)ei, ej $

=
∑

s=1,N

(csij − csji)us(x) =≺ u(x),
∑

s=1,N

(csij − csji)es > (12)
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for any u(x) ∈ Ã∗. If now to define on the algebra A the natural adjacent to the
algebra A Lie algebra structure

[ei, ej] = ei ◦ ej − ej ◦ ei :=
∑

s=1,N

(csij − csji)es (13)

for any basis elements ei, ej ∈ A, i, j = 1, N , the expression (12) yields the well-
known [4–6] classical Lie-Poisson bracket

{ui(x) , uj(x)} =≺ u, [ei, ej] $ . (14)

Concerning the adjacent Lie algebra structure condition (13), it can be easily
rewritten as the set of relationships,

σs
ij − σs

ji = csij − csji (15)

whose evident solution is

csij = σs
ij (16)

for any i, j, s = 1, N . As the bracket (14) is of the classical Lie-Poisson type, for
the Hamiltonian operator (11) to satisfy the Schouten–Nijenhuis condition (10) is
enough to check only the Jacobi identity for the Lie algebra L

Ã
, adjacent to the

algebra Ã via imposing the Lie structure (13), taking into account the relation-
ships (16). Simple calculations for the special skew-symmetric case

ei ◦ ej + ej ◦ ei = 0 (17)

for all i, j = 1, N give rise to the constraints

ei ◦ ej + ej ◦ ei = 0, (ei ◦ ej) ◦ ek + (ej ◦ ek) ◦ ei + (ek ◦ ei) ◦ ej = 0, (18)

coinciding exactly with those stated before in [7]. The corresponding Hamiltonian
operator (8) then acts as

ϑ(u)ei =
∑

s,k=1,N

(σs
ik − σs

ki)us(x)u
k (19)

on any basis element ei ∈ A, i = 1, N . Since the bracket (14), owing to the
constraints (17) and (18), satisfies the Jacobi identity and thereby the mapping

ϑ(u) : Ã → Ã∗ does the Schouten–Nijenhuis condition (10), one can formulate the
following theorem.

Theorem 1. The general pre-Poisson bracket (1) on Ã∗ under the constraints (17)
and (18) on the algebra A is a Poisson one, compatible with its internal algebraic
structure.

Remark 2. The same way one can consider a simple ultra-local quadratic pre-

Poisson bracket on Ã∗ in the form

{ui(x) , uj(x)} :=≺ u(x)⊗ u(x) , ϑ∗(ei ∧ ej) $, (20)
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where the skew-symmetric mapping ϑ∗ : Ã ∧ Ã → Symm(Ã⊗ Ã) is given for any
i, j = 1, N in the quadratic form

ϑ∗(ei ⊗ ej − ej ⊗ ei) :=
∑

k,s=1,N

(cksij − cksji )(ek ⊗ es + es ⊗ ek). (21)

In particular, if to assume that the coefficients cksij = σk
ijα

s for some constant

numbers σk
ij and αs ∈ K for all i, j and k, s = 1, N , where, by definition, ek ◦ es :=∑

k=1,N

σk
ijek, then the pre-Poisson bracket (20) yields a very compact form

{ui(x) , uj(x)} :=≺ u(x)⊗ u(x), α⊗ [ei, ej] + [ei, ej ]⊗ α $, (22)

generalizing (14) and parametrically depending on the constant vector

α :=
∑

s=1,N
αses ∈ A.

For the pre-Poisson bracket (22) one can formulate suitable constraints on the

algebraic structure of Ã, similar to those obtained in [2], yet we will not stop more
on this in detail.

Let now Ã(u) ⊂ Ã denote the polynomial differential ideal, generated by an

element u ∈ Ã and its derivatives Dn
xu ∈ Ã, n ∈ Z+. The corresponding space

of polynomial functions Ã(u) → K, constructed by means of some scalar form on

Ã(u), will be respectively denoted by F
Ã
(u). Then the basic ultra-local and linear

with respect to an independent element u(x) ∈ Ã, x ∈ S1, pre-Poisson bracket (1)
is easily generalized to a local pre-Poisson bracket for arbitrary functions f, g ∈
F

Ã
(u) :

{f, g}(u) =≺ u(x), ϑ∗(∇f(u(x)) ∧ ∇g(u(x) $, (23)

in which the mapping ϑ∗ : Ã ∧ Ã → Symm(Ã ⊗ Ã) is invariantly reduced on the

subspace Ã(u)∧ Ã(u) and depends nontrivially on the differentiation Dx : Ã → Ã.
In (23) we have denoted by sign “∇” the usual linear gradient mapping from F

Ã
(u)

to the ideal Ã(u) ⊂ Ã, that is for a given h ∈ F
Ã
(u) there holds ∇h(u(x)) ∈ Ã(u)

and ≺ v(x),∇h(u(x) $:= dh(u + εv)/dε|ε=0 for any v(x) ∈ Ã∗, x ∈ S1. Keeping
in mind the problem of finding constraints on the multiplicative structure of the

algebra Ã under which the pre-Poisson bracket (23) is a Poisson one, it is very
interesting to construct nontrivial examples of linear local pre-Poisson brackets on
F

Ã
(u), compatible with the multiplication “◦” on A and non trivially depending on

the usual differential operator Dx : Ã → Ã for x ∈ S1. In particular, for arbitrary
functions f, g ∈ F

Ã
(u) one can consider the following non trivial and simplest

linear local pre-Poisson bracket

{f, g}(u) :=≺ u(x), ϑ∗(∇f(u(x)) ∧ ∇g(u(x)) $, (24)

where, by definition,

ϑ∗ : (a(x) ∧ b(x)) →
∑

j,k,s=1,N

[csjkDxa
j(x)bk(x)− csjkDxb

j(x)ak(x)]es (25)
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for any a(x) :=
∑

j=1,N aj(x)ej , b(x) :=
∑

j=1,N bj(x)ej ∈ Ã, x ∈ S1, and some

arbitrarily chosen constant quantities csjk ∈ K for all j, k and s = 1, N . If to

assume additionally that these constant quantities satisfy the condition (16), that
is csij = σs

ij for all i, j and s = 1, N, the mapping (25) can be equivalently
rewritten as

ϑ∗ : (a(x) ∧ b(x)) → Dxa(x) ◦ b(x) −Dxb(x) ◦ a(x), (26)

providing the pre-Poisson bracket (24) for arbitrary functions f, g ∈ F
Ã
(u) with

the canonical Lie–Poisson form

{f, g}(u) :=≺ u(x), Dx∇f(u(x)) ◦ ∇g(u(x))−Dx∇g(u(x)) ◦ ∇f(u(x) $, (27)

which was recently presented in [12]. Thus, if the Lie structure

[a(x), b(x)]D := Dxa(x) ◦ b(x) −Dxb(x) ◦ a(x) (28)

for any a(x), b(x) ∈ Ã, x ∈ S1, renders the adjacent Lie algebra L
Ã
, the pre-Poisson

bracket (27) will be automatically a Poisson one on the space F
Ã
(u). Moreover,

from the expression (27), rewritten in the tensor form

{f, g}(u) = ≺ Δu(x), Dx∇f(u(x))⊗∇g(u(x)) −Dx∇g(u(x)) ⊗∇f(u(x) $
:= (Δ1u(x)Dx +Δ2u(x)Dx)∇f(u(x),∇g(u(x))
= (ϑ(u)∇f(u(x)),∇g(u(x))) (29)

naturally defines some bi-linear form (·, ·) on the adjacent Lie algebra L
Ã
, allowing

to determine the corresponding Hamiltonian operator ϑ(u) : L
Ã
→ L

Ã
:

ϑ(u) = Δ1u(x)Dx +DxΔ2u(x), (30)

where the Δju(x) : Ã → Ã∗, j = 1, 2, are the convolution operators of the co-
multiplication with respect to its first and second tensor components, respec-
tively. So, if the Hamiltonian operator (30) satisfies the Schouten–Nijenhuis condi-
tion (10), the pre-Poisson bracket (29) will be a Poisson one. Yet, simultaneously,
if the adjacent Lie algebra structure (28) satisfies the Jacobi condition, then the
equivalent to (29) pre-Poisson bracket (27) will be also a Poisson one. As the sec-
ond case is easier to check, after some calculations one obtains the well-known [3, 7]
Novikov algebra constraints

[Ra, Rb] = 0, [La, Lb] = L[a,b] (31)

on the multiplication structure of the algebra A, where, by definition, for any
a, b ∈ A the bracket [a, b] := a ◦ b− b ◦ a and the mappings La, Ra : A → A are left
and right multiplications, respectively: Lab := a ◦ b = Rba. The next example of
the bilinear, local and weakly skew-symmetric mapping

ϑ∗ : (a(x) ∧ b(x)) → D−1
x a(x) ◦ b(x) −D−1

x b(x) ◦ a(x), (32)

where, by definition, DxD
−1
x := 1 : Ã → Ã is the identity mapping, generates the

weak adjacent Lie algebra L
Ã
structure

[a(x), b(x)]D := D−1
x a(x) ◦ b(x) −D−1

x b(x) ◦ a(x) (33)
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for any a(x), b(x) ∈ Ã iff the multiplicative structure of the algebra Ã satisfies the
so-called right Leibniz algebra constraints:

Rb◦a = [Ra, Rb], Ra◦b +Rb◦a = 0 (34)

for arbitrary elements a, b ∈ A. The corresponding integro-differential Hamiltonian
operator on the space F

Ã
(u) for this case equals

ϑ(u) = Δ1u(x)D
−1
x +D−1

x Δ2u(x) (35)

for any u(x) ∈ Ã∗, x ∈ S1. If now to take the bilinear, local and weakly skew-
symmetric mapping

ϑ∗ : (a(x) ∧ b(x)) → −D−1
x a(x) ◦Dxb(x)) +D−1

x b(x) ◦Dxa(x)) (36)

or any a(x), b(x) ∈ Ã, the related adjacent Lie algebra L
Ã
structure is respectively

given by the expression

[a(x), b(x)]D := −D−1
x a(x) ◦Dxb(x) +D−1

x b(x) ◦Dxa(x) (37)

and satisfies the weak Jacobi identity, iff the following so-called Riemann algebra
A multiplicative structure

[Ra, Rb] = 0, La◦b = Ra◦b = Lb◦a (38)

holds for arbitrary elements a, b ∈ A. For the related Hamiltonian operator on the
space F

Ã
(u) one easily obtains from (36) the integro-differential expression

ϑ(u) = DxΔ1u(x)D
−1
x −D−1

x Δ2u(x)Dx (39)

for any u(x) ∈ Ã∗, x ∈ S1.

3. Conclusion

In this work we succeeded in formal tensor and differential-algebraic reformulating
the criteria [7, 8, 11] for a given linear in the field variables matrix differential
expression to be Hamiltonian and developed an effective approach to classification
of the algebraic Poisson structures lying in the background of the integrable multi-
component Hamiltonian systems.
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An Algebraic Background for Hierarchies
of PDE in Dimension (2|1)
Claude Roger

Abstract. In d = 2 with variables (x, t), the superalgebraic trick of adding
a supplementary odd variable allows the construction of a “square root of
time”, an operator D satisfying D2 = ∂/∂t in superspace of dimension (2|1).
We already used that trick to obtain a Miura transform in dimension(2|1)
for non-stationary Schrödinger type operators [6]. We shall discuss here the
construction of an algebra of pseudodifferential symbols in dimension (2|1);
that algebra generalizes the one for d = 1, used in construction of hierarchies
from isospectral deformations of stationary Schrödinger type operators.

Mathematics Subject Classification (2010). 17 B65, 34 L30, 35 Q53, 81 T60.

Keywords. Schrödinger operators, superalgebras, supersymmetry, hierarchies
of PDE.

1. Reminders on the classic d = 1 case

This is the famous Korteweg–de Vries equation and hierarchy, together with its
very rich related analytical, geometrical and algebraic structures; they are de-
scribed in an extensive literature, for example the treatise of Dickey [2], which we
shall refer to. It begins with stationary Schrödinger type operators in d = 1 with
variable x, like L = ∂2 + u(x), then one considers its isospectral deformations, by
conjugacy in the space of differential operators or pseudo differential symbols, as
follows: L → Lt = U(t)LU(t)−1. The latter formula gives infinitesimally a Lax

type equation L̇ = [L,M ], where as usual, the dot stands for time derivative, so

L̇ = u̇. For suitable values of operator M , denoted M =Mp for integer p, one gets

a hierarchy of equations L̇ = [L,Mp]. If moreover, the operators Mp are mutually
commuting [Mp,Mq] = 0, one deduces an infinite family of conserved quantities
for those equations, then said to be completely integrable system with an infinite
number of degrees of freedom.
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Those equations are Hamiltonian for the Poisson structure of the dual of
Virasoro algebra (cf. [3]) of vector fields u(x)∂, with the well-known bracket
[u(x)∂, v(x)∂] = (u(x)v′(x) − v(x)u′(x))∂, and central term; from that Lie al-
gebra one constructs the associative algebra OD of differential operators of the
form u0 + u1∂+ · · ·+ un∂

n, and finally, by formally inverting ∂ into ∂−1, one gets
the division algebra of pseudo-differential symbols ΨD. A symbol D ∈ ΨD has
the form

D =

n=N∑
n=−∞

an∂
n.

Associative algebra ΨD encodes all computations necessary for construction of
operators Mp, and also the right Poisson structures for those Hamiltonian equa-
tions, the dual of Virasoro algebra and its higher-order generalizations known as
W-algebras. Let us recall that the key formula for algebraic calculations in ΨD is
the following:

∂−1a =

∞∑
n=0

(−1)n∂n(a)∂−1−n.

That algebra allows computation of square root of L = ∂2 + u(x), and further
its successive half-integer powers, giving hierarchies and conserved quantities. As
well, Miura’s transform factorizes ∂2 + u(x) = (∂ + v(x)) ◦ (∂ − v(x)) and turns
out to be a rather useful tool.

2. Non-stationary Schrödinger operators

Now, we are in the d = 2 case with variables (x, t), let us set for short ∂
∂x = ∂ ∂

∂t =
∂t; we shall try to generalize the constructions described in part 1 above to non-
stationary operators of Schrödinger type with potential: Schr = ∂2 − ∂t + u(x, t).

Remarks.

1. One may think of the space parametrized by (x, t) as spacetime with space
dimension 1, the variable t being the physical time, but it is not necessarily
the case.

2. Those operators are, strictly speaking, heat operators, but Wick rotation
t→ it transforms them into the actual Schrödinger operator.

3. Hierarchies of PDE in dimension 2 and more have been on the agenda since
some time, with various point of view, cf. for example [9].

In the present paper, we shall use a supersymmetric trick: we enlarge the
space with an odd dimension and work in the superspace of dimension (2|1),
parametrized with even variables (x, t) and one odd variable θ. The even variables
can be polynomial, analytic or differentiable, we can have as well x ∈ R or x ∈ S1,
and the same for t. We shall not make things more precise for the moment, and
all necessary technical preliminaries on superalgebra will be developed in the next
part.
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We shall now consider the odd differential operator Dθ = θ∂t + ∂θ, which
satisfies D2

θ = ∂t; so Dθ represents the promised “square root of time”, and we can
write non stationary Schrödinger operator as a difference of two squares Schr =
∂2 −D2

θ + u(x, t).

3. Some techniques of graded algebra

We shall recall in this part the most basic definitions and formulas for graded
algebra, a detailed introduction can be found in [1]. A graded (or super-) algebra
is an associative algebra which admits a graduation, following A = ⊕p∈ZA

p; an
element a ∈ Ap is said to be of degree p, denoted by |a| = p. The associative
multiplication is graded, i.e.,

|ab| = |a|+ |b|,
and supercommutative (or graded commutative) which means:

ab = (−1)|a||b|ba.

So, a and b anticommute iff they are both of odd degree, otherwise they commute.
The typical examples are the free algebras on even generators xi and odd

generators θα, written as

A = k[xi]⊗ Λ(θα),

where as usual the symbol Λ denotes exterior algebra, and k[xi] the polynomial
algebra in indeterminates xi, with coefficients in a field of vanishing characteristic
k; in most examples k = C. One can also give a more global description of those
superalgebras: consider two finite-dimensional vector spaces E0 and E1 and assume
that elements ofE0 (resp.E1 ) are even (resp. odd), then the free supercommutative
algebra on E0 ⊕ E1 will be

A = S∗(E0)⊕ Λ∗(E1).

In most cases only modulo 2 degree is taken in account, being the only relevant
part for sign formulas.

A map f between graded spaces has a degree |f | naturally defined by |f(a)| =
|f |+ |a|, and we shall consider derivations of graded algebras. A map δ : A → A
is a derivation if for any a, b ∈ A, one has:

δ(ab) = δ(a)b + (−1)|a||δ|aδ(b).

So one has odd and even derivations. Now we can consider the graded commutator
of derivations following the formula:

[δ1, δ2] = δ1 ◦ δ2 − (−1)|δ1||δ2|δ2 ◦ δ1.
This bracket defines a Lie superalgebra structure on the space of derivations (see [1]
for precise formalism about Lie superalgebras); the geometric interpretation of
derivations as tangent vector fields allows to consider the space of derivations
Der(A) as the Lie superalgebra of tangent vector fields on the underlying super
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manifold whose space of functions is A [7]. Finally, we shall make use for any
graded algebra, of the following involution: a→ ā = (−1)|a|a.

4. The division algebra of pseudodifferential symbols in d = (2|1)
Our differential and pseudo differential operators will act on the superalgebra A
of functions on superspace of dimension (2|1). We shall use as generators the
following two operators: D = ∂ + iDθ and D̄ = ∂ − iDθ, where i is present mainly
for technical reasons. Computations are a bit delicate, since

D(ab) = D(a)b + aD(b)

if a is even, but

D(ab) = D(a)b + aD̄(b)

if a is odd. In terms of composition of operators, an element a ∈ A being viewed
as an operator of order zero, one has

D ◦ a = a ◦ D +D(a)

if |a| = 0 (mod.2), and

D ◦ a = a ◦ D̄ +D(a)

if |a| = 1 (mod.2). This is why we cannot consider operators in powers of D only,
we must add the conjugate D̄ in order to get a closed algebra.

Those elements generate the associative graded algebra of differential opera-
tors on A, denoted as OD(D, D̄). Its generic element has the following form:

finite∑
k≥0,l≥0

ak,lDkD̄l.

We can change the generators from (D, D̄) to (∂,Dθ), and so

OD(D, D̄) = OD(∂,Dθ).

Straightforward computations give easily:

D2 = ∂2 − ∂t + 2i∂Dθ

D̄2 = ∂2 − ∂t − 2i∂Dθ

so
D2 + D̄2

2
= ∂2 − ∂t = Schr0,

the non-stationary Schrödinger operator with zero potential. This is why algebra
OD(D, D̄) is relevant for our problem! Moreover, one has DD̄ = D̄D = ∂2 + ∂t,
and omitting the i coefficient, we could have obtained ∂2 − ∂t, like in [7], where
that formula was used for generalization of Miura transform.
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We are now ready to construct the algebra of pseudo differential symbols
ΨD(D, D̄) by localization of OD(D, D̄); let us invert formally D and D̄ in D−1

and D̄−1 respectively, so a generic pseudodifferential symbol will have the form:

finite∑
k=−∞,l=−∞

ak,lDkD̄l.

As in the d = 1 case, the difficulty is to establish a coherent formula for the
composition D−1 ◦ a; we shall prove by recurrence on the degree that:

D−1 ◦ a =

+∞∑
i,j=0;i+j>0

ai,jD−iD̄−j .

(Here we omitted symbol ◦ when obvious.) As in the d = 1 case the formulas will
be obtained from D◦D−1◦a = a; we shall use decomposition of any element a ∈ A
according parity, a = a0 + a1. We shall proceed by recurrence, from:

a = D

⎛⎝ +∞∑
i,j=0;i+j>0

ai,jD−iD̄−j

⎞⎠ ,

so:

D(ai,jD−iD̄−j) = D(ai,j)D−iD̄−j + a0i,jD−i+1D̄−j + a1i,jD−iD̄−j+1.

One then readily deduce from above the recurrence formula

D(ai,j) = −a0i+1,j − a1i,j+1

The recurrence is easily introduced: if a = a0 + a1, then a1,0 = a01,0 = a0 and

a0,1 = a10,1 = a1; so one gets a unique solution to the equation above but the
general formulas for ai,j are not obvious to be made explicit; for example one has
ai+1,0 = (−1)i∂ia0, and also a0,j+1 = (−1)j∂ja1; we shall give also some samples
in low degree: a1,1 = −iDθa, a1,2 = i∂Dθa − ∂ta

1 and a2,1 = i∂Dθa − ∂ta
0.

Computations are exactly parallel when one computes D̄−1 ◦ a.

Remark. In [8] we considered algebras of differential operators and pseudodiffer-
ential symbols in dimension(1|1) with variables (x, θ), variable t being a loop space
coordinate; in [4] the authors give a detailed study of the algebra of differential
operators in dimension (1|1), they award its paternity to Manin and Radul [5] in
their work about SuSy (supersymmetric) extension of KP hierarchy. FromD2

θ = ∂t,
one can consider OD(D, D̄) = OD(∂,Dθ) as a quadratic extension of OD(∂, ∂1)
which is simply the algebra of differential operators in d = 2.; but those alge-
bras are neither commutative nor anticommutative. Let us stress also the fact
that OD(D, D̄) = OD(∂,Dθ) doesn’t imply that ΨD(D, D̄) = ΨD(∂,Dθ), since
different choice of generators to be inverted change the global algebraic structure.
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5. Schrödinger type operators in dimension (2|1)
We shall consider operators of the type D2 + U , where potential U = u+ iθφ has
an odd and even part. Moreover, D2 = ∂2 − ∂t + 2i∂Dθ = Schr0 + 2i∂Dθ. We get
an unwanted supplementary term, it can be considered as the “price to pay” for
generalization to d = 2, like in the case of Miura transform [6].

The wave functions must be looked for among super functions as F = f+iθα
and spectral values have odd and even part too: Λ = λ+ iθξ. One has

D2(F ) = Schr(f) + iθSchr(α) + 2i∂Dθ(F );

then one readily computes Dθ(F ) = θ∂tf + iα. Then:

(D2 + U)(F ) = Schr(f) + uf − 2∂α+ iθ(Schr(α) + uα+ 2∂∂tf + φf)

Finally, equation

(D2 + U)(F ) = ΛF

induces the following system:

Schr(f) + uf − 2∂α = λf

Schr(α) + uα+ 2∂∂tf + φf = λα+ ξf.

In the particular case when the wave function F is purely even, so F = f , one
obtains a coupled system in f :

Schr(f) + uf = λf

2∂∂tf + φf = ξf.

The second equation is of Klein–Gordon type, so the system couples hyperbolic
and parabolic system.

6. KdV like equations in d = 2

We shall obtain evolution equations w.r.t. a real parameter s on a pair of functions
(u, φ) in variables (x, t, s) appearing as components of a super function U = u+iθφ
as above. We now develop a formalism parallel to the classical d = 1 case [2], and
thus consider the equation:

4 Us = D3 + 6 U D(U),
One deduces from it the following system of evolution PDE:

us = ∂3u− 3∂∂tu+ 6u∂u− 6uφ− 3∂2φ+ ∂tφ

φs = ∂3φ− 3∂∂tφ+ 3∂2∂tu− ∂2t u+ 6φ∂u+ 6u∂φ− 6φ2 + 6u∂tu

Let us now consider the case when the potential U is purely even, when φ = 0.
The second equation yields:

3∂2∂tu− ∂2t u+ 6u∂tu = 0,
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so:

∂t(3∂
2u− ∂tu+ 3u2) = 0.

One deduces immediately:

3∂2u− ∂tu+ 3u2 = f(x), (∗)
where f is an arbitrary function independent of t. The first equation gives:

us = ∂3u− 3∂∂tu+ 6u∂u.

Now by derivation of equation (∗), one obtains

3∂3u− ∂∂tu+ 6u∂u = ∂f(x)

and we can cancel the non linear term, getting the linear dispersive equation with
sources:

us = −2∂3u− 2∂∂tu+ ∂f(x). (∗∗)
Another option is to cancel the term with ∂t between (∗) ans the first equation,
and one gets an equation in (x, s) without t as follows:

us = −8∂3u− 12u∂u+ 3∂f(x);

after change of scale s→ −s and x→ 2x, one obtains finally:

us = ∂3u+ 6u∂u− 3

2
∂f(x),

which is exactly Korteweg–de Vries equation with source.
Now, if U is purely odd, i.e., u = 0, the above system reduces to:

3∂2φ = ∂tφ

φs = ∂3φ− 3∂∂tφ− 6φ2.

Finally, cancellation of terms in ∂t will give the following equation in (x, s):

φs + 8∂3φ+ 6φ2 = 0.

Any solution of that equation in (x, s) can be prolonged to a general solution in
(x, s, t), simply by using a heat kernel.
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Lagrangian Manifolds and Maslov Indices
Corresponding to the Spectral Series of the
Schrödinger Operators with Delta-potentials

Andrey I. Shafarevich

Abstract. We study semi-classical eigenvalues of a Schrödinger operator with
delta-potential on 2D or 3D symmetric manifold. We describe Lagrangian
manifolds, corresponding to such eigenvalues and compute the asymptotics of
eigenvalues for different values of the parameter, defining the operator. We
describe also the effect of the jump of the Maslov index while passing through
the critical value of this parameter. These results were obtained in a number
of joint papers with T. Filatova, T. Ratiu and A. Suleimanova.

Mathematics Subject Classification (2010). 47F05, 53D25.

Keywords. Operators with delta-potentials, Lagrangian manifolds, Maslov in-
dices.

1. Introduction

This contribution reviews and completes our joint papers with T. Filatova, T. Ratiu
and A. Suleimanova [1–3].

Many physical and mathematical works treat Schrödinger operators with
delta-potentials (point potentials, zero-range potentials). The model of point po-
tentials can be used to describe short-range impurities, admixtures, defects, and
similar phenomena in diverse systems. One of the first works in which the zero-
range potentials were used to study the band spectrum of periodic systems was the
paper [4], where a model of nonrelativistic electron moving in a rigid crystalline
lattice was considered. Since then, the model has become very popular, especially
in atomic and nuclear physics.

A rigorous mathematical justification of the method of delta-potentials was
given in [5], where it was suggested to use Krein’s formula to describe the resolvents

This work was completed with the support of the Russian Scientific Foundation (grant 16-11-
10069).
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of operators with point perturbations. For an extensive bibliography of the works
devoted to applications of the method of point potential, see the monographs [6, 7].

In the present paper, we describe the spectral series of the Schrödinger oper-

ator with delta-potential of the form H = −h2

2 Δ+βδx0(x), β ∈ R, in the semiclas-
sical limit as h → 0 on a two- or three-dimensional compact surface admitting a
special symmetry. For a large class of equations with smooth coefficients, the semi-
classical theory was developed by Maslov (see, e.g., [8]); in particular, this theory
implies the following result. Let N be a Riemannian manifold and V : N → R a
smooth function (the potential). If the Hamiltonian system in T ∗N defined by the
Hamiltonian (1/2)|p|2 + V is completely integrable, then the corresponding Liou-

ville tori Λ define semiclassical spectral series of the operator H = −h2

2 Δ+ V (x)
(here x ∈ N and (x, p) stand for the standard coordinates on T ∗N). Namely,
the asymptotic behavior as h → 0 of the eigenvalues of H is calculated from the
Bohr–Sommerfeld–Maslov conditions

1

2πh

∫
γ

(p, dx) +
1

4
)μ(γ) = m ∈ Z, (1)

where γ is an arbitrary cycle on Λ, μ stands for the Maslov index, andm = O(1/h).
The formal asymptotic behavior of the eigenfunctions (quasimodes) is of the form
ψ = KΛ(1), where KΛ stands for the Maslov canonical operator on the torus Λ
satisfying quantization conditions.

In general, the construction of the canonical operator cannot be applied to
operators with delta-potentials; at present, the geometry of the corresponding clas-
sical problem remains only slightly investigated. Below we describe the invariant
Lagrangian manifolds corresponding to the spectral series of the above operator
with delta-potential and obtain quantization conditions determining the asymp-
totic behavior of the eigenvalues. In general, these conditions are nonstandard;
both for large and for small values of the coefficient α, which defines the operator
(see Sect. 2.2) they pass to equations of the form (1) with diverse values of the
Maslov index μ; possibly, this indicates the presence of a more complicated geo-
metric objects associated with the semiclassical theory of operators with singular
coefficients.

2. Setting of the problem

2.1. Spectral problem

Consider the spectral problem(
− h2

2
Δ + βδx0(x)

)
Ψ = EΨ, x ∈ N, β ∈ R, (2)

where δx0(x) stands for the Dirac delta function concentrated at the point x0,
in the semiclassical limit as h → 0 on a two-dimensional manifold in R3 or on a
three-dimensional manifold in R4,

N = (f(z) cosϕ, f(z) sinϕ, z),
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or

N = (f(z) cos θ cosϕ, f(z) cos θ sinϕ, f(z) sin θ, z),

where z ∈ [z0, z1], 0 ≤ ϕ ≤ 2π, and −π
2 ≤ θ ≤ π

2 . We impose the following
conditions on the function f(z):

• f(z0) = f(z1) = 0, f(z) > 0 for z ∈ (z0, z1);

• f(z) =
√
(z1 − z)(z − z0)ω(z), where ω(z) is a polynomial.

Under these assumptions, the surfaceN is an analytic manifold diffeomorphic
to a sphere; the points x0 and x1 corresponding to the values z = z0, z1 of the
parameter z are the poles of this surface (and the delta function is concentrated
at one of the poles).

Remark 1. The second condition can be weakened. Seemingly, it is sufficient to
assume that f is analytic in a neighborhood of the closed interval [z0, z1], except
for the points z0 and z1 at which f has a root singularity.

Below we present a formal definition of the operator with δ-potential on the
surface N .

2.2. Formal definition of the operator H

The operator

H = −h
2

2
Δ + βδx0(x), x ∈ N, β ∈ R,

in the space L2(N) is defined by the construction of self-adjoint extensions (see [5]).
Namely, H is constructed in such a way that the following conditions hold.

• The operator H is self-adjoint.
• On the functions vanishing at the point x0, H coincides with the operator

H0 = −h2

2 Δ, where Δ stands for the Laplace–Beltrami operator.

To be more precise, consider a self-adjoint operator H0 with the domain
D(H0) = W 2

2 (N), where W 2
2 (N) stands for the Sobolev space of second order.

Restricting the operator H0 to functions ψ(x) such that ψ(x0) = 0, we obtain a
symmetric operator H0|ψ(x0)=0.

Definition 2. By the operator H = −h2

2 Δ + βδx0(x) we mean the self-adjoint
extension of the operator H0|ψ(x0)=0.

Remark 3. All extensions of this kind are parametrized by a single real parameter
α (see boundary conditions below). In particular, for α = 0, we obtain H = H0.

Every extension of this kind is defined by a boundary condition at the point
x0; to be more precise, the domain of the operator H consists of the functions of
the form ψ = ψ0 + c1G(x, x0; i) + c2G(x, x0,−i), where ψ0 ∈W 2

2 (N), ψ0(x0) = 0,
and G(x, y, λ) stands for Green’s function of the operator Δ, i.e., the integral
kernel of the resolvent, (Δ−λ)−1f =

∫
M
G(x, y; z)f(y)Ω (Ω stands for the volume

form on N).
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The functions of the above form have a singularity at the point x0; namely,
the following expansions hold:

ψ(x) =
a

2π
log d(x, x0)

−1 + b+ o(1), dimN = 2,

ψ(x) = − a

4π
d(x, x0)

−1 + b + o(1), dimN = 3,

where a, b ∈ C and d(x, x0) stands for the geodesic distance between x and x0 on
N . The domain of the extension H corresponding to the parameter α consists of
the functions satisfying the boundary condition

a =
2α

h2
b.

3. Formulation of the result

3.1. Description of the Lagrangian manifold

The semiclassical asymptotic behavior of the eigenvalues of the operator H is
evaluated from the quantization condition on the Lagrangian manifold which we
shall now describe. Let (x, p) ∈ T ∗N , where T ∗N stands for the cotangent bundle
of N , x ∈ N , and p a vector cotangent to N (the momentum). Consider the
Hamiltonian system (the geodesic flow)

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

, (3)

where H = |p|2/2, and consider the trajectories of the system, x = X(ω, t), p =
P (ω, t), ω ∈ S√

2E , t ∈ R, given by the initial conditions

x(0) = x0, p(0) = ω, ω ∈ S√
2E , |ω| =

√
2E. (4)

Here S√
2E stands for the sphere or the circle of radius

√
2E in the cotangent

space at the point x0. Thus, trajectories of the Hamiltonian system are issued
from the point x0 (at which the delta-potential is concentrated) along the surface
N with the momentum “running” around the sphere S√

2E (i.e., p ∈ Λ0, where

Λ0 = {x = x0, |p| =
√
2E}). These trajectories are contained in the manifold

Λ =
⋃

t gtΛ0 (gt stands for the Hamiltonian phase flow) diffeomorphic to T 2 if
dimN = 2 and to S2 × S1 if dimN = 3 (see Fig. 1, left). It describes the classical
motions corresponding to the quantum problem. The projections of the trajectories
to N are geodesics.

We denote by γ the cycle on the manifold Λ formed by the closed trajectory
of the Hamiltonian system (3) with the initial conditions (4) (see Fig. 1, right).

The projection of Λ to the x-space is arranged as follows: for every point x of
N , except for x0 and x1, there are two points of Λ of the form (x, p) and (x,−p)
that are projected to x. A sphere or a circle is projected to each of the points x0
and x1.
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Figure 1. Classical trajectories on the surface N corresponding to the
quantum problem (left). Lagrangian manifold and the cycle γ (right).

3.2. Formulation of the result: the quantization condition

The quantization condition on the manifold Λ with respect to the cycle γ is just
the desired equation for the spectrum of the problem. More precisely, the following
assertion holds.

Theorem 4. Let Ch−ε < α
hn < Chε, n = dimN for some sufficiently small ε > 0.

Let there be a number E = O(1) satisfying the quantization condition

tan

(
1

2h

∮
γ

(p, dx)

)
=

2

π

(
log

(√
2E

h

)
+
πh2

α
+ c

)
, n = 2,

tan

(
1

2h

∮
γ

(p, dx) +O(h)

)
=

2h3√
2Eα

, n = 3,

where γ stands for the cycle indicated above (the closed trajectory) on the La-
grangian manifold Λ, c stands for the Euler constant. Then there is an eigenvalue
E0 of the operator H such that |E − E0| = o(h) as h→ 0.

Remark 5. The explicit formula for the integral in the left-hand side has the

following form
∮
γ(p, dx) =

∫ z1
z0

√
2E(f ′2 + 1)dz.

Remark 6. The asymptotic behavior of the eigenfunction, outside an arbitrarily
small neighborhood of x0 independent of h, is of the form KΛ̃(1), where K stands

for the Maslov canonical operator and Λ̃ is a noncompact Lagrangian manifold
obtained from Λ by deleting the sphere or the circle projected to the point x0
(this manifold is obviously homeomorphic to the cylinder Sn−1 × R).
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3.3. Critical values of α and the jump of the Maslov index

Consider the limit cases of the quantization condition described in the theorem.
Let

α log 1/h

h2
→ 0, dimN = 2, or

α

h3
→ 0, dimN = 3;

then the quantization conditions up to small terms acquire the standard form

1

2πh

∮
γ

(p, dx) +
1

2
= k ∈ Z

(note that the Maslov index of the cycle γ is equal to two). Suppose now that

α log 1/h

h2
→ ∞, dimN = 2, or

α

h3
→ ∞, dimN = 3;

then we have

1

2πh

∮
γ

(p, dx) +
1

2
= k, n = 2, or

1

2πh

∮
γ

(p, dx) = k, n = 3. (5)

These equations also have the form of the Bohr–Sommerfeld–Maslov condition;
however, in 3D case, the “Maslov index” of the cycle γ is equal to zero. Thus,
when passing through the critical value α = O(h3), we face a jump of the integral-
valued invariant, which coincides with the Maslov index in the case of a smooth
potential; the presence of the delta function leads to the change of this invariant by
2. Note that the jump does not take place in two-dimensional case. This possibly
indicates the existence of some topological construction (still unclear to us) which
generalizes the Maslov canonical operator to the case of singular coefficients.

On the “classical level” the difference between two- and three-dimensional
cases can be explained as follows. The existence of the strong delta-potential leads
to the reflection of classical particles at the point x0; this reflection is described
by the change of the sign of the momentum p. So one has to consider the map
g : Λ0 → Λ0, g(p) = −p (we remind that Λ0 is a circle or a sphere in T ∗

x0
N). The

degree of this map depends on the dimension: it equals 1 for a circle and −1 for a
sphere. So the equations (5) can be written uniformly as follows

1

2πh

∮
γ

(p, dx) +
1

4
(μ+ (degg − 1)) = k ∈ Z,

where degg stands for the degree of g.

Remark 7. Note that the critical value of α is O(h3) for n = 3 and O(h2/log(1/h))
for n = 3. This additional logarithm appears in different problems connected with
delta-potentials (see, e.g., [6]).
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Electronic Properties of Graphene
Nanoribbons in a Uniform Magnetic Field

Jan Smotlacha and Richard Pincak

Abstract. The electronic spectra of the zigzag and armchair graphene nanorib-
bons can be influenced by the additional effects like the reconstruction of the
edge, the vacancy defects, magnetic field etc. Here, the combination of the
influence of the vacancy defects and of the uniform magnetic field on the
electronic spectrum was investigated. For this purpose, the usual Schrödinger
equation was replaced by the Harper equations which contain the influence of
the magnetic field. The results show the fractal structure of the dependence
of the energy levels on the magnetic field.

Mathematics Subject Classification (2010). Primary 47A75; Secondary 47B15.

Keywords. Electronic spectrum, magnetic field, fractals.

1. Properties of zigzag and armchair nanoribbons

The calculation of the electronic spectra of the graphene nanostructures follows
from their molecular structure which is based on the hexagonal carbon lattice. In
the case of the planar graphene, on the base of the translational symmetry, this
lattice can be divided into 2 inequivalent sublattices denoted A and B (Fig. 1). In
the case of the zigzag and armchair graphene nanoribbons (Fig. 2), depending on
the width of the corresponding nanostructure, the number n of the corresponding
inequivalent sublattices is considerably larger and we denote them A1, . . . , An.

The calculation of the electronic spectra starts on the solution of the Schrö-
dinger equation for an electron bounded in the superposition of the Coulomb
potentials coming from the atomic sites [1],

Ĥψ = Eψ, ψ = CA1ψA1 + · · ·+ CAnψAn . (1)

Here, A1, . . . , An represent the atomic sites from inequivalent sublattices. In the
tight-binding approximation, we suppose the solution of the form

ψAi =
∑
Ai

exp[i�k · �rAi ]X(�r − �rAi), (2)
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Figure 1. The molecular structure of the planar graphene.

Figure 2. Zigzag (left) and armchair (right) nanoribbons. For both
cases, the size of the horizontal dimension is considered infinite.

where X(�r) is the atomic orbital function. In the next calculations, we suppose
the zero overlap, i.e., for i �= j,∫

X(�r − �rAi)X(�r − �rAj )d�r = 0. (3)

Using this assumption and the notation

Hij =

∫
ψ∗
Ai
HψAjd

−→r ,

S =

∫
ψ∗
Ai
ψAid

−→r =

∫
ψ∗
Aj
ψAjd

−→r , i, j ∈ {1, . . . , n},
(4)
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we get the matrix equation⎛⎜⎜⎜⎜⎝
HA1A1 HA1A2 . . . . . . HA1An

HA2A1 HA2A2 . . . . . . HA2An

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
HAnA1 HAnA2 . . . . . . HAnAn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
CA1

CA2

. . .

. . .
CAn

⎞⎟⎟⎟⎟⎠ = ES

⎛⎜⎜⎜⎜⎝
CA1

CA2

. . .

. . .
CAn

⎞⎟⎟⎟⎟⎠ , (5)

where HA1A1 = · · · = HAnAn . The electronic spectrum we calculate as the zero
points of corresponding characteristic polynomial. If we consider the nearest-
neighbor approximation, the result has the form outlined in Figure 3 [2].

Figure 3. Electronic spectrum of zigzag (left) and armchair (right)
nanoribbons in the nearest-neighbor approximation.

2. Influence of the magnetic field

Now, we consider the influence of the uniform magnetic field, its direction is per-
pendicular to the molecular surface. Then, to describe the behaviour of the electron
influenced by this magnetic field and by the superposition of the corresponding
Coulomb potentials, we use the Harper equations instead of the Schrödinger equa-
tion [3, 4]:

Eψi =
∑
j

teiγijψj , (6)

where the indices j correspond to the nearest neighbors of the ith atomic site, t
is the nearest-neighbor hopping integral and γij is the magnetic phase factor. It is
proportional to f , the magnetic flux going through the hexagon:

f = Φ/Φ0 = 3
√
3Ba2/(2Φ0), (7)

where B is the value of the magnetic field, a is the length of the atomic bond and
Φ0 = hc/e is the unit flux expressed with help of the basic physical constants.
We are interested in the cases when f = p/q with p and q being mutual primes.
For the calculation of the electronic spectrum, we use the procedure which is an
analogy of the case without magnetic field: on the base of (6), we compose the
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matrix equation and by finding the zero points of the corresponding characteristic
polynomial, we find the energy levels. For different values of the magnetic flux, the
electronic spectrum for the case of the zigzag nanoribbon is sketched in Figure 4 [5].

Figure 4. Electronic spectrum of zigzag nanoribbons for different val-
ues of the magnetic field given by the magnetic flux [10]: f = 0 (left),
f = 1/3 (middle) and f = 1/2 (right).

2.1. Next-nearest neighbor approximation

We can consider the influence of the next-nearest neighbors in the atomic lattice
as well. For this case, the equation (6) will be changed into the form

Eψi =
∑
j,k

(teiγijψj + t′eiγikψk), (8)

where the notation for the nearest neighbors is known from (6). Analogously, the
indices k correspond to the next-nearest neighbors in the atomic lattice, t′ is the
next-nearest-neighbor hopping integral and γik is the magnetic phase factor which
is proportional to the magnetic flux f as well. The corresponding matrix equation
and the characteristic polynomial can be composed and the electronic spectrum
can be calculated in the same way as in the previous case. The resulting electronic
spectrum for the cases of zigzag and armchair nanoribbons and different values of
the magnetic field we can see in Figures 5 and 6.

If we do a comparison of the cases of zero magnetic field with the same case
for the nearest-neighbor approximation (Fig. 4 left), we see that the symmetry of
the spectrum related to the horizontal axis is corrupted, but this feature can be
suppressed by non-zero magnetic field (Figs. 5 and 6 right).

2.2. Electronic spectrum as a function of the magnetic field

The graphs of the electronic spectrum in Figures 4, 5 and 6 show an interesting
feature: from the geometrical point of view, in each of these figures, the graphs have
the same (or very similar) shape, but their size is different. This size is inversely
proportional to the value of q in the expression for the magnetic flux f = p/q.
This feature can be viewed as the self-similarity which is closely related to the
fractal geometry. This hypothesis we can verify, if we do a plot of the dependence
of the energy levels on the magnetic flux. The result we see in Figure 7 [4, 5].
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Figure 5. Electronic spectrum of the zigzag nanoribbons for different
values of the magnetic field given by the magnetic flux: f = 0 (left),
f = 1/3 (middle) and f = 1/2 (right).

Figure 6. Electronic spectrum of the armchair nanoribbons for differ-
ent values of the magnetic field given by the magnetic flux: f = 0 (left),
f = 1/3 (middle) and f = 1/2 (right).

The sketched graphs are really fractal structures. The kind of fractal structure

Figure 7. Electronic spectrum of the graphene nanoribbons depend-
ing on the magnetic flux for different approximations: nearest-neighbor
interaction (left) and next-nearest-neighbor interaction (right).

which is represented by them was called the Hofstadter butterfly [6]. Moreover, the
dependence on the magnetic flux shows a periodical character. The period depends
on the chosen kind of approximation: for the nearest-neighbor approximation, the
period for the magnetic flux is 1 (Fig. 7 left), while it is 6 for the next-nearest-
neighbor approximation (Fig. 7 right).



116 J. Smotlacha and R. Pincak

Figure 8. Electronic spectra of different zigzag nanoribbons which in-
clude vacancies. In the left part, the corresponding molecular surfaces
are sketched.

3. Zigzag nanoribbons with atomic vacancies

We can investigate the changes of the electronic spectrum for different variations of
graphene nanoribbons. Some examples are shown in Figure 8, where the electronic
spectrum was depicted for 4 different forms of zigzag nanoribbons which include
vacancies. The outlined graphs show an interesting property of the magnetic field:
it can significantly widen the width of the HOMO-LUMO gap.



Graphene Nanoribbons in Magnetic Field 117

References

[1] P.R. Wallace, Phys. Rev. 71 (1947) 622.

