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A complete Hamiltonian formalism is suggested for inertial waves in rotating
incompressible fluids. Resonance three-wave interaction processes – decay instability
and confluence of two waves – are shown to play a key role in the weakly nonlinear
dynamics and statistics of inertial waves in the rapid rotation case. Future applications
of the Hamiltonian approach to inertial wave theory are investigated and discussed.

Key words: Hamiltonian theory, nonlinear instability, rotating turbulence

1. Introduction

Rotation fundamentally changes the behaviour of fluid flows, which served as
the basis of one of the classic chapters in hydrodynamics (see, e.g. the monograph
of Greenspan (1968)). The presence of the Coriolis force leads to the emergence of
a special type of wave, inertial waves, that appear in geophysical, astrophysical and
industrial flows. In an incompressible fluid rotating with angular velocity Ω , inertial
waves have the following dispersion law:

ωk = 2Ω|cos θk|. (1.1)

Here, θk is the angle between the wave vector k and the angular velocity vector
Ω . The linear theory of inertial waves is well known and thoroughly described, for
example, in the monographs of Greenspan (1968) and Landau & Lifshitz (1987).
These waves propagate inside the volume of the fluid and have circular polarization.
They have attracted special attention due to their unusual properties of reflection from
the rigid boundary (Maas et al. 1997). Namely, the angle of reflection is determined
not by the angle of incidence to the boundary, but by the angle with respect to the
rotating axes (Greenspan 1968). The plane inertial wave is the exact solution of the
fully nonlinear Euler equations, which will be discussed below.
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Complete Hamiltonian formalism 129

Real physical rotating flows can be complicated by the influence of other factors,
such as gravitation or electromagnetic forces (in the latter case, the fluid is assumed
to be an electric conductor), and the angular velocity of the fluid can depend on
the radius. In such cases, the dispersion law is more complicated than that presented
relation (1.1) (see, e.g. Le Gal 2013). Other important effects also appear due to
nonlinear wave interactions.

The degree of nonlinearity of fluid flows is characterized by the nonlinearity
parameter δ, which is the ratio of the nonlinear and linear non-dissipative terms of
the Euler equations. In the case of rotating fluids, the nonlinearity parameter (known
as the Rossby number) can be written as

δ ≡
|(u× rot u)|
|(Ω × u)|

. (1.2)

Here, velocity u is the characteristic value of the wave amplitude. In a rapidly rotating
fluid , δ � 1; thus, the inertial waves interact weakly. In this case, we can apply
perturbation theory, accounting for only the leading nonlinear terms in the wave
interaction Hamiltonian (this approach is described in the book of Zakharov, L’vov &
Falkovich (1992)).

In general, the first-order (by the value of δ) nonlinear effects are presented by
three-wave interaction processes: (i) when the the primary wave with wave vector k1
(hereinafter, in such cases, we write just ‘the wave k1’) decays into a pair of secondary
waves, k2 and k3 – the decay process, (ii) when two primary waves k1 and k2 merge
into one secondary wave k3 – the confluence process.

Consider, for example, the wave-decay process