[2] K. Wakabayashi, K. Sasaki, T. Nakanishi and T. Enoki, Sci. Technol. Adv. Mater.
11 (2010) 054504.

[3] P.G. Harper, Proc. Phys. Soc. London Sect. A 68, 874 (1955).

[4] J. Liu, Z. Ma, A.R. Wright, C. Zhang, Journal of Applied Physics, 103 (10), (2008).

[5] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999).

[6] D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

Jan Smotlacha
Bogoliubov Laboratory of Theoretical Physics
Joint Institute for Nuclear Research
141980 Dubna, Moscow region, Russia
e-mail: smota@centrum.cz

Richard Pincak
Institute of Experimental Physics
Slovak Academy of Sciences
Watsonova 47,043 53 Kosice, Slovak Republic
e-mail: pincak@saske.sk

mailto:smota@centrum.cz
mailto:pincak@saske.sk


Geometric Methods in Physics. XXXV Workshop 2016

Trends in Mathematics, 119–127
c© 2018 Springer International Publishing

Formal Normal Forms for Germs of
Vector Fields with Quadratic Leading Part.
The Rational First Integral Case

Ewa Stróżyna

Abstract. We complete classification of germs of plane vector fields with qua-
dratic leading part initiated in [1]. There were two cases completely analyzed,
a simplest one and a most complex one. Here we study the remaining cases.
In the proofs we use a new method introduced in the work [2] concerning the
Bogdanov–Takens singularity.
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Keywords. Singularity of plane vector field, formal orbital normal form, non-
orbital normal form.

1. Introduction

The problem of classification of germs of vector fields in (Cn, 0), or in (Rn, 0), is
very natural and important. In fact, here are considered two classification prob-
lems: the usual one, when one applies local changes of coordinates, and the orbital
one, when one additionally applies a reparametrisation of time (i.e., when one is
interested in classification of local phase portraits).

A standard approach to this problem is the following. Usually the considered
vector fields are of the form

V (x) = V0(x) + · · ·

where V0 is a polynomial quasi-homogeneous vector field (with respect to some
grading in the space C[[x]] of formal power series). The changes x = h(y) of
variables are generated by formal vector fields Z(x), h = expZ; these Z’s are

Supported by Polish NCN Grant No 2012/05/B/ST1/03195.
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also subject to the same quasi-homogeneous grading. The linear in Z part of the
transformed vector field is

adV Z = [V, Z] = adV0 Z + · · · .
The operator Z 
−→ adV0 Z is the so-called first level homological operator. The
first level normal form is defined by a choice of a space complementary to the
image of adV0 . The latter task is split into finite-dimensional algebraic problems,
restricting the operator adV0 to spaces of polynomial vector fields of fixed quasi-
homogeneous degree.

In this paper we consider the complex plane vector fields with zero linear
part

ẋ = αx2 + βxy + γy2 + · · · , ẏ = δx2 + ζxy + ηy2 + · · · (1)

and classify them with respect to application of formal diffeomorphisms. This
classification essentially depends on the homogeneous quadratic parts

V 0 =
(
αx2 + βxy + γy2

)
∂x +

(
δx2 + ζxy + ηy2

)
∂y, (2)

with respect to the linear changes of the coordinates. This classification was per-
formed in [1, Section 2.2]. From that classification one can see that the reduction
process of the higher-order terms in Eq. (1) is done recurrently with respect to
some definite quasi-homogeneous grading (in the space of power series in two vari-
ables). In most cases that grading is standard, defined by the standard Euler
vector field

E = x∂x + y∂y, (3)

but it can be nonstandard. In this paper we deal only with the cases when only
the standard grading is in use.

The division of V 0’s into different cases is determined by forms of the so-
called Principal First Integral (PFI) of V 0. Generally, this first integral is

F = xayb (y − x)
c
, (4)

but in some limit cases logarithmic summands can appear. Important are also
so-called Inverse Integrating Multipliers (IIMs), which should be polynomial.

In [1] the case with polynomial principal first integral, i.e., with a = p, b = q,
c = r relatively prime positive integers, was studied completely. Also in [1] the
‘road map’ to treat other cases was sketched. Here we complete that task.

Let us say few words about the method used in our reduction; it was invented
by the author with H. Zoladek in [2] (and used in [1]). We want to reduce a vector
field of the form V 0 +W (like in Eq. (1)) to some normal form by application of
a diffeomorphism expZ generated by a vector field Z. Recall that the linear in Z
part of the action of expZ on V 0 equals the commutator − adV 0

Z plus higher-
order terms. We divide the perturbations W into two parts: ‘transversal’ to V 0

and ‘tangential’ to V 0; also the vector fields Z are subject to such division. We
measure the transversal to V 0 part by the bi-vector fields V 0∧W = h(x, y)·∂x∧∂y,
i.e., by one function h. The tangential to V 0 part is of the form g(x, y)V 0, hence



Normal Forms 121

it is also measured by one function g. The homological operator adV 0
is split into

two ‘1-dimensional’ homological operators:

f 
−→ C(V 0)f := V 0(f), f 
−→ D(V 0)f := V 0(f)− divV 0 · f . (5)

In this way we realize the so-called first level reduction and obtain a first
level normal form. In the second level reduction we use the homological operators
C(V 0 + V 1) and D(V 0 + V 1) associated with two lowest degree terms from the
first level normal form. In most complex cases we need four such steps.

2. Homological equations

2.1. Koszul complexes and homological operators

We deal with vector fields of the form V = V 0 + · · · , where for V (and V 0) we
define some linear operators. Let

F = C[[x, y]], Z = {Z = z1(x, y)∂x + z2(x, y)∂y : zi ∈ C[[x, y]]}

be the spaces of formal power series and formal vector fields. By Fd and Zd we
denote the spaces of functions and vector fields of degree d, where we put deg ∂x =
deg ∂y = −1. We note the following identity:

[E,Z] = degZ ·Z (6)

for a homogeneous vector field Z.

We put

adV Z = [V ,Z] ,

A(V )f = f · V ,

B(V )Z = V ∧Z/∂x ∧ ∂y,
C(V )f = V (f) = ∂f/∂V ,

D(V )f = V (f)− div(V ) · f.

(7)

The operators C(V ), adV and D(V ) are called the homological operators. It turns
out that the following diagram, with rows given by so-called Koszul complexes,

0 −→ F A(V )−→ Z B(V )−→ F −→ 0
↓ C(V ) ↓ adV ↓ D(V )

0 −→ F A(V )−→ Z B(V )−→ F −→ 0

(8)

is commutative.

It is easy to see that kerC(V ) consists of First Integrals (FIs) of V and that
kerD(V ) consists of Inverse Integrating Multipliers (IIMs) of V , i.e., of functions
M such that divM−1V ≡ 0.
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2.2. The case with isolated singularity

When the origin is an isolated critical point of V 0 then the above Koszul complexes
are exact and we can split the reduction problem to the analysis of the operators
C(V ) and D(V ). For this we have to resolve the singularity of the homogeneous
vector field V 0.

Recall that this resolution is a holomorphic map π : (S, E) 
−→
(
C2, 0

)
which

is one-to-one outside the exceptional divisor E � CP1 = π−1(0).We get a holomor-
phic foliation in the complex surface S such that in the general (non-dicritical) case
the divisor E is invariant with three singular points (counted with multiplicities).
The above singular points on E correspond to invariant lines of V 0.

In our analysis of homological operators we use the blowing-up coordinates:

(x, u) = (x, y/x) .

These are coordinates in one chart of the surface S (and u is a coordinate along
E); in another chart the coordinates are (y, v) = (y, x/y) .

Firstly, we recall that a homogeneous polynomial f(x, y) of degree d takes
the form

f = xdf̃(u) (9)

for a polynomial f̃ . We have also

V 0 = xa(u)∂u − x2b(u)∂x, divV 0 = xc(u) (10)

for some polynomials a, b, c.
The homological equations

C(V 0)f = g, D(V 0)f = g (11)

(for f ∈ Fd with given g = xd+1g̃(u) ∈ Fd+1) take the form

a(u)
d f̃

du
= db(u)f̃ + g̃,

a(u)
d f̃

du
= [db(u)− c(u)] f̃ + g̃.

(12)

Generally, a(u) = const · u(u− 1) and the solutions to the latter equations are of
the form

f̃(u) = const · uα (u− 1)
β
∫ u

τ−α−1 (τ − 1)
−β−1

g̃(τ) d τ,

f̃(u) = const · uγ (u− 1)δ
∫ u

τ−γ−1 (τ − 1)−δ−1 g̃(τ) d τ

(13)

(for some exponents α.β, γ, δ). The integrals in Eqs. (13) define known Schwarz–
Christoffel functions (SC functions), or incomplete Schwarz–Christoffel integrals.

Recall that the solutions to Eqs. (11) should be polynomial; otherwise, the
corresponding polynomial g lies outside ImC(V 0) (or ImD(V 0)). Therefore we
should localize obstacles to functions (13) to be polynomials. These obstacles are
the periods of the SC functions defined as follows.
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If α, β �∈ Z (respectively, γ, δ �∈ Z) then the periods are defined by the follow-
ing complete SC integrals:

ΩC(g) = P.V.

∫ 1

0

ωC(g), ωC = u−α−1 (u− 1)
−β−1

g̃(u) du,

ΩD(g) = P.V.

∫ 1

0

ωD(g), ωD = u−γ−1 (u− 1)
−δ−1

g̃(u) du.

(14)

Often α, . . . , δ > 0 and the above integrals diverge, so one should take some reg-
ularization; the principal value symbol P.V. means such regularization. A natural
regularization uses an analytic continuation of the Euler Beta function, as a func-
tion of parameters. Anyway, we get the following explicit description of the images
of our homological operators in the cases when they are of codimension 1 in Fd+1:

ImC(V 0) = {ΩC = 0} , ImD(V 0) = {ΩD = 0} . (15)

In special situations the periods are defined in special ways. Sometimes some
of these images are of codimension 2 and they are defined by vanishing of two
periods, e.g., residua of ωC,D at u = 0 and u = 1. We will encounter such cases.

We finish this subsection with the following identity which will be used in
the sequel: we have V 0 ∧E = sxy(y − x)∂x ∧ ∂y, s = a+ b + c, for V 0 with the
first integral (4), i.e.,

B(V 0)E = sxy(y − x). (16)

Usually the orbital normal form is V 0 + Φ(x, y)E and the whole normal form is
(1 + Ψ(x, y))·(V 0 +ΦE) for special choice of the formal series Φ and Ψ. Therefore
Eq. (16) indicates that the right-hand side of second of Eqs. (11) should equal

su(u − 1)Φ̃(u) . There are no such restrictions for the right-hand side of the first
of Eqs. (11).

3. The rational PFI with 1-factor IIM case

The principal first integral is

F =
xy

(y − x)
r , r ≥ 3;

thus we have the vector field

V 0 = x [(b+ c)y − bx] ∂x + y [(a+ c)x− ay] ∂y.

with a = b = 1, c = −r. When r �= 4 we have Subcase 1 otherwise we have
Subcase 2.

3.1. The first level analysis

Lemma 1. We have kerCd(V 0) = 0 for any d and kerDd(V 0) = 0 if d �= r + 1
and kerDr+1(V 0) = C ·M, where

M = (2 − r) (y − x)
r+1

. (17)
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Proof. The first statement is obvious. Next, we have XF = (y − x)−r−1V 0 with

V 0 = x ((1− r) y − x) ∂x + y ((1− r) x− y) ∂y. �
Lemma 2. The IIM (17) equals B(V 0)T with

T = F−1E +
x+ y

(y − x)2
F−1V 0

= (y − x)
r−2 {((2− r) y − (2 + r) x)∂x + ((2− r) x− (2 + r) y) ∂y)} .

(18)

Moreover, we have

adV 0 T = 2(4− r) (y − x)
r−2

V 0 (19)

(which is nonzero for r �= 4).

Proof. The fact that V 0∧F−1E =M ·∂x∧∂y follows from Eq. (16) with s = 2−r;
of course, B(V 0) · hV 0 = 0. But the vector field F−1E has poles along the lines
x = 0 and y = 0. We remove these poles by adding the term proportional to V 0.

Finally, the derivation of Eq. (19) uses Eq. (6), V 0

(
(x+ y)/(y − x)2

)
=(

x2 + y2 + 2 (3− r) xy
)
/ (y − x)

3
and V 0

(
F−1

)
= 0. �

In the first level analysis of the homological operators we use only the op-
erators associated with V = V 0. Firstly we localize the subspaces N (Cd) and
N (Dd) complementary to ImCd and ImDd. Recall that dimN (Cd) = 1 for any
d and dimN (Dd) = 1 for d �= r + 1 and = 2 otherwise.

With a = b = 1, c = −r and s = 2− r we have

α = −d 1

r − 2
, β = d

r

r − 2
, γ = − (d− 3)

1

r − 2
+ 1, δ = (d− 3)

r

r − 2
+ 1,

α+ β = d+ d
1

r − 2
, γ + δ = d− 1 + (d− 3)

1

r − 2
.

We put

gC = xd+1,

gD = xd−1y(y − x) if d �= r + 1,

gD0 = yr+1 ((1− r) x− y) , gD1 = xr+1 ((1− r) y − x) , (20)

if d = r + 1, as a potential basis for N (Cd) and N (Dd). Note that

gD0 = B(V 0)y
r∂x, g

D
1 = B(V 0)x

r∂y.

We get the form ωC(g
C) = du

uα+1(u−1)β+1 ; for d/ (r − 2) non-integer, its period

ΩC

(
gC

)
= const ·B(α, β) �= 0. If d/ (r − 2) = m ∈ Z then we get the function

f̃C =
1

2− r

(u− 1)
mr

um

∫ u τm−1 d τ

(τ − 1)
mr+1

The residuum of ωC(g
C) at u = 1 vanishes; therefore the correct period is

ΩC

(
gC

)
=

∫ 0

∞
ωC

(
gC

)
�= 0.
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If (d− 3) / (r − 2) �∈ Z then the corresponding period ΩD

(
gD

)
�= 0. If d−3 =

m(r − 2), m ∈ Z, then we arrive at the function

f̃D =
1

2− r

(u− 1)mr+1

um−1

∫ u τm−2

(τ − 1)
mr+2 d τ.

For m > 1 the above argument with the function f̃C works, the unique period

ΩD

(
gD

)
=

∫ 0

∞ ωD

(
gD

)
�= 0.

But for m = 1, i.e., d = r + 1, we have two generators, gD0 and gD1 , and we

define two periods Ω0,1
D (gDj ) = Resu=0,1 ωD(gDj ), j = 0, 1. We have

ωD

(
gD0

)
=

(1− r)u − 1

u(u− 1)r+2
du, ωD

(
gD1

)
=
ur(u + r − 1)

(u − 1)r+2
du.

and we define the period matrix(
Ω0

D

(
gD0

)
Ω0

D

(
gD1

)
Ω1

D

(
gD0

)
Ω1

D

(
gD1

)) . (21)

Since Ω0
D

(
gD0

)
= (−1)

r−1 �= 0, Ω1
D

(
gD1

)
= 1 �= 0 and Ω0

D

(
gD1

)
= 0, this matrix

takes triangular form, with nonzero entries at the diagonal, and hence is nonde-
generate.

But it is not the end of the first level analysis. We have not yet used the kernel
of Dr+1 (V 0) generated by (y−x)r+1, via the vector field T from Lemma 2. If the
orbital normal form differs from V 0 then we can use this T to cancel higher-order
terms from the orbital normal form. But, when the orbital normal form is V 0,
then we get the term

(4− r) (y − x)r−2 V 0 �= 0

for r �= 4; for r = 4 we get nothing. It turns out that the function g = (y − x)
r−2

lies outside ImCd (V 0) , d = r − 3.

Indeed, the corresponding period ΩC(g) = P.V.
∫ 1

0 u
−α−1 (u− 1)

−β−1
du,

with α = − (r − 3) /(r − 2), β = r (r − 3) / (r − 2) , α+ β �∈ Z, is nonzero.
Therefore we can present now:

the first level normal forms in the Rational PFI with 1-Factor IIM Case:

(1 + ψ(x)) (V 0 +U+ ϕ(x)E) ,

U = ayr∂x + bxr∂y,

I (ϕ) = Z≥2, I (ψ) = Z≥1;

(22)

where I (ϕ) and I (ψ) are the indices’ set for the series ϕ =
∑

i∈I(ϕ) aix
i and

ψ =
∑

i∈I(ψ) bix
i, or

(1 + ψ(x))V 0,

I (ψ) = Z≥1� {r − 2} (Subcase 1),

I (ψ) = Z≥1 (Subcase 2)

(23)

(the latter form is complete).
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3.2. The second level analysis

In this section we study the homological operators associated with vector fields of
the form

V = V 0 + V 1,

where V 1 is a homogeneous vector field of lowest degree degV 1 > 1 which was
not reduced in the first level analysis. We have to consider several possibilities:

V 1 = axkE or V 1 = ayr∂x + bxr∂y (24)

(from the orbital normal form) or

V 1 = cxlV 0 (25)

(associated with the orbital factor). Of course, it is possible that there appear
terms (24) and (25) simultaneously, of the same degree or of different degrees.
However, we prefer to consider actions of the homological operators associated
with them separately, with the orbital normal form priority. Therefore, the case
(24) is used when terms of the form (25) are present, moreover, even with degree
smaller than the degree of (24). The terms (25) are used when the orbital normal
form is V 0.

Our analysis is essentially reduced to the operator D (V ) acting on func-

tions of the form ξM + f, where ξ ∈ C and M = (y − x)r+1 is the generator of
kerDr+1 (V 0) , and followed by projection onto a space of homogeneous functions.
Therefore we get the following second level homological operator:

D̃ (V ) : C⊕Fd 
−→ Fd+1,

(ξ, f) 
−→ ξD (V 1)M +D (V 0) f,
(26)

where d = k + r = degV 1 + r. This operator acts between spaces of the same
dimension.

The complete normal form in the Rational PFI with 1-Factor IIM Case with
V 1 = axkE is: either

(1 + ψ(x)) (V 0 + V 1 + bxr∂y + ϕ(x)E) , k < r − 1,

I(ψ) = Z≥1, I (ϕ) = Z>k� {r − 1, k + r − 2} (27)

or
(1 + ψ(x)) (V 0 + V 1 + ϕ(x)E) , k > r − 1,

I(ψ) = Z≥1, I (ϕ) = Z>k� {k + r − 2} (28)

The second level normal form in the Rational PFI with 1-Factor IIM Case
with V 1 = ayr∂x + bxr∂y is: either

(1 + ψ(x)) (V 0 + V 1 + ϕ(x)E) ,

a+ (−1)r+1b �= 0,

I (ϕ) = Z≥r�{2r − 3}, I (ψ) = Z≥1,

(29)
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(this form is complete) or

(1 + ψ(x)) (V 0 + V 1 + ϕ(x)E) ,

V 1 = a(yr∂x + (−1)rxr∂y),

I (ϕ) = Z≥r, I (ψ) = Z≥1,

(30)

or
(1 + ψ(x)) (V 0 + V 1) ,

V 1 = a(yr∂x + (−1)rxr∂y), I (ψ) = Z≥1�{r − 2}, (Subcase 1)
(31)

(this form is complete) or

(1 + ψ(x)) (V 0 + V 1)

V 1 = a(y4∂x + x4∂y), I (ψ) = Z≥1, (Subcase 2).
(32)

3.3. Third level

We consider homological operators associated with the vector fields V = V 0 +
V 1 + V 2 such that V 0 + V 1 has nontrivial IIM, i.e.,

V 1 = a(yr∂x + (−1)rxr∂y). (33)

In fact we are left with two subcases.
The complete normal form in the Rational PFI with 1-Factor IIM Case with

V 1 = a(yr∂x + (−1)rxr∂y) and V 2 = cxlE is :

(1 + ψ(x)) (V 0 + V 1 + V 2 + ϕ(x)E) ,

I (ϕ) = Z>l� {l + r − 2} , I (ψ) = Z≥1.
(34)

The complete normal form in the Subcase 2 of the Rational PFI with 1-Factor
IIM Case with V 1 = a(y4∂x + x4∂y) and V 2 = cxjV 0 is: either(

1 + cxj + ψ(x)
)
(V 0 + V 1) , I (ψ) = Z>j�{j − 2}, (35)

or

V 0 + V 1. (36)
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1. Introduction

The principal aim of this paper is to present an interesting construction of an
invariant measure for certain transformation of an ellipse. This construction is due
Rafa�l Ko�lodziej (1956–2011) and has turned out useful in some classical geomet-
ric problems related with investigations of the nineteenth century mathematician
Jean-Victor Poncelet.

The transformation is associated with a pair of ellipses Γ and Δ such that Δ
lies inside Γ. From a point p = p0 ∈ Γ we can draw two straight lines tangent to Δ;
we choose one of them L = L(p) in the direction compatible with an orientation
of Γ. Then the second point p1 of intersection of L with Γ is the image of the
transformation

T : Γ 
−→ Γ,

p1 = T (p). We shall call it the Poncelet map.
Iterating this map we get a broken line p0p1p2 . . . such that p2 = T (p1),

p3 = T (p2), etc. It is inscribed in Γ and described on Δ.
The following result is well known (see [1]).

Supported by Polish OPUS grant No 2012/05/B/ST1/03195.
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Theorem 1 (Small Poncelet Theorem). In the case when the ellipses are confocal
the above-defined broken line is a trajectory of the billiard in Γ.

Ko�lodziej [9] computed the rotation number of the map T in the case of
billiard in an ellipse (see Section 2.3).

More interesting is the following

Theorem 2 (Great Poncelet Theorem). If, for a one starting point p0 the above-
broken line is closed, i.e., is equal p0p1p2 . . . pn−1 and T n(p0) = p0, then the nth

iteration of the whole map is the identity, T n(p) = p for any p ∈ Γ. In other words
the polygon p0p1p2 . . . pn−1 can be moved in such a way that it remains inscribed
in Γ and described on Δ1.

Nowadays the latter theorem has many proofs and it has acquired the sur-
name ‘the Poncelet porism’. For recent results related with Theorem 2 we recom-
mend the reader the review paper [5] by V. Dragović and M. Radnović.

In the next section we present the Ko�lodziej proof and in Section 3 we present
several other interesting proofs of this theorem.

2. Constructions of Ko�lodziej

2.1. The case with two circles

Assume that Γ and Δ are circles.
Let pq and p′q′ be straight segments with endpoints at the circle Γ and

tangent to Δ; moreover, p′ is infinitesimally close to p. The point r of intersection
of these segments is close to the tangency points of the segments pq and p′q′ to
the circle Δ (see Figure 1).

1Jean-Victor Poncelet (1788–1867) discovered this theorem during the period of his imprisonment
in Russia (1813–1814) after the Napoleonic campaign.
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Figure 1. The Poncelet map for two circles.
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Note that the sides pp′ and p′r of the triangle Δpp′r and the sides q′q and qr
of the triangle Δq′qr are based on the same arc joining p and q′ in Γ. Therefore
these triangles are similar, because they have also the same angles at the vertex r.

This yields the relation
|pp′|
|pr| =

|qq′|
|q′r| . (1)

In the limit case p′ → p the lengths of the segments pp′ and qq′ can be replaced
with the lengths of the corresponding arcs in the circle Γ.Moreover, we can assume
|q′r| = |qr| . Here we have used the property that Γ is a circle.

The second observation uses the assumption that Δ is a circle. It says that

|qr| = |qs| ,
where s is the point of tangency for the other line drawn from the point q and
tangent to Δ.

This implies the following

Lemma 1 (Ko�lodziej). The measure

μ =
d�(p)

|pr| ,

where d� is the Lebesgue measure on the circle Γ and r is the tangency point
of the line L(p) with the circle Δ, is invariant with respect to the map T , i.e.,
|pp′| / |pr| ≈ |qq′| / |qs|.

Proof of the Great Poncelet Theorem for circles. Note that the density

ρ(p) = 1/ |pr|
of the measure μ is separated from zero and from infinity. The property of admit-
ting such a measure by a map implies its conjugation with the rotation map.

Indeed, choosing a point p∗ ∈ Γ we can define the homeomorphism

H(p) =

∫ p

p∗
ρd� = μ ([p∗, p])

between Γ and R modΛ, where Λ = μ (Γ) is the ‘mass’ of Γ. Then the identities

H(T (p)) = μ ([p∗, T (p∗)]) + μ (T ([p∗, p])) = λ+H(p)

demonstrate that the map

T1 = H ◦ T ◦H−1(x) = x+ λ

is a shift by λ = μ ([p∗, T (p∗)]); modulo Λ it is a rotation.
If the number λ/Λ is irrational the rotation T1 is non-periodic, and if λ/Λ ∈ Q

then the rotation T1 (and the map T ) are periodic. The second eventuality takes
place under the hypothesis of the Great Poncelet Theorem. �

The above proof can also be found in the book of A. Boyarsky and P. Góra [2].
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2.2. Reduction to the case with two spheres

A real conic curve is a circle if and only if its complex projective version intersects
the line at infinity in two concrete points: [1 : i : 0] and [1 : −i : 0], i =

√
−1. In-

deed, the equation for a circle (x− a)
2
+(y−b)2 = r2, rewritten in the homogeneous

coordinates [x1 : x2 : x3] in CP2, takes the form (x1 − ax3)
2
+ (x2 − bx3)

2 = r2x23
and the line at infinity L∞ is given by the equation x3 = 0.

Two ellipses Γ and Δ, as above, have four points of intersection in CP2.
Moreover, these points are not real and are divided into two pairs of mutually
conjugate points.

Let us choose one such pair. The line passing through these two points is
real in the sense that its defining equation has real coefficients. Therefore we can
apply a suitable projective transformation such that it sends this line to the line
at infinity; this transformation is real, i.e., is defined by a coset [A] ∈ PSL(3,R)
of a real matrix A.

The two points of the intersection Γ∩Δ∩L∞ are of the form [1 : α± iβ : 0],
i.e., the equations of the both ellipses are of the form

(y − αx)
2
+ β2x2 + · · · = 0.

It is clear that, after some linear change, they become reduced to two circles.
Note also that the projective transformations send lines to lines. Therefore

the Poncelet problem with ellipses is transformed to an analogous problem with
circle.

Remark 1. In the Ko�lodziej paper [9] a similar construction is realized but only
in the case of confocal ellipses2.

First, one obtains a situation when the exterior ellipse Γ is a circle concentric
with the internal ellipse Δ (we forget about the foci).

Next, one embeds the plane R2 (with Γ and Δ) into the 3-dimensional space
R3. One takes the sphere S = S2 ⊂ R3 with the equator along Γ. One considers
planes P tangent to S and projections π = πP onto P from the points t = tP ∈ S
antipodal to the tangency points of the planes with the sphere.

The image of the circle Γ = S∩R2 is always the circle π(Γ) ⊂ P, because π|S is
a stereographic projection. When we vary the plane P such that the point t moves
along the meridian of the sphere corresponding to direction of the longer axis of
the ellipse Δ, then we encounter a situation when π(Δ) becomes a circle. To see
this one has to compare the situation when t is a south pole of the sphere with
the situation when t lies near the equator Γ. (In [9] one can find an interpretation
of the above projective transformation in terms of a suitable Lorenz map.)

In fact, it is not very difficult to modify Ko�lodziej’s construction above to
the general situation, i.e., when the circle Γ and the ellipse Δ are not concentric.

2Ko�lodziej in [9] did not consider the general case. His principal aim was to compute the rotation
number for the billiard map in an ellipse. It was the problem proposed to him by his master thesis

supervisor Maciej Wojtkowski; Ko�lodziej solved it in an excellent way. Also in [9] nothing is said
about the Great Poncelet Theorem.

H. Żol ¸adek�
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Its core is to get a situation when the ellipses become concentric. M. Wojtkowski
proposed the following approach.

Let the equations (Gx, x) = 0 and (Dx, x) = 0, x ∈ R3, define the ellipses
Γ and Δ in the homogeneous coordinates. If we were able to diagonalize simulta-
neously these quadratic forms then we would be done. It is well known that such
diagonalization exists when one of the forms is definite (positively or negatively):
then we reduce that form to ± (x, x) and the second one is diagonalizable in stan-
dard way (via an orthonormal eigenbasis). Unfortunately, none of our forms is
definite. But their difference ((G−D)x, x) is such a form, because the ellipses Γ
and Δ do not intersect in the real domain. So, we diagonalize simultaneously the
forms ((G−D)x, x) and (Gx, x) , then the form (Dx, x) will be diagonal too.

Remark 2. The idea of using an invariant measure to prove the Great Poncelet
Theorem has appeared also in works of other authors. It is worth to mention the
paper [8] by J. King from 1994 (much later than Ko�lodziej’s work [9]).

We find there Ko�lodziej’s measure from Lemma 1 in the case of two circles.
But King uses only affine transformations and is not able to reduce simultaneously
two ellipses to circles. For this reason his construction is performed in two steps.

First, he assumes that Γ is a circle and he gets Eq. (1). Hence the condition
of invariance of the measure μ = ρ(p)d�(p) takes the following form:

ρ(q)

ρ(p)
=

|qr|
|pr|

(see Figure 1). Next, he applies an affine map which reduces the ellipse Δ to a

circle Δ̃. The images of the corresponding points p, q, r, s from Figure 1 will be
denoted by p̃, q̃, r̃, s̃. It turns out that |q̃r̃| / |p̃r̃| = |qr| / |pr| . But we have also
|q̃r̃| = |q̃s̃| . Thus our measure takes the form

μ(p) = d�(p)/ |p̃r̃| .

In King’s paper one can find informations about earlier works (of Jacobi, Bertrand,
Schonberg) where the idea of invariant measure was raised up but not much con-
vincingly.

2.3. Billiard in an ellipse and another reduction to circles

Recall that a billiard trajectory in a domain Ω ⊂ R2 with boundary Γ = ∂Ω
consists of straight segments in Ω with endpoints in Γ satisfying the condition: the
angle of incidence equals the angle of reflection. Each segment is characterized by
the starting point p ∈ Γ and the angle θ ∈ [−π/2, π/2] between the segment and
the normal to Γ in p.

With a billiard one associates the so-called billiard map

S : Γ× [−π/2, π/2] 
−→ Γ× [−π/2, π/2] ,
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defined by the final point of a segment and by the angle of the next segment. It is
well known that the billiard map preserves the following measure (see [12]):3

λ = cos θd�(p)dθ. (2)

Assume that the ellipses Γ and Δ are confocal with the foci a and b. As we
have mentioned in Introduction, the Poncelet broken line is a billiard trajectory
in the domain bounded by Γ. We can say more. The Small Poncelet Theorem says
that the billiard map in an ellipse is integrable4. This means that the orbits of the
map S lie on level curves of some function H(p, θ), a first integral.

Any such level is defined by fixing an ellipse Δ confocal with Γ. The el-
lipse Δ = Δβ is precisely determined by its eccentricity β =(distance between
foci)/(length of main axis). Formally we can write

H(p, θ) = β

(It is reasonable to take into account also the case when Δ = Δβ is a hyperbola
confocal with Γ, see [9].)

Let us come back to our confocal ellipses Γ and Δ. Denote by α and β
their eccentricities (the ratios between |ab| and the lengths of the main axes). Let
Φ : R2�b 
−→ R2�b be the inversion map with respect to center in the focus b.

Consider four circles: A with center in the focus a and with radius |ab| /α
(the length of the longer axis of Γ), B with center in a and with radius |ab| /β and
their inversions C = Φ(A) and D = Φ(B) (see Figure 2).
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Figure 2. Ko�lodziej’s construction.

3This measure is derived from the property of invariance of the 2-dimensional Lebesgue measure
for the billiard flow.

Consider a stream of particles, with constant density 1, constant velocity 1 and falling
locally at an angle π/2 − θ onto Γ. Then in unit of time on the interval I ⊂ Γ with length ds
falls cos θds particles of the stream. The same number of particles is reflected from I and then
falls on the next interval I1 ⊂ Γ at the angle π/2− θ1.
4For a proof we refer to the monograph [12] of I. Kornfeld, Y. Sinai and S. Fomin. Another,
‘mechanical’ proof can be found in the book [10] of V. Kozlov and D. Treshchev.
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Lemma 2 (Ko�lodziej). With any broken line fgh, such that f, h ∈ Δ, g ∈ Γ and
the lines fg and gh are tangent to Δ, we can associate a segment km which has
endpoints in D and is tangent to C.

This means that the billiard map S in Γ restricted to the level curve {H = β}
is conjugated to the Poncelet map associated with the circles C and D.

Proof. Let f ′ and h′ be the projections of f and h on the circle B from center
at the focus a and let g′ be the analogous projection of the point g on the circle
A (Figure 2(a)). It turns out that the circle E through f ′, g′ and h′ passes also
through the focus b (see [9]). Hence the image Φ(E) of this circle is the straight
line along the segment km, where k = Φ(f ′),m = Φ(h′) ∈ D and the point
l = Φ(g′) ∈ km ∩ C (Figure 2(b)). �

Below we cite (without proofs) some formulas from [9]. First, the lengths of

the radii of the circles C andD equal rC = |ab|−1
α/(1−α2) and rD = |ab|−1

β/(1−
β2) respectively. Let c and d be the centers of these circles. It turns out that

|cd| = |ab|−1 (
β2 − α2

)
/(1− α2)(1− β2). Finally, from trigonometric formulas for

the triangles Δklc and Δkcd one gets the following expression for the length of
the segment kl with k ∈ C and tangent to D in l :

|kl|2 = const ·
(
1− κ2 sin2 ((π − ψ) /2)

)
, κ = 2

√
β/(1 + β), (3)

where ψ = �kdc and the constant does not depend on the angle ψ (see Figure 2(b)).

On the other hand, from Lemma 1 we know that 1/ |kl| is the density of the
measure invariant for the Poncelet map T (which is conjugated to the billiard map
S|{H=β}). Moreover, the Lebesgue measure on the circle D is proportional to dψ.
Therefore the probabilistic measure invariant with respect to the map T equals

ν(ψ) =
dψ√

1− κ2 sin2 ((π − ψ) /2)

/∫ 2π

0

dψ√
1− κ2 sin2 ((π − ψ) /2)

.

Choosing the initial angle ψ = ϕ corresponding to the situation where the
segment km is parallel to the segment cd (Figure 2(b)) we find the final angle,

equal π−ϕ. The integral
∫ π−ϕ

ϕ dν(ψ) equals the rotation number of the map T, as

well as of the map S|{H=β}. Evaluation of this integral leas to the following result.

Theorem 3 (Ko�lodziej). The above-mentioned rotation number equals

1

2
− F (ϕ/2, κ)

F (π/2, κ)
,

where F (χ, κ) =
∫ χ

0
dψ/

√
1− κ2 sin2 ψ is an elliptic integral

sinϕ = α
(
1− β2

)
/β(1− α2)

and κ is defined in Eq. (3).
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Second proof of the Great Poncelet Theorem (GPT). . Taking into account exis-
tence of the invariant measure (2) and of the first integral we are able to give
another proof of the GPT (probably coming from G. Birkhoff).

Let us treat the measure λ as a differential 2-form: λ = cos θdx ∧ dθ where
x is the length parameter on Γ. Then we can define the so-called Gelfand–Leray
form

η = λ/dH,

which satisfies the condition η ∧ dH = λ and is uniquely determined on each level
curve of the function H. Because the both objects, the form λ and the function
H, are invariant with respect to the billiard map S, also the measure η|{H=β} is
invariant for the map S|{H=β}. Therefore we can use the arguments from Sec-
tion 2.1.

On the other hand, the analysis from Section 2.2 demonstrates that the group
of projective transformations of the plane is sufficiently large to transform any pair
of ellipses in generic position (4 complex intersection points) to a pair of confocal
ellipses. �

3. Other proofs of the Great Poncelet Theorem

3.1. Proof of Tabachnikov

The idea of this proof is close to the proof from Section 2.3.

Proof. For two nested ellipses, Γ and Δ, we define some pencil of conics. If

F (x, y) = 0 and G(x, y) = 0

are the equations defining Γ and Δ then the equations λF (x, y) + μG(x, y) = 0
define all curves from the pencil. Each curve from the pencil passes through the
four points of the intersection Γ ∩ Δ; they are nonreal. Sergey Tabachnikov [15]
denotes Γ = Γ1, Δ = Γ0 and introduces one more curve Γ∞ from the pencil such
that Γ∞ surrounds Γ1 and Γ0.

In the domain Ω∞ bounded by Γ∞ he introduces the hyperbolic distance
dist(p, q) = |log [p, q, r, s]|, where [·] denotes the cross ratio of four points in the
line pq, from which r are s the points of the intersection of the line pq with Γ∞.
This metric provides an isomorphism of the domain Ω∞ with the hyperbolic plane
(the so-called Klein–Beltrami model) and defines a hyperbolic measure in Ω∞.

Tabachnikov defines a map T of the ring Ω0,∞ between the curves Γ0 and Γ∞
as follows. From a point p ∈ Ω0,∞ one draws a straight line L = L(p), tangent to
Γ0 in a point r, and chooses a point p1 = T (p) ∈ L�p via the equality dist(p1, r) =
dist(p, r). It turns out that the map T has the following properties:

– It preserves the hyperbolic measure.
– Each ellipse in Ω from our pencil is invariant with respect to T. In particular,
the map T restricted to Γ1 is the Poncelet map.

H. Żol ¸adek�
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These properties imply the existence of an invariant measure of the Gelfand–
Leray type for T |Γ1 , and this implies the GPT. �

3.2. Proof with use of elliptic curves

This proof is probably the best disseminated. One can find it in Wikipedia, but
we shall refer rather to the paper [6].

Proof. We shall consider the complex and projective versions of the curves Γ and
Δ. As Riemann surfaces they have zero genus, g = 0, and are homeomorphic with
the two-dimensional sphere. Also it is standard that the space of projective lines
tangent to Δ forms the so-called dual curve Δ∗, which is also of degree 2 and has
zero genus.

Consider the following set

E = {(p, L) : p ∈ Γ, L ∈ Δ∗, p ∈ L} ⊂ Γ×Δ∗. (4)

It is a projective complex algebraic curve. In order to compute its genus we consider
the natural projection π : E 
−→ Γ,

(p, L) 
−→ p.

It is a ramified covering of degree d = 2, because from a typical point in Γ come
out two lines tangent to Δ. Moreover, it has four ramification points r0, r1, r2 and
r3 in E corresponding to intersection points q0, q1, q2 and q3 of the curves Γ and
Δ (we have only one tangent line in qj to Δ). Of course, the ramification indices
of these points equal νj = 2. Now we use the classical Riemann–Hurwitz formula

d · χ(Γ) = χ(E) +
∑

(νj − 1) ,

where χ = 2− 2g is the Euler characteristic.5 In our case we get χ(E) = 0, i.e., E
is homeomorphic with a torus. Therefore E is the so-called elliptic curve.

Besides the above description of an elliptic curve (as a two-fold covering of
CP1 with four ramification points) there exists its another model:

E � C/Λ, (5)

where Λ = Zω1 + Zω2 is the lattice generated by the periods ω1 and ω2.
The Poncelet map in E (we denote it by T ) can be represented as a compo-

sition of two involutions, T = ι2 ◦ ι1. Here the map ι1 relies upon exchanging the
point p in (p, L) with another intersection point of L with the curve Γ, whereas
the map ι2 replaces the line L in (p, L) with another line tangent to Δ and passing
through p.

Each of the involutions ιj : E 
−→ E is lifted to a corresponding involution of
the universal covering, i.e., to C. But it is easy to see that then we obtain affine and
holomorphic diffeomorphisms of C and that they are of the form u 
−→ −u + vj .
This gives

T (u) = u+ w,

5This formula is obtained using suitable (compatible with π) triangulations of E and Γ.
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i.e., the complex elliptic version of the Poncelet transformation is a shift on the
torus (as an Abelian group). In the Poncelet case we have T n(u0) = u0 for some
point u0, which leads to T n = id. The latter identity holds also in the real part of
the curve E. �

Probably the first proof of the GPT with use of elliptic functions was given
by C. Jacobi (see [6]). Also from papers of P. Griffiths and J. Harris [6, 7] one
can learn about works of A. Cayley devoted to conditions onto the curves Γ and
Δ guaranteeing that the Poncelet broken line be closed. We shortly describe that
result following its approach from [7].

One of standard models of an elliptic curve is a smooth cubic in CP2 defined
by the equation (in the affine part):

s2 = (t− t1)(t− t2)(t− t3), (6)

thus E is a Riemann surface of the function
√
(t− t1)(t− t2)(t− t3). Then the

projection π takes the form (t, s) 
−→ t and the ramification points are (tj , 0) ,
j = 1, 2, 3, and (∞,∞) = [0 : 1 : 0] . The cycles γ1 and γ2 generating the group
of 1-dimensional homologies of the curve E are lifts of loops in the plane of t’s
surrounding the points t1 and t2 and t2 and t3 respectively.

It turns out that the 1-form

η = dt/s

is holomorphic and nonzero in the whole curve E (also in the ramification points).
Denote O = [0 : 1 : 0]. For a point z ∈ E we consider the following integral

u(z) =

∫ z

O

η; (7)

it is an incomplete elliptic integral. This integral essentially depends on the inte-
gration path. More precisely, when we replace a given path by adding to it the loop
γ1 (or γ2), then to the integral (7) the period (complete elliptic integral) ω1 =

∫
γ1
η

(or ω2 =
∫
γ2
η) is added. This is the way to obtain the representation (5). The

map inverse to (7) is expressed via the doubly periodic Weierstrass function:

z = (t, s) = (P(u),P ′(u)) .

The function P(u) has pole in u = 0 : t ∼ u−2, s ∼ u−3. The structure of an
Abelian group on E comes from the integral (7).

Another way to define the structure of an Abelian group on E uses the Abel
theorem (see below). For any line in CP2 its three points z1, z2, z3 of intersection
with E (in the version (6)) obey the equation

z1 + z2 + z3 = 0

in the group operation sense. Because [0 : 1 : 0] is the only inflection point of the
curve, it is the neutral element of the group.

H. Żol ¸adek�
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Interesting is the question which cubic polynomial in the right-hand side of
Eq. (6) corresponds to the curve (4). The answer is

s2 = det (tG+D) , (8)

where G and D are 3× 3 matrices which define the curves in homogeneous coor-
dinates: Γ = {(Gx, x) = 0} and Δ = {(Dx, x) = 0} .

For the proof we consider the pencil of conics

Δt = {((tG+D) x, x) = 0} .

The values t = tj for which det (tG+D) = 0 correspond to the situations when
the conic Δt is reduced to two lines. Recall that we have four base points of the
pencil: q0, q1, q2, q3. From q0 we draw a line Lt tangent to Δt; it intersects Γ in
another point p(t). It is easy to see that p(tj) = qj (after proper enumeration).
Moreover, Δ∞ = Γ, i.e., p(∞) = q0. Hence the map t 
−→ p(t) defines a kind of
isomorphism between CP1 and Γ preserving the ramification points of the 2-valued
functions in (4) and (8) defining the elliptic curve.

Note that for t = 0 we have Δ0 = Δ, so the line L0 is tangent to Δ and
p(0) = T (q0) (T is the Poncelet map). Thus one of the points of the curve (8)
above t = 0 is the image w = T (O) of the point O = {u = 0} = {[0 : 1 : 0]} for the
elliptic Poncelet map. More precisely, O corresponds to the pair (q0, L(q0)) and
w = T (O) corresponds to the pair (p(0), L(p(0))) = (T (q0), L(p(0))).

The property T n = id means that

nw = 0 mod Λ. (9)

We would like to rewrite this condition in terms of Eq. (8).

Recall the above-mentioned result of Abel.6

Theorem 4 (Abel Theorem). For given ui, vi ∈ C, i = 1, . . . , n, there exists a
meromorphic function f(u) with period lattice Λ and with zeroes in ui and poles
in vj if and only if

u1 + · · ·+ un = v1 + · · ·+ vn mod Λ. (10)

Choose vj = O, j = 1, . . . , n, i.e., vj = 0 mod Λ. Then the function f(u)
from the statement of the Abel theorem has pole at u = 0 of order n. The space
of such functions for n ≥ 2 is n-dimensional and has basis f1, . . . , fn. More pre-
cisely, the closure of this space constitutes the space H0(OE(nO)) of sections of a
corresponding linear bundle OE(nO) over E. In the model (6) of the elliptic curve
the functions fj can be chosen as follows: f1(s, t) = 1, f2 = t, f3 = s, f4 = t2,
f5 = st, . . . (we compare orders of the pole at u = 0).

Condition (10) means that u1 + · · · + un = 0 mod Λ and is equivalent to
the condition det (fi(uj)) = 0, because some nonzero function from H0(OE(nO))

6Relatively simple proof of this theorem, which uses the Cauchy integral formula and standard
theta functions, can be found in the book of C. Clemens [3].
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vanishes in the points uj . Approaching suitably the points uj to w = T (O) we
find that the later condition becomes a Wronskian type condition

W =

∣∣∣∣∣∣
f1 . . . fn
. . . . . . . . .

f
(n−1)
1 . . . f

(n−1)
n

∣∣∣∣∣∣ (w) = 0. (11)

This condition is equivalent to condition (9). The basis of the space H0(OE(nO))
is chosen among the functions tj and stk, as above. Moreover, the derivatives with
respect to u can be replaced with derivatives with respect to t and then we can
put t = 0.

If equation (8) gives the expansion

s(t) =
∑

Akt
k,

then for n = 2m+ 1 and n = 2m condition (11) means respectively∣∣∣∣∣∣
A2 . . . Am+1

. . . . . . . . .
Am+1 . . . A2m

∣∣∣∣∣∣ = 0 and

∣∣∣∣∣∣
A3 . . . Am+1

. . . . . . . . .
Am+1 . . . A2m

∣∣∣∣∣∣ = 0.

This is the Cayley condition for the existence of a Poncelet n-gon.

Remark 3. It would be interesting to find a relation of these results with the
complete elliptic integral found by Ko�lodziej in Theorem 3. There the elliptic
curve takes the form s2 =

(
1− κ2t2

)
(1− t2), where t = sinψ.

Remark 4. It is worth to mention a generalization of the Poncelet theorem to the
spacial case, i.e., for two degree 2 surfaces in CP3. Instead of a polygon we have
a polyhedron and one should properly interpret ‘drawing’ a plane from a point in
one of the surfaces. Due to lack of space we do not state a result, we only refer the
reader to the article [6] of Griffiths and Harris.

3.3. Proof of Darboux

Gaston Darboux published this proof in the book [4], but we shall follow the article
[14] of V. Prasolov.

We begin with the following

Lemma 3 (Darboux). Suppose that we have n straight lines Lj in C2 in generic
position given by equations fj(x) = 0. Then any algebraic curve of degree n − 1
passing through all n(n− 1)/2 points of mutual intersections of these lines has the
form

F (y) = f1 . . . fn

(
λ1
f1

+ · · ·+ λn
fn

)
= 0. (12)
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Proof. Here the coefficients λj are determined by comparison of the values of the
polynomial G (of degree n − 1), defining this curve, in the points q1, . . . , qn of
intersection of a typical line with our lines:

G(qj) = F (qj) = λj
∏
i�=j

fi(qj).

Then the function (G − F )|Lj vanishes in n different points of the line Lj and
hence (G− F ) |Lj ≡ 0. The polynomial G − F vanishes on n lines and therefore
must be identically zero. �

The main idea of Darboux relies on introduction of special coordinates in the
plane associated with the quadric Δ. The coordinates of a point p define a pair of
points (parameters) on the curve Δ∗, dual to Δ.

In order to simplify formulas we assume that, in some complex homogeneous
coordinates y = [y1 : y2 : y3] , the curve Δ is defined as follows:

y1y3 = y22 or y =
[
1 : t : t2

]
(t ∈ CP1).

Since the tangent to Δ in a point y =
[
1 : t : t2

]
has the form t2y1− 2ty2+ y3 = 0,

solving the system t21y1 − 2t1y2 + y3 = t22y1 − 2t2y2 + y3 = 0 with respect to y, we
get the following characterization of the point of intersection of the two tangents
to Δ in points corresponding to t1 and t2:

2y2 = (t1 + t2) · y1, y3 = t1t2 · y1.
By definition, (t1, t2) is the new coordinate system.

In particular, the equation of the curve Δ takes the form (t1 − t2)
2
= 0 (we

have only one tangent). Moreover, the equation of tangent to Δ in
[
1 : s : s2

]
is

following:

(t1 − s) (t2 − s) = 0. (13)

The equation of a conic, e.g., Γ, takes the form

ϕ(t1, t2) = at21t
2
2 + bt1t2(t1 + t2) + ct1t2 + d(t1 + t2)

2 + e(t1 + t2) + f = 0. (14)

Assume now that we have a Poncelet polygon with sides pj−1pj, j = 1, . . . , n,
inscribed in Γ, of the form (14), and described on Δ with the tangency points cor-
responding to parameters s1, . . . , sn. Thus the lines Lj along the segments pj−1pj
are given by the equations (t1 − sj) (t2−sj) = 0. According to the Darboux Lemma
the curve Σ which contains all the mutual intersections of the lines Lj is given by
the equation ∑ λj

fj
=

∑ λj
(t1 − sj) (t2 − sj)

= 0.

Expressing 1/ (t1 − sj) (t2− sj) as a difference of inverses of linear functions (with
a coefficient) and introducing the new rational function

R(t) =
∑ λj

t− sj
=
P (t)

Q(t)
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(where degP = n− 1 and Q =
∏
(t− sj)) we obtain the equation R(t1) = R(t2)

for the curve Σ. It is equivalent to the equation

Rμ(t1) = Rμ(t2), (15)

where

Rμ(t) =
P

Q+ μP
=

∑ λj(μ)

t− sj(μ)
.

Eq. (15) also arises from lines Lj(μ) tangent to Δ in points sj(μ).

The fact that Eq. (15) describes the same curve Σ (independent on μ) means
that the points of mutual intersections of the lines Lj(μ) move along fixed curve
Σ. In order to prove the GPT we should find a curve of degree n−1 which contains
the points of pairwise intersections of the lines Lj = Lj(0) and contains Γ as an
irreducible component.

For n = 3 the situation is obvious: Σ = Γ. For n = 4 we have 6 points of
mutual intersections: p0 = p4, p1, p2, p3 and q1 = L1 ∩ L3 and q2 = L2 ∩ L4. We
put Σ = Γ ∪ q1q2.

In the case of larger number of lines we apply a procedure of elimination of
some variables si. For example, from the equations ϕ(s1, s2) = ϕ(s2, s3) = 0 (de-
scribing Γ in Eq. (14)) we eliminate s2. (We represent the polynomial ϕ(r1, r2) =
ϕr1(r2) = ϕr2(r1) in the form ϕr1(r2) = A(r1)r

2
2 + B(r1)r2 + C(r1) with qua-

dratic trinomials A,B,C.) The answer is the resultant Φ2(s1, s3) of the polyno-
mials ϕs1 and ϕs3 . This resultant is symmetric and vanishes when s1 = s3, so
Φ2 = ϕ2 · (s1 − s3)

2. As Φ2 is of degree 4 with respect to each variable the poly-
nomial ϕ2(s1, s3) has the form (14), i.e., it describes a conic curve. The equation
ϕ2(t1, t2) = 0 defines a conic Γ2 with the points L1 ∩ L3, L2 ∩ L4, . . . .

Next one eliminates s3 from the equations ϕ2(s1, s3) = ϕ1(s3, s4) = 0, where
we use the notation ϕ1 = ϕ. One gets the equation Φ3(s1, s4) = 0. But this
equation is satisfied also after replacing s4 with s2 (as ϕ1(s1, s2) = 0). Therefore
Φ3 is divisible by ϕ1 and we have a new polynomial ϕ3 = Φ3/ϕ1. It turns out that
ϕ3 is symmetric (repeat its derivation in the order s4, s3, s2, s1) and has degrees
such that it defines a conic Γ3. The latter contains the points L1∩L4, L2∩L5, . . . .

In the induction step one eliminates sk+1 from the equations ϕk(s1, sk+1)
= ϕ1(sk+1, sk+2) = 0. One gets an equation Φk+1(s1, sk+2) = 0 where ϕk+1 =
Φk+1/ϕk−1 turns out to be a polynomial defining a conic Γk.

The last curve is Γm = {ϕm(t1, t2) = 0} for n = 2m + 1 or n = 2m. In the
second case the polynomial ϕm is a square, i.e., Γm is a double line.

3.4. Geometric proofs

The original Poncelet proof of his ‘closure Theorem’ used projective geometry, but
it was not much popular.

Very popular is a geometric proof due to A. Hart. It is discussed in the mono-
graph of M. Berger [1, Sect. 16.6], which relies on the book [11] of H. Lebesgue.
In fact, in [1] a more general theorem is proved. One considers a series of conics
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Δ1, . . . ,Δn from one pencil and an n-gon with vertices in Γ and with sides tangent
to Δj . If this n-gon is closed then it is movable as inscribed in Γ and tangent to Δj .

The proof given in [1] is inductive and, unfortunately, highly complicated.
We do not present it here.7
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Abstract. In this paper we define a weighted Szegő kernel by putting a mea-
surable almost everywhere positive function μ under the inner product integral
and try to answer which conditions it must satisfy in order to give a ‘good
generalization’ of a classical case.
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1. Reproducing kernels

Let H be a Hilbert space of complex-valued functions on a non-empty set X with
an inner product 〈f |g〉. We call K : X ×X → C a reproducing kernel of H , if for

every z ∈ X K(z, ·) ∈ H and every f ∈ H

f(z) = 〈f,K(z, ·)〉. (1)

By the Riesz representation theorem, a Hilbert space can’t have more than one
reproducing kernel. One can prove that if a Hilbert space has a reproducing kernel,
then it is given by

K(z, w) =
∑
i∈I

ϕi(z)ϕi(w), (2)

where {ϕi}i∈I is an arbitrary complete orthonormal system in H .

2. Weighted Bergman kernels

Let us consider a space L2H(Ω) of functions which are both holomorphic and
square-integrable with respect to the Lebesgue measure on a domain Ω ⊂ C. It is
called Bergman space and a reproducing kernel of it is called Bergman kernel.

The Bergman kernel is given by (2). It is analytic in a real sense, holomorphic
in its first variable and antiholomorphic in its second variable.
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Let now μ : Ω → R will be a weight, i.e., a function measurable and almost
everywhere positive on Ω. We can consider weighted Bergman spaces, i.e., spaces
L2H(Ω, μ) of functions which are holomorphic and square-integrable on Ω in the
sense ∫

Ω

|f(z)|2μ(z) d2nz <∞ (3)

with an inner product given by

〈f |g〉μ :=

∫
Ω

f(z)g(z)μ(z) d2nz. (4)

We say that a weight μ is an admissible weight, if L2H(Ω, μ) is a closed subspace
of L2(Ω, μ) and all functionals of evaluation, i.e., functionals

Ez : L2H(Ω, μ) � f � f(z) ∈ Cn, (5)

for z ∈ Ω, are continuous. A natural question is to ask which conditions must
a weight satisfy to be an admissible weight. Article [1] gives us response to that
question:

Theorem 1. Let μ be a weight. The following conditions are equivalent:

(i) μ is an admissible weight;
(ii) for any compact set X ⊂ Ω there exists a constant CX > 0, such that for any

z ∈ X and each f ∈ L2H(Ω, μ)

|Ezf | ≤ CX ‖ f ‖μ . (6)

3. Weighted Szegő kernel

Let Ω be a bounded domain in CN with the boundary ∂Ω of class C2. For μ :
∂Ω → R measurable and almost everywhere positive by L2(∂Ω, u) we will denote
a set of functions f : ∂Ω → C square-integrable in the sense∫

∂Ω

|f(z)|2μ(z) dS <∞, (7)

where we consider a real surface integral of a scalar field f . Set L2(∂Ω, u) with an
inner product given by

〈f |g〉μ :=

∫
∂Ω

f(z)g(z)μ(z) dS (8)

is a Hilbert space. Now let us consider space A(Ω) of functions F : Ω → C, such
that A(Ω) := H(Ω) ∩ C(Ω).

By L2(∂Ω, u) we will denote the closure of restrictions of elements of A to ∂Ω
in L2 topology. By the Poisson integral, each element of L2(∂Ω, u) has a unique
holomorphic extension to Ω, which we will denote by the same symbol.

For μ(z) = 1 for every z we have a classical case, for which we use terms
such as Szegő space and Szegő kernel. The question is, how the space L2H(∂Ω, μ)
changes with the change of μ and which μ are ‘good enough’ to take?
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Definition 1. We say that μ : ∂Ω → R is a weight, if μ is measurable and almost
everywhere positive and that a weight μ is a Szegő admissible weight (S-admissible
weight for short), if all functionals of evaluation are continuous for every z ∈ Ω.

It is not hard to prove that Theorem 1 is also true if we change an admissible
weight to Szegő admissible weight. Moreover,

Proposition 1. Let μ1, μ2 be weights on ∂Ω. Then

L2H(∂Ω, μ1 + μ2) = L2H(∂Ω, μ1) ∩ L2H(∂Ω, μ2), (9)

where the equality is understood as the equality of sets.

Proof. Let f be holomorphic on Ω. Then∫
∂Ω

|f(z)|2(μ1(z) + μ2(z)) dS =

∫
∂Ω

|f(z)|2μ1(z) dS +

∫
∂Ω

|f(z)|2μ2(z) dS. (10)

If the integral on the left-hand side is finite, then both integrals on the right-
hand side must be also finite, because all considered integrals are non-negative,
so L2H(∂Ω, μ1 + μ2) ⊆ L2H(∂Ω, μ1) ∩ L2H(∂Ω, μ2). On the other hand, if both
integrals on the right side are finite, then the integral on the left side must be finite,
so L2H(∂Ω, μ1)∩L2H(∂Ω, μ2) ⊆ L2H(∂Ω, μ1+μ2) and at last L2H(∂Ω, μ1+μ2) =
L2H(∂Ω, μ1) ∩ L2H(∂Ω, μ2). �
Theorem 2. The following are true:

(i) if μ1 and μ2 are S-admissible weights, then also μ1 + μ2 is an S-admissible
weight and

(ii) if μ is an S-admissible weight and α is a real positive number, then also αμ
is an S-admissible weight.

Proof. (i) Let μ1, μ2 be S-admissible weights. Then for any compact set X ∈ Ω
there exist C1

X , C
2
X > 0, such as that for every z ∈ X and f ∈ L2H(∂Ω, μ1) ∩

L2H(∂Ω, μ2)

|Ezf | ≤ C1
X ‖ f ‖μ1 and |Ezf | ≤ C2

X ‖ f ‖μ2 .

Then

2|Ezf | = |Ezf |+ |Ezf | ≤ C1
X ‖ f ‖μ1 +C2

X ‖ f ‖μ2

≤ 2max{C1
X , C

2
X}max{‖ f ‖μ1 , ‖ f ‖μ2} ≤ 2max{C1

X , C
2
X} ‖ f ‖μ1+μ2 , (11)

which after dividing both sides by 2 gives us inequality (ii) from Theorem 1, so
the sum of S-admissible weights is an S-admissible weight.

(ii) If |Ezf | ≤ CX

√∫
∂Ω |f(z)|2μ(z) dS, then also

|Ezf | ≤ CX
1√
α

√∫
∂Ω |f(z)|2αμ(z) dS, so αμ is also an S-admissible weight.

�
Theorem 3. Let μ be a weight. If μ ≥ c almost everywhere, for some c > 0, then
μ is an S-admissible weight.
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Proof. Taking into account the fact that a function equal to 1 on ∂Ω is an S-
admissible weight, we get for any compact set X ⊂ Ω

|f(z)| ≤ CX

√∫
∂Ω

|f(z)|2 · 1 dS = CX
1√
c

√∫
∂Ω

|f(z)|2 · c dS

≤ CX
1√
c

√∫
∂Ω

|f(z)|2μ(z) dS,

(12)

which ends the proof. Note that L2H(∂Ω, μ) ⊆ L2H(∂Ω, 1), because if the integral
on the right-hand side is finite, then the first integral in the upper line must be
also finite. �

Proposition 2. If μ1 is an S-admissible weight and μ1 ≤ μ2 almost everywhere,
then μ2 is an S-admissible weight.

Proof. Taking into account the fact that μ1 is an S-admissible weight, we get that
for any f ∈ L2H(∂Ω, μ2) and any compact set X ⊂ Ω there exists CX > 0, such
that

|Ezf | ≤ CX

√∫
∂Ω

|f(z)|2μ1(z) dS ≤ CX

√∫
∂Ω

|f(z)|2μ2(z) dS. (13)

�

In particular, if μ is an S-admissible weight, then also eμ and μμ are S-
admissible weights. The second fact is true, because xx > x almost everywhere on
the interval [0,+∞[.

A limit (in any sense) of a sequence of S-admissible weights doesn’t have
to be an S-admissible weight. For example μn(z) =

1
n , n ∈ N is an S-admissible

weight, but a limit of this sequence is 0, which is not an S-admissible weight.
However, in some cases, it is true. For example, if μ0 = limn→∞ μn > c for

some real positive c almost everywhere or if μ > μn for at least one n, then μ0 is
also an S-admissible weight.

Theorem 4. Let μ1, μ2 be S-admissible weights and μ2 ≥ c2 > 0 almost everywhere.
Then μ1μ2 is also an S-admissible weight.

Proof. If f ∈ L2H(∂Ω, μ1μ2), then

|Ezf | ≤ CX

√∫
∂Ω

|f(z)|2μ1(z) dS = CX
1

√
c2

√∫
∂Ω

|f(z)|2μ1(z)c2 dS (14)

≤ CX
1√
c2

√∫
∂Ω

|f(z)|2μ1(z)μ2(z) dS. �

From the above, we get that if μ is a weight, such that μ ≥ c > 0 almost
everywhere, then W (μ) and eW (μ), where W (μ) is any polynomial of μ positive
on the interval [c,+∞[, are S-admissible weights.
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Note it may happen that L2H(∂Ω, μ1) ∩ L2H(∂Ω, μ2) = L2H(∂Ω, μ1) =
L2H(∂Ω, μ2), even for μ1 �= μ2, so it is natural to make a definition

Definition 2. Let μ1, μ2 be S-admissible weights. We say that μ1 is equivalent to
μ2 and write μ1 ≡ μ2, if

L2H(∂Ω, μ1) = L2H(∂Ω, μ2), (15)

where the equality is understood as the equality of sets.

It is easy to prove, that ‘≡’ is an equivalence relation. (Not to be confused
with another equivalence relation on the set of measurable functions, in which two
functions are equivalent if they are equal almost everywhere.)

Theorem 5. Let μ1, μ2 be S-admissible weights, and m,M be real positive num-
bers. If

mμ1 ≤ μ2 ≤Mμ1 (16)

almost everywhere, then μ1 ≡ μ2

Of course, if (16) holds, then it is also true that

1

M
μ2 ≤ μ1 ≤ 1

m
μ2. (17)

Proof. Let μ1 and μ2 be S-admissible weights and let (16) hold. Then, for any
holomorphic f it is true, that

m

∫
∂Ω

|f(z)|2μ1(z) dS ≤
∫
∂Ω

|f(z)|2μ2(z) dS ≤M

∫
∂Ω

|f(z)|2μ1(z) dS. (18)

If f ∈ L2H(∂Ω, μ2), then the integral in the center is finite and because of that,
the integral on the left-hand side must also be finite, so f ∈ L2H(∂Ω, μ1). If f ∈
L2H(∂Ω, μ1), then the integral on the right-hand side is finite and because of that,
the integral in the center must also be finite, so f ∈ L2H(∂Ω, μ2). Reassuming,
L2H(∂Ω, μ1) = L2H(∂Ω, μ2) and μ1 ≡ μ2. �

In particular:

Corollary 1.

(i) If μ is an S-admissible weight and α is a real positive number, then μ ≡ αμ.
(ii) If μ is an S-admissible weight, such that there exist real positive numbers

m,M , such that

m ≤ μ ≤M, (19)

(so μ is bounded from up and down) almost everywhere, then μ ≡ 1.

Theorem 6. If K is a Szegő kernel of L2H(∂Ω, μ) and μ is essentially bounded on
∂Ω, then ∫

∂Ω

K(z, w)μ(w) dS = 1 (20)

Proof. By taking the function f ≡ 1 in (1), we get identity (20). �
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Even if spaces L1 := L2H(∂Ω, μ1) and L2 := L2H(∂Ω, μ2) are equal as sets,
they still can have different Szegő kernels. For example

Proposition 3. If μ2 = αμ1, where α ∈ R+, then set L1 is equal to set L2 and
K2(z, w) =

1
αK1(z, w), where Ki is Szegő kernel of Li.

Proof. Set L1 is equal to L2, by Corollary 1 (i). If {ϕi}i∈I is a complete orthonor-
mal system of L1, then {ψi}i∈I , where ψi(z) :=

1√
α
ϕ(z), is a complete orthonormal

system of L2 and

K2(z, w) =
∑
i∈I

ψ(z)ψ(w) =
∑
i∈I

1√
α
ϕ(z)

1√
α
ϕ(w) (21)

=
1

α

∑
i∈I

ϕ(z)ϕ(w) =
1

α
K1(z, w). �

Theorem 7. Let G be a domain in Cn for n ≥ 2 such that G ⊂ Ω and ∂G is of
class C2. Let μG be a weight on ∂G and μΩ be an S-admissible weight on ∂Ω.
Then the function

μ(ζ) :=

{
μΩ(ζ), ζ ∈ ∂Ω,

μG(ζ), ζ ∈ ∂G
(22)

is an S-admissible weight on ∂(Ω \ G) and the map L2H(∂Ω, μΩ) � f � Tf :=
f|Ω\G ∈ L2H(∂(Ω \G), μ) is a continuous isomorphism of Hilbert spaces.

Proof. Let X be a compact subset in Ω\G. Then X ⊂ Ω and there exists CX > 0,
such that for any f ∈ L2H(∂Ω, μG) and any z ∈ X

|f(z)| ≤ CX ‖ f ‖μΩ (23)

On the other hand, if g ∈ L2H(∂(Ω\G), μ), then by Hartog’s prolongation theorem,
there exists g̃ holomorphic on Ω, such that g̃|Ω\G = g. It is obvious that∫

∂Ω

|g̃(ζ)|2μΩ(ζ) d(∂Ω) ≤
∫
∂Ω

|g̃(ζ)|2μΩ(ζ) d(∂Ω) +

∫
∂G

|g̃(ζ)|2μG(ζ) d(∂G)

=‖ g ‖2μ<∞.

(24)

Then

‖ g̃ ‖μΩ≤‖ g ‖μ (25)

and g̃ ∈ L2H(∂Ω, μΩ).
For any z ∈ X we have

|g(z)| = |g̃(z)| ≤ CX ‖ g̃ ‖μG≤ CX ‖ g ‖μ . (26)

Since g is an arbitrary element of L2H(∂Ω \ G,μ), we see that μ is an S-
admissible weight for Ω \G. Moreover, the prolongation L2H(∂Ω \G), μ) � g �
g̃ ∈ L2H(∂Ω, μG) is uniquely defined and then it is an inverse of T . By (25), T−1

is bounded and by Banach’s inverse theorem, T is continuous. �



Weighted Szegő Kernels 151

In the case n = 1, the theorem is not true. For example, if Ω := D :=
D(0, 1) = {z ∈ C : |z| < 1}, G := D(0, 1

2 ) , μΩ = 1 for each z and μG = 1 for each
z, the function

g(z) =
1

z
, z ∈ Ω \G, (27)

is an element of L2H(∂(Ω \ G), μ), but it has no prolongation to a function g̃ ∈
L2H(∂Ω, μΩ).

However, using similar a argument as in the proof of the theorem, we can show
that if n = 1, then the operator of restriction T : L2H(∂Ω, μΩ) → L2H(∂Ω \G,μ)
is continuous and a one-to-one map onto its image, and that T (L2H(Ω, μΩ)) is a
closed subspace of L2H(∂(Ω \G), μ).

4. What to do next?

Z. Pasternak-Winiarski in [2] proved that a weighted Bergman kernel depends
analytically on weights. A natural question is if the same holds for Szegő kernel.
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1. Introduction

In [11], Tian defined the α-invariant of a smooth Fano variety1 and proved

Theorem 1 ([11]). Let X be a smooth Fano variety of dimension n such that
α(X) > n

n+1 . Then X admits a Kähler–Einstein metric.

In [10], Odaka and Sano proved

Theorem 2. Let X be a smooth Fano variety of dimension n such that α(X) > n
n+1 .

Then X is K-stable.

Two-dimensional smooth Fano varieties are also known as smooth del Pezzo
surfaces. The possible values of their α-invariants are given by

Theorem 3 ([1, Theorem 1.7]). Let S be a smooth del Pezzo surface. Then

α(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 if S ∼= F1 or K2

S ∈ {7, 9},
1
2 if S ∼= P1 × P1 or K2

S ∈ {5, 6},
2
3 if K2

S = 4,
2
3 if S is a cubic surface in P3 with an Eckardt point,
3
4 if S is a cubic surface in P3 without Eckardt points,
3
4 if K2

S = 2 and | −KS | has a tacnodal curve,
5
6 if K2

S = 2 and | −KS | has no tacnodal curves,
5
6 if K2

S = 1 and | −KS | has a cuspidal curve,

1 if K2
S = 1 and | −KS| has no cuspidal curves.

1All varieties are assumed to be algebraic, projective and defined over C.
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Let X be an arbitrary smooth algebraic variety, and let L be an ample Q-
divisor on it. Donaldson, Tian and Yau conjectured that the following conditions
are equivalent:

• the pair (X,L) is K-polystable,
• the variety X admits a constant scalar curvature Kähler metric in c1(L).

In [6], this conjecture has been proved in the case when X is a Fano variety and
L = −KX .

In [12], Tian defined a new invariant α(X,L) that generalizes the classical
α-invariant. If X is a smooth Fano variety, then α(X) = α(X,−KX). By [3,
Theorem A.3], one has

α
(
X,L

)
= sup

{
λ ∈ Q

∣∣∣∣∣ the log pair (X,λD) is log canonical

for every effective Q-divisor D ∼Q L

}
∈ R>0.

In [8], Dervan generalized Theorem 2 as follows:

Theorem 4 ([8, Theorem 1.1]). Suppose that −KX − n
n+1

−KX ·Ln−1

Ln L is nef, and

α
(
X,L

)
>

n

n+ 1

−KX · Ln−1

Ln
.

Then the pair (X,L) is K-stable.

For smooth del Pezzo surfaces, Theorem 4 gives

Theorem 5 ([2, 9]). Let S be a smooth del Pezzo surface such that K2
S = 1 or

K2
S = 2. Let A be an ample Q-divisor on the surface S such that the divisor

−KS − 2

3

−KS · A
A2

A

is nef. Then the pair (S,A) is K-stable.

This result is closely related to

Problem 6 (cf. Theorem 3). Let S be a smooth del Pezzo surface. Compute

α(S,A) ∈ R>0

for every ample Q-divisor A on the surface S.

Hong and Won suggested an answer to Problem 6 for del Pezzo surfaces of
degree one. This answer is given by their [9, Conjecture 4.3], which is Conjecture 11
in Section 2.

The main result of this paper is

Theorem 7 (cf. Theorem 3). Let S be a smooth del Pezzo surface such that K2
S = 1.

Let C be an irreducible smooth curve in S such that C2 = −1. Then there is a
unique curve

C̃ ∈
∣∣− 2KS − C

∣∣.
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The curve C̃ is also irreducible and smooth. One has C̃2 = −1 and 1 � |C ∩ C̃| �
C · C̃ = 3. Let λ be a rational number such that 0 � λ < 1. Then −KS + λC is
ample and

α
(
S,−KS + λC

)
=

⎧⎨⎩min
(
α(S), 2

1+2λ

)
if |C ∩ C̃| � 2,

min
(
α(S), 4

3+3λ

)
if |C ∩ C̃| = 1.

Theorem 7 implies that [9, Conjecture 4.3] is wrong. To be precise, this follows
from

Example 8. Let S be a surface in P(1, 1, 2, 3) that is given by

w2 = z3 + zx2 + y6,

where x, y, z, w are coordinates such that wt(x) = wt(y) = 1, wt(z) = 2 and
wt(w) = 3. Then S is a smooth del Pezzo surface and K2

S = 1. Let C be the curve
in X given by

z = w − y3 = 0.

Similarly, let C̃ be the curve in S that is given by z = w+ y3 = 0. Then C + C̃ ∼
−2KS. Both curves C and C̃ are smooth rational curves such that C2 = C̃2 = −1
and |C ∩ C̃| = 1. All singular curves in | − KS | are nodal. Then α(S) = 1 by
Theorems 3, so that

α
(
S,−KS + λC

)
= min

(
1,

4

3 + 3λ

)
by Theorem 7. But [9, Conjecture 4.3] says that α(S,−KS + λC) = min(1, 2

1+2λ).

Theorem 7 has two applications. By Theorem 4, it implies

Corollary 9 ([8, Theorem 1.2]). Let S be a smooth del Pezzo surface such that
K2

S = 1. Let C be an irreducible smooth curve in S such that C2 = −1. Fix λ ∈ Q
such that

3−
√
10 � λ �

√
10− 1

9
.

Then the pair (S,−KS + λC) is K-stable.

By [5, Remark 1.1.3], Theorem 7 implies

Corollary 10. Let S be a smooth del Pezzo surface. Suppose that K2
S = 1 and

α(S) = 1. Let C be an irreducible smooth curve in S such that C2 = −1. Fix
λ ∈ Q such that

−1

4
� λ � 1

3
.

Then S does not contain (−KS + λC)-polar cylinders (see [5, Definition 1.2.1]).

Corollary 9 follows from Theorem 5. Corollary 10 follows from [5, Theorem
2.2.3].

Let us describe the structure of this paper. In Section 2, we describe [9,
Conjecture 4.3]. In Section 3, we present several well-known local results about
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singularities of log pairs. In Section 4, we prove eight local lemmas that are crucial
for the proof of Theorem 7. In Section 5, we prove Theorem 7 using Lemmas 23,
24, 25, 26, 27, 28, 29, 30.

2. Conjecture of Hong and Won

Let S be a smooth del Pezzo surface, and let A be an ample Q-divisor on S. Put

μ = inf
{
λ ∈ Q>0

∣∣∣ the Q-divisor KS + λA is pseudo-effective
}
∈ Q>0.

Then KS + μA is contained in the boundary of the Mori cone NE(S) of the sur-
face S.

Suppose that K2
S = 1. Then NE(S) is polyhedral and is generated by (−1)-

curves in S. By a (−1)-curve, we mean a smooth irreducible rational curve E ⊂ S
such that E2 = −1.

Let ΔA be the smallest extremal face of the Mori cone NE(S) that contains
KS + μA. Let φ : S → Z be the contraction given by the face ΔA. Then

• either φ is a birational morphism and Z is a smooth del Pezzo surface,
• or φ is a conic bundle and Z ∼= P1.

If φ is birational and Z �∼= P1 × P1, we call A a divisor of P2-type. In this
case, we have

KS + μA ∼Q

8∑
i=1

aiEi,

where E1, E2, E3, E4, E5, E6, E7, E8 are eight disjoint (−1)-curves in our surface
S, and a1, a2, a3, a4, a5, a6, a7, a8 are non-negative rational numbers such that

1 > a1 � a2 � a3 � a4 � a5 � a6 � a7 � a8 � 0.

In this case, we put sA = a2 + a3 + a4 + a5 + a6 + a7 + a8.

If our ample divisor A is not a divisor of P2-type, then the surface S contains
a smooth irreducible rational curve C such that C2 = 0 and

KS + μA ∼Q δC +
7∑

i=1

aiEi,

where E1, E2, E3, E4, E5, E6, E7 are disjoint (−1)-curves in S that are disjoint
from C, and δ, a1, a2, a3, a4, a5, a6, a7 are non-negative rational numbers such
that

1 > a1 � a2 � a3 � a4 � a5 � a6 � a7 � 0.

In this case, let ψ : S → S be the contraction of the curves E1, E2, E3, E4, E5,
E6, E7, and let η : S → P1 be a conic bundle given by |C|. Then either S ∼= F1 or
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S ∼= P1 × P1. In both cases, there exists a commutative diagram

S

η ���
��

��
��

�
ψ �� S

π����
��
��
��

P1

where π is a natural projection. Then δ > 0 ⇐⇒ φ is a conic bundle and φ = η.
Similarly, if φ is birational and Z ∼= P1 ×P1, then δ = 0, a7 > 0, and φ = ψ. Then

• we call A a divisor of F1-type in the case when S ∼= F1,
• we call A a divisor of P1 × P1-type in the case when S ∼= P1 × P1.

In both cases, we put sA = a2 + a3 + a4 + a5 + a6 + a7.
In order to study α(S,A), we may assume that μ = 1, because

α(S,A) = μα(S, μA)

If A is a divisor of P2-type, let us define a number αc(S,A) as follows:

• if sA > 4, we put αc(S,A) =
1

2+a1
,

• if 4 � sA > 1, we let αc(S,A) to be

max

(
2

2 + 2a1 + sA − a2 − a3
,

4

3 + 4a1 + 2sA − a2 − a3 − a4
,

3

2 + 3a1 + sA

)
,

• if 1 � sA, we put αc(S,A) = min( 2
1+2a1+sA

, 1).

Similarly, if A is a divisor of F1-type, we define αc(S,A) as follows:

• if sA > 4, we put αc(S,A) =
1

2+a1+δ ,

• if 4 � sA > 1, we let αc(S,A) to be

max

(
2

2 + 2a1 + sA − a2 − a3 + 2δ
,

4

3 + 4a1 + 2sA − a2 − a3 − a4 + 4δ
,

3

2 + 3a1 + sA + 3δ

)
,

• if 1 � sA, we put αc(S,A) = min( 2
1+2a1+sA+2δ , 1).

Finally, if A is a divisor of P1 × P1-type, we define αc(S,A) as follows:

• if sA > 4, we put αc(S,A) =
1

2+a1+δ ,

• if 4 � sA > 1, we let αc(S,A) to be

max

(
2

2 + sA − a7 − a2 − a3 + 2δ
,

4

3 + 2sA − 2a7 − a2 − a3 − a4 + 4δ
,

3

2 + sA − a7 + 3δ

)
,

• if 1 � sA, we put αc(S,A) = min
(

2
1+sA−a7+2δ , 1

)
.
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The conjecture of Hong and Won is

Conjecture 11 ([9, Conjecture 4.3]). If α(S) = 1, then α(S,A) = αc(S,A).

The main evidence for this conjecture is

Theorem 12 ([9]). Let D be an effective Q-divisor on the surface S such that
D ∼Q A. Then the log pair (S, αc(S,A)D) is log canonical outside of finitely many
points.

As we already mentioned in Section 1, Example 8 shows that Conjecture 11
is wrong. However, the smooth del Pezzo surface of degree one in Example 8 is
rather special. Therefore, Conjecture 11 may hold for general smooth del Pezzo
surfaces of degree one.

By [5, Remark 1.1.3], it follows from Conjecture 11 that S does not contain
A-polar cylinders (see [5, Definition 1.2.1]) when α(S) = 1 and a1 and δ are small
enough.

3. Singularities of log pairs

Let S be a smooth surface, and let D be an effective Q-divisor on it. Write

D =

r∑
i=1

aiCi

where each Ci is an irreducible curve on S, and each ai is a non-negative rational
number. We assume here that all curves C1, . . . , Cr are different.

Let γ : S → S be a birational morphism such that the surface S is smooth
as well. It is well known that the morphism γ is a composition of n blow ups of
smooth points. Thus, the morphism γ contracts n irreducible curves. Denote these
curves by Γ1, . . . ,Γn. For each curve Ci, denote by Ci its proper transform on the
surface S. Then

KS +

r∑
i=1

aiCi +
n∑

j=1

bjΓj ∼Q γ
∗(KS +D

)
for some rational numbers b1, . . . , bn. Suppose, in addition, that the divisor

r∑
i=1

Ci +
n∑

j=1

Γj

has simple normal crossing singularities. Fix a point P ∈ S.

Definition 13. The log pair (S,D) is log canonical (respectively Kawamata log
terminal) at the point P if the following two conditions are satisfied:

• ai � 1 (respectively ai < 1) for every Ci such that P ∈ Ci,
• bj � 1 (respectively bj < 1) for every Γj such that π(Γj) = P .

This definition does not depend on the choice of the birational morphism γ.
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The log pair (S,D) is said to be log canonical (respectively Kawamata log
terminal) if it is log canonical (respectively, Kawamata log terminal) at every point
in S.

The following result follows from Definition 13. But it is very handy.

Lemma 14. Suppose that the singularities of the pair (S,D) are not log canonical
at P . Let D′ be an effective Q-divisor on S such that (S,D′) is log canonical at P
and D′ ∼Q D. Then there exists an effective Q-divisor D′′ on the surface S such
that

D′′ ∼Q D,

the log pair (S,D′′) is not log canonical at P , and Supp(D′) �⊆ Supp(D′′).

Proof. Let ε be the largest rational number such that (1 + ε)D − εD′ is effective.
Then

(1 + ε)D − εD′ ∼Q D.

Put D′′ = (1 + ε)D − εD′. Then (S,D′′) is not log canonical at P , because

D =
1

1 + ε
D′′ +

ε

1 + ε
D′.

Furthermore, we have Supp(D′) �⊆ Supp(D′′) by construction. �

Let f : S̃ → S be a blow up of the point P . Let us denote the f -exceptional

curve by F . Denote by D̃ the proper transform of the divisor D via f . Put m =
multP (D).

Theorem 15 ([7, Exercise 6.18]). If (S,D) is not log canonical at P , then m > 1.

Let C be an irreducible curve in the surface S. Suppose that P ∈ C and

C �⊆ Supp(D). Denote by C̃ the proper transform of the curve C via f . Fix a ∈ Q
such that 0 � a � 1. Then (S, aC +D) is not log canonical at P if and only if the
log pair (

S̃, aC̃ + D̃ +
(
amultP

(
C
)
+m− 1

)
F

)
(1)

is not log canonical at some point in F . This follows from Definition 13.

Theorem 16 ([7, Exercise 6.31]). Suppose that C is smooth at P , and (D ·C)P � 1.
Then the log pair (S, aC +D) is log canonical at P .

Corollary 17. Suppose that the log pair (1) is not log canonical at some point in

F \ C̃. Then either amultP (C) +m > 2 or m > 1 (or both).

Let us give another application of Theorem 16.

Lemma 18. Suppose that there is a double cover π : S → P2 branched in a curve
R ⊂ P2. Suppose also that (S,D) is not log canonical at P , and D ∼Q π

∗(OP2(1)).
Then π(P ) ∈ R.
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Proof. The log pair (S̃, D̃ + (m− 1)F ) is not log canonical at some point Q ∈ F .
Then

m+multQ
(
D̃
)
> 2 (2)

by Theorem 15. Suppose that π(P ) �∈ R. Then there is Z ∈ |π∗(OP2(1))| such that

• the curve Z passes through the point P ,

• the proper transform of the curve Z on the surface S̃ contains Q.

Denote by Z̃ the proper transform of the curve Z on the surface S̃.
By Lemma 14, we may assume that the support of the Q-divisor D does not

contain at least one irreducible component of the curve Z, because (S,Z) is log

canonical at P . Thus, if Z is irreducible, then 2−m = Z̃ · D̃ � multQ(D̃), which
contradicts (2).

We see that Z = Z1 + Z2, where Z1 and Z2 are irreducible smooth rational
curves. We may assume that Z2 �⊆ Supp(D). If P ∈ Z2, then 1 = D · Z2 � m > 1
by Theorem 15. This shows that P ∈ Z1 and Z1 ⊆ Supp(D).

Let d be the degree of the curve R. Then Z2
1 = Z2

2 = 2−d
2 and Z1 · Z2 = d

2 .

We may assume that C1 = Z1. Put Δ = a2C2 + · · · + arCr. Then a1 � 2
d ,

since

1 = Z2 ·D = Z2 ·
(
a1C1 +Δ

)
= a1Z2 · C1 + Z2 ·Δ � a1Z2 · C1 =

a1d

2
.

Denote by C̃1 the proper transform of the curve C1 on the surface S̃. Then

Q ∈ C̃1. Denote by Δ̃ the proper transform of the Q-divisor Δ on the surface S̃.
The log pair (

S̃, a1C̃1 + Δ̃ +
(
a1 +multP

(
Δ
)
− 1

)
F

)
is not log canonical at the point Q by construction. By Theorem 16, we have

1 +
d− 2

2
a1 −multP

(
Δ
)
= C̃1 · Δ̃ �

(
C̃1 · Δ̃

)
Q
> 1−

(
a1 +multP

(
Δ
)
− 1

)
,

so that a1 >
2
d . But we already proved that a1 � 2

d . �

Fix a point Q ∈ F . Put m̃ = multQ(D̃). Let g : Ŝ → S̃ be a blow up of the

point Q. Denote by Ĉ and F̂ the proper transforms of the curves C̃ and F via g,

respectively. Similarly, let us denote by D̂ the proper transform of the Q-divisor

D on the surface Ŝ. Denote by G the g-exceptional curve. If the log pair (1) is not
log canonical at Q, then(

Ŝ, aĈ+D̂+
(
amultP

(
C
)
+m−1

)
F̂+

(
amultP

(
C
)
+amultQ

(
C̃
)
+m+m̃−2

)
G

)
(3)

is not log canonical at some point in G.

Lemma 19. Suppose m � 1, amultP (C)+m � 2 and amultP
(
C
)
+amultQ(C̃)+

2m � 3. Then (3) is log canonical at every point in G \ Ĉ.
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Proof. Suppose that (3) is not log canonical at some point O ∈ G such that O �∈ Ĉ.

If O �∈ F̂ , then 1 � m � m̃ = D̂ ·G � (D̂ ·G)O > 1 by Theorem 16. Then O ∈ F̂ .
Then

m− m̃ =
(
D̂ · F̂

)
O
> 1−

(
amultP

(
C
)
+ amultQ

(
C̃
)
+m+ m̃− 2

)
by Theorem 16. This is impossible, since amultP (C) + amultQ(C̃) + 2m � 3. �

Fix a point O ∈ G. Put m̂ = multO(D̂). Let h : S → Ŝ be a blow up of the

point O. Denote by C, F , G the proper transforms of the curves Ĉ, F̂ and G via
h, respectively. Similarly, let us denote by D the proper transform of the Q-divisor

D on the surface S. Let H be the h-exceptional curve. If O = G ∩ F̂ and (3) is
not log canonical at O, then(

S,aC+D+
(
2amultP

(
C
)
+amultQ

(
C̃
)
+amultO

(
Ĉ
)
+2m+m̃+m̂−4

)
H

+
(
amultP

(
C
)
+m−1

)
F +

(
amultP

(
C
)
+amultQ

(
C̃
)
+m+m̃−2

)
G

)
(4)

is not log canonical at some point in H .

Lemma 20. Suppose that O = G∩ F̂ , m � 1, amultP (C)+amultQ(C̃)+m+ m̃ �
3 and

2amultP
(
C
)
+ amultQ

(
C̃
)
+ amultO

(
Ĉ
)
+ 4m � 5.

Then the log pair (4) is log canonical at every point in H \ C.

Proof. Suppose that the pair (4) is not log canonical at some point E ∈ H such
that E �∈ C. If E �∈ F ∪G, then m � m̂ = D ·H � (D ·H)E > 1 by Theorem 16.
Then E ∈ F ∪G.

If E ∈ G, then E �∈ F , so that Theorem 16 gives

m̃− m̂ =
(
D · F

)
E

> 1−
(
2amultP

(
C
)
+ amultQ

(
C̃
)
+ amultO

(
Ĉ
)
+ 2m+ m̃+ m̂− 4

)
,

which is impossible, since 2amultP (C) + amultQ(C̃) + amultO(Ĉ) + 4m � 5 by

assumption. Similarly, if E ∈ F , then E �∈ G, so that Theorem 16 gives

m− m̃− m̂ =
(
D · F

)
E

> 1−
(
2amultP

(
C
)
+ amultQ

(
C̃
)
+ amultO

(
Ĉ
)
+ 2m+ m̃+ m̂− 4

)
,

which is impossible, since 2amultP (C) + amultQ(C̃) + amultO(Ĉ) + 4m � 5. �

Let Z be an irreducible curve in S such that P ∈ Z. Suppose also that

Z �⊆ Supp(D). Denote its proper transforms on the surfaces S̃ and Ŝ by the
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symbols Z̃ and Ẑ, respectively. Fix b ∈ Q such that 0 � b � 1. If (S, aC + bZ+D)
is not log canonical at P , then(

S̃, aC̃ + bZ̃ + D̃ +
(
amultP

(
C
)
+ bmultP

(
Z
)
+m− 1

)
F

)
(5)

is not log canonical at some point in F .

Lemma 21. Suppose that m � 1 and

amultP
(
C
)
+ bmultP

(
Z
)
+m � 2.

Then (5) is log canonical at every point in Q ∈ F \ (C̃ ∪ Z̃).

Proof. Suppose that (5) is not log canonical at some point Q ∈ F such that

Q �∈ C̃ ∪ Z̃. Then m = D̃ · F � (D̃ · F )Q > 1 by Theorem 16. But m � 1 by
assumption. �

If the log pair (5) is not log canonical at Q, then the log pair(
Ŝ, aĈ + bẐ + D̂ +

(
amultP

(
C
)
+ bmultP

(
Z
)
+m− 1

)
F (6)

+
(
amultP

(
C
)
+ amultQ

(
C̃
)
+ bmultP

(
Z
)
+ bmultQ

(
Z̃
)
+m+ m̃− 2

)
G

)

is not log canonical at some point in G.

Lemma 22. Suppose that m � 1, amultP (C) + bmultP (Z) +m � 2 and

amultP
(
C
)
+ amultQ

(
C̃
)
+ bmultP

(
Z
)
+ bmultQ

(
Z̃
)
+ 2m � 3.

Then the log pair (6) is log canonical at every point in G \ (Ĉ ∪ Ẑ).

Proof. Wemay assume that the log pair (6) is not log canonical atO andO �∈ Ĉ∪Ẑ.
If O �∈ F̂ , then m � m̃ = D̂ · G � (D̂ · G)O > 1 by Theorem 16, so that O ∈ F̂ .
Then

m− m̃ =
(
D̂ · F̂

)
O

> 1−
(
amultP

(
C
)
+ amultQ

(
C̃
)
+ bmultP

(
Z
)
+ bmultQ

(
Z̃
)
+m+ m̃− 2

)
,

by Theorem 16, so that

amultP
(
C
)
+ amultQ(C̃) + bmultP (Z) + bmultQ(Z̃) + 2m > 3. �
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4. Eight local lemmas

Let us use notations and assumptions of Section 3. Fix x ∈ Q such that 0 � x �
1. Put

lctP
(
S,C

)
= sup

{
λ ∈ Q

∣∣∣ the log pair
(
S, λC

)
is log canonical at P

}
∈ Q>0.

Lemma 23. Suppose that C has an ordinary node or an ordinary cusp at P , a � x
2

and (
D · C

)
P
� 4

3
+
x

6
− a.

Then the log pair (S, aC +D) is log canonical at P .

Proof. We have 2m � multP (D)multP (C) � (D·C)P � 4
3+

x
6−a, so that 2m+a �

4
3+

x
6 . Thenm � 3

4 andm+2a = m+ a
2+

3a
2 �

4
3+

x
6

2 + 3a
2 �

4
3+

x
6

2 + 3x
4 = 2

3+
5
6x � 3

2 .
Suppose that (S, aC + D) is not log canonical at P . Let us seek for a con-

tradiction. We may assume that (1) is not log canonical at Q. Then Q ∈ C̃ by
Corollary 17. Then(

D̃ · C̃
)
O
> 1−

(
2a+m− 1

)(
C̃ · F

)
O
� 1− 2

(
2a+m− 1

)
= 3− 4a− 2m.

On the other hand, we have 4
3 + x

6 − a � (D · C)P � 2m + (D̃ · C̃)O, so that

a > 5
9 − x

18 . Then
x
2 � a > 5

9 − x
18 , so that x > 1. But x � 1 by assumption. �

Lemma 24. Suppose that C has an ordinary node or an ordinary cusp at P , and(
D · C

)
P
� lctP (S,C) +

x

2
.

Suppose also that a � lctP (S,C)− x
2 . Then (S, aC +D) is log canonical at P .

Proof. We have 2m � (D · C)P . This gives 2m + a � 1 + x
2 . Thus, we have

m � 1+ x
2

2 � 3
4 . Similarly, we getm+2a = m+a

2+
3a
2 � 1+ x

2

2 + 3a
2 � 1+ x

2

2 + 3
2 (1−

x
2 ) =

2− x
2 � 2.
Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemma 19, since

3a+ 2m � 2a+ 1 +
x

2
� 2− x+ 1 +

x

2
= 3− x

2
� 3,

because 2m+ a � 1 + x
2 and a � 1− x

2 . If O �∈ F̂ , then Theorem 16 gives

1 +
x

2
− a �

(
D · C

)
P
− 2m− m̃ �

(
D̂ · Ĉ

)
O
> 1−

(
3a+m+ m̃− 2

)
,

which implies that 2a+ x
2 > 2+m. But 2a+ x

2 � 2− x
2 , because a � lctP (S,C)− x

2 �
1− x

2 . This shows that O = G∩ F̂ ∩ Ĉ. In particular, the curve C has an ordinary

cusp at P . By assumption, we have a � 5
6 − x

2 and 2m + a � 5
6 + x

2 . This gives
6a+ 4m � 5− x � 5.
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Put E = H ∩C. Then (4) is not log canonical at E by Lemma 20. Then(
D · C

)
E
> 1−

(
6a+ 2m+ m̃+ m̂− 4

)
= 5− 6a− 2m− m̃− m̂

by Theorem 16. Thus, we have 5
6+

x
2−a � (D·C)P � 2m+m̃+m̂+(D·C)E > 5−6a.

This gives a > 5
6 − x

10 . But a � 5
6 − x

2 , which is absurd. �

Lemma 25. Suppose that C is smooth at P , a � 1
3 + x

2 , m+ a � 1 + x
2 and(

D · C
)
P
� 1− x

2
+ a.

Then the log pair (S, aC +D) is log canonical at P .

Proof. We have m � (D · C)P , so that m − a � 1 − x
2 . Then m � 1, since

m+ a � 1 + x
2 .

Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemmas 19. Then(

D̂ · Ĉ
)
O
> 1−

(
2a+m+ m̃− 2

)
= 3− 2a−m− m̃

by Theorem 16. Then 1− x
2 + a � (D ·C)P � m+(D̃ · C̃)Q � m+ m̃+(D̂ · Ĉ)O >

3− 2a. This give a > 2
3 + x

6 , which is impossible, since a � 1
3 + x

2 and x � 1. �

Lemma 26. Suppose that C is smooth at P , a � 8
9 − x

18 , m+ a � 4
3 + x

6 and(
D · C

)
P
� x

2
+ a.

Then the log pair (S, aC +D) is log canonical at P .

Proof. We have m � (D · C)P , so that m − a � x
2 . Then m � 2

3 + x
3 � 1, since

m+ a � 4
3 + x

6 .
Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemmas 19. Then(

D̂ · Ĉ
)
O
> 1−

(
2a+m+ m̃− 2

)
= 3− 2a−m− m̃

by Theorem 16. Then x
2 +a � (D ·C)P � m+(D̃ ·C̃)Q � m+m̃+(D̂ ·Ĉ)O > 3−2a.

This gives a > 1− x
6 , which is impossible, since a � 8

9 − x
18 and x � 1. �

Lemma 27. Suppose that C has an ordinary node or an ordinary cusp at P , a �
1+x
3 and (

D · C
)
P
� 2− 2a.

Then the log pair (S, aC +D) is log canonical at P .
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Proof. We have 2m � (D · C)P � 2 − 2a. This gives m+ a � 1, so that we have
m � 1. Then m + 2a � 1 + a � 1 + 1+x

3 = 4+x
3 � 5

3 and 3a + 2m � 2 + a �
2 + 1+x

3 = 7+x
3 � 8

3 .
Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemma 19.

If O �∈ F̂ , then (D̂ · Ĉ)O > 3− 3a−m− m̃ by Theorem 16, so that

2− 2a �
(
D · C

)
P
� 2m+

(
D̃ · C̃

)
Q
� 2m+ m̃+

(
D̂ · Ĉ

)
O
> 3− 3a,

which is absurd. This shows that O = G ∩ F̂ ∩ Ĉ. Then(
D̂ · Ĉ

)
O
> 1−

(
2a+m− 1

)
−
(
3a+m+ m̃− 2

)
= 4− 5a− 2m− m̃

by Theorem 16. Then 2− 2a � (D · C)P � 2m+ m̃+ (D̂ · Ĉ)O > 4− 5a, so that
a > 2

3 . But a � 1+x
3 � 2

3 by assumption. This is a contradiction. �

Lemma 28. Suppose that C has an ordinary node or an ordinary cusp at P , a � 2
3

and (
D · C

)
P
� 4

3
+

2x

3
− 2a.

Then the log pair (S, aC +D) is log canonical at P .

Proof. We have 2m � (D · C)P , so that m + a � 2
3 + x

3 � 1. Then m � 1 and

m+2a � 5
3 . Similarly, we see that 3a+2m � 4

3 +
2x
3 + a � 4

3 +
2x
3 + 2

3 = 2+ 2x
3 �

8
3 < 3.

Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemma 19.

If O �∈ F̂ , then 4
3 + 2x

3 − 2a � (D · C)P � 2m+ m̃+ (D̂ · Ĉ)O > m+ 3 − 3a

by Theorem 16. Therefore, if O �∈ F̂ , then a > 5
3 −

2x
3 � 1. But a � 2

3 . This shows

that O = G∩F̂ ∩Ĉ. Then (D̂ ·Ĉ)O > 1−(2a+m−1)−(3a+m+m̃−2) = 4−5a−
2m−m̃ by Theorem 16. Then 4

3+
2x
3 −2a � (D ·C)P � 2m+m̃+(D̂ ·Ĉ)O > 4−5a,

which gives a > 2
3 . �

Lemma 29. Suppose that C and Z are smooth at P , (C · Z)P � 2, and a + b +
m � 1 + x

2 . Suppose also that a � 1+x
3 , b � 1+x

3 , (D · C)P � 1 + a − 2b and
(D · Z)P � 1 + b− 2a. Then the log pair (S, aC + bZ +D) is log canonical at P .

Proof. We have m � (D · C)P � 1 + a − 2b and m � (D · Z)P � 1 + b − 2a.
Then m+ a+b

2 � 1.
Suppose that (S, aC + bZ + D) is not log canonical at P . Let us seek for a

contradiction. We may assume that (5) is not log canonical at Q. Then Q ∈ C̃ ∪ Z̃
by Lemma 21. Without loss of generality, we may assume that C̃ contains Q. Then
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Z̃ also contains Q. Indeed, if Q �∈ Z̃, then 1+ a− 2b � (D ·C)P � m+(D̃ · C̃)Q >

2 − a − b by Theorem 16. But 1 + b − 2a � 0. Thus, we have Q = G ∩ C̃ ∩ Z̃, so
that (C · Z)P = 2.

We may assume that (6) is not log canonical at O. Then O ∈ Ĉ ∪ Ẑ by

Lemma 22. In particular, we have O �∈ F̂ . Without loss of generality, we may

assume that O ∈ Ĉ. By Theorem 16, we have 1+a− 2b−m− m̃� (D̂ · Ĉ)O > 1−
(2a+2b+m+m̃−2). This gives a > 2

3 , which is impossible, since a � 1+ x
2 � 2

3 . �

Lemma 30. Suppose that C and Z are smooth at P , (C · Z)P � 2, and a + b +
m � 4

3 + x
6 . Suppose also that a � 2

3 , b � 2
3 , (D · C)P � 2+x

3 + a − 2b and

(D ·Z)P � 2+x
3 + b− 2a. Then the log pair (S, aC + bZ+D) is log canonical at P .

Proof. We have m � (D · C)P � 2+x
3 + a − 2b and we have m � (D · Z)P �

2+x
3 + b− 2a. Then m+ a+b

2 � 2+x
3 � 1, m+ a+ b � 4

3 + x
6 � 3

2 and 2a− b � 1.

Suppose that (S, aC + bZ + D) is not log canonical at P . Let us seek for a

contradiction. We may assume that (5) is not log canonical at Q. Then Q ∈ C̃ ∪ Z̃
by Lemma 21. Without loss of generality, we may assume that Q is contained

in C̃. Then Q ∈ C̃ ∩ Z̃. Indeed, if Z̃ does not contain Q, then 2+x
3 + a − 2b �

m+
(
D̃ · C̃

)
Q
> 2− a− b by Theorem 16. The later inequality immediately leads

to a contradiction, since 2a− b � 1.

We may assume that (6) is not log canonical at O. Then O ∈ Ĉ ∪ Ẑ by

Lemmas 22. In particular, we have O �∈ F̂ . Without loss of generality, we may

assume that O ∈ Ĉ. Then 2+x
3 +a−2b−m−m̃ � (D̂·Ĉ)O > 1−(2a+2b+m+m̃−2)

by Theorem 16. This gives a > 7−x
9 , which is impossible, since a � 2

3 . �

5. The proof of the main result

Let S be a smooth del Pezzo surface such that K2
S = 1. Then | − 2KS| is base

point free. It is well known that the linear system | − 2KS| gives a double cover
S → P(1, 1, 2). This double cover induces an involution τ ∈ Aut(S).

Let C be an irreducible curve in S such that C2 = −1. Then −KS · C = 1
and C ∼= P1. Put C̃ = τ(C). Then C̃2 = KS · C̃ = −1 and C̃ ∼= P1. Moreover, we

have C+ C̃ ∼ −2KS. Furthermore, the irreducible curve C̃ is uniquely determined

by this rational equivalence. Since C · (C + C̃) = −2KS · C = 2 and C2 = −1, we

have C · C̃ = 3, so that 1 � |C ∩ C̃| � 3.

Fix λ ∈ Q. Then −KS + λC is ample ⇐⇒ − 1
3 < λ < 1. Indeed, we have

−KS+λC ∼Q

1

2

(
C+ C̃

)
+λC =

(1
2
+λ

)
C+

1

2
C̃ ∼Q

(
1+2λ

)(
−KS−

λ

1 + 2λ
C̃
)
.

(7)

One the other hand, we have (−KS+λC) ·C = 1−λ and (−KS+λC) ·C̃ = 1−3λ.
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Note that Theorem 7 and (7) imply

Corollary 31. Suppose that − 1
3 < λ < 1. If |C ∩ C̃| � 2, then

α
(
S,−KS + λC

)
=

⎧⎨⎩min
(

α(X)
1+2λ , 2

)
if − 1

3 < λ < 0,

min
(
α(X), 2

1+2λ

)
if 0 � λ < 1.

Similarly, if |C ∩ C̃| = 1, then

α
(
S,−KS + λC

)
=

⎧⎨⎩min
(

α(X)
1+2λ ,

4
3+3λ

)
if − 1

3 < λ < 0,

min
(
α(X), 4

3+3λ

)
if 0 � λ < 1.

Now let us prove Theorem 7. Suppose that 0 � λ < 1. Put

μ =

⎧⎨⎩min
(
α(S), 2

1+2λ

)
when |C ∩ C̃| � 2,

min
(
α(S), 4

3+3λ

)
when |C ∩ C̃| = 1.

(8)

Lemma 32. One has α(S,−KS + λC) � μ.

Proof. Since we have (12 +λ)C+ 1
2 C̃ ∼Q −KS+λC, we see that α(S,−KS+λC) �

2
1+2λ . Similarly, we see that α(S,−KS + λC) � α(S). If |C ∩ C̃| = 1, then the log
pair (

S,
2 + 4λ

3 + 3λ
C +

2

4 + 3λ
C̃

)
is not Kawamata log terminal at the point C ∩ C̃, so that α(S,−KS + λC) �

4
3+3λ . �

Thus, to complete the proof of Theorem 7, we have to show that α(S,−KS+
λC) � μ. Suppose that α(S,−KS + λC) < μ. Let us seek for a contradiction.

Since α(S,−KS + λC) < μ, there exists an effective Q-divisor D on S such
that

D ∼Q −KS + λC,

and (S, μD) is not log canonical at some point P ∈ S.

By Lemma 14 and (7), we may assume that Supp(D) does not contain C or

C̃. Indeed, one can check that the log pair (S, μ(12 + λ)C + μ
2 C̃) is log canonical

at P .

Let C be a curve in the pencil |−KS| that passes through P . Then C+λC ∼
−KS + λC. Moreover, the curve C is irreducible, and the log pair (S, μC + μλC)
is log canonical at P . Thus, we may assume that Supp(D) does not contain C or
C by Lemma 14.

Lemma 33. The curve C is smooth at the point P .
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Proof. Suppose that C is singular at P . If C �⊆ Supp(D), then Theorem 15 gives

1 + λ = C ·
(
−KS + λC

)
= C ·D � multP

(
C
)
multP

(
D
)
� 2multP

(
D
)
>

2

μ
,

which is impossible by (8). Thus, we have C ⊆ Supp(D). Then C �⊆ Supp(D).
Write D = εC+Δ, where ε is a positive rational number, and Δ is an effective

Q-divisor on the surface S whose support does not contain the curves C and C.
Then

1− λ = C ·
(
−KS + λC

)
= C ·D = C ·

(
εC +Δ

)
= ε+ C ·Δ � ε,

so that ε � 1− λ. Similarly, we have

1 + λ− ε = C ·Δ �
(
C ·Δ

)
P
. (9)

We claim that λ � 1
2 . Indeed, suppose that λ > 1

2 . Then it follows from (9)
that (

Δ · C
)
P
� 1 + λ− ε =

1 + 2λ

2

(
4

3
+

4−4λ
1+2λ

6
− 2

1 + 2λ
ε

)
.

Thus, we can apply Lemma 23 to the log pair (S, 2
1+2λD) with x = 4−4λ

1+2λ and

a = 2
1+2λε. This implies that (S, 2

1+2λD) is log canonical at P , which is impossible,

because μ � 2
1+2λ .

If C has a node at P , then we can apply Lemma 24 to (S,D) with x = 2λ
and a = ε. This implies that (S,D) is log canonical, which is absurd, since μ � 1.

Therefore, the curve C has an ordinary cusp at P and λ � 1
2 . Then μ �

α(S) = 5
6 . Thus, we can apply Lemma 23 to the log pair (S, 56D) with x = 5

3λ and

a = 5
6ε, since (

Δ · C
)
P
� 6

5

(
5

6
+

5

6
λ− 5

6
ε

)
.

This implies that (S, 56D) is log canonical at P , which is impossible, since

μ � 5
6 . �

The next step in the proof of Theorem 7 is

Lemma 34. The point P is not contained in the curve C.

Proof. Suppose that P ∈ C. Let us seek for a contradiction. If C �⊆ Supp(D), then

1− λ = C ·
(
−KS + λC

)
= C ·D � multP

(
C
)
multP

(
D
)
� multP

(
D
)
>

1

μ

by Theorem 15. But (8) implies that μ > 1
1−λ , which is impossible, because μ �

1. Therefore, we must have C ⊆ Supp(D). Then C �⊆ Supp(D) and also C̃ �⊆
Supp(D).

Write D = εC + Δ, where ε is a positive rational number, and Δ is an

effective divisor whose support does not contain C, C and C̃. Then 1 + λ − ε =
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C · Δ � multP (Δ). Similarly, we have 1 + 3λ − 3ε = C̃ · Δ � 0. Finally, we have
1− λ+ ε = C ·Δ � (C ·Δ)P .

If λ � 1
2 , we can apply Lemma 25 to the log pair (S,D) with x = 2λ and

a = ε. This implies that (S,D) is log canonical, which is impossible since μ � 1.

Therefore, we have λ > 1
2 . Since ε �

1
3 + λ, we have 2

1+2λ ε �
2

1+2λ (
1
3 + λ) =

8
9 −

4−4λ
1+2λ

18 . Since ε+multP (Δ) � 1+λ, we have 2
1+2λε+

2
1+2λ multP (Δ) � 2

1+2λ(1+

λ) = 4
3 +

4−4λ
1+2λ

6 . But

(
Δ · C

)
P
� 1− λ+ ε =

1 + 2λ

2

(
4−4λ
1+2λ

2
+

2

1 + 2λ
ε

)
.

Thus, we can apply Lemma 26 to the log pair (S, 2
1+2λD) with x = 4−4λ

1+2λ and

a = 2
1+2λε. This implies that (S, 2

1+2λD) is log canonical at P , which is impossible,

since μ � 2
1+2λ . �

Let h : S → S be the contraction of the curve C. Put D = h(D). Then
D ∼Q −KS. Moreover, it follows from Lemma 34 that (S, μD) is not log canonical
at the point h(P ).

By construction, the surface S is a smooth del Pezzo surface such that K2
S
=

K2
S + 1 = 2. Then | −KS| gives a double cover π : S → P2 branched in a smooth

quartic curve R4 ⊂ P2. By Lemma 18, there exists a unique curve Z ∈ | − KS |
such that Z is singular at h(P ). Moreover, the log pair (S,Z) is not log canonical
at the point h(P ) by [4, Theorem 1.12]. Note that π(Z) is the line in P2 that is
tangent to the curve R4 at the point π ◦ h(P ).

Let Z be the proper transform of the curve Z on the surface S. Then h(C) �∈
Z. Indeed, if h(C) is contained in Z, then Z ∼ −KS, which is impossible by
Lemma 33. Thus, we see that C ∩ Z = ∅. Then Z ∼ −KS + C.

Lemma 35. The curve Z is reducible.

Proof. Suppose that Z is irreducible. Then Z has an ordinary node or ordinary
cusp at P . In fact, if Z �⊆ Supp(D), then 2 = Z · D > 2

μ by Theorem 15, which

contradicts to (8). Therefore, we have Z ⊆ Supp(D). Put Z̃ = τ(Z). Then Z+Z̃ ∼
−4KS and

3λ+ 1

4
Z +

1− λ

4
Z̃ ∼Q

1− λ

4

(
Z + Z̃

)
+ λZ ∼Q −KS + λC.

Furthermore, one can show (using Definition 13) that the log pair(
S, μ

3λ+ 1

4
Z + μ

1− λ

4
Z̃

)

is log canonical at P . Hence, we may assume that Z̃ �⊆ Supp(D) by Lemma 14.
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Write D = εZ + Δ, where ε is a positive rational number, and Δ is an

effective Q-divisor on the surface S whose support does not contain Z and Z̃.

Then 2 + 4λ− 6ε = Z̃ ·Δ � 0. Thus, we have ε � 1+2λ
3 . Finally, we have

2− 2ε = Z ·Δ �
(
Z ·Δ

)
P
.

Therefore, if λ � 1
2 , then we can apply Lemma 27 to (S,D) with x = 2λ and a = ε.

This implies that (S,D) is log canonical at P . But μ � 1. Thus, we have λ > 1
2 .

We have μ � 2
1+2λ . Then (S, 2

1+2λD) is not log canonical at P . We have
2

1+2λε � 2
3 . Thus, we can apply Lemma 28 to (S, 2

1+2λD) with x = 4−4λ
1+2λ and

a = 2
1+2λε, because(

Δ · Z
)
P
� 1 + 2λ

2

(
4

3
+

2 4−4λ
1+2λ

3
− 2

2

1 + 2λ
ε

)
= 2− 2ε.

This implies that (S, 2
1+2λD) is log canonical at P , which is absurd, since μ �

2
1+2λ . �

Since Z is reducible, Z = Z1 + Z2, where Z1 and Z2 are smooth irreducible
curves. Then Z2

1 = Z2
2 = −1 and Z1 ·Z2 = 2. Moreover, we have P ∈ Z1 ∩Z2 and

(Z1 · Z2)P � 2. Furthermore, we have Z1 ∩ C = ∅ and Z2 ∩ C = ∅.
We have Z1 ⊆ Supp(D) and Z2 ⊆ Supp(D). Indeed, if Z1 �⊆ Supp(D), then

1 = Z1 ·
(
−KS + λC

)
= Z1 ·D � multP

(
Z1

)
multP

(
D
)
� multP

(
D
)
>

1

μ
� 1

by Theorem 15. This shows that Z1 ⊆ Supp(D). Similarly, we have Z2 ⊆ Supp(D).
But (

1− λ
)
C + λ

(
Z1 + Z2

)
∼Q −KS + λC.

On the other hand, the log pair (S, μ(1−λ)C+μλ(Z1+Z2)) is log canonical at P .
Therefore, we may assume that C �⊆ Supp(D) by Lemma 14.

Put Z̃1 = τ(Z1) and put Z̃2 = τ(Z2). Then Z1 + Z̃1 ∼ −2KS and Z2 + Z̃2 ∼
−2KS. This gives C · Z1 = C · Z2 = 1, Z1 · Z̃1 = Z2 · Z̃2 = 3, Z1 · Z̃2 = Z2 · Z̃1 = 0,

Z̃1 · C = Z̃2 · C = 2. Moreover, we have Z1 + Z2 ∼ −KS + C. Then

1 + λ

2
Z1 + λZ2 +

1− λ

2
Z̃1 ∼Q

1− λ

2

(
Z1 + Z̃1

)
+ λ

(
Z1 + Z2

)
∼Q −KS + λC

Note that P �∈ Z̃1, because P ∈ Z2 and Z̃1 · Z2 = 0. Using this, we see that the
log pair (

S, μ
1 + λ

2
Z1 + μλZ2 + μ

1− λ

2
Z̃1

)
is log canonical at the point P . Hence, we may assume that Z̃1 �⊆ Supp(D) by

Lemma 14. Similarly, we may assume that Z̃2 �⊆ Supp(D) using Lemma 14 one
more time.
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Now let us write D = ε1Z1 + ε2Z2 +Δ, where ε1 and ε2 are positive rational
numbers, and Δ is an effective divisor whose support does not contain Z1 and Z2.
Then

1 + λ− ε1 − ε2 = C ·Δ � multP
(
Δ
)
.

This gives ε1 + ε2 +multP (Δ) � 1 + λ. We also have ε1 � 1+2λ
3 , since

1 + 2λ− 3ε1 = Z̃1 ·Δ � 0.

Similarly, see that ε2 � 1+2λ
3 . Moreover, we have

1 + ε1 − 2ε2 = Z1 ·Δ �
(
Z1 ·Δ

)
P
.

Finally, we have

1 + ε2 − 2ε1 = Z2 ·Δ �
(
Z2 ·Δ

)
P
.

Thus, if λ � 1
2 , then we can apply Lemma 29 to (S,D) with x = 2λ, a = ε1

and b = ε1. This implies that (S,D) is log canonical at P , which is absurd. Hence,
we have λ > 1

2 .

Since λ > 1
2 , we have μ � 2

1+2λ . Then the log pair (S, 2
1+2λD) is not log

canonical at P . On the other hand, we have 2
1+2λ ε1 � 2

3 and 2
1+2λ ε2 � 2

3 . We also
have

2

1 + 2λ
ε1 +

2

1 + 2λ
ε2 +

2

1 + 2λ
multP (Δ) � 2

1 + 2λ

(
1 + λ

)
=

2

1 + 2λ
+ λ

2

1 + 2λ
=

4

3
+

4−4λ
1+2λ

6
,

Moreover, we have(
Δ · Z1

)
P
� 1 + ε1 − 2ε2 =

1 + 2λ

2

(
2

3
+

4−4λ
1+2λ

3
+

2

1 + 2λ
ε1 − 2

2

1 + 2λ
ε2

)
.

Furthermore, we also have(
Δ · Z2

)
P
� 1 + ε1 − 2ε2 =

1 + 2λ

2

(
2

3
+

4−4λ
1+2λ

3
+

2

1 + 2λ
ε2 − 2

2

1 + 2λ
ε1

)
.

Thus, we can apply Lemma 30 to (S, 2
1+2λD) with x = 4−4λ

1+2λ , a = 2
1+2λε1 and

b = 2
1+2λ ε2. This implies that (S, 2

1+2λD) is log canonical at P , which is absurd.

The obtained contradiction completes the proof of Theorem 7.
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Short-time Behavior of the
Exciton-polariton Equations

Cristi D. Guevara and Stephen P. Shipman

Abstract. In the exciton-polariton system, a linear dispersive photon field is
coupled to a nonlinear exciton field. Short-time analysis of the lossless system
shows that, when the photon field is excited, the time required for that field
to exhibit nonlinear effects is longer than the time required for the nonlinear
Schrödinger equation, in which the photon field itself is nonlinear
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35A35.

Keywords. Exciton-polariton, nonlinear dispersion, short time evolution, non-
linear Schrödinger.

1. Short-time behavior of the exciton-polariton system

The lossless unforced exciton-polariton system is a quantum-mechanical system
involving a linear dispersive photon wave-function φ(x, t) and a nonlinear nondis-
persive exciton wave-function ψ(x, t) of spatial coordinates x ∈ Rn and time t ∈ R:

iφt = −Δφ+ γψ

iψt = (ω0 + g|ψ|2)ψ + γφ .
(1)

For physical discussions of these equations, the reader is referred to [1, 2, 5], among
many other references.

The fact that the dispersive term −Δφ and the nonlinear term g|ψ|2ψ involve
different fields results in fundamental differences between the exciton-polariton
system (EP) and the nonlinear Schrödinger (NLS) equation

iφt = −Δφ+ g|φ|2φ , (2)

in which both terms involve a single field φ. The NLS equation is Galilean-
invariant, whereas the EP system is not; and NLS admits a frequency-scalable
“ground state”, whereas the structure of stationary harmonic solutions of EP is

SPS acknowledges the support of NSF research grant DMS-1411393.



176 C.D. Guevara and S.P. Shipman

complicated [3]. This communication addresses a fundamental difference in the
short-time behavior of these two systems.

We take the point of view that the photon field is excited and measured
by the observer and that the exciton field is hidden from the observer. Thus we
impose initial conditions

φ(x, 0) = φ0(x)

ψ(x, 0) = 0
(3)

and ask, up to what time can nonlinear effects observed in the photon field through
its coupling to the exciton field be considered to be negligible?

At first, the effect of the exciton field on the photon field is altogether negli-
gible and the exciton evolves essentially linearly under the influence of the photon.
This is described by the approximate system

iφt = −Δφ
iψt = ω0ψ + γφ . (Approximation A) (4)

After some time, the exciton field grows sufficiently large so that its effect on the
photon field becomes non-negligible, but the nonlinear effects remain negligible
for a longer period of time. The photon acts as if it were coupled to a linear
exciton field:

iφt = −Δφ+ γψ
iψt = ω0ψ + γφ . (Approximation B) (5)

At a later time, the nonlinear effects imparted by the exciton field are observed
significantly in the photon field and the linear Approximation B is no longer ac-
ceptable.

Theorem 1 makes these assertions precise. The deviation of an approximation
φ̃ to the true photon field φ is considered to be negligible if the relative error
‖φ̃ − φ‖Hs(Rn)/‖φ‖Hs(Rn) is less than a small number ε, which is allowed to tend
to zero. Our main result is that the deviation of the photon field of the linear
polariton system from that of the nonlinear one is negligible up to time t = Cε1/5.
This result is in contrast to the nonlinear Schrödinger equation, for which nonlinear
effects are negligible only up to time Cε.

Theorem 1. Let (φ(t), ψ(t)) be a solution of the polariton system (1) in the interval
0 ≤ t ≤ T , with each field being a continuous function of t with values in Hs(Rn)
with s > n/2. Let C1 and C2 be real numbers, and for all ε such that C2ε

1/5 ≤ T ,

let (φ̃(t), ψ̃(t)) be a solution of the equations

(φ̃(t), ψ̃(t)) satisfies

{
approx. A (4) for 0 ≤ t ≤ C1ε

1/2

approx. B (5) for C1ε
1/2 ≤ t ≤ C2ε

1/5

with φ̃ and ψ̃ being continuous function of t with values in Hs(Rn). Let both
systems satisfy the initial conditions

(φ(0), ψ(0)) = (φ̃(0), ψ̃(0)) = (φ0, 0), (6)

with ‖φ0‖Hs(Rn) = ‖φ0‖s =M �= 0.
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The relative error in the photon field is bounded by

‖φ̃(t)− φ(t)‖s
‖φ(t)‖s

≤ K1ε+O(ε2) for 0 ≤ t ≤ C1ε
1/2 (ε→ 0),

‖φ̃(t)− φ(t)‖s
‖φ(t)‖s

≤ K2ε+O(ε7/5) for C1ε
1/2 ≤ t ≤ C2ε

1/5 (ε→ 0),

in which

K1 = 1
2γ

2C2
1 , K2 = 1

2γ
2C2

1 + 1
5 |g|Kγ

3M2C5
2

and K is an absolute constant (defined in the proof below).

The proof of this theorem will be given after existence of solutions and pre-
liminary bounds are established.

2. Existence of solutions to the polariton equations

Theorem 2. Given 0 < r < 1, N > 0, and φ0 ∈ Hs(Rn) with s > n/2, such that
‖φ0‖s ≤ rN , there exists a unique solution to the polariton equations (1) subject
to ‖φ‖C (I,Hs(Rn)) ≤ N and ‖ψ‖C (I,Hs(Rn)) ≤ N defined for t ∈ [0, T ], where

T =
1− r

2γ + |g|K̃N2

for some constant K̃.

Proof. The proof is a standard contraction argument. Write u = (φ, ψ)t, and
consider the space

EN,r =
{
u ∈ C (I,Hs(Rn)) : ‖u‖C (I,Hs(Rn)) ≤ N, ‖u0‖s ≤ rN

}
,

with I = [0, T ], equipped with the distance d (u1 − u2) = ‖u1 − u2‖C (I,Hs(Rn)).
(EN,r, d) is a complete metric space. Define a mapping Φ : EN,r → EN,r by

Φ(u)(t) =

⎛⎜⎜⎝ eitΔφ0(x) − iγ

∫ t

0

ei(t−τ)Δψ(τ)dτ

−i
∫ t

0

e−iω0(t−τ)
(
g|ψ|2ψ(τ) + γφ(τ)

)
dτ

⎞⎟⎟⎠ .

Minkowski inequalities and the fact that eitΔ is an isometry in Hs yields

‖Φ(u)(t)‖s ≤ ‖φ0‖s + γT
(
sup
τ≤T

‖ψ‖s + sup
τ≤T

‖φ‖s
)
+ |g|KT sup

τ≤T
‖ψ‖3s

≤ ‖φ0‖s +NT
(
2γ + |g|KN2

)
.

The constant K for s > n/2 is guaranteed by [4, Theorem 3.4]; it relies on the
algebra property of Hs(Rn). For a different constant K ′, one obtains

‖Φ(u1)− Φ(u2)‖s ≤ T (2γ + |g|K ′N2)
(
sup
τ≤T

‖ψ1− ψ2‖s + sup
τ≤T

‖φ1− φ2‖s
)
.
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Set K̃ = max {K,K ′}. Since T
(
2γ + |g|K̃N2

)
= 1 − r < 1, Φ is a contraction

of (EN,r, d) and thus it has a unique fixed point, which, by the definition of Φ,
satisfies the exciton-polariton system. Uniqueness of the solution in C(I,Hs(Rn))
follows from Gronwall’s Lemma. �

3. Bounds for solutions to the polariton equations

Assume that (φ, ψ) is a solution of the polariton equations as in Theorem 2, with
initial condition (φ(x, 0), ψ(x, 0)) = (φ0(x), 0) and ‖φ0‖s = rN .

3.1. Solutions of the polariton equations

The integral form of the system (1), namely Φ(u) = u, Minkowski inequalities,
and the fact that eitΔ is an isometry in Hs(Rn) yield

rN − γ

∫ t

0

‖ψ(τ)‖s dτ ≤ ‖φ(t)‖s ≤ rN + γ

∫ t

0

‖ψ(τ)‖s dτ , (7)

‖ψ(t)‖s ≤ γrN t + γ2
∫ t

0

∫ τ

0

‖ψ(σ)‖s dσ dτ + |g|K
∫ t

0

‖ψ(τ)‖3s dτ . (8)

The constant K is guaranteed by [4, Theorem 3.4]. Hence

sup
τ≤t

‖ψ(t)‖s ≤ γrN t+ 1
2γ

2t2 sup
τ≤t

‖ψ(τ)‖s + |g|K t sup
τ≤t

‖ψ(τ)‖3s .

The last estimate can be written as P (t, y(t)) ≥ 0 , where

y(t) = sup
τ≤t

‖ψ(t)‖s and P (t, y) := γrN t+ y
(
|g|K ty2 + 1

2γ
2t2 − 1

)
.

For each t such that P (t, y) has two positive roots as a function of y, denote
these roots by y1(t) ≤ y2(t). One can show that y1(t) is increasing in t, with
limt→0 y1(t) = 0 and y2(t) is decreasing with limt→0 y2(t) = ∞. Thus P (t, y(t)) ≥
0 is equivalent to { y(t) ≤ y1(t) or y(t) ≥ y2(t) }.

We shall assume from now on that t is small enough so that y(t) ≥ y2(t) is
ruled out, so that one has supτ≤t ‖ψ(τ)‖s ≤ y1(t), or, equivalently, ‖ψ(t)‖s ≤ y1(t),
since y1(t) is increasing. Hence, (8) yields

‖ψ(t)‖s ≤ γrN t + γ2
∫ t

0

∫ τ

0

y1(σ) dσ dτ + |g|K
∫ t

0

y1(τ)
3dτ . (9)

The Taylor expansion of y1(t) around t = 0 is

y1(t) = γrN t+ 1
2γ

3rN t3 + |g|K(γrN)3 t4 + · · · . (10)

Therefore, from (7), (9) and (10), we have

rN − 1
2γ

2rNt2 +O(t4) ≤ ‖φ(t)‖s ≤ rN + 1
2γ

2rNt2 +O(t4) . (11)

3.2. Solutions of approximate equation A

Let (φ̃(t), ψ̃(t)) be the solution of the approximate system A (4) with initial con-

dition (φ̃(0), ψ̃(0)) = (φ0, 0), and (φ(t), ψ(t)) be the solution of the true system
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(1). Set φ̂ := φ̃− φ and ψ̂ := ψ̃ − ψ , so that (φ̂(t), ψ̂(t)) satisfies{
iφ̂t = −'φ̂+ γψ(t)

iψ̂t = ω0ψ̂ + γφ̂+ g|ψ(t)|2ψ(t)

{
φ̂(0) = 0

ψ̂(0) = 0 .
(12)

One obtains the bounds

‖φ̂(t)‖s ≤ γ

∫ t

0

‖ψ(τ)‖dτ ≤ γ

∫ t

0

y1(τ) dτ, (13)

‖ψ̂(t)‖s ≤ γ2
∫ t

0

∫ τ

0

y1(σ) dσ dτ + |g|K
∫ t

0

y1(τ)
3dτ . (14)

3.3. Solutions of approximate equation B

Now let (φ̃(t), ψ̃(t)) be the solution of the approximate system B (5) with arbitrary

initial conditions, and set again φ̂ := φ̃ − φ and ψ̂ := ψ̃ − ψ ; then (φ̂(t), ψ̂(t))
satisfies {

iφ̂t = −'φ̂+ γψ̂(t)

iψ̂t = ω0ψ̂ + γφ̂+ g|ψ(t)|2ψ(t)

{
φ̂(t1) = φ̂0

ψ̂(t1) = ψ̂0

, (15)

and from the integral form of (15), one deduces the bounds

‖φ̂(t)‖s ≤ ‖φ̂0‖s + γ

∫ t

t1

‖ψ̂(τ)‖sdτ (16)

‖ψ̂(t)‖s ≤ ‖ψ̂0‖s + γt‖φ̂0‖s + γ2
∫ t

t1

∫ τ

t1

‖ψ̂(σ)‖sdσ dτ + |g|K
∫ t

t1

‖ψ(t)‖3sdτ.

Combining this with (10) yields

‖ψ̂(t)‖s ≤
(
1− 1

2γ
2t2

)−1
(
‖ψ̂0‖s + γt‖φ̂0‖s + |g|Kt y1(t)3

)
. (17)

3.4. Proof of Theorem 1

For the solutions (φ, ψ) and (φ̃, ψ̃) in the theorem, define φ̂ := φ̃−φ and ψ̂ := ψ̃−ψ ,
and set M = rN .

For t ∈ [0, t1] with t1 = C1ε
1/2, (13) yields

‖φ̂(t)‖s ≤ γ

∫ t

0

y1(τ) dτ ≤ 1
2γ

2Mt2 +O(t4) ≤ 1
2γ

2MC2
1ε+O(ε2). (18)

Using (11), the relative error is controlled by

‖φ̂(t)‖s
‖φ(t)‖s

≤ 1
2γ

2C2
1 ε+O(ε2).

For t ∈ [t1, t2] with t2 = C2ε
1/5, (10), (14), and (18) give initial bounds

‖ψ̂(t1)‖s ≤ 1
6γ

3Mt31 +O(t41) ≤ 1
6γ

3MC3
1 ε

3/2 +O(ε2),

‖φ̂(t1)‖s ≤ 1
2γMC2

1 ε+O(ε2).
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Using these in (17) yields

‖ψ̂(t)‖s ≤
(
1 +O(t2)

)
×
[
1
6γ

2MC3
1 ε

3/2 +O(ε2) + γt
(
1
2γMC2

1ε+O(ε2)
)
+ |g|K(γM)3t4 +O(t6)

]
,

and then inserting this into (16) gives

‖φ̂(t)‖s ≤ 1
2γ

2MC2
1ε+O(ε2) +

(
1 + ε1/5

)
×
[
1
6γ

2MC3
1ε

3/2t+O(ε2)t+ 1
4γMC2

1εt
2 +O(ε2)t+ 1

5 |g|K(γM)3t5 +O(t7)
]
.

In view of t ≤ C2ε
1/5, the first four terms in the brackets are O(ε17/10), O(ε11/5),

O(ε7/5), and O(ε11/5), and the last one is O(ε7/5). Therefore

‖φ̂(t)‖s ≤
(

1
2γ

2rNC2
1 + 1

5 |g|K(γrN)3C5
2

)
ε+O(ε7/5) . (19)

The relative error is obtained from this and (11),

‖φ̂(t)‖s
‖φ(t)‖s

≤
(

1
2γ

2C2
1 + 1

5 |g|Kγ
3(rN)2C5

2

)
ε+O(ε7/5).

4. Final remark

The analysis above uses strictly Hs(Rn) estimates and triangle inequalities and
does not address whether the time t = Cε1/5 is sharp. A future communication
will include a comparison between EP and NLS for initial photon data of order εα

and for nonlinearities not just of order 3 but of any power greater than 1.
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Abstract. Recently, the author defined multiple Dedekind zeta values [5] asso-
ciated to a number K field and a cone C. In this paper we construct explicitly
non-trivial examples of mixed Tate motives over the ring of integers in K, for
a real quadratic number field K and a particular cone C. The period of such
a motive is a multiple Dedekind zeta values at (s1, s2) = (1, 2), associated to
the pair (K;C), times a nonzero element of K.
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1. Introduction

The Riemann zeta function

ζ(s) =
∑
n>0

1

ns

is widely used in number theory, algebraic geometry and quantum field theory.
Euler’s multiple zeta values

ζ(s1, . . . , sm) =
∑

0<n1<···<nm

1

ns1
1 . . . nsm

m
,

where s1, . . . , sm are positive integers and sm ≥ 2, appear as values of some Feyn-
man amplitudes, and in algebraic geometry, as periods of mixed Tate motives over
Spec(Z) (see [1, 3, 4, 7]).

Dedekind zeta values

ζK(s) =
∑
a �=(0)

1

N(a)s
,
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are a generalization of the Riemann zeta function to a number field K. In some

Feynman amplitudes one of the summands is log(1 +
√
2) or log

(
1+

√
5

2

)
. These

values are essentially the residues at s = 1 of Dedekind zeta functions over Q(
√
2)

and over Q(
√
5), respectively. For s = 2, 3, 4, . . . the values ζK(s) are periods of

mixed Tate motives over the ring of algebraic integers in K with ramification only
at the discriminant of K (see [2]).

In [5], the author has constructed multiple Dedekind zeta values, which are
a generalization of Euler’s multiple zeta values to number fields in the same way
as Dedekind zeta values generalizes Riemann zeta values. For a quadratic number
field K, the key examples of multiple Dedekind zeta values are

ζK;C(s1, . . . , s1; . . . ; sm, . . . , sm)

=
∑

α1,...,αm∈C

1

N(α1)s1N(α1 + α2)s2 · · ·N(α1 + · · ·+ αm)sm
, (1)

where s1, . . . , sm are positive integers and sm ≥ 2 and C is a cone generated by a
totally positive unit β in K and 1, defined by

C = N{1, β} = {γ ∈ K | γ = a+ bβ, for positive integers a and b}.

Similar types of cones were considered by Zagier in [8] and [9].

In [5], the author has proven that multiple Dedekind zeta values can be inter-
polated to multiple Dedekind zeta functions, which have meromorphic continuation
to all complex values of the variables s1, . . . , sm.

In this paper we prove the following theorem.

Theorem 1. Let K be a real quadratic field, and let C be a cone generated by a
totally positive unit β in K and 1. Then the multiple Dedekind zeta values

(β2 − β1)
3ζK;C(1, 2)

is a period of a mixed Tate motive over the ring of integers in K. In particular, it
is unramified over the primes dividing the discriminant

√
D.

Remark. The proof of the theorem can easily be generalized to all

(β2 − β1)
s1+···+smζK;C(s1, . . . , sm)

for the same cone C. The details for the general case will be completed in a sequel
to this paper. The choice of considering ζK;C(1, 2) in this paper is two-fold. First,
this is among the simplest non-trivial example of a multiple Dedekind zeta value.
Second, for any other (multple) Dedekind zeta value, the proof of the corresponding
statement is essentially the same.
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2. Background

2.1. Multiple zeta values

The Riemann zeta function at the value s = 2 can be expressed in term of an
iterated integral in the following way∫ 1

0

(∫ y

0

dx

1− x

)
dy

y
=

∫ 1

0

(∫ y

0

(1 + x+ x2 + x3 . . . )dx

)
dy

y

=

∫ 1

0

(
y +

y2

2
+
y3

3
+
y4

4
+ · · ·

)
dy

y
= y +

y2

22
+
y3

32
+
y4

42
· · ·

∣∣∣∣y=1

y=0

= 1 +
1

22
+

1

32
+

1

42
· · · = ζ(2).

Let us examine the domain of integration of the iterated integral. Note that
0 < x < y and 0 < y < 1. We can put both inequalities together. Then we obtain
the domain 0 < x < y < 1, which is a simplex. Thus, we can express the iterated
integral as

ζ(2) =

∫ 1

0

(∫ y

0

dx

1− x

)
dy

y
=

∫
0<x<y<1

dx

1− x
∧ dy

y
.

Moreover, Goncharov and Manin [4] have expressed all multiple zeta values
as periods of motives related to the moduli space of curves of genus zero with
n+ 3 marked points, M0,n+3. In particular, ζ(2) can be expressed as a period of

the motive H2(M0,5 − A,B − A ∩ B) by pairing of [ΩA] ∈ GrW4 H2(M0,5 − A)

for ΩA = dx
1−x ∧ dy

y , with [ΔB] ∈
(
GrW0 H2(M0,5 −B)

)∨
. The Deligne–Mumford

compactification M0,5 of the moduli space M0,5 can be obtained by three blow-
ups of P1×P1 at the points (0, 0), (1, 1) and (∞,∞). Let us name the exceptional
divisors at the three points by E0, E1 and E∞, respectively. Then A = (x =
1)∪(y = 0)∪(x = ∞)∪(y = ∞)∪E∞ and B = (x = 0)∪(x = y)∪(y = 1)∪E0∪E1.

Similarly, one can express ζ(3) and ζ(1, 2) as iterated integrals

ζ(3) =

∫ 1

0

(∫ z

0

(∫ y

0

dx

1− x

)
dy

y

)
dz

z
=

∫
0<x<y<z<1

dx

1− x
∧ dy

y
∧ dz

z
,

ζ(1, 2) =

∫ 1

0

(∫ z

0

(∫ y

0

dx

1− x

)
dy

1− y

)
dz

z
=

∫
0<x<y<z<1

dx

1− x
∧ dy

1− y
∧ dz

z
.

Again, ζ(3) and ζ(1, 2) can be expressed as periods of motives related to M0,6.
In the same paper, Goncharov and Manin prove that the motives associated to
multiple zeta values (MZVs) are mixed Tate motives unramified over Spec(Z).

A few years later, Francis Brown [1] proved that periods of mixed Tate mo-
tives unramified over Spec(Z) can be expressed as a Q-linear combination of MZVs
times an integer power of 2πi.
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2.2. Multiple Dedekind zeta values (MDZVs)

We recall the construction of MDZVs over a real quadratic field K. (See [5] for
definition of MDZVs over any number field.) Let OK be the ring of integers in K.

And let β be a totally positive unit in OK . Let C be the cone defined as
N-linear combination of 1 and β, that is,

C = {γ ∈ OK | γ = a+ bβ, for a, b ∈ N}.

Let f0(C; t1, t2) =
∑

γ∈C exp(−t1γ1 − t2γ2), where γ1 and γ2 are two real embed-

dings of γ. We express ζK;C(2), ζK;C(3) and ζK;C(1, 2) as iterated integrals on a
membrane. See [5] and [6], for more examples and properties of iterated integrals
on membranes.∫ ∞

0

∫ ∞

0

(∫ ∞

u1

∫ ∞

u2

f0(C; t1, t2)dt1 ∧ dt2
)
du1 ∧ du2

=

∫ ∞

0

∫ ∞

0

⎛⎝∫ ∞

u1

∫ ∞

u2

⎛⎝∑
γ∈C

exp(−t1γ1 − t2γ2)

⎞⎠ dt1 ∧ dt2

⎞⎠ du1 ∧ du2

=

∫ ∞

0

∫ ∞

0

⎛⎝∑
γ∈C

exp(−u1γ1 − u2γ2)

γ1γ2

⎞⎠ du1 ∧ du2

=
∑
γ∈C

1

(γ1γ2)2

=
∑
γ∈C

1

N(γ)2
= ζK;C(2).

(2)

Similarly,

ζK;C(3) =
∑
γ∈C

1

N(γ)3

=

∫ ∞

0

∫ ∞

0

(∫ ∞

v1

∫ ∞

v2

(∫ ∞

u1

∫ ∞

u2

f0(C; t1, t2)dt1 ∧ dt2
)
du1 ∧ du2

)
dv1 ∧ dv2,

and

ζK;C(1, 2) =
∑

γ,δ∈C

1

N(γ)1N(γ + δ)2

=

∫ ∞

0

∫ ∞

0

(∫ ∞

v1

∫ ∞

v2

(∫ ∞

u1

∫ ∞

u2

f0(C; t1, t2)dt1 ∧ dt2
)

× f0(C;u1, u2)du1 ∧ du2
)
dv1 ∧ dv2.
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3. Transition to algebraic geometry

We can write the infinite sum in the definition of f0 as a product of two geometric
series

f0(C; t1, t2) =
∑
γ∈C

exp(−γ1t1 − γ2t2)

=

∞∑
a=1

∞∑
b=1

exp[−(aα1 + bβ1)t1 − (aα2 + bβ2)t2]

=

∞∑
a=1

∞∑
b=1

exp[−a(α1t1 + α2t2)] exp[−b(β1t1 + β2t2)]

=
exp[−(α1t1 + α2t2)]

1− exp[−(α1t1 + α2t2)]
× exp[−(β1t1 + β2t2)]

1− exp[−(β1t1 + β2t2)]
.

Let x1 = e−t1 and x2 = e−t2 . Then

f0(C; t1, t2) =
x1x2

1− x1x2
· xβ1

1 xβ2

2

1− xβ1

1 xβ2

2

. (3)

Now we are going to express f0 algebraically. At this point there is a problem
of raising the variable x to an integer algebraic power. Note thatβ1 and β2 are
algebraic integers (in fact totally positive units), which are not rational integers.

How do we raise x to power β1 and to β2? We introduce new variables

y1 = xβ1

1 and y2 = xβ2

2 .

Then xa+bβ1

1 = xa1y
b
1, where a and b are integers.

We are going to use the variables x1, x2. For each of them we introduce y1, y2,

so that we write y1 instead of xβ1

1 and y2 instead of xβ2

2 . In terms of x1, x2, y1 and
y2, we can express f0 as

f0(C; t1, t2) =
x1x2

1− x1x2
· xβ1

1 xβ2

2

1− xβ1

1 xβ2

2

=
x1x2

1− x1x2
· y1y2
1− y1y2

.

Let us also define ω1 = d(x1x2)
1−x1x2

∧ d(y1y2)
1−y1y2

and let ω0 =
d(x1x2)
x1x2

∧ d(y1y2)
y1y2

.

Key Remark. The differential forms ω0 and ω1 will be used for both algebraic
geometry on moduli spaces and for defining multiple Dedekind zeta values.

Lemma 2. If we substitute x1 = e−t1 , x2 = e−t2 , y1 = e−β1t1 and y2 = e−β2t2 ,
then

ω0 = (β2 − β1)dt1 ∧ dt2.

Proof. Consider x1, x2, y1 and y2 as functions of t1 and t2. Then

y1y2 = xβ1

1 xβ2

2

and
d(y1y2)

y1y2
=
d(xβ1

1 xβ2

2 )

xβ1

1 xβ2

2

= β1
dx1
x1

+ β2
dx2
x2

= −β1dt1 − β2dt2.
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Similarly,
d(x1x2)

x1x2
= −dt1 − dt2.

Again, as functions of t1 and t2, we have

ω0 =
d(x1x2)

x1x2
∧ d(y1y2)

y1y2
= (dt1 + dt2) ∧ (β1dt1 + β2dt2)

= (β2 − β1)dt1 ∧ dt2.
Now let us write ω0(x1, x2) and ω1(x1, x2), when we want to specify the

dependence on the variables. In fact, both forms depend also on y1 and y2; however,
we will take care of that by choosing a region of integration together with tangential
base points. �

4. Tangential base points

Let x1 = e−t1 and let y1 = e−β1t1 We would like to find an algebraic relation
among the variables x1 and y1 when they approach (0, 0) or when they approach
(1, 1). That occurs when t1 approaches ∞ or when t1 approaches 0, respectively.
If β1 > 1 then

lim
t1→∞

dy1
dx1

= lim
t1→∞

de−β1t1

de−t1
= lim

t1→∞β1
et1

(et1)β1
= 0.

Also

lim
t1→0

dy1
dx1

= lim
t1→0

β1
e−β1t1

e−t1
= β1.

Let
γ1 : (0,∞) → M0,5,

γ1(t1) = (e−t1 , e−β1t1) = (x1, y1).

For a vector v = (a, b), consider [v] = [a : b] as an element of P1.
We have proven the following lemma.

Lemma 3.

(a) limt1→∞
[
dγ1

dt1

]
= [1 : 0],

(b) limt1→0

[
dγ1

dt1

]
= [1 : β1].

Similarly, we have x2 = e−t2 and y2 = e−β2t2 with 0 < β2 < 1. Let

γ2 : (0,∞) → M0,5, γ2(t2) = (e−t2 , e−β2t2) = (x2, y2).

The following lemma could be proven in the same way.

Lemma 4.

(a) limt2→∞
[
dγ2

dt2

]
= [0 : 1],

(b) limt2→0

[
dγ1

dt2

]
= [1 : β2].
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Remark. The paths γ1 and γ2 can be used to define a membrane m = γ1 × γ2 by
taking a Cartesian products of both the domains and the targets

m = γ1 × γ2 : (0, 1)2 → (M0,5)
2
.

The definition of multiple Dedekind zeta values via iterated integrals on a mem-
brane use exactly the membrane m in the case of quadratic fields (see [5]).

Proposition 5. With the above choice of tangential base points, we have∫
0<x1<x3<1; 0<x2<x4<1

ω1(x1, x2) ∧ ω0(x3, x4) = (β2 − β1)
2ζK;C(2).

Proof. The differential forms ω0 and ω1 are closed. Thus we can vary the paths γ1
and γ2 without changing the value of the integral as long as the tangential base
points remain the same. Thus, we can choose the parametrization xi = e−ti and
yi = e−βiti , keeping the tangential points fixed. Using Formulas (2) and (3), we
obtain

d(x3x4)

x3x4
∧ d(y3y4)

y3y4
= (β2 − β1)dt3 ∧ dt4

Similarly, we have that

x1x2
1− x1x2

· y1y2
1− y1y2

·
(
d(x3x4)

x3x4
∧ d(y3y4)

y3y4

)
= f0(C; t1, t2)(β2 − β1)dt1 ∧ dt2.

Thus, with the above choice of tangential base points, we have∫
0<x1<x3<1; 0<x2<x4<1

ω1(x1, x2) ∧ ω0(x3, x4)

= (β2 − β1)
2

∫
t1>t3>0; t2>t4>0

f0(C; t1, t2)dt1 ∧ dt2 ∧ t3 ∧ dt4

= (β2 − β1)
2ζK;C(2). �

Corollary 6. With the above choice of tangential base points, we have

(β2 − β1)
3ζK;C(1, 2)

=

∫
0<x1<x3<x5<1; 0<x2<x4<x6<1

ω1(x1, x2) ∧ ω1(x3, x4) ∧ ω0(x5, x6).

Theorem 7. In Corollary 6, the integral on the right-hand side is a period of a
mixed Tate motive unramified over a real quadratic number ring.

Proof. In this proof we are going to follow closely the paper by Goncharov and
Manin [4]. The period will be a pairing between [ΩA] ∈ GrW12H

6(M0,15 − A) and

[ΔB] ∈
(
GrW0 H6(M0,15 −B)

)∨
associated to a mixed Tate motive H6(M0,15 −

A;B −A ∩B).
Let the (4n)-coordinates x2i−1, y2i−1, z2i−1, w2i−1 for indices i = 1, 2, . . . , n,

be a coordinate of a point on M0,4n+3. One can think of M0,4n+3 as (P1)4n −D
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where the divisor D is obtained by setting any of the coordinates to be 0, 1, ∞ or
setting any two of the coordinates to be equal. Let us define

x2i =
1

z2i−1
and y2i =

1

w2i−1
.

Now the coordinates of any point on M0,4n+3 can be written as (x1, y1, x2, y2, . . . ,
x2n, y2n). In terms of the new coordinates, we have the following components of D:

xi = 0, xi = 1, xi = ∞,

yi = 0, yi = 1, yi = ∞,

x1 = x3, x3 = x5,

y1 = y3, y3 = y5,

x1x2 = 1,

x3x4 = 1,

y1y2 = 1,

y3y4 = 1.

The last four components can be realized in terms of the previous coordinates
as x1 = z1, x3 = z3, y1 = w1 and y3 = w3.

Let n = 3. Let M0,4n+3 = M0,15 be the Deligne–Mumford compactification
of the moduli space of curves of genus 0 with 15 marked points. The ambient space
will be M0,15. From it we will remove a divisor A whose components occur as poles
of the differential forms under the integral. Explicitly, the differential forms are

ω1(x1, x2) =
d(x1x2)

1− x1x2
∧ d(y1y2)

1− y1y2
, (4)

ω1(x3, x4) =
d(x3x4)

1− x3x4
∧ d(y3y4)

1− y3y4
, (5)

ω0(x5, x6) =
d(x5x6)

x5x6
∧ d(y5y6)

y5y6
. (6)

The components of the divisor A consists of the union of

(x1x2 = 1), (y1y2 = 1), (x3x4 = 1), (y3y4 = 1),

(x5 = 0), (x6 = 0), (y5 = 0), (y6 = 0),

(xi = ∞), (yi = ∞), for i = 1, 2, . . . , 6,

together with the exceptional divisors obtained via blow-up at the intersections of
two components that both contain the same variable or the same constant 0, 1 or
∞ on the right-hand side of the equalities.

Thus, the differential form

ΩA = ω1(x1, x2) ∧ ω1(x3, x4) ∧ ω0(x5, x6)

is well defined on M0,15 −A.
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Now we proceed to defining B. The key part will be to include the tangential
base points in the definition of B.

The components of B consist of a union of codimension 1 subvarieties and
codimension 2 subvarieties. The latter ones correspond to the tangential base
points.

The codimension 1 components are the following:

(x1 = 0), (x1 = x3), (x3 = x5), (x5 = 1),

(x2 = 0), (x2 = x4), (x4 = x6), (x6 = 1),

(y1 = 0), (y1 = y3), (y3 = y5), (y5 = 1),

(y2 = 0), (y2 = y4), (y4 = y6), (y6 = 1),

together with the exceptional divisors of the blow-up at an intersection of two
subvarieties such that the two polynomials contain the same variable or the same
constant 0 or 1 on the right-hand side of the equalities, except the following 4
double intersections of components

(x1 = 0) and (y1 = 0),

(x2 = 0) and (y2 = 0),

(x5 = 1) and (y5 = 1),

(x6 = 1) and (y6 = 1),

to which we associate a codimension 2 subvarieties of M0,15, using the tangential
base points.

– For the blow-up at the intersection (x1 = 0) and (y1 = 0) we choose a divisor
B1 on the exceptional divisor defined by [x1 : y1] = [1 : 0]. Note that B1 is of
codimension 2 in M0,15.

– For the blow-up at the intersection (x2 = 0) and (= 0y2) we choose a divisor
B2 on the exceptional divisor defined by [x2 : y2] = [0 : 1].

– For the blow-up at the intersection (x5 = 1) and (y5 = 1) we choose a divisor
B5 on the exceptional divisor defined by [x5 : y5] = [1 : β1].

– For the blow-up at the intersection (x6 = 1) and (y6 = 1) we choose a divisor
B6 on the exceptional divisor defined by [x6 : y6] = [1 : β2].

The tangential base points define the components B1, B2, B5, B6. Thus, (β2 −
β1)

3ζK,C(1, 2) occurs as a period of H6(M0,15 − A;B − A ∩ B) when [ΩA] ∈
GrW12H

6(M0,15 −A) is paired with [ΔB] ∈
(
GrW0 H6(M0,15 −B)

)∨
Note that B1 and B2 are defined over Z, and B5 and B6 are defined over the

ring of integersOK of the fieldK. Each of them is naturally isomorphic toM0,13 as
a variety over OK . Similarly, any intersection of the components of B is isomorphic
over OK to M0,n for some integer n. Using that Hi(M0,n) is a mixed Tate motive
over Spec(OK), we obtain that the motivic cohomology of the components of B
are mixed Tate motives. Using Proposition 1.7 from Deligne and Goncharov, [3],
we conclude that for l �= char(ν) the l-adic cohomology of the reduction of Bj

modulo ν of the motive Hi(Bj) is unramified for any component Bj of B, since Bj
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is isomorphic to M0,n over Spec(OK) for some n. We conclude that for l �= char(ν)
the l-adic cohomology of the reduction modulo any ν ∈ Spec(OK) of the motive
H6(M0,15 − A;B − A ∩ B) is unramified. Thus, H6(M0,15 − A;B − A ∩ B) is a
mixed Tate motive unramified over Spec(OK). �
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Soliton Hierarchies from
Matrix Loop Algebras

Wen-Xiu Ma and Xing Lü

Abstract. Matrix loop algebras, both semisimple and non-semisimple, are
used to generate soliton hierarchies. Hamiltonian structures to guarantee the
Liouville integrability are determined by using the trace identity or the varia-
tional identity. An application example is presented from a perturbed Kaup–
Newell matrix spectral problem associated with the three-dimensional real
special linear algebra.
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1. Introduction

Soliton hierarchies possessing Hamiltonian structures or bi-Hamiltonian structures
provide examples of integrable systems. Within given matrix loop algebras, zero
curvature equations associated with matrix spectral problems (or equivalently, Lax
pairs) are essential objects in generating soliton hierarchies and their Hamiltonian
structures (see, e.g., [1–7]).

Among celebrated examples are the Korteweg–de Vries hierarchy [8], the
Ablowitz–Kaup–Newell–Segur hierarchy [9], the Dirac hierarchy [10], the Kaup–
Newell hierarchy [11], the Wadati–Konno–Ichikawa hierarchy [12] and the Heisen-
berg hierarchy [13]. All those soliton hierarchies are generated from the three-
dimensional real special linear algebra sl(2,R). This Lie algebra is simple and has
the basis

e1 =

[
1 0

0 −1

]
, e2 =

[
0 1

0 0

]
, e3 =

[
0 0

1 0

]
, (1)

with the standard commutation relations:

[e1, e2] = 2e2, [e2, e3] = e1, [e3, e1] = 2e3. (2)

Its derived algebra is itself, and so, it is 3-dimensional, too. The only other three-
dimensional real Lie algebras with a three-dimensional derived algebra is the spe-
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cial orthogonal algebra so(3,R), whose basis {e1, e2, e3} satisfying the circular com-
mutation relations: [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2, is called a standard
basis. Those two Lie algebras have been widely used in generating soliton hi-
erarchies in integrable systems (see, e.g., [8–16] using sl(2,R) and [17–21] using
so(3,R)).

For a given matrix Lie algebra g, its loop algebra g̃ adopted in this paper is
defined as

g̃ =
{∑

i≥0

Miλ
n−i

∣∣Mi ∈ g, i ≥ 0, n ∈ Z
}
, (3)

that is, the space of all Laurent series in λ with coefficients in g and a finite regular
part. Particular examples of a matrix loop algebra contain the linear combinations:
λmd1f1 + λnd2f2 + λld3f3 with arbitrary integers m,n, l, real constants d1, d2, d3
and elements f1, f2, f3 in g. Matrix loop algebras provide a structural basis for our
study of soliton hierarchies.

Let us also recall the Liouville integrability of PDEs (see, e.g., [14, 15, 21]).
Let x = (x1, . . . , xp) be the vector of spatial variables and u = (u1, . . . , uq)T the
vector of dependent variables. A Hamiltonian system of evolutionary PDEs is

ut = J
δH
δu

, u = u(x, t), (4)

where J = J(x, t, u) is a Hamiltonian operator and δ
δu stands for the variational

derivative [22]. A conserved functional of a Hamiltonian system (4) is a functional
T =

∫
T dx which determines a conservation law of (4): DtT + DivX = 0, in

which Div denotes spatial divergence. For a given differential function F , its cor-
responding one-form is given by

dF :=

p∑
i=1

∂F

∂xi
dxi +

∂F

∂t
dt+

q∑
α=1

∑
#L≥0

∂F

∂uαL
duαL,

where if #L = 0, then uαL = uα, and if #L = k ≥ 1, then uαL = ∂kuα

∂xl1 ···∂xlk
, for

L = (l1, . . . , lk), 1 ≤ li ≤ p, 1 ≤ i ≤ k, with #L = l1 + · · ·+ lk.

Definition 1. Let I be a set of integers and r ≥ 1 a natural number. We say that a
set of r-tuples of differential functions {Sn = (S1

n, . . . , S
r
n)

T |n ∈ I} is independent,
if all r-tuples of one-forms, dSn = (dS1

n, . . . , dS
r
n)

T , n ∈ I, are linearly independent
at every point in the infinite jet space. A set of conserved functionals {Hn |n ∈
I} of a Hamiltonian system (4) is said to be independent, if all characteristics
{J δHn

δu |n ∈ I} of the associated Hamiltonian vector fields are independent.

By the differential order of an r-tuple S of differential functions, we mean the
order of the highest-order derivative of u with respect to x in S. It is obvious to
see that if a set of r-tuples of differential functions has distinct differential orders,
then it is independent.

Definition 2. A Hamiltonian system of evolutionary PDEs, (4), is called to be
Liouville integrable, if there exists infinitely many conserved functionals {Hn}∞n=0,
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which are in involution with respect to the Poisson bracket:

{Hm,Hn}J :=

∫ (
δHm

δu

)T

J
δHn

δu
dx = 0, m, n ≥ 0, (5)

and the characteristics of whose associated Hamiltonian vector fields

Kn := J
δHn

δu
, n ≥ 0, (6)

are independent.

In this paper, we would like to focus on an application of the matrix loop

algebra s̃l(2,R) within the zero curvature formulation. We will introduce a per-

turbed Kaup–Newell matrix spectral problem, based on s̃l(2,R), and construct
its associated integrable Hamiltonian hierarchy through zero curvature equations.
The corresponding Hamiltonian structures will be furnished by using the trace
identity, and all systems in the resulting perturbed Kaup–Newell hierarchy will be
shown to be Liouville integrable. A few concluding remarks will be given in the
last section.

2. Zero curvature formulation

Lax proposed an operator pair approach for studying the Korteweg–de Vries equa-
tion [8], and such an involved pair is nowadays called a Lax pair. It is realized (see,
e.g., [23, 24]) that a Lax pair presentation is generally equivalent to a zero cur-
vature presentation. We say that an integrable system of PDEs possesses a zero
curvature representation, if it can be generated from a zero curvature equation

Ut − Vx + [U, V ] = 0, (7)

where x, t ∈ R, and the two matrices U and V , called a spectral matrix and a Lax
matrix (or operator), are taken from a given matrix loop algebra [3, 25].

As soon as a spectral matrix U is well selected, in order to present a soliton
hierarchy, we start to solve a stationary zero curvature equation

Wx = [U,W ] (8)

in g̃. Then, introduce a series of Lax matrices

V [m] = (λmW )+ +Δm, Δm ∈ g̃, m ≥ 0, (9)

where P+ denotes the polynomial part of P in λ, such that the corresponding zero
curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0, (10)

yield a hierarchy of soliton equations

utm = Km, m ≥ 0. (11)

The structure of W often tells how to determine the modification terms Δm, m ≥
0. The associated Lax pairs are starting points to find soliton solutions by the
inverse scattering transform [1, 2].
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One of our tasks in the study of integrable systems is to construct Hamilton-
ian structures or bi-Hamiltonian structures [26],

utm = Km = J
δHm

δu
=M

δHm−1

δu
, m ≥ 1, (12)

which naturally generate a hereditary recursion operator Φ = MJ−1, and thus,
infinitely many commuting conserved functionals and symmetries [27, 28]. The
basic tool for constructing Hamiltonian functionals is the trace identity in the
semisimple case [14]:

δ

δu

∫
tr

(
∂U

∂λ
W

)
dx = λ−γ ∂

∂λ
λγtr

(
∂U

∂u
W

)
, γ = −λ

2

d

dλ
ln |tr(W 2)|, (13)

or generally, the variational identity in the non-semisimple case [29]:

δ

δu

∫ 〈
∂U

∂λ
,W

〉
dx = λ−γ ∂

∂λ
λγ

〈
∂U

∂u
,W

〉
, γ = −λ

2

d

dλ
ln |〈W,W 〉|, (14)

where 〈·, ·〉 is a symmetric, non-degenerate and ad-invariant bilinear form over the
matrix loop algebra g̃.

3. An example: a perturbed integrable Kaup–Newell hierarchy

3.1. A perturbed Kaup–Newell hierarchy

We apply the zero curvature formulation to present a perturbed integrable Kaup–
Newell hierarchy. We start with a new 2× 2 matrix spectral problem:

φx = Uφ = U(u, λ)φ, U =

[
λ+ αp λp

q −λ− αp

]
, u =

[
p

q

]
, (15)

where λ is the spectral parameter and α is a fixed constant. If α = 0, then (15)
reduces to the standard Kaup–Newell spectral problem [11], and thus, (15) is
called a perturbed Kaup–Newell spectral problem and the corresponding soliton
hierarchy is called a perturbed Kaup–Newell hierarchy.

Once a matrix spectral problem is chosen, it is inherently feasible to calculate
the corresponding soliton hierarchy. First, we solve the stationary zero curvature

equation (8) for W ∈ s̃l(2,R). When W is assumed to be

W =

[
a b

λ−1c −a

]
, (16)

the stationary zero curvature equation (8) becomes

ax = pc− qb, bx = 2λb− 2λpa+ 2αpb, cx = −2λc+ 2λqa− 2αpc. (17)

This leads to

pcx + qbx = −2λ(pc− qb)− 2αp2c+ 2αpqb. (18)
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Further, expand a, b and c as the Laurent series in λ:

a =
∑
i≥0

aiλ
−i, b =

∑
i≥0

biλ
−i, c =

∑
i≥0

ciλ
−i, (19)

and take the initial data

a0 = 1, b0 = p, c0 = q, (20)

to fix a solution to the equations from the highest powers of λ in (17):

a0,x = pc0 − qb0, b0 = pa0, c0 = qa0.

Then, based on (18), we see that the system (17) gives rise to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ai+1,x = −1

2
(pci,x + qbi,x)− αp2ci + αpqbi,

bi+1 =
1

2
bi,x + pai+1 − αpbi,

ci+1 = −1

2
ci,x + qai+1 − αpci,

i ≥ 0. (21)

While using the above recursion relations, we impose the condition that the con-
stants of integration take the value of zero:

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1, (22)

to uniquely determine the sequence of {ai, bi, ci| i ≥ 1}. This way, the first two sets
can be worked out:

a1 = −pq
2
, b1 =

1

2
(px − 2αp2 − p2q), c1 = −1

2
(qx + 2αpq + pq2);

a2 = −1

4
(qpx − pqx) + αp2q +

3

8
p2q2,

b2 =
1

4
pxx − 3

4
qppx − 3

2
αppx + p3

(
α2 +

3

2
αq +

3

8
q2
)
,

c2 =
1

4
qxx +

3

4
qpqx +

1

2
αqpx + αpqx + p2q

(
α2 +

3

2
αq +

3

8
q2
)
.

We saw above the localness of the first three sets of {ai, bi, ci| i ≥ 1}. This
is not an accident, and the functions ai, bi, ci, i ≥ 1, are all local, indeed. We can
verify this fact as follows. First from Wx = [U,W ], we get

d

dx
tr(W 2) = 2tr(WWx) = 2tr(W [U,W ]) = 0,

and so, due to tr(W 2) = 2(a2 + λ−1bc), we can compute that

a2 + λ−1bc = (a2 + λ−1bc)|u=0 = 1, (23)

the second step of which follows from the initial data in (20) and the recursion
relations in (21). Then, by using the Laurent expansions in (19) and noting the
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initial data in (20) again, balancing the coefficients of λi in (23) for each i ≥ 1
yields

ai = −1

2

⎛⎝ ∑
k+l=i, k,l≥1

akal +
∑

k+l=i−1, k,l≥0

bkcl

⎞⎠ , i ≥ 1. (24)

Based on this recursion relation (24) and the last two recursion relations in (21),
applying the mathematical induction finally tells that all functions ai, bi, ci, i ≥ 1,
are differential polynomials in p and q, i.e., they are all local; and that for each
i ≥ 2, the differential orders of the differential functions ai, bi and ci are i− 2, i− 1
and i− 1, respectively.

Now as usual, we introduce

V [m] = λ(λmW )+ + δme1, m ≥ 0, (25)

where δm are differential functions to be determined later. A direct computation

shows that V
[m]
x − [U, V [m]] is equal to[

δm,x 2λ(bm+1 − pam+1 + pδm)

2(−cm+1 + qam+1 − qδm) −δm,x

]
. (26)

Therefore, the corresponding zero curvature equations (10) precisely present{
αptm = δm,x, ptm = 2(bm+1 − pam+1 + pδm),

qtm = 2(−cm+1 + qam+1 − qδm),
m ≥ 0. (27)

To satisfy the above third equation, we choose, based on (21), that

δm = αbm, m ≥ 0, (28)

and then, all the systems in (27) determine a soliton hierarchy

utm = Km =

[
p

q

]
tm

=

[
bm,x

cm,x + 2αpcm − 2αqbm

]
, m ≥ 0, (29)

which is the required perturbed Kaup–Newell hierarchy. The first nonlinear system
in this perturbed hierarchy is given by

ut1 =

[
p

q

]
t1

=

[
1
2 (pxx − 2ppxq − p2qx − 4αppx)

− 1
2qxx − 1

2pxq
2 − pqqx − 2α(pxq + pqx)

]
. (30)

3.2. Hamiltonian structures and Liouville integrability

We shall show that all systems in the perturbed Kaup–Newell hierarchy (29) are
Liouville integrable. Towards this end, let us first establish Hamiltonian structures
for the perturbed hierarchy (29) by using the trace identity (13).

In the perturbed Kaup–Newell case discussed above, the trace identity (13)
reads

δ

δu

∫
(2a+ λ−1pc) dx = λ−γ ∂

∂λ
λγ

[
2αa+ c

b

]
. (31)
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Balancing the coefficients of λ−m−1 for eachm ≥ 0 in this equality tells that γ = 0
and that

δ

δu
Hm =

[
2αam + cm

bm

]
, m ≥ 0, (32)

with the Hamiltonian functionals being defined by

H0 =

∫
(2αp+ pq) dx, Hm =

∫ (
−2am+1 + pcm

m

)
dx, m ≥ 1. (33)

It follows now that the hierarchy (29) has the Hamiltonian structures:

utm = Km = J
δHm

δu
, J =

[
0 ∂

∂ 0

]
, m ≥ 0. (34)

From the recursion relations in (21), we can obtain

Km+1 = ΦKm, m ≥ 0, (35)

where Φ is the recursion operator

Φ =

[
1
2∂ − 1

2∂p∂
−1q − α∂p∂−1 − 1

2∂p∂
−1p

− 1
2∂q∂

−1q − α∂q∂−1 − αq − 1
2∂ − 1

2∂q∂
−1p− αp

]
. (36)

We readily check that JΨ = ΦJ , where Ψ is the adjoint operator of Φ, and thus,
all systems, except the first one, in the perturbed Kaup–Newell hierarchy (29) are
bi-Hamiltonian:

utm = Km = J
δHm

δu
=M

δHm−1

δu
, m ≥ 1, (37)

where the second Hamiltonian operator is defined by

M = ΦJ =

[
− 1

2∂p∂
−1p∂ 1

2∂
2 − 1

2∂p∂
−1q∂ − α∂p

− 1
2∂

2 − 1
2∂q∂

−1p∂ − αp∂ − 1
2∂q∂

−1q∂ − α∂q − αq∂

]
.

Now from an observation of the Hamiltonian structures presented in (34) and
the differential orders of the sequence {ai, bi, ci| i ≥ 1} shown in the last subsection,
it follows that the perturbed Kaup–Newell hierarchy (29) is Liouville integrable.
Namely, every system in the perturbed hierarchy (29) possesses infinitely many
independent commuting conserved functionals:

{Hk,Hl}J :=

∫ (δHk

δu

)T
J
δHl

δu
dx = 0, k, l ≥ 0, (38)

and infinitely many independent commuting symmetries:

[Kk,Kl] := K ′
k(u)[Kl]−K ′

l(u)[Kk] = J
δ

δu
{Hk,Hl}J = 0, k, l ≥ 0, (39)

where K ′ is the Gateaux derivative. These commuting relations are also conse-
quences of the Virasoro algebra of Lax matrices (see, e.g., [30] for details).
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4. Concluding remarks

Matrix loop algebras were used to search for integrable Hamiltonian equations,

which come in hierarchies. Within the matrix loop algebra s̃l(2,R), the Kaup–
Newell spectral problem was perturbed by linear perturbation, and a hierarchy of
associated integrable bi-Hamiltonian equations was successfully generated. Their
Hamiltonian structures and Liouville integrability were established by the trace
identity.

The spectral problem (15) is a special reduction of general matrix Lax pairs
associated with semisimple Lie algebras (see, e.g., [3]–[7]). However, determination
of all integrable reductions within the category of semisimple Lie algebras is one
of the most important problems in the theory of integrable system [2], and it is
still very interesting to see concrete examples of soliton hierarchies of integrable
Hamiltonian equations. Among typical discussed spectral matrices associated with

s̃l(2,R) and s̃o(3,R) are the following three cases:

U(u, λ) = λe1 + pe2 + qe3, λ
2e1 + λpe2 + λqe3, λe1 + λpe2 + λqe3,

where u = (p, q)T and e1, e2, e3 are three matrices in a standard basis. These corre-
spond to the Ablowitz–Kaup–Newell–Segur type hierarchy [17], the Kaup–Newell
type hierarchy [18] and the Wadati–Konno–Ichikawa type hierarchy [19], when the
underlying matrix loop algebra is s̃o(3,R). In those three examples, the vector u
consists of only two dependent variables, p and q. There are various examples of
soliton hierarchies with three or more dependent variables (see, e.g., [22, 25, 31]).

We also point out that given initial matrix loop algebras, it still requires a
considerable amount of time to compute soliton hierarchies within the zero cur-
vature formulation, and it is much more complicated in the case of higher spatial
dimensions. The study of integrable couplings [22], associated with non-semisimple
matrix loop algebras, provides specific examples of soliton hierarchies generated
from higher-order matrix spectral problems. The resulting soliton hierarchies can
be solved by applying Darboux transformations associated with the underlying ma-
trix spectral problems (see, e.g., [32, 33]), possibly yielding lump solutions [34, 35].
It is, however, known that the variational identity [25, 29] does not present Hamil-
tonian structures for the bi-integrable couplings:

ut = K(u), vt = K ′(u)[v], wt = K ′(u)[w],

where K ′ stands for the Gateaux derivative. It remains open how to generalize
the variational identity such that we can furnish Hamiltonian structures for such
integrable couplings.
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On the Ground State Energy
of the Delta-function Fermi Gas II:
Further Asymptotics

Craig A. Tracy and Harold Widom

Abstract. Building on previous work of the authors, we here derive the weak
coupling asymptotics to order γ2 of the ground state energy of the delta-
function Fermi gas. We use a method that can be applied to a large class of
finite convolution operators.
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1. Introduction

One of the most widely studied Bethe Ansatz solvable models is the quantum,
many-body system in one-dimension with delta-function two-body interaction [8]
with Hamiltonian

HN = −
N∑
j=1

∂2

∂x2j
+ 2c

∑
i<j

δ(xi − xj).

Here N is the number of particles and 2c is the coupling constant. A basic quantity
is the ground state energy per particle in the thermodynamic limit: If E0(N,L) is
the ground state energy for the finite system of N particles on a circle of length
L, then in the limit N → ∞, L → ∞, such that ρ := N/L is fixed, the ground
state energy per particle is

ε0 := lim
E0(N,L)

N
.

This work was supported by the National Science Foundation through grants DMS–1207995 (first
author) and DMS–1400248 (second author).
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Lieb and Liniger [8] showed, for particles with Bose statistics and repulsive inter-
action (c > 0), that eB := ε0/ρ

2 is a function only of γ := c/ρ. To state their
result, we define the Lieb–Liniger operator

Lκf(x) :=
κ

π

∫ 1

−1

f(y)

(x− y)2 + κ2
dy, −1 < x < 1. (1)

If fB(x;κ) solves the Lieb–Liniger integral equation

f(x)− Lκf(x) = 1, (2)

then eB(γ) is determined, by elimination of κ, from the relations

κ

γ
=

1

2π

∫ 1

−1

fB(x;κ) dx, eB(γ) =
1

2π

(γ
κ

)3
∫ 1

−1

x2fB(x;κ) dx.

The asymptotics of eB(γ) as γ → 0 have been derived in the literature. See [9] and
references therein.

A natural question to ask is how the problem changes when the particles obey
Fermi statistics. The generalization of Bethe Ansatz to this case was solved by
Gaudin [2, 3] and Yang [12]. For spin-1/2 particles with attractive interaction (c <
0) with total spin zero, the ground state energy per particle in the thermodynamic
limit is given by [3]

ε0
ρ2

= −γ
2

4
+ eF (γ)

where γ = |c|/ρ and the equation is now the Gaudin integral equation

f(x) + Lκf(x) = 1. (3)

If fF (x;κ) solves this equation, then eF (γ) is determined by elimination of κ from
the equations

κ

γ
=

2

π

∫ 1

−1

fF (x;κ) dx, eF (γ) =
2

π

(γ
κ

)3
∫ 1

−1

x2fF (x;κ) dx. (4)

Equation (3) also arises in the computation of the charge Q on each of two
coaxial conducting discs of radius one separated by a distance κ and each main-
tained at the same unit potential. For the Lieb–Liniger equation (2), the discs are
maintained at equal but opposite potentials. In both cases the charge Q is given
by a constant times the zeroth moment of f . For the case of equal potentials (the
Fermi case), the charge is given by

Q =
1

π

∫ 1

−1

fF (x;κ) dx, (5)

and Leppington and Levine [7] proved rigorously that as κ→ 0,

Q =
1

π
+

κ

2π2

(
log κ−1 + log π + 1

)
+ o(κ). (6)
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The authors derived this by finding an approximate solution of the related bound-
ary value problem. In later work, Atkinson and Leppington [1] analyzed the integral
equation directly and reproduced this result.

As for the ground state energy, Gaudin [3] used an approximate solution to
(3) to obtain

eF (γ) =
π2

12
− γ

2
+ o(γ). (7)

Guan and Ma [4] derived (7) with the error bound O(γ2), although Krivnov and
Ovchinnikov [6] had predicted earlier that the term γ2 log2 γ−1 appears. Using
different methods to analyze (3), Iida and Wadati [5] found

eF (γ) =
π2

12
− γ

2
+
γ2

6
+ o(γ2). (8)

The methods used to derive the above-mentioned results for eF (γ) were
heuristic. In [10] we applied a rigorous analysis to the integral equation (3) to
derive the first-order results (6) and (7). It was indicated there that one could in
principle derive further asymptotics, and this is what we do here.

We use the notation O(κn+) to denote a bound O(κn logm κ−1) for some
m ≥ 0, and similarly for O(γn+). What we have found is that as κ→ 0,

Q =
1

π
+

κ

2π2
(log κ−1 + log π + 1) +

κ2

4π3
(log κ−1 + log π + 1/2) +O(κ3+), (9)

and as γ → 0,

eF (γ) =
π2

12
− γ

2
+
γ2

6
+O(γ3+), (10)

thus confirming the Iida–Wadati result (8).
The derivation of these asymptotics involved some straightforward but te-

dious computations that were done by Maple, and so we cannot claim complete
rigor. Until the end we shall present the results of only a few of the preliminary
computations; but we shall get to the points where it is clear that those compu-
tations were routine. The reader, if he or she so chooses, can check the outcomes
that we exhibit.

In the next section we summarize the results of [10]. In the following sections
we show how to go further.

2. Asymptotic solution of the Gaudin equation

The method used in this section to analyze the Gaudin operator will be seen to be
quite general and applicable to a large class of finite convolution operators. It was
used earlier by one of the authors [11] to derive asymptotics for Toeplitz matrices,
which are the discrete analogue of convolution operators.

We first replace the operator Lκ with kernel

κ

π

1

(x− y)2 + κ2
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on the fixed interval (−1, 1) by the operator with kernel

1

π

1

(x− y)2 + 1

on the variable interval (−1/κ, 1/κ). For convenience we set r = 2/κ and consider
the convolution equation

f(x)

2
+

1

2π

∫ r/2

−r/2

f(y)

(x − y)2 + 1
dy = 1, −r/2 < x < r/2.

(The factors 1/2 here avoid factors
√
2 later.)

The solution fF (x;κ) of (3) and our f(x) are related by f(rx/2) = 2 fF (x;κ).
From (5) we get

Q =
1

rπ

∫ r/2

−r/2

f(x) dx =
κ

2π

∫ r/2

−r/2

f(x) dx. (11)

From the first part of (4) we find that

γ =

(
1

π

∫ r/2

−r/2

f(x) dx

)−1

=
1

2
κQ−1. (12)

From (4) and a little computation we find that

eF (γ) = π2

∫ r/2

−r/2

x2 f(x) dx(∫ r/2

−r/2

f(x) dx

)3 . (13)

Now we go to our integral equation. If we extend the function f(x) to be zero
outside the interval (−r/2, r/2) then the equation may be written∫ ∞

−∞
k(x− y) f(y) dy = g(x), x ∈ (−r/2, r/2),

where

k(x) =
1

2
δ(x) +

1

2π

1

x2 + 1
, g(x) = χ(−r/2,r/2)(x).

The Fourier transforms1 σ(ξ) of k and ĝ(ξ) of g are given by

σ(ξ) = (1 + e−|ξ|)/2, ĝ(ξ) = 2 sin(rξ/2)/ξ. (14)

If f̂ is the Fourier transform of f then σf̂ − ĝ is the Fourier transform of an
L1 function supported outside the interval (−r/2, r/2). Such a function may be
written as eirξ/2 h+(ξ) + e−irξ/2 h−(ξ), where h± is the Fourier transform of an

1In our notation, the x → ξ Fourier transform has eixξ in the integrand; the ξ → x inverse
Fourier transform has e−ixξ in the integrand and the factor 1/2π
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L1 function supported on R±. Thus, by taking Fourier transforms we may rewrite
the equation as

σf̂ = ĝ + eirξ/2 h+ + e−irξ/2 h−.

We consider h± the unknown functions; once they are determined, so is f̂ .
We denote by ψ → ψ± the conjugate by the Fourier transform of multiplica-

tion by χR± , the characteristic functions of R±. These are given by

ψ±(ξ) =
1

2
ψ(ξ)± 1

2πi

∫ ∞

−∞

ψ(η)

η − ξ
dη,

where the integral is a principal value. The functions extend analytically to the
upper and lower half-planes by the formulas

ψ±(ξ) = ± 1

2πi

∫ ∞

−∞

ψ(η)

η − ξ
dη, (15)

where ξ is in the upper half-plane for ψ+ and the lower half-plane for ψ−.
The Wiener–Hopf factors of σ, which confusingly we denote by σ±, are

given by

σ± = e(log σ)± ,

where the ± on the right are the projection operators defined above. The func-
tion log σ is a constant plus the Fourier transform of an L1 function. It follows
that σ± and their reciprocals are constants plus Fourier transforms of L1 func-
tions supported on R±. It follows that by changing notation we may replace our
equation by

σ−σ+f̂ = ĝ + eirξ/2 σ+ h
+ + e−irξ/2 σ−h−. (16)

The factors are given explicitly by [1]

σ+(ξ) = π1/2 exp

{
ξ

2πi

[
log(−iξ)− log 2π − 1

]}
Γ

(
1

2
+

ξ

2πi

)−1

,

σ−(ξ) = π1/2 exp

{
− ξ

2πi

[
log(iξ)− log 2π − 1

]}
Γ

(
1

2
− ξ

2πi

)−1

.

For ξ in the upper resp. lower half-plane, −iξ resp. iξ lies in the right half-plane
and the principal values of the logarithms are taken.

Since σ±(0) = 1 and ĝ(0) = r, we have∫ r/2

−r/2

f(x) dx = f̂(0) = r + h+(0) + h−(0), (17)

which by (11) determines Q from h±(0). Observe also that∫ r/2

−r/2

x2 f(x) dx = −f̂ ′′(0)

= f̂(0)/2− 2× the coefficient of ξ2 in the expansion of σ(ξ)f̂ (ξ).

(18)

So the goal is to find the coefficients in the expansions of h±(ξ) as ξ → 0.
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Here is how we do this. The inverse Fourier transform of f̂ is supported

on (−r/2,∞), so the inverse Fourier transform of eirξ/2σ+f̂ is supported on R+.
Therefore if we multiply (16) by eirξ/2/σ− and apply the minus operator we get

0 = (eirξ/2 σ+ f̂)− =

(
eirξ/2 ĝ

σ−

)
−
+

(
eirξ

σ+
σ−

h+
)

−
+ h−.

Similarly

0 =

(
e−irξ/2 ĝ

σ+

)
+

+ h+ +

(
e−irξ σ−

σ+
h−

)
+

.

Define the operators U and V by

Uu− =

(
e−irξ σ−

σ+
u−

)
+

, V v+ =

(
eirξ

σ+
σ−

v+
)

−
. (19)

The operator U takes Fourier transforms of functions in L1(R−) to Fourier trans-
forms of functions in L1(R+), and V does the opposite. If we define

G− = −
(
eirξ/2 ĝ

σ−

)
−
, G+ = −

(
e−irξ/2 ĝ

σ+

)
+

, (20)

our two relations may be written

h− + V h+ = G−, h+ + Uh− = G+.

The solution is given, formally, by⎛⎝ h−

h+

⎞⎠ =

⎛⎝I +
⎛⎝ 0 V

U 0

⎞⎠⎞⎠−1 ⎛⎝ G−

G+

⎞⎠
=

∞∑
j=0

(−1)j

⎛⎝ 0 V

U 0

⎞⎠j ⎛⎝ G−

G+

⎞⎠ .

(21)

This is quite general. For the Gaudin equation we have a precise statement.
Using a different notation than in [10], we define F+ to be those families of Fourier
transforms of functions in L1(R+), depending on the parameter r, for which there
is an asymptotic expansion as ξ → 0,

ϕ(ξ) ∼
∑

0≤m≤n

cn,m,r ξ
n logm(−iξ),

where each cn,m,r = O(rn+) as r → ∞. Similarly we define F−. It was shown
in [10] that G± and h± belong to F±, and that truncating the series in (21) at
j = k − 1 leads to an error in h± belonging to r−kF±. (In other words the error
equals r−k times a function in F±.)

Taking k = 1 leads to the conclusion that if in (16) we replace h± on the
right side by G± the error in the constant term is O(r−1+) and the error in the
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coefficient of ξ2 is O(r1+). This implies2 that the error in f(0) is O(r−1+) and the
error in f ′′(0) is O(r1+). Having computed the coefficients in the expansions of
G± to the right order, this led us to the first-order asymptotics (6) and (7).

Here we truncate the series at j = 1, in other words we make the replacements

h− → G− − V G+, h+ → G+ − UG−,

knowing that this will lead to an error O(r−2+) in f(0) and an error O(r0+) in
f ′′(0),3 which will give the next-order asymptotics of Q and of eF (γ).

3. Expansion of G+(ξ) near ξ = 0

We do this differently than in [10]. From (14), (15), and (20), we see that the
expression for G+(ξ) for ξ in the upper half-plane is

G+(ξ) =
1

2π

∫ ∞

−∞

1− e−irη

η σ+(η)

dη

η − ξ
.

Using σ+(0) = 1 we write this as the difference

1

2π

∫ ∞

−∞

1

η

[
1

σ+(η)
− 1

]
dη

η − ξ
− 1

2π

∫ ∞

−∞

1

η

[
e−irη

σ+(η)
− 1

]
dη

η − ξ
.

For the first integral we push the contour up. We get contributions from the pole
at η = ξ, with the result

i

ξ

(
1

σ+(ξ)
− 1

)
.

For the second integral we use a trick from [10]. We swing the R+ part of the
contour down to the right side of the negative imaginary axis and the R− part of
the contour down to the left side of the negative imaginary axis, making there the
substitution η = −ix. We use 1/σ+ = σ−/σ and that the analytic continuation of
1/σ(η) to the right side of the imaginary axis minus its analytic continuation to
the left side of the imaginary axis equals

2

1 + eix
− 2

1 + e−ix
= −2i tan(x/2).

Thus the second integral with its factor becomes∫ ∞

0

e−rx

x
ψ(x)

dx

x− iξ
, ψ(x) =

1

π
σ−(−ix) tan(x/2).

(This is a principal value integral at each odd multiple of π. The contributions
of the integrals over the little semicircles on either side of the imaginary axis
cancel each other.) Observe that with ξ in the upper half-plane −iξ is in the right
half-plane.

2We use that F± is closed under multiplication by e±irξ/2 or σ±(ξ).
3We refer to these as “acceptable errors”.
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We have obtained the representation

G+(ξ) =
i

ξ

(
1

σ+(ξ)
− 1

)
−
∫ ∞

0

e−rx

x
ψ(x)

dx

x− iξ
. (22)

We are interested first in the first few terms in the expansion of this as ξ → 0,
and for k ≤ 2 we allow an error O(rk−2+) in the coefficient of terms involving ξk.4

The expansion of the first summand can be found and has terms independent of
r. For the integral, if we replace ψ(x) by the terms up to powers less than N of
its expansion near x = 0 the error will be an integral in which ψ(x) is replaced by
O(xN+).5 In the ξ-expansion of the resulting integral the coefficients involving ξk

would be O(r−N+k+1+). This shows that with acceptable errors we allow in the
coefficients we may replace ψ(x) by the terms in its expansion up to powers less
than three, and these are

x

2π
− x2

4π2
(log x−1 + log(π/2)− γE + 1).

(Here and below γE denotes the Euler gamma.) From the general formula∫ ∞

0

e−x xa−1 dx

x+ z
= Γ(a) ez Ea(z), (23)

we see that the integrals that arise can be expressed in terms of generalized ex-
ponential integrals (and a derivative of one of them) evaluated at −irξ, and their
expansions are known.

4. Expansion of V G+(ξ) near ξ = 0

From (15) and the definition of the operator V in (19) we have

V G+(ξ) = − 1

2πi

∫ ∞

−∞
eirη

σ+(η)

σ−(η)
G+(η)

dη

η − ξ
,

where ξ is now in the lower half-plane. We use the same trick as in the last section.
We rewrite σ+/σ− as σ2

+/σ and swing the half-lines up to the imaginary axis in
the upper half-plane, where we make the substitution η = iy. The result is

V G+(ξ) =

∫ ∞

0

e−ry ϕ(y)G+(iy)
dy

y + iξ
, ϕ(y) = − 1

π
σ+(iy)

2 tan(y/2).

Now iξ is in the right half-plane.

4Recall that the expansion of G+(ξ) involves powers of ξ times powers of logarithms. Powers of
logarithms also occur in the expansion of ψ(x),
5The reader may be concerned about the factor tan x/2 in ψ(x). A representation using a some-
what different contour resolves this issue. We deform the original contour to the left and right
parts of the negative imaginary axis only down to −iπ/2, say, and then slightly off-vertical rays
from −iπ/2 downward. There are no singularities on the modified contour. The integrals over
the rays are analytic in ξ near zero with the coefficient of each power of ξ exponentially small in

r. The upper limit on the integral in (22) becomes π/2, which does not affect the argument that
follows.
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In formula (22) G+(ξ) is given as the sum of two terms, the first of which is
independent of r. Its contribution to the integral for V G+(ξ) is like the integral
in (22) and we can treat it analogously. In this case for the error we accept in the
coefficients we may replace ϕ(y) times the first term in (22) (with ξ replaced by
iy) by the terms in its expansion up to powers less than two. Thus we may replace
this product by the single term

− 1

4π2
(log y−1 + log(π/2)− γE + 1) y.

Again the corresponding integral over y is expressible in terms of exponential
integrals.

There remains the double integral∫ ∞

0

e−ry ϕ(y)
dy

y + iξ

∫ ∞

0

e−rx

x
ψ(x)

dx

x+ y
.

As in footnote 5 we may replace the upper limits of integration by π/2, so the
integrands have no singularities. Now, if replace ψ(x) in the inner integral by the
terms up to powers less than N of its expansion near x = 0 the error in the
inner integral can be seen to be O(min(yN−1+, r−N+1+)). The resulting double
integral would be a function of ξ for whose expansion the coefficient of ξk (for
fixed k < N) would be O(r−N+k+). So given our acceptable error we may replace
ψ(x) by finitely many terms in its expansion. Then we may replace ϕ(y) by finitely
many terms in its expansion. (And we may replace the upper limits by ∞.)

To see what the individual summands will be we consider the integral∫ ∞

0

e−ry yp
dy

y + iξ

∫ ∞

0

e−rx xq
dx

x+ y

with p ≥ 1, q ≥ 0. (When logarithms appear we differentiate some number of
times with respect to p or q.) We make the variable changes y → y/r, x → x/r
and set X = irξ. We obtain, using (23),

r−p−q

∫ ∞

0

e−y yp
dy

y +X

∫ ∞

0

e−x xq
dx

x+ y

= r−p−q Γ(q + 1)

∫ ∞

0

ypEq+1(y)
dy

y +X
.

From the expansion of Eq+1(y) as y → 0 we see that there is an expansion as
X → 0 with summands that are nonnegative powers times logarithms. In terms
of ξ (recall that X = irξ), the summands involving ξk have coefficients O(rk+).
Recalling that r−p−q multiplies this integral, and the errors in the coefficients that
are acceptable, we see that we need consider only the term with p = 1, q = 0. The
integral, which eventually gets the factor −1/(4π2r), becomes∫ ∞

0

y E1(y)
dy

y +X
= X

∫ ∞

0

E1(Xy)
y dy

y + 1
.
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Integrating by parts using E′
1(y) = −y−1 e−y gives

1−X

∫ ∞

0

e−Xy y−1 log(y + 1) dy. (24)

The following may be a needlessly complicated way of finding the asymptotics
of this as X → 0. If we call the last integral I(X) then

I ′(X) = −
∫ ∞

0

e−X y log(1 + y) dy

=
d

ds

∫ ∞

0

e−X y(1 + y)−s dy
∣∣∣
s=0

= eX
d

ds
Es(X)

∣∣∣
s=0

.

From the known expansion of Es(X) we find that as X → 0,

I ′(X) = X−1(logX + γE) + logX − 1 + γE +O(X1+).

Integrating from 1 to X gives

I(X) =
1

2
log2X + γE logX + C +X logX − (2 − γE)X +O(X2+),

for some constant C. To evaluate C we use

−X−1(logX + γE) =

∫ ∞

0

e−Xy log y dy,

and integrate from X to 1 to obtain

1

2
log2X + γE logX =

∫ ∞

0

e−Xy − e−y

y
log y dy.

Subtracting this from I(X) and taking the X → 0 limit gives

C =

∫ ∞

0

[log(1 + y)− (1− e−y) log y]
dy

y
.

We leave as an exercise for the reader that C = π2/4 + γ2E/2. Thus (24), which
gets the factor −1/(4π2r), has the asymptotics as X → 0,

1− [(log2X)/2 + γE logX + π2/4 + γ2E/2]X − [logX − 2 + γE ]X
2 +O(X3+).

After setting X = irξ this gives the asymptotics as ξ → 0, with terms up to those
involving ξ2, and with acceptable error for the coefficients.

5. The final results

We know that with acceptable error we may replace h−(ξ) in the right side of
(16) by G−(ξ) − V G+(ξ). In Section 3 we showed how to compute the series for
G+(ξ) up to terms involving ξ2, and G−(ξ) is the complex conjugate of G+(ξ) for
real ξ. In section 4 we showed how to compute the series for V G+(ξ) up to terms
involving ξ2. All with acceptable errors in the coefficients. Then we multiply by
e−irξ/2 σ−(ξ) to obtain the last term on the right in (16). The next-to-last term is
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the complex conjugate of the last, so we know that, also. Then we add the series
for ĝ(ξ). From these computations and (17) we find that∫ r/2

−r/2

f(x) dx = r +
1

π
[log(πr/2) + 1] +

1

π2r
[log(πr/2) + 1/2] + O(r−2+).

(Observe that all terms involving γE have canceled.) Setting r = 2/κ and using
(11), we obtain (9).

From the computations and (18) we find that∫ r/2

−r/2

x2 f(x) dx =
r3

12
+
r2

4π
[log(πr/2)− 1]

+
r

4π2
[log2(πr/2)− log(πr/2)− 5/2 + 2π2/3] +O(r0+).

Then from these and (13) we obtain

eF (γ) =
π2

12
− π

2r
+

1

2r2
[log(πr/2) + 1 + π2/3] +O(r−3+).

From (12) we find that

γ =
π

r
− 1

r2
[log(πr/2) + 1] +O(r−3+),

and (10) follows.
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[2] M. Gaudin, Un système à une dimension de fermions en interaction, Phys. Lett. A,
24 (1967), 55–56.

[3] M. Gaudin, The Bethe Wavefunction, Cambridge Univ. Press, 2014. (English trans-
lation by J.-S. Caux.)

[4] X-W. Guan and Z-Q. Ma, One-dimensional multicomponent fermions with δ-
function interaction in strong- and weak-coupling limits: Two-component Fermi gas,
Phys. Rev. A 85 (2012), 033632.

[5] T. Iida and M. Wadati, Exact analysis of a δ-function spin-1/2 attractive Fermi gas
with arbitrary polarization, J. Stat. Mech. (2007) P06011.

[6] V.Ya. Krivnov and A.A. Ovchinnikov, One-dimensional Fermi gas with attraction
between the electrons, Sov. Phys. JETP 40 (1975), 781–786.

[7] F. Leppington and H. Levine, On the problem of closely separated circular discs at
equal potential, Quarterly J. Mech. Appl. Math. 25 (1972), 225–245.

[8] E.H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general
solution and ground state energy, Phys. Rev. 130(4) (1963), 1605–1616.

[9] C.A. Tracy and H. Widom, On the ground state energy of the delta-function Bose
gas, J. Phys. A: Math. Theor. 49 (2016), 29400.



212 C.A. Tracy and H. Widom

[10] C.A. Tracy and H. Widom, On the ground state energy of the delta-function Fermi
Gas, to appear in J. Math. Phys., arXiv:1604.02440.

[11] H. Widom, Toeplitz determinants with singular generating functions, Amer. J. Math.
95 (1973) 333–383.

[12] C.N. Yang, Some exact results for the many-body problem in one dimension with
repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312–1315.

Craig A. Tracy
Department of Mathematics
University of California
Davis, CA 95616, USA
e-mail: tracy@math.ucdavis.edu

Harold Widom
Department of Mathematics
University of California
Santa Cruz, CA 95064, USA
e-mail: widom@ucsc.edu

mailto:tracy@math.ucdavis.edu
mailto:widom@ucsc.edu


Geometric Methods in Physics. XXXV Workshop 2016

Trends in Mathematics, 213–225
c© 2018 Springer International Publishing

Non-periodic One-gap Potentials
in Quantum Mechanics

Dmitry Zakharov and Vladimir Zakharov

Abstract. We construct a broad class of bounded potentials of the one-dimen-
sional Schrödinger operator that have the same spectral structure as periodic
finite-gap potentials, but that are neither periodic nor quasi-periodic. Such
potentials, which we call primitive, are non-uniquely parametrized by a pair
of positive Hölder continuous functions defined on the allowed bands. Prim-
itive potentials are constructed as solutions of a system of singular integral
equations, which can be efficiently solved numerically. Simulations show that
these potentials can have a disordered structure. Primitive potentials generate
a broad class of bounded non-vanishing solutions of the KdV hierarchy, and
we interpret them as an example of integrable turbulence in the framework
of the KdV equation.
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1. Introduction

We consider the Schrödinger equation on the real axis

−ψ′′ + u(x)ψ = Eψ, −∞ < x <∞, (1)

with a bounded potential u(x).

A value of E belongs to the spectrum of u(x) if there exist one or two inde-
pendent bounded wave functions ψ(x,E):

|ψ(x,E)| < 1, −∞ < x <∞. (2)

The spectrum is a subset of the axis −∞ < E <∞, and can have a quite compli-
cated structure. We only consider the case when the spectrum is purely continuous,
i.e., consists of a finite or infinite collection of segments (allowed bands), whose
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length is bounded from below. We pose the question of determining all potentials
having a purely continuous spectrum.

The simplest examples of such potentials are those that are periodic in x. A
dense subset of the periodic potentials are the finite-gap potentials, expressible in
terms of Riemann θ-functions of hyperelliptic curves. An N -gap potential has N
finite and one infinite allowed bands, interspersed with N forbidden gaps. However,
there also exist quasi-periodicN -gap potentials. We pose the question of describing
a wider class of N -gap potentials, which have the same spectrum as the algebro-
geometric potentials, but which are neither periodic nor quasi-periodic. In this
paper we limit ourselves to studying one-gap potentials, with spectrum consisting
of the positive semiaxis E > 0 and a segment −k22 < E < −k21 on the negative
semiaxis.

A periodic one-gap potential is determined up to translation by the formula

u(x) = 2℘(x+ iω′ − x0) + e3. (3)

Here ℘(x) is the elliptic Weierstrass function with periods 2ω and 2iω′. The spec-
trum is equal to [−k22 ,−k21] ∪ [0,∞), where

e1 − e3 = k22 , e2 − e3 = k21 , e1 > e2 > e3, e1 + e2 + e3 = 0, (4)

and the ei are the values of ℘ at the half-periods. The spectrum is doubly degen-
erate and reflectionless, and within the allowed bands a quantum particle moves
freely in both directions. In this paper we construct a family of potentials that have
the same spectrum and that are reflectionless, but that are not periodic. Such a
potential is determined by two positive Hölder-continuous functions R1 and R2

defined on [k1, k2]. The spectrum of the corresponding Schrödinger operator is
doubly degenerate inside the allowed gap [−k22 ,−k21 ].

To construct these one-gap potentials, we consider the closure of the set of
reflectionless Bargmann potentials, also known asN -soliton potentials, as N → ∞.
This problem was posed and formally solved in the works of Marchenko and his
students [2–4], but the obtained results are not effective. In this paper we consider
a new technique for constructing the closure of the Bargmann potentials, using an
associated ∂-problem. This technique proves to be quite effective. In particular,
we construct the periodic potential (3) as a limit of N -soliton solutions.

2. Bargmann potentials via the dressing method

Bargmann potentials were first constructed in 1948 as a class of potentials of the
one-dimensional Schrödinger operator (1) having N bound states with negative
energy and zero reflection coefficient for all positive energies. From the point of
view of the KdV equation, Bargmann potentials correspond to N -soliton solutions
at fixed moments of time, and hence can be explicitly constructed using the in-
verse spectral transform for the operator (1). In this section, we give an alternate
construction of the Bargmann potentials using the so-called dressing method, fol-
lowing Zakharov and Manakov [5]. Compared with the IST, this method gives us
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additional flexibility that will later prove crucial when we generalize the associated
Riemann–Hilbert problem.

We consider a ∂-problem on the complex k-plane of the following kind:

∂χ

∂k
= ie2ikxT (k)χ(x,−k). (5)

Here T (k) is a compactly supported distribution called the dressing function of

the ∂-problem. A solution of (5) is defined up to multiplication by a function of x,
hence if a solution exists we can normalize it by the condition χ→ 1 as |k| → ∞.
Such a solution satisfies the integral equation

χ(x, k) = 1 +
i

π

¨
e−2iqxT (−q)χ(x, q)

k + q
dqdq, (6)

where we normalize the integral in the following way:

1

k
= lim

ε→0

k

|k|2 + ε2
,

∂

∂k

(
1

k

)
= πδ(k). (7)

Here δ(k) is the two-dimensional δ-function.

We now show that a solution of the ∂-problem (5) gives rise to a solution of
the Schrödinger equation (1).

Theorem 1. Suppose that the dressing function T (k) has the property that the
∂-problem (5) has a unique solution χ normalized by the condition

χ(x, k) = 1 + o(1) as |k| → ∞ (8)

on the set U× C, where U ⊂ R is an open subset. Denote

χ(x, k) = 1 +
iχ0(x)

k
+O(k−2), u(x) = 2

d

dx
χ0(x). (9)

Then the function χ(x, k) is a solution of the differential equation

χxx − 2ikχx − u(x)χ = 0, (10)

and the function ψ(x, k) = χ(x, k)e−ikx is a solution of the Schrödinger equation
(1) with E = k2.

Proof. Let χ be the unique solution of (5) satisfying the normalization condition
(8). Define the function

χ̃(x, k) = χxx − 2ikχx − u(x).

It is straightforward to check that χ̃ also satisfies the ∂-problem (5), and the
choice of u(x) guarantees that χ̃→ 0 as |k| → ∞. By the uniqueness assumption,
it follows that χ̃ is identically equal to zero, which completes the proof. �

We obtain the class of reflectionless Bargmann potentials by considering a
∂-problem whose solution χ is a rational function of k with simple poles along the
imaginary axis.
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Theorem 2. Let κ1, . . . , κN and c1, . . . , cN be a collection of real numbers satisfying
the following properties:

1. κm �= ±κn for all m and n.
2. cn/κn > 0 for all n.

Consider the dressing function

T (k) = π

N∑
n=1

cnδ(k − iκn). (11)

Then the ∂-problem (5) has a unique solution χ satisfying the normalization con-
dition χ → 1 as |k| → ∞. This solution is a rational function of k having simple
poles at the points k = iκn for n = 1, . . . , N , and has the following form:

χ(x, k) = 1 + i
N∑

n=1

χn(x)

k − iκn
, (12)

where the χn(x) are real-valued functions. The corresponding potential

u(x) = 2
d

dx

N∑
n=1

χn(x)

is a reflectionless Bargmann potential having the finite discrete spectrum −κ21, . . .,
−κ2N , and ψn(x) = χn(x)e

κnx are the corresponding eigenfunctions. Furthermore,

for each m = 1, . . . , N , if we define c
(m)
n and κ

(m)
n by

κ(m)
n =

{
κn, n �= m

−κn, n = m
, c(m)

n =

⎧⎪⎨⎪⎩
(
κn − κm
κn + κm

)2

cn, n �= m

−4κ2n/cn, n = m

(13)

the potential u(x) corresponding to the data {κ(m)
n , c

(m)
n } is the same as for {κn, cn}.

Remark 3. Given a reflectionless Bargmann potential u(x) with a finite negative
discrete spectrum −κ21, . . . ,−κ2N , the direct spectral transform proceeds by con-
structing a solution ψ(x, k) of the Schrödinger equation (1) that is analytic in the
k-upper half-plane. In the k-lower half-plane, the function ψ(x, k), and hence the
function χ(x, k) = ψ(x, k)eikx, then has poles on the negative imaginary axis at
the points −i|κ1|, . . . ,−i|κN | corresponding to the discrete spectrum. To construct
u(x) using the dressing method, we can place the poles of χ on both the positive
and negative imaginary axes, so long as the poles have distinct absolute values,
and every N -soliton Bargmann potential can be constructed in 2N different ways
by arbitrarily choosing the signs of the κn.

Remark 4. It is possible to relax the condition that cn and κn have the same sign
for each n, but the corresponding potentials u(x) will be singular functions of x.
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Proof. Given the dressing function (11), the identity (7) implies that a solution
χ of (5) has simple poles at the points k = iκn and no other singularities. The
condition χ → 1 as |k| → ∞ then implies that χ has the form (12). Substituting
this into the integral equation (6), we obtain a system of linear equations on the
residues χn(x):

χn(x) = e−2κnxcnχ(x,−iκn). (14)

Writing this system out explicitly, and replacing χn(x) = ψn(x)e
−κnx, we obtain

the following system:

ψn(x) + cn

N∑
m=1

e−(κn+κm)x

κn + κm
ψm(x) = cne

−κnx (15)

The matrix of this system

Anm = δnm +
cne

−(κn+κm)x

κn + κm

is the sum of an identity matrix and a Cauchy-like matrix, therefore its determinant
is the sum of the principal minors of the Cauchy-like matrix. This sum is indexed by
subsets I = {i1, . . . , in} of the index set {1, . . . , N} and can be explicitly evaluated
as follows:

A = det[Anm] =
∑

I⊂{1,...,N}

⎡⎣ ∏
{i,j}⊂I,i<j

(
κi − κj
κi + κj

)2∏
i∈I

ci
2κi

e−2κix

⎤⎦ .
By assumption, the quantities ci/κi and (κi − κj)

2 are all positive, therefore each
summand and hence all of A is positive, so the system (15) has a unique solution.
By Theorem 1, χ satisfies equation (10), and the corresponding potential u(x) is

u(x) = 2
dχ0

dx
= 2

d

dx

N∑
n=1

χn(x). (16)

To evaluate u(x), we note that the derivative of the nth column of the matrix [Anm]
is equal to the right-hand side of equation (15) multiplied by −e−κnx. Therefore,
by Cramer’s rule we have

u(x) = 2
d

dx

N∑
n=1

χn(x) = 2
d

dx

N∑
n=1

ψn(x)e
κnx

= 2
d

dx

[
− 1

A

d

dx
A

]
= −2

d2

dx2
lnA.

(17)

When all the κn are positive, this is the familiar formula for the N -soliton reflec-
tionless potentials (see formula (1.5) in [6]).

To finish the proof, we consider what happens to formula (17) when we replace

{cn, κn} with {c(m)
n , κ

(m)
n } according to (13). A direct calculation shows that

A =
cm
2κm

e−2κmxA(m),
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where A(m) is the determinant of the matrix (15) corresponding to the data

{c(m)
n , κ

(m)
n }. By formula (17), the data {κn, cn} and {κ(m)

n , c
(m)
n } determine the

same potential u(x). Hence, starting with an arbitrary {κn, cn}, we can replace
all κn with |κn| and make the corresponding changes to the cn while preserving
u(x), so in fact all of the potentials that we obtain in this way are reflectionless
Bargmann potentials.

Finally, considering the leading term in equation (10) near the poles, we
see that ψn are eigenfunctions of the Schrödinger operator with potential u(x)
corresponding to the eigenvalues −κ2n. We also note that all principal minors of A
are positive, hence A is a positive definite matrix. �

3. The symmetric Riemann–Hilbert problem

In this section, we consider a Riemann–Hilbert problem that is a continuous ana-
logue of the finite ∂-problem of Theorem 2 that generates the Bargmann potentials.

Theorem 5. Let 0 < k1 < k2 be real numbers, and let R1 and R2 be two positive
Hölder-continuous functions on the interval [k1, k2]. Consider the dressing function

T (k) = π

ˆ k2

k1

R1(p)δ(k − ip)dp− π

ˆ k2

k1

R2(p)δ(k + ip)dp. (18)

Then the corresponding ∂-problem (5) has a unique solution χ satisfying the nor-
malization condition χ → 1 as |k| → ∞. This function is analytic on the k-plane
away from two cuts [ik1, ik2] and [−ik2,−ik1] on the imaginary axis. Denoting by
χ+ and χ− the right and left boundary values of χ along the cuts

χ±(x, k) = lim
ε→0+

χ(x, k ± ε), k ∈ [−ik2,−ik1] ∪ [ik1, ik2],

the function χ satisfies a symmetric Riemann–Hilbert problem on the cuts:

χ+(x, ip)− χ−(x, ip) = πiR1(p)e
−2px[χ+(x,−ip) + χ−(x,−ip)], (19)

χ+(x,−ip)− χ−(x,−ip) = −πiR2(p)e
2px[χ+(x, ip) + χ−(x, ip)]. (20)

The function χ can be explicitly given as

χ(x, k) = 1 + i

ˆ k2

k1

f(x, p)

k − ip
dp+ i

ˆ k2

k1

g(x, p)

k + ip
dp, (21)

where f(x, p) and g(x, p) are real-valued functions defined for real x and for p ∈
[k1, k2]. The corresponding potential of the Schrödinger operator (1) is

u(x) = 2
d

dx

ˆ k2

k1

[f(x, p) + g(x, p)]dp.

Proof. Given R1 and R2, we look for a solution of the ∂-problem (5) in the form
(21), where f and g are unknown functions of x and p ∈ [k1, k2]. The jumps of χ
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along the cuts are then equal to

χ+(x, ip)− χ−(x, ip) = 2πif(x, p),

χ+(x,−ip)− χ−(x,−ip) = 2πig(x, p).

Plugging (21) into (5), we see that χ satisfies the Riemann–Hilbert problem (19)–
(20) if f and g satisfy the following system of singular integral equations:

f(x, p) +R1(p)e
−2px

[ˆ k2

k1

f(x, q)

p+ q
dq +

 k2

k1

g(x, q)

p− q
dq

]
= R1(p)e

−2px (22)

g(x, p) +R2(p)e
2px

[ k2

k1

f(x, q)

p− q
dq +

ˆ k2

k1

g(x, q)

p+ q
dq

]
= −R2(p)e

2px. (23)

We note that the Riemann–Hilbert problem (19)–(20) is a continuous generaliza-
tion of equation (14).

We need to show that the system (22)–(23) has a unique solution on the
entire real axis. To do this, we approximate these equations by Riemann sums.
Fix an integer N , and let Δ = (k2 − k1)/2N . We subdivide the segment [k1, k2]
into 2N equal parts and denote

λn = k1 + (2n− 2)Δ, αn = R1(λn) n = 1, . . . , N + 1,

μn = k1 + (2n− 1)Δ, βn = R2(μn). n = 1, . . . , N.

We note that all these quantities are positive. Approximating the Riemann–Hilbert
problem (19)–(20) by replacing the integrals containing f with their Riemann sums
at the λn and the integrals containing g with their Riemann sums at the μn, we
obtain the system

fn(x) + αne
−2λnx

(
N+1∑
m=1

fm(x)

λn + λm
+

N∑
m=1

gm(x)

λn − μm

)
= αne

−2λnx, (24)

gn(x)− βne
2μnx

(
N+1∑
m=1

fm(x)

−μn + λm
+

N∑
m=1

gm(x)

−μn − μm

)
= −βne2μnx, (25)

where fn(x) = f(x, λn) and gn(x) = g(x, μn). We see that this system is equiv-
alent to the system (15) on the eigenfunctions of a Bargmann potential having
2N + 1 solitons corresponding to the poles (λ1, . . . , λN+1,−μ1, . . . ,−μN ) and the
constants (α1, . . . , αN+1,−β1, . . . ,−βN ). According to Theorem 2, this system has
a unique solution for all x and gives a Bargmann potential with 2N + 1 solitons.

We claim that, given L > 0 and ε > 0, there exists N large enough so that the
sums in Eqs. (24)–(25) are Riemann sums approximating the integrals (22)–(23)
to within ε for all x ∈ (−L,L). To show this, we solve our equations by iteration.
Define

f(x, p) = R1(p)e
−2pxf̃(x, p), g(x, p) = R2(p)e

2pxg̃(x, p),

fn(x) = αne
−2λnxf̃n(x), gn(x) = βne

2μnxg̃n(x).
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We now solve equations (24)–(25) iteratively:

f̃(x, p) = f̃ (1)(x, p) + · · · , g̃(x, p) = g̃(1)(x, p) + · · · ,
f̃n(x) = f̃ (1)

n (x) + · · · , g̃n(x) = g̃(1)n (x) + · · ·
(26)

We see that

f̃ (1)(x, p) = 1−
ˆ k2

k1

R1(q)e
2qx

p+ q
dq −

 k2

k1

R2(q)e
−2qx

p− q
dq,

f̃ (1)
n (x) = 1−

N+1∑
m=1

αme
−2αmx

λn + λm
−

N∑
m=1

βme
2βmx

λn − μm
.

(27)

Recalling that αm = R1(λm) and βm = R2(μm), we see that the sums approximate
the integrals when

αme
2λmxΔ ( 1, βme

−2μmxΔ ( 1.

We see that this condition holds for all x ∈ (−L,L) if

Δ ( 1

R
e−2k2L

where R = max(R1, R2). We note that, in order to maintain the same degree of
accuracy when increasing the length L of our interval, we need to exponentially
increase the number N of approximation points.

We do not have a strict proof of the above statements, but they are confirmed
by numerical experiments [8–10]. We hope to soon publish a complete proof that
equations (22)–(23) are uniquely solvable.

If R1 and R2 are positive on (k1, k2), then the spectrum of the corresponding
Schrödinger operator is doubly degenerate, and there are two orthogonal eigen-
functions

ϕ(x, k) =
eikx√
R1(k)

f(x, k), ψ(x, p) =
e−ikx√
R2(k)

g(x, k). (28)

Consider the nonstationary Schrödinger equation

i
∂Ψ

∂t
= −Ψxx + uΨ (29)

and the corresponding continuity equation

∂

∂t
|Ψ|2 + ∂

∂x
ρ = 0, (30)

where ρ = i(ΨΨx −ΨΨx) is the particle density. Setting

Ψ = eik
2t(ϕ(x, k) + iψ(x, k)), (31)

we observe that the particle density ρ is the Wronskian of the solutions ϕ, ψ, hence
is independent of x. Therefore a particle with wave function ϕ + iψ undergoes
ballistic transport with no resistance, and the potential u(x) describes an ideal
conductor.
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We also observe that the nonlocal symmetric Riemann–Hilbert problem (19)–
(20) can be converted to a local vector Riemann–Hilbert problem. Define

Σ(x, k) =

[
χ1(x, k)
χ1(x,−k)

]
,

M(x, k) =
1

1 + π2R1(k)R2(k)

[
1− π2R1(k)R2(k) 2πiR1(k)e

−2kx

2πiR2(k)e
2kx 1− π2R1(k)R2(k)

]
.

Then (19)–(20) is equivalent to the system

Σ+(k) =M(k)Σ−(k), (32)

where Σ+(k) and Σ−(k) are respectively the right and left limit values of Σ on the
cuts [ik1, ik2] and [−ik2,−ik1]. �

4. Periodic one-gap potentials

In this section, we show that periodic one-gap potentials of the Schrödinger oper-
ator can be constructed from the symmetric Riemann–Hilbert problem.

Let ω and ω′ be positive real numbers, and consider the elliptic curve E =
C/Λ, where Λ is the period lattice generated by 2ω and 2iω′. Denote by ℘(z) the
Weierstrass elliptic function associated to the lattice Λ. It satisfies the differential
equation

[℘′(z)]2 = 4℘(z)3 − g2℘(z)− g3 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

where the zeroes e1, e2, e3 are real-valued, satisfy e1 + e2 + e3 = 0, and we assume
that e3 < e2 < e1.

The function

u(x) = 2℘(x− ω − iω′) + e3 (33)

is a real-valued potential of the Schrödinger operator (1) with period 2ω. Our goal
is to construct a solution of (1) that gives a solution of the symmetric Riemann–
Hilbert problem.

We consider the following function ϕ(x, z), where x is real and z is defined
on the curve E:

ϕ(x, z) =
σ(x− ω − iω′ + z)σ(ω + iω′)
σ(x− ω − iω′)σ(ω + iω′ − z)

exp[−ζ(z)x]. (34)

A direct calculation shows that ϕ satisfies the Lamé equation

ϕ′′ − [2℘(x− ω − iω′) + ℘(z)]ϕ = 0.

Hence we see that ϕ is a solution of the Schrödinger equation (1) with potential
(33) if the parameter z satisfies the relation

k2 = e3 − ℘(z), k =
1

sn z
. (35)

The Weierstrass function ℘ has degree two, hence for a generic complex value of
k there are two values of z on E that satisfy (35). In order to make the function
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(34) a single-valued function of k, we need to choose a branch of z. We choose the
solution z(k) of (35) that satisfies

z(k) =
i

k
+O

(
1

k2

)
as |k| → ∞. (36)

This branch defines a single-sheeted map from the complex k-plane with two cuts
on the imaginary axis to a period rectangle of the lattice Λ centered at 0. The cuts
on the imaginary axis are [−ik2,−ik1] and [ik1, ik2], where

k1 =
√
e2 − e3, k2 =

√
e1 − e3.

The right and left sides of the top cut [ik1, ik2] are mapped to the line segments
joining ω to ω + iω′ and ω − iω′, respectively, and the right and left sides of the
bottom cut [−ik2,−ik1] are respectively mapped to the segments joining −ω to
−ω + iω′ and −ω − iω′.

I

IV

II

III

i
2

i
1

-i
1

-i
2

I

II

IV

III

0

+i

-i

+i

-i

i

-i

The k-plane The z-plane

The function ϕ satisfies the following properties:

ϕ(x, z + 2ω) = ϕ(x, z), ϕ(x, z + 2iω′) = ϕ(x, z),

ϕ(x, z) = ϕ(x, z) when z = z, x = x.

In addition,

ϕ(x, z) = ϕ(x, z)

for all z having real part ω.

Theorem 6. Let z(k) be the branch of the solution of (35) satisfying (36). Let f(k)
be the branch of the function

f(k) =

√
k + ik1
k + ik2
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satisfying f(k) → 1 as |k| → ∞. On the complex k-plane with two cuts [ik1, ik2]
and [−ik2,−ik1] along the imaginary axis, define the function

ξ(x, k) = f(k)ϕ(x, z(k))e−ikx.

Then the function ξ(x, k) satisfies the equation

ξ′′ + 2ikξ′ − u(x)ξ = 0, ξ → 1 as |k| → ∞

with potential u(x) given by (33). On the cuts, the function ξ satisfies the Riemann–
Hilbert problem

ξ +(x, ip)− ξ−(x, ip) = iπR1(p)e
2px

[
ξ+(x,−ip) + ξ−(x,−ip)

]
,

ξ +(x,−ip)− ξ −(x,−ip) = −iπR2(p)e
−2px

[
ξ +(x, ip) + ξ−(x, ip)

]
.

Here p ∈ [k1, k2], and ξ
±(x,±ip) are the right- and left-hand values of the upper

and lower cuts. The functions R1 and R2 are equal to

R1(p) =
1

π
h(p), R2(p) =

1

πh(p)
, h(p) =

√
(p− k1)(p+ k2)

(k2 − p)(p+ k1)

We note that in this case we have

R1(p)R2(p) =
1

π2
, ξ +(x, ip) = ih(p)e−2pxξ −(x,−ip).

5. Unitary equivalent potentials

We have already noted that the representation of a potential of the Schrödinger
operator using the dressing method is not unique. For example, a Bargmann po-
tential with N solitons can be represented by the dressing method in 2N different
ways. It is therefore natural to pose the question of describing all dressings that
define the same potential. However, it is more productive to consider the following
more general question.

Let L be the Schrödinger operator with potential u(x), and let U be a unitary
operator. If

L̃ = U+LU (37)

is a Schrödinger operator with potential ũ(x), we say that u(x) and ũ(x) are
unitary equivalent. It is clear that u(x) and ũ(x) have the same spectra.

We construct unitary equivalent potentials following Lax’ seminal paper [11].
We assume that the potential depends on time according to one of the equations
of the KdV hierarchy

∂u

∂t
=

∂

∂x

δH

δu
, H =

∞∑
n=0

cnIn, (38)
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where cn are real numbers, only finitely many of which are nonzero, and In are
the integrals of the KdV equation, normalized as follows:

In =
1

2

ˆ ∞

−∞

[
u(n)(x)2 + · · ·

]
dx. (39)

Introducing time evolution has the following effect on the dressing kernel:

T (k, t) = T (k, 0) exp

(
it

∞∑
n=0

cn(−1)n(2k)n+1

)
(40)

and the functions R1 and R2 (18) are modified as follows:

R1(p, t) = R1(p)e
−S(p)t, R2(p, t) = R2(p)e

S(p)t, S(p) =

∞∑
n=0

cn(2p)
n+1. (41)

Applying time evolution (41) to (18) produces a unitary-equivalent potential. We
note that the function W (p) = R1(p)R2(p) is unitary invariant.

Consider the one-gap case, and assume that R1 and R2 are positive for k1 <
p < k2. Suppose that at t = 0 we have

lnR1(p, 0)− lnR2(p, 0) = 2s0(p). (42)

Introducing time evolution, we obtain

lnR1(p, t)− lnR2(p, t) = 2(s0(p)− ts(p)). (43)

Any real-valued function on the interval [k1, k2] can be approximated using a
polynomial of odd degree, so choosing cn and t appropriately, we can assume that
R1(p) = R2(p). In this case, the only invariant of unitary transformations are k1,
k2 and the function W (p) = R1(p)R2(p).

Suppose that W (p) = 1/π2. We have seen that the cnoidal wave can be
constructed using the dressing method with R1(p)R2(p) = 1/π2. It is well known
that the time evolution of a cnoidal wave according to a higher KdV equation is
a cnoidal wave with the same velocity. Hence the dressing R1(p) = R2(p) = 1/π
also results in a cnoidal wave. This is confirmed by numerical experiments [8–10].

Finally, if one of the two functions R1 or R2 vanishes at a point p ∈ (k1, k2),
then so does W (p), and the corresponding primitive potential has a simple spec-
trum at p.
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Lecture 1. Integrability of geodesic flows

What are geodesics?
Let M be a manifold with a Riemannian metric g. In local coordinates,

g =
∑
gij(x)dx

idxj .
Consider a point moving on M and let γ(t) be its trajectory. According to

the second Newton law, its motion is defined by the equation ma = F . What is
the meaning of the acceleration a in this case? The answer is: a is the derivative of
the velocity v = dγ

dt , but one should consider the covariant derivative. If the point
is moving by inertia, then F = 0 and we come to the following equation:

∇ dγ
dt

dγ

dt
= 0

or, in local coordinates,

d2xi

dt2
+ Γi

jk(x)
dxj

dt

dxk

dt
= 0, (1)

where γ(t) = (x1(t), . . . , xn(t)) and Γi
jk(x) are the Christoffel symbols of the Levi-

Civita connection of the metric g.
This is the equation of geodesics on a Riemannian manifold (M, g).

Properties of geodesics:

• if the metric is Euclidean, then Γi
jk(x) = 0 and the geodesics are straight

lines, i.e., xi(t) = ait+ bi;
• Eq. (1) is a non-linear second-order system of ODEs;
• Existence and Uniqueness Theorem;
• geodesic completeness;
• Hopf–Rinow theorem;
• arc-length parametrisation and admissible reparametrisations s′ = as+ b;
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• kinetic energy H =
∑
gij(x)ẋ

iẋj as a first integral (in particular, the unit
(co-)tangent bundle is 2n− 1 invariant submanifold).

Hamiltonian form of the equation of geodesics
Consider T ∗M as a symplectic manifold with canonical coordinates (x, p) and the
symplectic form ω =

∑
dpi ∧ dxi.

In coordinates (x, p), the equation of geodesics (1) can be rewritten in Hamil-
tonian form:

dpi
dt

=
∂H

∂xi
,

dxi

dt
= −∂H

∂pi
, (2)

where H = 1
2

∑
gij(x)pipj .

If we accept this Hamiltonian representation as a fundamental property of
geodesics, then we may simply define a geodesic flow to be a Hamiltonian system
on the cotangent bundle T ∗M whose Hamiltonian is a positive definite quadratic
form in momenta pi. We can naturally generalize this viewpoint:

• indefinite non-degenerate quadratic form 
→ pseudo-Riemannian geodesic
flows

• non-negative quadratic forms H =
∑
gijpipj ≥ 0 with the additional prop-

erty that H = 0 iff p belongs a totally non-integrable co-distribution 
→
sub-Riemannian geodesic flows

• convex homogeneous Hamiltonians 
→ Finsler geodesic flows

Definition of Integrability [1]

Definition 1. We say that a geodesic flow on (M, g) is Liouville integrable, if the
Hamiltonian system (2) admits n commuting first integrals f1, . . . , fn that are
independent almost everywhere on T ∗M .

Some issues to discuss: almost everywhere, what kind of integrals, what about
the zero-section.

Local and global aspects

Proposition 1. Every geodesic flow is locally completely integrable.

Basically, this follows from the Darboux theorem and homogeneity (locally
means “on T ∗U(x0)”, i.e., “locality” is meant in the sense of coordinates only (in
the sense of p, the neighborhood is not local but global).

The best example explaining why integrability should be understood as a
global phenomenon is the geodesic flow on the surface M2

m of genus m with a con-
stant negative curvature metric. This geodesic flows is known to be chaotic/ergodic,
so definitely non-integrable. However, locally this geodesic flows admit a polyno-
mial integral that commutes with H (there are even 3 independent linear integrals
so that this geodesic flow is locally super-integrable). In particular, in any reason-
able local coordinates the geodesic flow can be integrated explicitly. The problem is
that when trying to extend local polynomial integrals up to global ones we obtain
multivalued functions (but multivalued integrals make no sense).
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Proposition 2. Assume that F is a real analytic (commuting with and independent
of H) integral of the geodesic flow on (M, g). Then this geodesic flow admits a
non-trivial polynomial integral1.

Proof. It is easy to see that for a series of the form

F =
∑

an1n2...nk
(x)pn1

1 pn2
2 . . . pnk

k = F0 + F1 + Fk + · · · ,

where Fk is the homogeneous component of this power series of degree k, the
condition {H,F} = 0 immediately implies {H,Fk} = 0 for each k ∈ N. �

Also, one needs to distinguish between “abstract integrability” and “practical
integrability”. Existence of commuting integrals and possibility to describe them
explicitly, these are two different stories.

Zoll metrics is an example of metrics whose geodesic flows are integrable in
abstract but not practical sense.

The most natural and strongest type of integrability is polynomial integra-
bility. Let us discuss this property in dim = 2.

• A generic Riemannian metric does not admit any non-trivial polynomial in-
tegrals2 (except for the powers of the Hamiltonian).

• For any n ∈ N, there exist (local) examples of geodesic flows that admit
polynomial integrals of degree n and do not admit any non-trivial integrals
of smaller degree (V. Ten, V. Kozlov, K. Kiyohara).

• All such metrics are defined by an integrable system of PDE’s and, in
principle, can be described “explicitly” (M. Bialy, A. Mironov, S. Tsarev,
M. Pavlov).

Lecture 2: Integrable geodesic flows on two-dimensional surfaces

Examples: Sphere, flat torus, surface of revolution, ellipsoid [3]

Proposition 3.

1. Assume that the geodesic flow of g admits a linear integral F = a1(x)p1 +
a2(x)p2. If F is not zero at a point x0 ∈M , then there exists a local coordinate
system (u, v) such that

g = du2 +G(u)dv2 (equivalently, H = 1
2 (p

2
u +G−1(u)p2v)) and F = pv.

2. Assume that the geodesic flow of g admits a quadratic integral F = A(x)p21 +
2B(x)p1p2 + C(x)p22. If F (as a quadratic form) is not proportional to the

1In this theory, by saying “polynomial integrals” we always mean polynomiality in momenta p,
i.e., functions of the form

∑
an1n2...nk (x)p

n1
1 pn2

2 . . . p
nk
k with coefficients being some functions

on M . This functions will be automatically smooth or real analytic depending on the properties
of g.
2The statement is more or less obvious as the existence of a polynomial integral for a given g

is defined by an overdetermined system of PDEs and solutions exist only under some special
assumptions on g. However, rigorous proof requires serious efforts, see [2].
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Hamiltonian at a point x0 ∈ M , then there exists a local coordinate system
(u, v) such that

g = (f(u) + g(v))(du2 + dv2)(
equivalently, H =

p2u + p2v
2(f(u) + g(v))

and F =
g(v)p2u − f(u)p2v
f(u) + g(v)

)
.

Similar statements can be formulated for singular points.
From now on, we assume that M is a closed 2-dimensional surface. Consider

the unit (co)-tangent bundle Q3 = {H(x, p) = 1
2} ⊂ T ∗M2.

Theorem 1. There are only 4 closed surfaces which admit integrable geodesic
flows with polynomial (real-analytic on Q3, geometrically simple, tame) integrals,
namely, S2, RP 2, T 2 and the Klein bottle.

Lecture 3: Integrability of geodesic flows, homogeneous spaces
and bi-quotients of Lie groups

The theory of integrable geodesic flows on Lie groups and their homogeneous spaces
is based on some quite natural and simple constructions from Poisson Geometry.
I will follow the classical approach developed by Sophus Lie: Poisson algebras and
“groups of functions”.

We consider a symplectic manifold (M,ω) and C∞(M) as a Poisson algebra.
By saying “Poisson (sub)algebra” F , I mean basically three things:

• elements of F are functions of some kind;
• F is closed under a Poisson bracket, i.e., f, g ∈ F implies {f, g} ∈ F ;
• if f1, . . . , fk ∈ F , then h(f1, . . . , fn) ∈ F .

Let F ∈ C∞(M) be a Poisson algebra. Consider a generic point x ∈M . This
means that in a neighborhood of x there are generators f1, . . . , fk such that they
are independent and any function h ∈ F can be written as h = h(f1, . . . , fk) (the
number k can be understood as the (differential) dimension of F). Also, we assume
that the matrix of brackets

(
Pij

)
=

(
{fi, fj}

)
is of (locally) constant rank.

Theorem 2 (Classification of groups of functions (S. Lie)). There exist functions
p1, . . . , pr, q1, . . . , qr, z1, . . . , zs ∈ F , 2r+s = dimF , such that the matrix of brack-
ets is of the form ⎛⎝ 0 id 0

−id 0 0
0 0 0

⎞⎠
Moreover, these functions can be completed up to a canonical coordinate system
p1, . . . , pn, q1, . . . , qn on M2n so that zi = ps+i.

If the rank is not locally constant then we get the famous Weinstein splitting
theorem: ⎛⎝ 0 id 0

−id 0 0
0 0 P (z)

⎞⎠
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The next theorem is even more interesting. For each Poisson algebra F we

can define a dual (polar, reciprocal) Poisson algebra F̃ = {f ∈ C∞(M), {f, h} =

0 for all h ∈ F}. It is obvious that F̃ is indeed a Poisson algebra.

Can we classify such pairs? In local setting there is no problem at all.

Corollary 1. There is a canonical coordinate system on M such that, if coordinates
PI , PII , PIII , QI , QII , QIII have the property that F is generated by PI , QI , PII ,

then its dual F̃ is generated by PII , PIII , QIII and the Poisson matrix in coordi-
nates QI , PI , PII , PIII , QIII , QII (order is slightly changed!) takes the form:⎛⎜⎜⎜⎜⎜⎜⎝

0 −idr 0 0 0 0
idr 0 0 0 0 0
0 0 0 0 0 ids
0 0 0 0 idm 0
0 0 0 −idm 0 0
0 0 −ids 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
Different types of Poisson (sub)algebras
We will need several natural definitions. For each Poisson algebra F and each point
x ∈M we define dF(x) = span{df(x), f ∈ F} ⊂ T ∗

xM .

Important: the idea of a generic point

Definition 2. A commutative subalgebra A ⊂ C∞(M) is called complete if at a
generic point x ∈M , the subspace dA(x) ⊂ T ∗

xM is maximal isotropic.
Similarly, we say that a commutative subalgebra A ⊂ F is complete in F if

dA(x) is a maximal isotropic subspace of dF(x).

• commutative, i.e., dF(x) is isotropic (equivalently, F ⊂ F̃);

• coisotropic (complete in the non-commutative sense) F̃ ⊂ F ;

• complete commutative F = F̃ .

Casimirs of F = centre of F (Lie: ausgezeichnet).

Liouville integrability: the algebra of integrals is complete commutative.

Non-commutative integrability: the algebra of integrals is co-isotropic.

Corollary 2. Let F be a Poisson subalgebra of C∞(M) and F̃ be its dual. Then

• F + F̃ is a Poisson subalgebra;

• F + F̃ is co-isotropic;
• the Casimirs of F coincides with Casimirs of F̃ and also with Casimirs of

F + F̃ ;

• if A is complete commutative subalgebra of F , then A+ F̃ is coisotropic, the

Casimirs of A+ F̃ is A;

• if B is complete commutative subalgebra of F̃ , then B +F is coisotropic, the
Casimirs of B + F is B;
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• ˜̃F = F ;
• A+ B is complete commutative subalgebra of C∞(M);

• for any f ∈ F , the dual algebra F̃ consists of the first integrals of Xf ;

• for any h ∈ F̃ , the algebra F consists of the first integrals of Xh.

Theorem 3. Let F be a co-isotropic algebra of integrals of a certain Hamiltonian
system. Consider a common level of the integrals passing through a point x0 ∈ M ,
i.e., X = {fi = fi(x0)}. Assume that this level is generic in the sense that we
can choose generators f1, . . . , fm of F , m = dimF , in such a way that they are
independent and the Poisson matrix is of constant rank nearby X (notice that this
condition is local but not semi-local).

Then X (and all neighbouring fibers) are tori with quasi periodic dynam-
ics and there exists a natural action-angle coordinate system p1, . . . , pr, q1, . . . , qr,
I1, . . . , Is, φ1, . . . , φs (here p1, . . . , pr, q1, . . . , qr, I1, . . . , Is ∈ F and are local gen-
erators of it).

This means that such a system can be understood as the direct product of an
integrable system with s degrees of freedom and 2r-dimensional symplectic manifold
which does not really play any essential role.

Example. Assume that G acts on a symplectic manifold in a Hamiltonian way,

which means that for every ξ ∈ g the corresponding generator ξ̂ is a Hamiltonian
vector field with a Hamiltonian Hξ and we have {Hξ, Hη} = H[ξ,η] (symplectic
action with a good momentum mapping).

This action defines two natural subalgebras F , the algebra of Noether inte-
grals generated by Hξ, ξ ∈ g and the algebra of G-invariant functions which is

nothing else than F̃ .
We have a natural map g → C∞(M) and more generally C∞(g∗) → C∞(M).

The dual map M → g∗ is known as the momentum mapping associated with the
action of G on M . In fact for our purposes the map between the Poisson algebras
is more important than the momentum mapping between the manifolds.

If G-invariant functions distinguish generic orbits3, then (at a generic point)
we are in the situation described by the above Lie theorem.

One more remark: the algebraF is “isomorphic” to the algebra of polynomials
on g∗ with the standard Lie–Poisson bracket. We can simply identify Hξ as a
function on M with ξ as a function on g∗.

Immediately, we get the following result.

Theorem 4. Let G act onM as above and G-invariant functions distinguish generic
orbits. Assume that H is a Casimir of g. Then the Hamiltonian system with the
Hamiltonian H is completely integrable in the non-commutative sense. The algebra

of integral is F + F̃ . More generally, let H ∈ C∞(g∗) be a function that defines
a completely integrable Hamiltonian system on g∗ (more precisely on those orbits

3This always happens if G is compact.
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which belong to the image of the momentum mapping). Then H (considered as a
(lifted) function on T ∗M) defines a completely integrable system on T ∗M .

Corollary 3. Let M = G/H be a homogeneous space of a compact Lie group H and
g be the normal metric on M . Then the geodesic flow on (M, g) is always com-
pletely integrable in non-commutative sense. The same is true for any bi-quotient
K\G/H.
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1. Fock spaces of Yang–Baxter type

1.1. Yang–Baxter symmetrizator

Let T : H⊗H → H⊗H be a Yang–Baxter operator, i.e.,

T1T2T1 = T2T1T2, T = T ∗, T ≥ −I

on H ⊗ H ⊗ H, where T1 = T ⊗ I, T2 = I ⊗ T. We define the T -symmetrizator
operator

P
(n)
T (T1, T2, . . . , Tn−1) = P

(n)
T : H⊗n → H⊗n

as follows:

P
(n)
T = (1 + T1 + T2T1 + T3T2T1 + · · ·+ Tn−1 . . . T1)P

(n−1)
T (T2, T3, . . . , Tn−1),

1.2. Positivity of T -symmetrizators

Here P
(1)
T = 1, P

(2)
T = 1 + T1 and

Ti = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1 times

⊗T ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i−1 times

: H⊗n → H⊗n.

Under the assumption that ‖T ‖ ≤ 1 we proved (see [1, 2] ), that P
(n)
T ≥ 0 for

each n and hence we can form a new pre-scalar product on H⊗n as follows: for
ξ, η ∈ H⊗n

〈ξ|η〉T := 〈P (n)
T ξ|η〉,
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where 〈·|·〉 is the natural scalar product on H⊗n. Then we can form the creation
operator

a+(f)ξ = f ⊗ ξ

and the annihilation operator

a(f)ξ = l(f)(1 + T1 + T1T2 + · · ·+ T1T2 . . . Tn−1)ξ for ξ ∈ H⊗n,

where l(f) is the free annihilation operator defined as

l(f)(x1 ⊗ · · · ⊗ xn) = 〈f |x1〉 x2 ⊗ · · · ⊗ xn.

The main object of this abstract is the structure of the von Neumann algebra

ΓT (H) = {GT (f) : f ∈ HR}′′

generated by the T -Gaussian field GT (f) = a+(f) + a(f), where HR denotes the
real part of H.

As was shown earlier – (Voiculescu, Bożejko-Speicher, Ricard, Nou) this von
Neumann algebra is a non-injective II1-factor.

The linear span of T -Gaussian random variables is completely isomorphic
to the operator space called row and column, as we will show later. This is an
extension of the results of Haagerup and Pisier, A. Buchholz and of our results
with R. Speicher.

2. Hecke operators and positivity of T -symmetrizators

Now we answer the question posed by L. Accardi, namely, when are the T -

symmetrizator operators P
(n)
T similar to self-adjoint projections, i.e.,(

P
(n)
T

)2

= α(n) P
(n)
T for some α(n) > 0. (1)

First, let us see that if P
(2)
T = 1 + T satisfies (1) then

(1 + T )2 = α(1 + T ) for α = α(2) (2)

which implies that

T 2 = (q − 1)T + q 1, (3)

where q = α − 1. Such an operator satisfying (3) is called Hecke operator with
parameter q.

2.1. Examples of Hecke operators

(H1) The flip T = σ : H ⊗ H → H ⊗ H given by an exchange of the factors
σ(x ⊗ y) = y ⊗ x is a Hecke operator with q = 1 and the corresponding
“projection”

P
(n)
T =

∑
π∈Sn

π

is the classical symmetrizator operator on H⊗n.
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(H2) For T = −σ we obtain the anti-symmetrizator

P
(n)
T =

∑
π∈Sn

sgn(π) π,

where sgn(π) is the classical sign of a permutation π ∈ Sn.

(H3) If we take ε = ±1 and we define the operator

T = Tε =
q − 1

2
+ ε

q + 1

2
σ

then we get the Hecke operator with parameter q, i.e.,

T 2 = (q − 1)T + q 1.

This operator is a Yang–Baxter operator if and only if q = 1, which means
that Tε is the symmetrizator (ε = 1) or the anti-symmetrizator (ε = −1).

(H4) We get a very interesting example of a Yang–Baxter–Hecke operator for a
Hilbert space H of finite dimension dimH = m with an orthonormal basis
(e1, e2, . . . , em). We consider the operator P̃ : H⊗H → H⊗H given by

P̃ (ei ⊗ ej) = − 1

m
δij

m∑
k=1

ek ⊗ ek.

One can see that P = (−P̃ ) is the projector operator of the following form:

P (x⊗ y) =
1

m
〈x|y〉 θ, where θ =

m∑
k=1

ek ⊗ ek, x, y ∈ H

(see [15, page 449]).

(H5) The main example of that theory is Pusz–Woronowicz twisted CCR (CAR)
operators: TCCR

μ , TCAR
μ defined as:

TCCR
μ (ei ⊗ ej) =

⎧⎪⎨⎪⎩
μ(ej ⊗ ei) if i < j,

μ2(ei ⊗ ei) if i = j,

−(1− μ2)(ei ⊗ ej) + μ(ej ⊗ ei) if i > j,

TCAR
μ (ei ⊗ ej) =

⎧⎪⎨⎪⎩
−μ(ej ⊗ ei) if i < j,

−(ei ⊗ ei) if i = j,

−(1− μ2)(ei ⊗ ej)− μ(ej ⊗ ei) if i > j.

Both the twisted CCR and twisted CAR are Yang–Baxter–Hecke operators
with the parameter q = μ2, which means that T 2 = (μ2 − 1)T + μ2 1.

(H6) As a special case we consider TCAR
0 = TM , where TM is of the following

form:

TM(ei ⊗ ej) =

{
0 if i < j,

−(ei ⊗ ej) if i ≥ j.

It is connected with Muraki–Lu monotone Fock space, as we will see later.
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(H7) Also it will be interesting to see the corresponding T -Fock space in the case
when the twisted CCR operator has parameter μ = 0 and then we get the
following operator:

TCCR
0 (ei ⊗ ej) =

{
0 if i ≤ j,

−(ei ⊗ ej) if i > j.

Later we will use this operator to construct the Bose monotone Fock space.

(H8) In the paper [11] we introduced another type (called anyonic) of the Yang–
Baxter–Hecke operator Tz on L2(R, σ), where σ is a non-atomic Radon mea-
sure on R defined for f ∈ L2(R2, σ ⊗ σ) as follows:

Tzf(x, y) = Q(x, y)f(y, x),

where |z| = 1 and

Q(x, y) =

{
z if x < y,

z̄ if x > y.

Then Tz is a Yang–Baxter–Hecke operator with parameter q = 1.

2.2. Positivity of P
(n)
T for Yang–Baxter–Hecke operators

Proposition 1. Let T = T ∗ be a Yang–Baxter–Hecke operator. Then for each n ≥ 1(
P

(n)
T

)2

= n! P
(n)
T ≥ 0, (*)

where n = 1 + q + · · ·+ qn−1 and n! = 1 · 2 · . . . · n.

Moreover, for q ≥ −1∥∥∥P (n)
T

∥∥∥ = n! =

∏n
k=1(1− qk)

(1− q)n
.

Remark. Proposition 1 solves the problem of L. Accardi: P
(n)
T is similar to a

projection if and only if T is a Hecke operator.

2.3. T -symmetric Fock Hilbert space

FT (H) =

∞⊕
n=0

H�nn! = CΩ⊕H⊕H�2 ⊕ · · · ,

where
H�n = P

(n)
T (H⊗n)

is the space of T -symmetric tensors. By Proposition 1 we have that for f ∈ H�n,

P
(n)
T (f) = n!f . Therefore the Hilbert norm ‖f‖2T for f = (f0, f1, f2, . . . ) ∈ FT (H)

is defined as:

‖f‖2T = 〈PT (f)|f〉 =
∞∑

n=0

〈P (n)
T (fn)|fn〉 =

∞∑
n=0

n! ‖fn‖2 ≤ ∞.

One can see that we have the following description of T -symmetric tensors:
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Lemma 1. For n > 1 we have

H�n =
{
f ∈ H⊗n : Tj(f) = qf for j ∈ {1, 2, . . . , n− 1}

}
=

{
f ∈ H⊗n : P̃

(n)
T (f) = f

}
,

where P̃
(n)
T = 1

n!P
(n)
T .

Let us observe that the T -creation and T -annihilation operators on the T -
Fock space can be defined as follows: for f ∈ H

a+T (f) = P̃ l+(f)P̃ = P̃ l+(f),

aT (f) = P̃ l(f)P̃ = l(f) P̃ ,

where P̃ = P̃T =
∑∞

n=0
1
n!P

(n)
T is the orthogonal projection onto T -symmetric

tensors and l+(f), l(f) are the free creation and free annihilation operators.

2.4. Boolean Fock spaces

The simplest among deformed T -symmetric Fock spaces is the Boolean Fock space

F−1(H) = CΩ ⊕ H and the Yang–Baxter–Hecke operator T = −I, P (n)
T = 0 for

n > 1.
The Boolean creation and annihilation operators are following:

b+(f)ξ =

{
0 if ξ ∈ H,
f if ξ = Ω,

b(f)ξ =

{
〈f |ξ〉 if ξ ∈ H,
0 if ξ ∈ CΩ.

They satisfy the following relations: if (e1, e2, . . . , eN ) is an orthonormal basis of
H and b±i := b±(ei) then

bib
+
j = δi,j

(
1−

N∑
k=0

b+k bk

)
= δi,jPΩ,

where PΩ is the projection on the vacuum vector Ω.

For the Boolean Gaussian random variables GB(f) = b(f) + b+(f), the fol-
lowing proposition is known to be true:

Proposition 2 ([9]). For arbitrary operators αi ∈ B(H) and fi ∈ HR, ‖fi‖ = 1, we
have ∥∥∥∥∥

N∑
i=1

αi ⊗GB(fi)

∥∥∥∥∥ = max

⎧⎨⎩
∥∥∥∥∥∥
(

N∑
i=1

αiα
∗
i

)1/2
∥∥∥∥∥∥ ,

∥∥∥∥∥∥
(

N∑
i=1

α∗
iαi

)1/2
∥∥∥∥∥∥
⎫⎬⎭ .

That means that Boolean Gaussian random variables span the operator space
completely isometrically isomorphic to row and column operator space. Similar
results were obtained for the free and q-Gaussian random variables and free gen-
erators (see Haagerup–Pisier, Bożejko–Speicher).
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2.5. Monotone Fock spaces

Now we recall the definition of the monotone Fock space following the funda-
mental paper of Muraki [16], and we show that it is equal to special case of the
T -symmetric Fock space for the Pusz–Woronowicz operator considered in the ex-
ample (H6) T

CAR
0 = TM .

Let N be the set of all natural numbers. For r ≥ 1 we define Ir = {(i1, i2, . . . ,
ir) : i1 < i2 < · · · < ir, ij ∈ N} and for r = 0 we set I0 = {∅}, where ∅ denotes
the null sequence.

We define Inc(N) =
⋃

r Ir . Let Hr = l2(Ir) be the r-particle Hilbert space
and Φ =

⊕∞
r=0 Hr the monotone Fock space.

For an increasing sequence σ = (i1, i2, . . . , ir) ∈ Inc(N), denote by [σ] =
{i1, i2, . . . , ir} the associated set and by {eσ} the canonical basis vector in the
monotone Fock space Φ.

We will write [σ] < [τ ] if for each i ∈ [σ] and j ∈ [τ ] we have i < j. The
monotone creation operator δ+i and the annihilation operator δ−i are defined for
each i ∈ N by:

δ+i e(i1,...,ir) =

{
e(i,i1,...,ir) if {i} < {i1, . . . , ir},
0 otherwise,

δ−i e(i1,...,ir) =

{
e(i2,...,ir) if r ≥ 1, i = i1,

0 otherwise.

Let us observe that if P =
⊕

P (n) is the orthogonal projection from the full
Fock space onto the monotone Fock space, then δ±i = Pl±i P , where l

±
i are the

free creation and the free annihilation operators. Moreover, the following relations
hold:

δ+i δ
+
j = δ−j δ

−
i = 0 for i ≥ j,

δ−i δ
+
j = 0 for i �= j,

δ−i δ
+
i = 1−

∑
j≤i

δ+j δ
−
j for i = j.

Proposition 3. If TM = TCAR
0 is the Pusz–Woronowicz Yang–Baxter–Hecke oper-

ator defined as

TM (ei ⊗ ej) =

{
0 if i < j,

−(ei ⊗ ej) if i ≥ j

then the T -symmetric Fock space is exactly Muraki monotone Fock space and the
corresponding creation and annihilation operators are the following:

a+i = δ+i , ai = δ−i .
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Proposition 4. Let αi ∈ B(H) and Gi = δ−i + δ+i be the monotone Gaussian
operators. Then ∥∥∥∥∥

N∑
i=1

αi ⊗ δ−i

∥∥∥∥∥ =

∥∥∥∥∥
N∑
i=1

αiα
∗
i

∥∥∥∥∥
1/2

, (4)

∥∥∥∥∥
N∑
i=1

αi ⊗ δ+i

∥∥∥∥∥ =

∥∥∥∥∥
N∑
i=1

α∗
iαi

∥∥∥∥∥
1/2

, (5)

‖δ−i ‖ = ‖δ+i ‖ = 1, (6)

1 ≤ ‖Gi‖ ≤ 2, (7)

max

⎧⎨⎩
∥∥∥∥∥∥
(

N∑
i=1

αiα
∗
i

)1/2
∥∥∥∥∥∥ ,

∥∥∥∥∥∥
(

N∑
i=1

α∗
iαi

)1/2
∥∥∥∥∥∥
⎫⎬⎭

≤
∥∥∥∥∥

N∑
i=1

αi ⊗Gi

∥∥∥∥∥ ≤ 2max

⎧⎨⎩
∥∥∥∥∥∥
(

N∑
i=1

αiα
∗
i

)1/2
∥∥∥∥∥∥ ,

∥∥∥∥∥∥
(

N∑
i=1

α∗
iαi

)1/2
∥∥∥∥∥∥
⎫⎬⎭ .

(8)

3. Connections of Woronowicz–Pusz operators TCAR
μ

Bose monotone Fock spaces

If we consider bosonic type of the operator Pusz–Woronowicz defined as

TB(ei ⊗ ej) = TCCR
0 (ei ⊗ ej) =

{
0 if i ≤ j,

−(ei ⊗ ej) if i > j

then one can see that in that case the nth particle space of the corresponding
T -symmetric Fock space FTB (H) is of the following form:

P
(n)
T (H⊗n) = H⊗n

T = Lin{ei1 ⊗ ei2 ⊗ · · · ⊗ ein : i1 ≤ i2 ≤ · · · ≤ in}.
The action of the creation and annihilation operators is following:

Δ+
j (ei1 ⊗ ei2 ⊗ · · · ⊗ ein) =

{
ej ⊗ eij ⊗ ei1 ⊗ · · · ⊗ ein if j ≤ i1,

0 otherwise.

Δj(ei1 ⊗ ei2 ⊗ · · · ⊗ ein) =

{
ei2 ⊗ · · · ⊗ ein if j = i1,

0 otherwise,

and they satisfy the following commutation relations:

ΔiΔ
+
j = 0 for i �= j,

ΔiΔ
+
i = 1−

∑
k<i

Δ+
k Δk for i = j.
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From the last formulas we get Δ1Δ
+
1 = 1 and ‖Δ1‖ = 1. Moreover, ‖Δ±

j ‖ ≤ 1 and

since ‖Δ+
j Ω‖ = 1 we have ‖Δ±

j ‖ = 1.

By the similar considerations like in the Fermi-monotone Muraki–Fock space
we have the following:

Proposition 5. Let αi ∈ B(H) and gi = Δ−
i +Δ+

i be the monotone Bose Gaussian
operators, then

max

⎧⎨⎩
∥∥∥∥∥∥
(

N∑
i=1

αiα
∗
i

)1/2
∥∥∥∥∥∥ ,

∥∥∥∥∥∥
(

N∑
i=1

α∗
iαi

)1/2
∥∥∥∥∥∥
⎫⎬⎭

≤
∥∥∥∥∥

N∑
i=1

αi ⊗ gi

∥∥∥∥∥ ≤ 2max

⎧⎨⎩
∥∥∥∥∥∥
(

N∑
i=1

αiα
∗
i

)1/2
∥∥∥∥∥∥ ,

∥∥∥∥∥∥
(

N∑
i=1

α∗
iαi

)1/2
∥∥∥∥∥∥
⎫⎬⎭ .

If we take the vacuum state ε(T ) = 〈TΩ,Ω〉, then one can show the following
central limit theorem for the Bose-monotone Gaussian random variables gi =
Δi +Δ+

i .

Proposition 6 (Central Limit Theorem, 2000). If SN = 1√
N

∑N
i=1 gi, then

lim
N→∞

ε(S2n
N ) =

(
2n

n

)
,

i.e., SN weakly tends to arcsine law 1
π

1√
1−x2

.

In the case of the Fermi monotone case this same law was obtained by N. Mu-
raki [16]. See also the paper of J. Wysoczanski (2011) for related generalization of
the central limit theorems for the Boolean-monotonic case.

When we consider the Pusz–Woronowicz Hecke operator TCCR
μ for μ = −1,

defined as

TB(ei ⊗ ej) = TCCR
−1 (ei ⊗ ej) =

{
(ei ⊗ ej) if i = j,

−(ei ⊗ ej) if i �= j.

we get the model of mixed Bose–Fermi commutation relations:

bib
+
j + b+j bi = 0 if i �= j,

bib
+
j − b+j bi = 1 if i = j.

These models correspond to so-called qij -CCR commutations relations of the
form

AiA
+
j − qijA

+
j Ai = δij1,

where qij = q̄ji and |qij | ≤ 1.
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Such models were considered in many papers: Bożejko, Speicher, Jorgensen,

Smith, Werner, Nou, Krolak, Yoshida, Hiai, Lust-Piquard, Śniady.
In our last case we have case of “anicommuting bosons” i.e.: qii = 1 and

qij = −1 for i �= j.

Similarly, if we consider the Pusz–Woronowicz–Hecke operator TCAR
μ , for

μ = −1, we obtain again qij -CCR commutation relations of the type “commuting
fermions”, when qii = −1 and qij = 1 for i �= j.

4. Non-commutative Levy process for generalized “ANYON”

A first rigorous interpolation between canonical commutation relations (CCR) and
canonical anticommutation relations (CAR) was constructed in 1991 by Bożejko
and Speicher. Given a Hilbert space H, we constructed, for each q ∈ (−1, 1), a
deformation of the full Fock space over H, denoted by Fq(H). For each h ∈ H,
one naturally defines a (bounded) creation operator, a+(h), in Fq(H). The cor-
responding annihilation operator, a−(h), is the adjoint of a+(h). These operators
satisfy the q-commutation relations:

a−(g)a+(h)− qa+(h)a−(g) = (g, h)H, g, h ∈ H.
This is special case of Yang–Baxter deformation given by the Tq(x⊗y) = q(y⊗x).

The limiting cases, q = 1 and q = −1, correspond to the Bose and Fermi
statistics, respectively.

Another generalization of the CCR and CAR was proposed in 1995 by Ligouri
and Mintchev. They fixed a continuous underlying space X = R and considered a
function Q : X2 → C satisfying Q(s, t) = Q(t, s) and |Q(s, t)| = 1.

Setting H to be the complex space L2(R), one defines a bounded linear
operator T acting on H⊗H by the formula

T (f ⊗ g)(s, t) = Q(s, t)g(s)f(t), f, g ∈ H. (9)

This operator is self-adjoint, its norm is equal to 1, and it satisfies the Yang–Baxter
and Hecke relation.

One then defines corresponding creation and annihilation operators, a+(h)

and a−(h), for h ∈ H. By setting a+(h) =
∫
T
dt h(t)∂†t and a−(h) =

∫
T
dt h(t)∂t,

one gets (at least informally) creation and annihilation operators, ∂†t and ∂t, at
point t ∈ T . These operators satisfy the Q-commutation relations

∂s∂
†
t −Q(s, t)∂†t ∂s = δ(s, t),

∂s∂t −Q(t, s)∂t∂s = 0, ∂†s∂
†
t −Q(t, s)∂†t ∂

†
s = 0. (10)

From the point of view of physics, the most important case of a generalized
statistics (10) is the anyon statistics. For the anyon statistics, the function Q is
given by

Q(s, t) =

{
q, if s < t,

q̄, if s > t
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for a fixed q ∈ C with |q| = 1. Hence, the commutation relations (10) become

∂s∂
†
t − q∂†t ∂s = δ(s, t),

∂s∂t − q̄∂t∂s = 0, ∂†s∂
†
t − q̄∂†t ∂

†
s = 0, (11)

for s < t.
The free Levy processes, i.e., case Q(s, t) = q = 0, was done in our paper

with E. Lytvynov.
Having creation, neutral, and annihilation operators at our disposal, we define

and study, a noncommutative stochastic process (white noise)

ω(t) = ∂†t + ∂t + λ∂†t ∂t, t ∈ T.

Here λ ∈ R is a fixed parameter. The case λ = 0 corresponds to a Q-analog of
Brownian motion, while the case λ �= 0 (in particular, λ = 1) corresponds to a
(centered) Q-Poisson process.

We identify corresponding Q-Hermite (Q-Charlier respectively) polynomials,
denoted by ω(t1) · · ·ω(tn), of infinitely many noncommutative variables (ω(t))t∈T .

Then we introduce the notion of independence for a generalized statistics,
and to derive corresponding Lévy processes. We know from experience both in
free probability and in q-deformed probability that a natural way to explain that
certain noncommutative random variables are independent (relative to a given sta-
tistics/deformation of commutation relations) is to do this through corresponding
deformed cumulants-like q-deformed cumulants (−1 < q < 1).

Noncommutative Lévy processes have most actively been studied in the
framework of free probability. Using q-deformed cumulants, Anshelevich construc-
ted and studied noncommutative Lévy processes for q-commutation relations.
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1. Introduction

These lectures describe an algebraic approach to differentiation and integration
that is characteristic for non-commutative geometry. The material contained in
Section 2 is standard and can be found in any text on non-commutative geometry,
for example [4]. Items 5 and 6, which describe concepts introduced in [3], are
exceptions. The bulk of Section 3 is based on [1] and [3], while the Berezin integral
example is taken from [2].

2. Differential forms

1. Differential graded algebras. A differential graded algebra is a pair (Ω, d), where
Ω = ⊕n∈ZΩ

n is a graded algebra and d : Ω → Ω is a degree-one map that squares
to zero and satisfies the graded Leibniz rule. Note that Ω0 is an associative algebra
and all the Ωn are Ω0-bimodules.

2. Differential calculus. Given an associative algebra A (over a field K of character-
istic not 2), by a differential calculus over A we mean a differential graded algebra
(ΩA, d), such that Ω0A = A, ΩA is generated by Ω1A = Ad(A), and ΩnA = 0, for
all n < 0. A calculus is said to be N -dimensional, if ΩNA �= 0 and ΩnA = 0, for
all n > N . The pair (Ω1A, d : A→ Ω1A) is called a first-order differential calculus.

3. Universal differential calculus. Every algebra admits the universal differential
calculus, defined as the tensor product algebra over the kernel of the multiplication
map μ on A, with the exterior derivation d : a 
→ 1⊗ a− a⊗ 1, for all a ∈ A, and
then extended to the whole of TA(kerμ) by the graded Leibniz rule.
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Every first-order differential calculus (Ω1A, d) can by extended universally to
the full calculus by defining ΩA as the quotient of the tensor algebra TA(Ω

1A) by
the relations coming from the graded Leibniz rule and d2 = 0.

4. Volume form. An N -dimensional calculus is said to admit a volume form if
ΩNA ∼= A as a left and right A-module. Any free generator v of ΩNA as a left and
right A-module (if it exists) is called a volume form.

5. Skew multi-derivations. If (ΩA, d) is such that Ω1A is a finitely generated as
a left A-module, then any left A-module basis {ω1, . . . , ωn} of Ω1A induces maps
∂i, σij : A→ A, i, j = 1, . . . , n, by

da =
∑
i

∂i(a)ωi, ωia =
∑
j

σij(a)ωj . (1)

These necessarily satisfy

σij(1) = 1 σij(ab) =
∑
k

σik(a)σkj(b), (2a)

∂j(ab) =
∑
i

∂i(a)σij(b) + a∂j(b). (2b)

A system (∂j , σij)
n
i,j=1 is called a skew multi-derivation. Any skew multi-derivation

induces a calculus on A by formulae (1), provided there exist aαi

i , bαi

i ∈ A such that∑
αi
aαi

i ∂j(b
αi

i ) = δij . If such elements exist (∂j , σij)
n
i,j=1 is said to be orthogonal.

The conditions (2a) are equivalent to the statement that the map σ : A →
Mn(A), a 
→ (σij(a))

n
i,j=1, where Mn(A) denotes the ring of n × n matrices with

entries from A, is an algebra homomorphism.

6. Free multi-derivations. A skew multi-derivation (∂j , σij)
n
i,j=1 is said to be free,

provided there exist σ̄ij , σ̂ij : A → A that satisfy conditions (2a) and are such
that, for all a ∈ A,∑

k

σ̄jk(σik(a))=
∑
k

σkj(σ̄ki(a))=
∑
k

σ̂jk(σ̄ik(a))=
∑
k

σ̄kj(σ̂ki(a))=δija.

If the matrix σ = (σij)
n
i,j=1 is triangular with invertible diagonal entries, then

(∂j , σij)
n
i,j=1 is free.

7. Diagonal and skew q-derivations. If σ = (σij)
n
i,j=1 is diagonal, then relations

(2b) separate into twisted Leibniz rules, ∂i(ab) = ∂i(a)σii(b) + a∂i(b), for all i =
1, . . . , n. Furthermore, if σii is an invertible map and there exists qi ∈ K such that
σ−1
ii ◦ ∂i ◦ σii = qi∂i, then (∂i, σii) is called a skew qi-derivation.

8. Calculus for q-polynomials. A q-polynomial algebra or the quantum plane is
the algebra A = Kq[x, y] generated by x, y subject to the relation xy = qyx. The
elements of A are finite combinations of monomials xrys.

The algebra A admits a first-order calculus freely generated by one-forms
dx, dy and relations:

dxx = pxdx, dyx = pq−1xdy, dxy = qydx+ (p− 1)xdy, dyy = pydy,
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where p is a non-zero scalar. It is understood that d : x 
→ dx, y 
→ dy. The
universal extension of this calculus necessarily yields dxdy = −qp−1dydx, (dx)2 =
(dy)2 = 0, and it is a two-dimensional calculus with a volume form, e.g., v = dxdy.

Setting ω1 = dx, ω2 = dy one easily finds that the associated skew multi-
derivation (∂i, σij)

2
i,j=1 is free with the upper-triangular matrix-valued endomor-

phism

σ(xrys) =

(
prqsxrys pr(ps − 1)xr+1ys−1

0 pr+sq−rxrys

)
.

9. Inner calculus. A calculus (ΩA, d) is said to be inner if there exists θ ∈ Ω1A,
such that d(ω) = θω − (−1)nω, for all ω ∈ ΩnA. Note that d2(ω) = 0 implies that
θ2 is central in ΩA. Also θ satisfies the Cartan–Maurer equations dθ = 2θ2.

As an example, consider a one-dimensional calculus on the Laurent polyno-
mial ring A = K[x, x−1], given by Jackson’s q-derivation

∂q(f) =
f(qx)− f(x)

(q − 1)x
, (3)

where taking the limit is understood in case q = 1. If q �= 1, this calculus is inner
with θ = 1

q−1x
−1dx, otherwise it is not inner.

3. Integral forms

10. Divergence. Let (ΩA, d) be a differential calculus on an algebra A. We will
denote by InA, the Abelian group of all right A-linear maps ΩnA → A. For all
n ≥ m, consider maps

· : InA⊗ ΩmA→ In−mA, f ⊗ ω 
→ f · ω, (f · ω)(ω′) = f(ωω′).

In particular, · makes InA into a right A-module.
A divergence is a linear map ∇0 : I1A → A, such that, for all a ∈ A,

∇0(f · a) = ∇0(f)a + f(da). A divergence is extended to a family of maps ∇n :
In+1A → InA, by ∇n(f)(ω) = ∇0(f · ω) + (−1)n+1f(dω), for all ω ∈ ΩnA.

The cokernel map Λ : A→ A/Im∇0 is called the integral associated to ∇0.

11. Integral forms. A divergence ∇0 is said to be flat, provided ∇0 ◦ ∇1 = 0. It
is then the case that, for all n, ∇n ◦ ∇n+1 = 0, and hence there is a complex,

· · · ∇2 �� I2
∇1 �� I1

∇0 �� A, known as the complex of integral forms.

12. The inner case. If (ΩA, d) is an inner differential calculus with the exterior
derivative given by a graded commutator with θ ∈ Ω1A, then ∇0 : I1A → A,
f 
→ −f(θ) is a divergence. One easily finds that ∇1(f)(ω) = f(θω), and so this
divergence is flat, provided θ2 = 0.

13. Divergences and multi-derivations. Let (∂i, σij ; σ̄ij , σ̂ij)
n
i,j=1 be a free skew

multi-derivation on A, and let (Ω1A, d) be the associated first-order calculus with
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generators ω1, . . . , ωn. Let ξi ∈ Ii be the dual basis to the ωi, i.e., the ξi are given
by ξi(ωj) = δij . Then

∇0 : I1A→ A, f 
→
∑
i,j,k

σ̄kj (∂i (f (σ̂ki (ωi)))) , (4)

is a unique divergence such that ∇0(ξi) = 0, for all i = 1, . . . , n.
In particular, if σ is diagonal and all the (∂i, σii) are skew qi-derivations, then

∇0(f) =
∑
i

qi∂i (f (ωi)) .

14. Cauchy’s integral formula. Let A = K[x, x−1] be the Laurent polynomial ring
with the one-dimensional calculus (ΩA, d) given by Jackson’s q-derivative (3). In
this case ∂q is twisted by the automorphism σ(f(x)) = f(qx), and (∂q, σ) is a skew
q-derivation. Ω1A is generated by dx, and hence the corresponding divergence (4)
is ∇0(f) = q∂q (f (dx)). For all f ∈ I1A, define fx ∈ K[x, x−1] by fx(x) := f(dx).
Then

∇0(f) = q
fx(qx)− fx(x)

(q − 1)x
.

The image of∇0 consists of all of K[x, x−1] except the monomials αx−1. Therefore,
the integral is

Λ : K[x, x−1] → K, a 
→ res(a)Λ(x−1).

In case K = C we can normalise Λ as Λ(x−1) = 2πi, and obtain the Cauchy
integral formula.

15. Calculus on quantum groups. If A is a coordinate algebra of a compact quan-
tum group (over C), then every left-covariant differential calculus gives rise to a
free multi-derivation [5], and hence there is a canonical divergence ∇0 (4) and the
corresponding integral Λ. Any right integral λ on A (the Haar measure) factors
uniquely through Λ, i.e., there exists unique ϕ : A/Im∇0 → C such that λ = ϕ◦Λ.

16. Berezin’s integral. Let A be a superalgebra of (integrable) real functions on
the supercircle S1|1. That is, A consists of a(x, ϑ) = a0(x) + a1(x)ϑ, where ai :
[0, 1] → R are (integrable) functions such that ai(0) = ai(1) and ϑ is a Grassmann
variable, ϑ2 = 0. The differentiation on A is defined by

∂xa(x, ϑ) :=
da0(x)

dx
+
da1(x)

dx
ϑ, ∂ϑa(x, ϑ) := a1(x).

One easily checks that ∂ = (∂x, ∂ϑ) is a free skew multi-derivation with the twist-

ing matrix-valued endomorphism σ(a(x, ϑ)) =

(
a(x, ϑ) 0

0 a(x,−ϑ)

)
. The calculus

Ω1A is freely generated by dx and dϑ. The corresponding divergence in Item 13
comes out as

∇0(f)(x, ϑ) = ∂xfx(x, ϑ) − ∂ϑfϑ(x, ϑ) =
df0

x(x)

dx
− f1

ϑ(x) +
df0

ϑ(x)

dx
ϑ,
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where fx(x, ϑ) := f(dx)(x, ϑ) = f0
x(x) + f1

x(x)ϑ and fϑ(x, ϑ) := f(dϑ)(x, ϑ) =
f0
ϑ(x) + f1

ϑ(x)ϑ.
If a(x, ϑ) is purely even, i.e., a(x, ϑ) = a(x), then setting fx(x, ϑ) = 0 and

fϑ(x, ϑ) = −a(x)ϑ we obtain a(x) = ∇0(f). Thus, the integral Λ vanishes on the
even part of A. Since Λ is the cokernel map of ∇0, for all f ∈ I1A,

0 = Λ ◦ ∇0(f) = Λ

(
df0

x(x)

dx
− f1

ϑ(x) +
df0

ϑ(x)

dx
ϑ

)
= Λ

(
d

dx
f0
ϑ(x)ϑ

)
.

On the other hand, f0
ϑ(0) = f0

ϑ(1), so
∫ 1

0
d
dxf

0
ϑ(x)dx = 0. By the universality of Λ,

Λ(a1(x)ϑ) =
∫ 1

0 a
1(x)dx. Therefore,

Λ(a0(x) + a1(x)ϑ) =

∫ 1

0

a1(x)dx,

i.e., Λ is the Berezin integral on the supercircle.
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[1] T. Brzeziński, Non-commutative connections of the second kind. J. Algebra Appl. 7
(2008), 557–573.
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Overview of the lectures

Symplectic structures arising naturally in the calculus of variations were thor-
oughly discussed. Different variational principles for General Relativity were pre-
sented (metric, metric-affine, purely affine) and the relation between them deeply
analyzed. Finally, Hamiltonian formulation of the field evolution were derived.

1. Gravity as a field of local refererence frames

Newton’s first law: there is a global inertial system. In absence of any force a test
body moves along a straight line with constant velocity:

ÿα = 0 (1)

where (yα) – linear coordinates in an affine spacetime X . Inertial reference frame
– not a coordinate system but an equivalence class{

(yα) ∼
(
xλ

)}
⇔

{
∂2yα

∂xμxν
= 0

}
. (2)

Calculate equations of motion (1) in arbitrary (non-inertial, i.e., curvilinear) co-
ordinates

(
xλ

)
:

ẏα =
∂yα

∂xν
ẋν , ÿα =

∂yα

∂xν
ẍν +

∂2yα

∂xμ∂xν
ẋμẋν = 0

∂xλ

∂yα
ÿα = δλν ẍ

ν +
∂xλ

∂yα
∂2yα

∂xμ∂xν
ẋμẋν = ẍλ + Γλ

μν ẋ
μẋν = 0 ,

(3)
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where the coefficients:

Γλ
μν(x) :=

∂xλ

∂yα
∂2yα

∂xμ∂xν
(x) , (4)

measure at each spacetime point x ∈ X how much non-inertial is the system
(
xλ

)
.

Equation of motion (3) can be written in a “Newtonian” form:

mẍλ = −mΓλ
μν ẋ

μẋν =: Fλ (5)

where m is the mass and Fλ are fictitious forces due to non-inertiality of the
system. They can be globally eliminated if we use an inertial frame for which
Γλ
μν = 0.

Einstein: gravity is nothing but the above fictitious force. It can locally can
be eliminated (freely falling elevator!). Maybe, there is no global inertial system.
But there is a local inertal system at each x ∈ X separately.

Definition. A local reference frame at x is an equivalence class of local coordinate
systems defined in a neighbourhood of x, with respect to the local version ∼x of
the equivalence relation (2), namely:

{
(yα) ∼x

(
xλ

)}
⇔

{
∂2yα

∂xμxν
(x) = 0

}
. (6)

Collection of all reference frames is a fiber bundleRef(X ). Given a coordinate
system (xμ), a reference frame R at x is uniquely parameterized by coefficients
(4), where (yα) is any representative of R, i.e., [(yα)]x = R. The system

(
xμ,Γλ

μν

)
is compatible with the bundle structure of Ref(X ). Its fibers carry a canonical
affine structure.

Definition. Gravitational field in X is a section s : X → Ref(X ) of the bundle of
reference frames. Element s(x) is called an inertial frame at x.

Mathematical version of the Einstein’s “free falling elevator” is given by the
following

Lemma. Any system of coordinates (xμ) can be made inertial at x by a quadratic
correction.

Proof. Assume for simplicity that (xμ) are centered at x, i.e., xμ(x) = 0. If (xμ)
is not inertial at x, i.e., if [(xμ)]x �= s(x), i.e., if Γλ

μν(x) �= 0, then

yα := xα +
1

2
Γλ
μν(x)x

μxν (7)

is already inertial, i.e., [(yα)]x = s(x). �
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2. Curvature. Affine variational principle for gravitational field

Mathematically, gravitational field is a symmetric connection on spacetime. No
metric tensor is necessary to formulate equations of motion (3) of test particles
moving in a gravitational field:

ẍλ + Γλ
μν ẋ

μẋν = 0 .

Metric is necessary for the remaining physics (electrodynamics and nuclear forces,
see Special Relativity Theory).

Definition. A connection s is flat in a neighbourhood of x ∈ X if there are coor-
dinates which are inertial not only at x ∈ X but also within its neighbourhood.

To check if this is the case, we first annihilate Γλ
μν at x by (7) and then try

to annihilate also its derivatives Γλ
μνκ := ∂κΓ

λ
μν . The only way to achieve this goal

is to use cubic corrections in (7). Because (xα) are already inertial, the quadratic
correction must vanish. Hence, we put

yλ := xλ +
1

6
Uλ
μνκx

μxνxκ , (8)

where U is totally symmetric in (μνκ) (in any case, only the totally symmetric
part enters no-trivially in (8)). This correction of coordinates implies the following
correction of Γλ

μνκ:

Γλ
μνκ −→ Γλ

μνκ + Uλ
μνκ . (9)

Hence, we are able to annihilate only the totaly symmetric part Γλ
(μνκ) of deriva-

tives of Γ. What remains is invariant.

Definition. A curvature tensor Kλ
μνκ of the connection s is the tensor Kλ

μνκ whose
components are given in inertial coordinates by:

Kλ
μνκ :

∗
= Γλ

μνκ − Γλ
(μνκ) . (10)

Lemma. Curvature tensor is symmetric in first two lower indices: Kλ
μνκ = Kλ

νμκ.

Moreover, its totally symmetric part vanishes: Kλ
(μνκ) (I-st type Bianchi identities).

Corollary. If Kλ
μνκ �= 0 at x then the connection is not flat because there is no way

to annihilate even its first derivatives.

It is an easy exercise to recalculate the curvature in a generic (not necessarily
inertial) coordinate system:

Lemma. Formula (10) takes the following, universal form, valid in an arbitrary
coordinate system:

Kλ
μνκ = Γλ

μνκ − Γλ
(μνκ) + Γλ

γκΓ
γ
μν − Γλ

γ(κΓ
γ
μν) . (11)

Theorem. Curvature tensor Kλ
μνκ carries the same information as the Riemann

tensor Rλ
μνκ. More precisely:

Kλ
μνκ = −2

3
Rλ

(μν)κ ; Rλ
μνκ = −2Kλ

μ[νκ] . (12)
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In particular, the symmetric part of the Ricci tensor is given by its trace:

Kμν := R(μν) =
3

2
Kλ

μνλ (13)

(we do not know a priori that Ricci is symmetric because, a priori, Γ could be
non-metric).

The simplest invariant Lagrangian manufactured from the gravitational field
Γ is:

L = L(Γ, ∂Γ) = C ·
√
detKμν (14)

(Remember that: 1) we have no metric tensor at our disposal to contract indices
of Kλ

μνκ and 2) L must be a scalar density!)

Theorem. Variational principle δ
∫
L = 0 is equivalent to the standard General

Relativity Theory. More precisely, Euler–Lagrange equations derived from (14) can
be written as:

πμν =
∂L

∂Kμν
, (15)

∇λπ
μν = 0 . (16)

Their equivalence with conventional GR is obtained if we interpret the mo-
mentum πμν as the contravariant density of the metric:

πμν =:
1

16π

√
g gμν . (17)

Then (16) implies that Γ is the metric (Levi-Civita) connection of g, whereas (15)
are Einstein equations with cosmological constant Λ = 1

4πC . In particular, Λ = 0
case corresponds to the constrained variations principle: L ≡ 0 on constraints
Kμν ≡ 0.

3. Symplectic structure related to gravitational field

General Relativity Theory describes interaction of two different geometric struc-
tures: 1) the affine structure, described by the connection Γ, and 2) the metric
structure, described by the metric tensor. In affine formulation the metric (or its
contravariant density (17)) plays role of the momentum canonically conjugate to
the field Γ. Any variational principle can be regarded as a symplectic control theory
in an appropriate jet space equipped with a canonical symplectic structure.

Example. Consider a scalar field ϕ. Field equations derived from a Lagrangian
density L = L(ϕ, ∂ϕ) can be written as follows:

δL(ϕ, ϕμ) = ∂μ (p
μδϕ) = (∂μp

μ) δϕ+ pμδϕμ . (18)

Here we use the jet-oriented notation: ϕμ := ∂μϕ and “δ” is just the standard
exterior derivative within a fiber J1Px of the first jet extension of a certain bundle
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over X , describing the value of the field ϕ and the momenta pμ. Indeed, (18) is
equivalent to the Euler–Lagrange equation

∂μp
μ =

∂L

∂ϕ
(19)

together with the definition of momenta:

pμ =
∂L

∂ϕμ
. (20)

The symplectic interpretation is following: There is a canonical symplectic struc-
ture in each 10-dimensional space J1Px:

ω := ∂μ (δp
μ ∧ δϕ) = δ (∂μp

μ) ∧ δϕ+ δpμ ∧ δϕμ . (21)

Equation (18) is a definition of its 5-dimensional, Lagrangian (i.e., maximal iso-
tropic), subspace of “physically admissible” jets and L is its generating function
with respect to a specific control mode, where (ϕ, ϕμ) have been chosen as control
parameters, whereas the remaining parameters (∂μp

μ, pμ) have been declared to
be response parameters.

This formulation is analogous to the first law of thermodynamics:

dU(V, S) = −pdV + TdS,

where ω = dV ∧ dp + dT ∧ dS is the canonical symplectic structure in the four-
dimensional phase space describing the pressure p, the volume V , the temperature
T and the entropy S of a simple thermodynamical body. Here, the generating
function U is the internal energy of the body.

In case of gravitation, the bundle P describes the field variables Γλ
μν and the

corresponding momentum πμνκ
λ . Each fiber J1Px of its first jet extension carries

the canonical symplectic structure

ω := ∂κ
(
δπμνκ

λ ∧ δΓλ
μν

)
= δ (∂κπ

μνκ
λ ) ∧ δΓλ

μν + δπμνκ
λ ∧ δΓλ

μνκ . (22)

The affine variational principle based on any L = L(Kμν) (e.g., (14)) is obtained
if we choose the first jet of Γ, i.e., (Γλ

μν ,Γ
λ
μνκ), as control parameters:

δL = ∂κ
(
πμνκ
λ δΓλ

μν

)
= (∂κπ

μνκ
λ ) δΓλ

μν + πμνκ
λ δΓλ

μνκ . (23)

Because Γλ
μνκ enters into L via the Ricci only, we have constraints:

πμνκ
λ =

∂L

∂Γλ
μνκ

=
∂L

∂Kαβ

∂Kαβ

∂Γλ
μνκ

= πμνδκλ − πκ(μδ
ν)
λ , (24)

where πμν , given by (15), describes the metric tensor according to (16). Metric
(Hilbert) variational principle is obtained if we perform Legendre transformation
between Γ and the metric, i.e., we choose the jet of the metric metric (πμν , ∂λπ

μν)
as control parameters and the first jet of the connection (i.e., also curvature) as
response parameters.

The whole canonical gravity together with its Hamiltonian formulation is
described by the symplectic structure (22) and its various control modes.
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Due to the special form of the evolution equations in quantum theories, the expo-
nential operators with constant or variable exponents −iHδt (where H are Hamil-
tonians) are the most typical elements of quantum dynamics, even if sometimes
implicit or difficult to perceive behind too many details of perturbative calcula-
tions.

The report below is aimed to present some simple laws permitting to use the
algebras of exponential operators with non-commuting exponents.

The most elementary results concern just a pair of non-commuting expo-
nents a, b (tentatively in an algebra of observables of some quantum system,
a = −iH1δt1, b = −iH2δt2). Then in case when the commutator [a, b] is just
a number, [a, b] = α ∈ C, the law of multiplying two exponential operators ea and
eb is simply:

eaeb = ea+b+ 1
2 [a,b]. (1)

In general, if the commutators of some higher order of a, b do not vanish, the
formula of Baker–Campbell–Hausdorff [1], leads to:

eλaeλb = eλ(a+b)+λ2

2 [a,b]+λ3

12 ([a,[a,b]]+[b,[b,a]])+··· (2)

The inverse formula of Zassenhaus (see, e.g., Wilcox [2]) permits to decom-
pose the operator eλ(a+b) into an infinite product of the exponential operators with
exponents proportional to powers of λ which can facilitate the operations in the
S-matrix formalism.

In what follows we shall be most interested in sequences of exponential op-
erators e−iH(tn)δtne−iH(tn−1)δtn−1 . . . e−iH(t1)δt1 . However, for symbolic simplicity,
we shall consider slightly more general products:

U = eA(tn)δtneA(tn−1)δtn−1 · · · eA(t1)δt1 , (3)
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where the algebraic properties of A(t) are not a priori assumed. The limits for
δtj → 0 and n → ∞ are of special interest; they can approximate the continuous
evolution processes described by the differential equations:

dU

dt
= A(t)U(t, t0). (4)

The resulting operators can be equivalently expressed by the integral equation:

U(t, t0) = 1 +

∫ t

t0

A(t1)U(t1, t0)dt1. (5)

Its iterations obtained by substituting the U(t1, t0) under the integral on its own
right-hand side offer the sequence of multi-integral expressions starting from:

U(t, t0) = 1 +

∫ t

t0

A(t1)U(t1, t0)dt1 +

∫ t

t0

∫ t1

t0

A(t1)A(t2)U(t2, t0)dt2dt1. (6)

leading in the limit to the solution: U(t, t0) = 1 + Z(t, t0), where Z is expressed
by the infinite formal series

Z =

∫ t

t0

A(t1)dt1 +

∫ t

t0

∫ t

t0

A(t1)θ1,2A(t2)dt2dt1

+

∫ t

t0

∫ t

t0

∫ t

t0

A(t1)θ1,2A(t2)θ2,3A(t3)dt3dt2dt1 + · · · ,
(7)

where the Heaviside functions θj,k = θ(tj − tk) assure that the integrals over the
subsequent parameters tj run just from t0 to tj−1. The question thus arises, how
to express U(t, t0) by the single exponential operator

U(t, t0) = eΩ(t,t0). (8)

The problem inspired a formal solution of the ‘chronological product’

U(t, t0) = T [e
∫

t
t0

A(τ)dτ
], (9)

which, however, contains a symbolic cheating since precisely Ω �=
∫ t

t0
A(τ)dτ .

The problem inspired a sequence of papers using the non-linear algorithm,
which permits to seek Ω as an infinite sum of the homogeneous contributions
in form of multiple integrals of the A’s, the most important of Magnus [3] and
Wilcox [2]. However, the algorithm turned out overcomplicated. Magnus was able
to calculate Ω up to the 3rd order in A’s, and concluded that the rest is just a
‘combinatorial mess’. Wilcox succeeded to obtain the 4th order, but no more. The
problem seemed open for the future generations.

An authentic breakthrough, though, came from analyzing more carefully
the structure of the series for Z given by (7) with the expression for U = eΩ

= 1 + Z. It implies:

Ω = ln(1 + Z) = Z − 1

2
Z2 +

1

3
Z3 − · · · (10)
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Then, one can notice that:

Z2 =
������������

∫ t

t0

A(t1)dt1 +

∫ t

t0

∫ t

t0

A(t1)��θ12A(t2)dt2dt1

+

∫ t

t0

∫ t

t0

∫ t

t0

A(t1)��θ12A(t2)θ23A(t3)dt3dt2dt1

+

∫ t

t0

∫ t

t0

∫ t

t0

A(t1)θ12A(t2)��θ23A(t3)dt3dt2dt1 + · · · ,

(11)

obtained from Z by crossing some thetas. The first integral is removed altogether
and in the remaining terms some θ functions are removed by the operation of
crossing out ��θ, which is indeed the formal differentiation of Z2 by d

dθ , so Z
2 = d

dθZ,

in general Z(n+1) = 1
n!

dn

dθnZ, implying:

Ω =

[
e−

d
dθ − 1

− d
dθ

]
Z. (12)

This leads to an explicit expression:

Ω =

∞∑
n=1

∫ t

t0

· · ·
∫ t

t0

Ln(t1, . . . , tn), A(t1) · · ·A(tn)dtn · · · dt1 (13)

where the kernels are:

Ln(tn, . . . , t1) =
e−

d
dθ − 1

− d
dθ

[θ21 . . . θn,n−1]. (14)

Since all differentiations d
dθ act on finite θ products, all kernels Ln are explicitly

known [4, 5] (cf. ample comments of Czyż [6] and Gelfand [7]).

Special applications. Some other aspects are also of interest. As can be shown, all
terms of (12) are the Lie products (multiple commutators) of A1, . . . , An. When-
ever they can be represented by generators of a finite-dimensional Lie algebra,
some higher-order terms in (12) start to repeat and the problem of finding U
leads to a finite-dimensional matrix equation. The simplest case occurs just in
the Hilbert space L2(R) for the quantum motion of the 1-dimensional harmonic
oscillator generated by the time-dependent Hamiltonians

H(t) =
p2

2
+ β(t)

q2

2
, (15)

where we put m = � = 1 and β(t) represents the time-dependent elastic force.
The curious phenomenon of classical-quantum equivalence gives exactly the same
differential equation for the evolution of either classical or quantum canonical
variables q, p. Since the equations are linear, then the q(t), p(t) pairs evolve linearly
according to: ∥∥∥∥q(t)p(t)

∥∥∥∥ = u(t, τ)

∥∥∥∥q(τ)p(τ)

∥∥∥∥ , (16)
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where u(t, τ) is a simplectic, real 2 × 2 matrix, exactly the same for the classical
and quantum canonical variables, given by the matrix equations:

du(t, τ)

dt
= Λ(t)u(t, τ),

du(t, τ)

dτ
= −u(t, τ)Λ(τ), (17)

where

Λ(t) =

∥∥∥∥ 0 1
−β(t) 0

∥∥∥∥ . (18)

An interesting property of the physical spinless particle in 1-space dimension
is that if a pair of unitary operators U1 and U2 generate the same transformation

of the canonical observables q, p, i.e., U †
1qU1 = U †

2qU2 and U †
1pU1 = U †

2pU2, then

U1U
†
2 commutes with both q and p and since the functions of q and p form an

irreducible algebra in L2(R) then U1U
†
2 = eiφ meaning that U2 = eiφU1. We shall

say that U1 and U2 are equivalent, U1 ≡ U2.

This means, however, that the time-dependent unitary operators U(t, τ)
defining the evolution of quantum systems for the quadratic Hamiltonians (15)
are defined with accuracy to the c-number phase factors by the corresponding
evolution matrices u(t, τ). And since they are identical as in the classical theory,
then the whole ‘quantization problem’ of the Hamiltonians (15) is basically solved
by classical evolution – without an effort of using the chronological or normal
products, Weyl’s ordering of q, p-polynomials etc. The only problem is to solve
the c-number matrix equation for the classical evolution trajectories with time-
dependent β(t), which may require some patient computer work.

Yet, in either quantum or classical cases there is a collection of exact data
useful for the general solutions of the evolution problem. The simplest ones concern
the fragments of free evolution interrupted by sudden δ-kicks of the oscillator
potential. The free evolution operator in L2(R) in any interval [t1, t2] where β(t) =

0 is given by Uτ = e−τ p2

2 , where τ = t2 − t1. In turn, the sudden kick of the

oscillator force, β(t) = aδ(t) generates the evolution operator Ua = e−a q2

2 . The
corresponding evolution matrices are

uτ =

∥∥∥∥1 τ
0 1

∥∥∥∥ , ua =

∥∥∥∥ 1 0
−a 1

∥∥∥∥ . (19)

A curious effect which can happen by applying sequences of free evolution intervals,
interrupted by the oscillator kicks are the evolution loops in which the sequences
of evolution matrices give the identity: uτ1ua1 · · ·uτnuan = 1 so that the quantum
system returns to its initial state. The simplest case of this phenomenon in L2(R)
is illustrated below in Figure 1, [8, 9].

The product of the 6 unitary operations represented here corresponds to the
identity:

e−iβΓ q2

2 e−iγ p2

2 e−iαΓ q2

2 e−iβ p2

2 e−iγΓ q2

2 e−iα p2

2 ≡ 1. (20)
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Γβ

Γγ

Γα

α

β

γ

Γ=
α+β+γ

αβγ

Figure 1. The evolution triangle. The free evolution intervals for τ =
α, β, γ (represented by the triangle sides), interrupted by three oscillator
kicks αΓ, βΓ, γΓ generate an evolution loop with the evolution matrices
closing to 1 and the evolution operators (20) returning the system to its
initial state.

Note that interesting operational effects. Indeed, any 5 subsequent operations of
the triangle invert the 6th one, e.g.:

eiα
p2

2 ≡ e−iβΓ q2

2 e−iγ p2

2 e−iαΓ q2

2 e−iβ p2

2 e−iγΓ q2

2 (21)

producing an evolution incident inverting the free packet propagation during the
time τ = α.

As subsequently found, the analogous incidents of the free evolution inverted
can be generated for charged particle, under the influence of the homogeneous
magnetic field pulses arriving subsequently from three orthogonal directions (non-
relativistic approximation cf. [10]).

As interesting effects can occur also for charged particles in softly pulsating
homogeneous magnetic fields B(t) = B1 cosωt+B2 cos 2ωt parallel to an axis of a
solenoid [11]. A careful computer study of the stability limits for the charged par-
ticle in the dimensionless coordinates (A. Ramı́rez) succeeded to identify the map
of the stability thresholds on which the trace of the evolution matrices becomes
±1 (see Fig. 2).

Curiously, on all such thresholds the unitary evolution operators imitate ei-
ther the free evolution incidents, but with the enlarged or slowed or even inverted
evolution times (see Fig. 3). Alternatively, on a part of thresholds, one obtains
the ‘soft imitations’ of the sharp oscillator kicks (non-relativistic, but it was found
that the similar effects occur also in the special-relativistic approximation [12]).

The search for variable oscillator pulses, permitting to achieve some physically
interesting result, in spite of its narrow subject, is still an open area. In particular,
one might be interested to consult [13] (nonhermitian problems), also [14] (non-
linear equations for higher-dimensional models), [15] (the exponential formula for
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Figure 2. The Ramı́rez map for charged particle stability under the
influence of double frequency pulses of a homogeneous magnetic field
B(t) = B1 cosωt + B2 cos 2ωt. The results expressed in dimensionless
variables, e = m = � = ω = 1. On the horizontal and vertical axes
β1 and β2 are the dimensionless equivalents of the amplitudes B1 and
B2. The matrix B on the right side represents one of the effects of the
inverted free evolution.

higher-dimensional matrices, though the physical applications are still an open
problem).
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WHAT IS. . . ?

In September 2002, the Notices of the American Mathematical Society launched
a new feature, published in each issue since then, with the following mission state-
ment: “This is the inaugural installment of the “WHAT IS. . . ?” column, which
carries short (one- or two-page), nontechnical articles aimed at graduate students.
Each article focuses on a single mathematical object, rather than a whole theory”1.

This is a very popular feature of the Notices, and since the School’s goal is
to introduce an area of research, I tailored my three lectures after it. The original
plan was to cover Elliptic and Hyperelliptic Theta Functions, and their general-
ization – Klein’s higher-genus sigma function – specifically to construct solutions
to integrable hierarchies such as the Toda Lattice [KMP]; introduce vector bun-
dles over curves and their moduli, with applications to algebraically completely
integrable Hamiltonian systems (ACIs) [Hi]; then bring the two topics together
through classical theorems of projective geometry, in recent applications, for ex-
ample, to random-matrix theory (Painlevé equations) [HaS]. As the lectures un-
folded, more detail was required and the three lectures reorganized as follows:
the first and second are concerned with aspects of elliptic/hyperelliptic curves in

This work was partly supported by the Conference Grant NSF DMS1609812. The author is
sincerely grateful to the PI, Prof. Ekaterina Shemyakova, as well as the Organizers of Bia�lowieża

XXXV.
1A list can be found at http://www.ams.org/publications/notices/whatis/noticesarchive.

http://www.ams.org/publications/notices/whatis/noticesarchive
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classical geometry, recently adapted to applications in integrability, in both the
contexts of PDE hierarchies and of ACIs. The final lecture covered the Kleinian
sigma function, concluding with Baker’s striking interpretation in projective ge-
ometry of the PDEs that characterize it: this is a tool that brings vector bundles
into integrability, but there was no time for specifics

1. Lecture I: What is an elliptic curve?

As Mumford says in [Mum1, Lect. I], “The beginning of the subject is the Amaz-
ing Synthesis, which surely overwhelmed each of us as graduate students”, and
which he illustrates by the three natures of curves: Algebra (finitely generated field
extensions of transcendence degree one over C); Geometry (subvarieties of projec-
tive space Pn, locally defined by n − 1 homogeneous polynomial equations with
independent differentials); Analysis (compact Riemann surfaces). I started with
the Analysis nature of the elliptic curve, the torus E = C/{n + mτ, n,m ∈ Z},
which becomes Algebra by virtue of the ODE satisfied by the Weierstrass ℘ func-
tion, the doubly periodic meromorphic function whose poles occur at the vertices
of the lattice with the smallest possible multiplicity, two. An introduction both
accessible and comprehensive, including a proof that the field K of meromorphic
functions on E is generated by ℘ and ℘′, can be found in [DuV].

Two remarks are relevant.

Remark 1. The role of the elliptic curve in integrability. The Korteweg–de Vries
(KdV) equation,

ut +
3

2
uux −

1

4
uxxx = 0

was proposed in the 19th century to model waves in a shallow canal (the value
of u(x, t) represents the height of the wave, the coordinate x the position in the
canal); it was therefore natural to make the ‘one-wave ansatz’, u(z, t) = v(x− ct),
c a constant, where the function v(z) should satisfy the ordinary differential equa-
tion −cv′ + 3

2vv
′ − 1

4v
′′′ = 0. By integrating twice, it was originally observed that

the general solution is then an elliptic function, v(x) = 2℘(z+α)+a (α, a two addi-
tional constants introduced by integration; when a assumes special values so that
the cubic polynomial defining the elliptic curve has repeated roots, the solution
becomes an elementary function, given in terms of exponentials or trigonomet-
ric/hyperbolic functions.) A modern example arises in statistical mechanics, as a
one-dimensional lattice with exponential (nearest-neighbor) interaction, the Toda
(differential-difference) system:

d2rn
dt2

= a[2 exp(−brn)− exp(−brn−1)− exp(−brn+1)],

where a, b are arbitrary constants and n is any integer. By the transformation:

r = −1

b
ln

(
1 +

f

a

)
,
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d2

dt2
ln

(
1 +

fn
a

)
= b(fn−1 + fn+1 − 2fn),

Toda [T] produced exact solutions, expressed algebraically in terms of (Jacobi)
elliptic functions,

fn =
(2kν)2

b

[
dn2

(
2K(νt− n

λ
)
)
− E

K

]
,

where ν is the frequency, λ the wavelength,K and E are complete elliptic integrals
of the first and second kind for the modulus k:

K =

∫ π/2

0

dθ√
1− k2 sin2 θ

, K =

∫ π/2

0

√
1− k2 sin2 θdθ;

the formula shows that the discrete evolution corresponds to the addition of a point
on the elliptic curve: the addition law is arguably the reason for the “unreasonable
effectiveness” of elliptic functions in dynamics.

Remark 2. Less famous than the Weierstrass equation, (℘′)2 = 4℘3 − g2℘ − g3,
two differential properties that characterize the ℘ function were forerunners of the
theory of integrable PDEs. On the one hand, I mention ℘′′ = 6℘2 − g2/2, because
the theory of the “higher-genus Kleinian function” σ [B, BEL], to which Lecture
III is devoted, and which generalizes the genus-one Weierstrass sigma function, is
centered on the search for a complete set of (partial, in higher genus) differential
equations satisfied by σ; complete in the sense of differential algebra, for example,
namely sets that are bases of differential ideals that define the differential rings of
the algebraic varieties where σ is defined. On the other hand, Baker, as pointed out
in [EE], wrote an equation for the σ function of a hyperelliptic curve of genus two,
using the “bilinear operator” that Hirota rediscovered independently and yields
the “Hirota form” of the Kadomtsev–Petviashvili (KP) equation (ut + 6uux +
uxxx)x + 3uyy = 0, namely

(DxDt +D4
x + 3D2

y)τ · τ = 0,

for w(x, y, t) = 2 ln∂2xτ(x, y, t), where two differentiations DuDv applied to τ · τ
signify

∂

∂u

∂

∂v

(
τ(u + v)τ(u − v)

)
|u=v

The Weierstrass equation thus provides the Algebra aspect of E, which Mum-
ford (loc. cit.) describes as “field extensions K ⊃ C, where K is finitely generated
and of transcendence 1 over C.” I then gave three versions of the Geometry nature
of an elliptic curve, all closely related to integrable systems, the third one less
known. Briefly: The first, as a smooth cubic in the plane, in Weierstrass normal
form, y2 = 4x3 − g2x − g3; The second, as the intersection of two quadrics in
3-dimensional projective space P3 – these embeddings are images under the di-
visor map for the linear series of 2∞ and 3∞ respectively, where ∞ is the point
[0, 0, 1] of the Weierstrass cubic in projective coordinates [x0, x1, x2] for which
x = x1/x0, y = x2/x0. These two projective models can be brought together by the



272 E. Previato

third geometric representation, namely, the incidence correspondence I ⊂ C ×D∗

with a choice of origin for the group law [BKOR]. Here the points of the curve are
pairs (P, �), with P a point in a fixed conic C and � one of the two lines through P
that are tangents to another fixed conic D; C and D must be in general position,
and the limiting cases correspond to cubics that define rational curves. The model
provides a beautiful proof of the classical “Poncelet’s Porism Theorem”, very much
relevant to integrable dynamics, such as billiard or geodesic motion [P3].

2. Lecture II: Differential algebra

We now meet another, less known, nature of the elliptic curve.

2.1. Burchnall and Chaundy

A fourth nature of the elliptic curve emerged in the 20th century, in fact surpris-
ingly early. In [BC], the authors pose the following question: what is the structure
of a commutative subalgebra of the C-algebra of Ordinary Differential Operators
(ODOs) that is not of the form C[L], with L an ODO? We briefly recall the set-
ting: we choose to work in the formal one of the algebra of Pseudo Differential
Operators (ΨDOs), which is the most general, with the disadvantage that no con-
vergence is addressed; for more restrictive (and precise) functional restrictions, cf.
Sato’s work, e.g., [SS].

Definitions. (i) The ring of formal pseudodifferential operators Ψ is the set{ N∑
j=−∞

uj(x)∂
j , uj a formal power series

}
.

If we think of these symbols as acting on functions of x by multiplication and
differentiation: (u(x)∂)f(x) = u d

dxf , and formally integrate by parts:
∫
(uf) =

u
∫
f −

∫
(u′f), we can motivate the composition rules:

∂−1∂ = ∂∂−1 = 1, ∂u = u∂ + u′, ∂−1u = u∂−1 − u′∂−2 + u
′′
∂−3 − . . .

and easily check an extended Leibnitz rule for a function f and for A,B ∈ Ψ:

∂if · =
∞∑
j=0

(
i

j

)
(∂jf)∂i−j · , A ◦B =

∞∑
i=0

1

i!
∂̃iA ∗ ∂iB,

where ∂̃ is a partial differentiation w.r.t. the symbol ∂ and ∗ has the effect of
bringing all functions to the left and powers of ∂ to the right.

(ii) Ψ contains the subring D of differential operators A =
∑N

0 uj∂
j and we

denote by ( )+ the projection B+ =
∑N

0 uj∂
j where B =

∑N
−∞ uj∂

j . The much
studied Weyl algebra in two generators, C[p, q] with multiplication rule defined by
the commutator [p, q] = 1 can be viewed as a subring of D, namely the operators
with polynomial coefficients, by letting p = ∂ and q = x.
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(iii) The Burchnall–Chaundy (hereafter BC for short) problem asks to find
and classify all commutative subrings of D. If we denote by CD(L) the centralizer
in D of an element L ∈ D, we see that the polynomial ring C[L] is always contained
in CD(L). We also see that if L has order n > 0 then L can be brought to standard
form:

L = ∂n + un−2(x)∂
n−2 + un−3(x)∂

n−3 + · · ·+ u0(x)

by using change of variable and conjugation by a function, which are the only two
automorphisms of D; we shall always assume L to be in standard form, and define
a BC solution to be such an L for which CD(L) is not a polynomial ring C[M ],
M ∈ D. Notice that any translation in x : x 
→ x− a, transforms a BC solution L
into another solution La. We refer to this operation as the “x-flow”.

(iv) The rank of a subset of D is the greatest common divisor of the orders
of all the elements of D.

Now we can give two new models for the elliptic curve (for references and
more examples cf. [P2]):

The classical “Lamé operator” L = ∂2 − c℘(x), where c ∈ C is a constant, is
a BC solution iff c = n(n + 1) with n an integer greater than zero; if this is the
case, the centralizer CD(L) is the affine ring of a hyperelliptic curve of genus n,
given by an equation: μ2 = λ2n+1+ lower order, or an elliptic curve when n = 1.
A singular-cubic example is given by:

L = ∂2 − 2

x2
, B = ∂3 − 3

x2
∂ +

3

x3

which satisfy B2 ≡ L3.

In the Weyl algebra, define u = p3 + q2 + α, v = 1
2p, L = u2 + 4v, B =

u3 + 3(uv − vu); then C(L) = C[L,B] and B2 − L3 = −α, as shown in [Di].
By the assignment p = ∂, q = x we obtain L,B ∈ D of order 6,9, but notice
that the automorphism ∂ 
→ −x, x 
→ ∂ will turn the orders into 4,6. Again,
CD(L) = C[L,B], the affine ring of the curve μ2 = λ3 −α; in particular, L is a BC
solution, and the rank of this algebra is three, two, respectively.

It can be shown that centralizers CD(L) are maximal-commutative subalge-
bras of D. How large can they be? Not very: since their quotient fields are function
fields of one variable (cf. Th. 3), they are affine rings of curves, and in a formal
sense these are indeed spectral curves; the algebras that correspond to a fixed curve
make up the (generalized) Jacobian of that curve, and the x-flow is a holomorphic
vector field on it. We may (formally) view this as a “direct” spectral problem; the
“inverse” spectral problem allows us to reconstruct the coefficients of the operators
(in terms of theta functions) from the data of a point on the Jacobian. The x-flow
is tangent to the Abel image of the curve in its Jacobian, at a specific point. The
higher osculating flows form a sequence (essentially finite): x = t1, t2, . . . , ts, . . .
and the corresponding operators depend on these parameters in such a way as to
satisfy the KP hierarchy. The higher-rank algebras are still much of a mystery.
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In Ψ any (normalized) L has a unique nth root, n =ord L, of the form
L = ∂+u−1(x)∂

−1 +u−2(x)∂
−2+ · · · . By a dimension count based on the orders,

I. Schur showed that

Theorem 3. CD(L) = {
∑N

−∞ cjLj , cj ∈ C} ∩ D.

This shows that the quotient field of CD(L) is a function field of one variable;
indeed, a B which commutes with Lmust satisfy an algebraic equation f(L,B) = 0
(identically in x). In the case that the algebra can be generated by two elements
L, B, the curve has a plane model, where L, B can be viewed as affine coordinates
x, y. I offered a little-known algorithm for computing the equation of the curve, the
“differential resultant” ([BP, P1]). Since the algebra C[L,B] has no zero-divisors,
it can be viewed as the affine ring C[X,Y ]/(h) of a plane curve, with h(X,Y ) an
irreducible polynomial. The BC curve = {(λ, μ) | L,B have a joint eigenfunction
Ly = λy, By = μy} is included in the curve Spec C[L,B] and since the latter is
irreducible, they must coincide; this shows in particular that the BC polynomial
is some power of an irreducible polynomial h : f(λ, μ) = hr1 . In addition, each
point of the spectral curve has a solution space: this gives a vector bundle over the
curve. More precisely, let r2 = rank C[L,B], and r3 = dimV(λ,μ) where V(λ,μ) is the
vector space of common eigenfunctions at any smooth point (λ, μ) of the BC curve.
Then r1 = r2 = r3. Moreover, this integer is the order of G = gcd(L − λ,B − μ),
the operator (found by the Euclidean algorithm) of highest order for which a
factorization holds, B − μ = T1G, L− λ = T2G.

In theory, higher-rank algebras are classified by vector bundles over curves
[Mul], but there is no explicit dictionary between the vector bundles and the
coefficients of the operators; a recent paper [BZ] completed the result in [PW],
covering the genus-one case of the spectral curve.

Lastly, we introduce the KP deformations, following [SS].

Definitions. (i) In Ψ, it is possible to conjugate any L = ∂+u−1(x)∂
−1+ · · · into ∂

by a K ∈ Ψ, K = 1+v−1(x)∂
−1+· · · , determined up to elements of C[∂] = CD(∂).

From now on we assume that K−1LK = ∂.
(ii) We define a formal Baker function for L as the element of the module of

formal eigenfunctions such that Lψ = zψ; notice that ψ = Kexz.

The KP hierarchy is determined by the Lax equations (∂n = ∂/∂tn),

∂nL = [Bn,L] := BnL− LBn,

where Bn = (Ln)+. Motivated by an algebraic conjugation,

∂exλ = λexλ, Lψ = λψ, ψ =Wexλ,

W∂W−1Wexλ = λWexλ, W = 1 +

∞∑
1

wn∂
−n

set: L =W∂W−1, then the KP hierarchy is given by the Sato equations:

∂nW W−1 = −(L)n− = (L)n+ − (L)n.
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The “inverse spectral construction”, which holds for any number of vari-
ables and yields explicit, exact solutions to the KP equations, is largely due to
Krichever [Kr]:

Inverse spectral problem. The following choices: (i) A Riemann surfaceX of genus
g; (ii) A point ∞ ∈ X ; (iii) A local parameter λ−1 near ∞; (iv) A generic divisor
P1 + · · ·+ Pg = D (the condition is that h0(P1 + · · ·+ Pg −∞) = 0, equivalently,
there are no meromorphic functions on X with a zero at ∞ and poles bounded by
P1 + · · ·+ Pg); determine uniquely a function ψ(t, P ), the “Baker–Akhiezer (BA)
function,” such that near ∞, ψ ∼ exp(

∑
i≥1 tiλ

i)(1 +
∑
ξi(t)λ

−i) and at finite
points P of the curve, ψ has poles bounded by D and is analytic elsewhere.

For such a ψ there exist unique operators Kj such that Kjψ = ∂tjψ and
these operators are a solution to the KP hierarchy, in particular Lψ = λψ gives
L ∈ Ψ as above. All statements are local in t. Explicitly,

ψ(t) = e
(
∑

i≥1 ti(
∫ P
P0

ηi−ci)) ·
ϑ(A(P ) +

∑
i≥1 Uiti + δ)ϑ(A(∞) + δ −A(D))

ϑ(A(P ) + δ −A(D))ϑ(A(∞) +
∑

i≥1 Uiti + δ)
,

where δ is Riemann’s constant so that ϑ(A(P )+δ−A(D)) vanishes for P = Pj , j =
1, . . . , g; ηi are suitably normalized meromorphic differentials; Ui ∈ Cg are suitable
vectors that make ψ into a function of P independent of the path of integration;
ci ∈ C are constants that normalize ψ as above.

In conclusion, the general (algebro-geometric) solution of KP is:

u(t) = 2∂2x logϑ

(∑
j≥1

tjUj +A(P ) + δ

)
+ const.

Most strikingly, Novikov conjectured that a theta function which satisfies the KP
hierarchy arises from a Jacobian, and this was shown to be true, thus settling the
“Shottky Problem” [BD].

To conclude the lecture on differential algebra, I mentioned a second major
still largely open problem: what is the answer to the Burchnall–Chaundy question
if we consider the algebra of Partial Differential Operators (PDOs)? Is there an
analog of the spectral curve, such as, in two variables, a surface, and are its equa-
tions given by a differential resultant? Much work has been done, but concrete
results are scarce, and the answer to simple questions is not known; for example,
given that the multivariate resultant, a multivariate polynomial, vanishes identi-
cally when evaluated on a set of PDOs that have a common eigenfunction (cf. [KP]
for a precise formulation and references), is the differential resultant independent
of the differential variables? This is what happens in the ODO case, where the
resultant if the equation of the spectral curve.

3. Lecture III: The Kleinian sigma function

Why switch from theta, which yields exact KP solutions, to sigma? I offer three rea-
sons, of which the previous leads to the next: Modular invariance, thus a stronger
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relationship with the Jacobian (briefly put, in the following sense: the symplectic
group Sp(2g,Z) acts in the standard way [Mum2, II.5, (5.3)] on the two variables
of ϑ, the Abelian variable z ∈ Cg and the period lattice Λ; the action produces a
multiplicative non-zero factor, whereas σ is invariant); an explicit transliteration
between meromorphic and transcendental functions; More useful formulas for so-
lutions of integrable equations, since meromorphic functions lend themselves more
clearly to a qualitative analysis.

Recall the definition of the Weierstrass sigma function (genus one):

℘(u) = − d2

du2
lnσ(u), (℘′)2 = 4℘3 − g2℘− g3

Recall σ is an odd function (ϑ is even), with expansion:

σ(u) = u− 1

240
g2u

5 − 1

840
g3u

7 − · · · .

Klein defined σ for two variables, then for any hyperelliptic curve, and for a trigonal
curve [KS].

The sigma function for a hyperelliptic curve X of genus g ≥ 2 defined in the
affine plane by:

y2 = f(x) := x2g+1 + λ2gx
2g + · · ·+ λ0

(where λj ’s are generic complex numbers so that X , completed by ∞ at infinity,
is smooth), is easy to define, because there is an explicit basis of differentials of
the first kind:

ωi :=
xi−1dx

2y
(i = 1, . . . , g),

and differentials of the second kind,

ηi :=
1

2y

2g−j∑
k=j

(k + 1− j)λk+1+jx
kdx, (j = 1, . . . , g)

so that when taking the periods around a symplectic homology basis {αi, βj},

1 ≤ i, j ≤ g, the matrices ω =

[
ω′

ω′′

]
where

ω′ =
1

2

[∮
αj

ωi

]
, ω′′ =

1

2

[∮
βj

ωi

]
,

η′ =
1

2

[∮
αj

ηi

]
, η′′ =

1

2

[∮
βj

ηi

]
,

satisfy the generalized Legendre relation

M

(
0 −1g
1g 0

)
MT =

ıπ

2

(
0 −1g
1g 0

)
, (1)
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where M =

(
ω′ ω′′

η′ η′′

)
. We let Λ be the lattice in Cg spanned by the column

vectors of 2ω′ and 2ω′′. The Jacobian variety of X is identified with Cg/Λ. We
let κ be the projection Cg → Cg/Λ. For a non-negative integer k, we define the

Abel map from the kth symmetric product SymkX of the curve X to Cg by first
choosing any (suitable) path of integration2:

w : SymkX → Cg, w((x1, y1), . . . , (xk, yk)) =

k∑
i=1

∫ (xi,yi)

∞

⎛⎜⎝ω1

...
ωg

⎞⎟⎠ .

We denote the image by Wk. Let T = ω′−1ω′′. The theta function on Cg with
“modulus” T and characteristics Ta+ b for a, b ∈ Cg is given by

ϑ

[
a
b

]
(z;T) =

∑
n∈Zg

exp

[
2πi

{
1

2
t(n+ a)T(n+ a) + t(n+ a)(z + b)

}]
.

The σ-function, an analytic function on the space Cg and a theta-series having
modular invariance of a given weight with respect to M, is given by the formula

σ(u) = γ0 exp

{
−1

2
tuη′ω′−1

u

}
ϑ

[
δ′′

δ′

](
1

2
ω′−1

u ; T
)
,

where δ′ and δ′′ are half-integer characteristics giving the vector of Riemann con-
stants with basepoint at ∞ and γ0 is a non-zero constant. Computing γ0 is again
possible because the curve is hyperelliptic: the result is based on a normalization,
thus it is achieved by expanding the function at ∞ as a power series in the Abelian
variables:

γ0 =
ε4

ϑ(0;T)

g∏
r=1

√
P ′(ar)

4
√
f ′(ar)

1∏
k<l

√
ek − el

.

Since this constant plays no role in this paper, we have retained the slightly dif-
ferent notation of [BEL], where the curve is written as

y2 =

2g+1∑
i=0

λix
i = λ2g+1

2g+1∏
k=1

(x− ek) = 4P (x)Q(x)

with:

P (x) =

g∏
i=1

(x− ai), Q(x) = (x − b)

g∏
i=1

(x− bi),

for the homology basis whose loops correspond to the branch cuts beginning at ai
and ending at bi, with an additional one beginning at a = ∞ and ending at b. The
fourth root of unity ε4 is difficult to compute, but clearly does not depend on the
moduli of the curve, since it is a discrete parameter and σ depends holomorphically
on the moduli parameters. In genus one, the formula reduces to Weierstrass’ σ,

2The results presented are independent of the particular choice.
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and in that case this root of unity is related to the eight root of unity appearing
in the functional equation of ϑ under the action of the congruence subgroup

Γ :=

([
a b
c d

]
|ad− bc = 1, cd even

)
,

which is calculated in [Mum2, Vol. I, II.5] and involves the Jacobi symbol [Mum2,
Vol. I, I.7, Th. 7.1].

The σ-function vanishes to the first order on κ−1(Wg−1). The Kleinian ℘ and
ζ functions are defined by

℘ij = − ∂2

∂ui∂uj
log σ(u), ζi =

∂

∂ui
log σ(u).

I concluded returning full circle to Mumford’s vision, but now for surfaces:
indeed, Baker generalized Weierstrass’ equation to cut out the Kummer surface in
P3, the linear series of |2Θ|, where Θ is the canonical theta divisor for a curve of
genus two (hence also, up to translation, the zero locus of σ). This is Analysis turn-
ing into Geometry; Algebra is the field of meromorphic functions of the Kummer
surface, but for surfaces the perfect synthesis no longer holds, since two surfaces
may have isomorphic fields without being isomorphic, such as P2 and P1 × P1.

The Kummer surface is the image of the |2Θ|-divisor map Jac(X) → P3,
using the basis 1, ℘11, ℘12, ℘22, and a quartic in these coordinates:

det

⎡⎢⎢⎣
−λ0 1

2λ1 2℘11 −2℘12
1
2λ1 −(λ2 + 4℘11)

1
2λ3 + 2℘12 2℘22

2℘11
1
2λ3 + 2℘12 −(λ4 + 4℘22) 2

−2℘12 2℘22 2 0

⎤⎥⎥⎦ = 0

is an algebraic differential equation that holds identically exactly on the Kummer
surface.

This was generalized to all hyperelliptic Kummer varieties in [BÉ], and to

trigonal Kummer varieties in [BLÉ]. For non-hyperelliptic curves, the Kummer
variety is the singular locus of a projective model for the moduli space of rank-two,
trivial-determinant vector bundles over X , a key ingredient in the construction of
Hitchin-type ACIs [vGP]. This is one more area of intense study centered on the
role of σ function in integrability.
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This is only a sketch of the contents.

Lecture I covered the notion of volume for a compact manifold, starting from
elements of volume induced by Riemannian, symplectic, and Kähler structures.
Several analytic and geometric concepts were highlighted (e.g., fibre bundles that
are Riemannian submersions and factorization of volume elements for them) and
examples worked out (e.g., the sphere, whose volume was connected with the
Gaussian integral in Rn, the complex projective space with Fubini-Study metric,
and Grassmannians).

Lecture II introduced supergeometry and supermanifolds, with emphasis on the
Berezinian determinant [1], the key ingredient for the definition of volumes. Con-
crete examples were again given, harkening back to Lecture I, such as the su-
persphere and the projective superspace, and a Gaussian integral over super-
space [2, 3].

Lecture III presented volumes of classical supermanifolds and recent results [3],
the main result being the following property of certain supermanifolds (e.g., the
supersphere, complex projective superspace, and Stiefel and Grassmann super-
manifolds),

Theorem. Up to a universal normalization, the volume of the supermanifold can be
obtained as an analytic continuation of the volume of the corresponding ordinary
manifold.
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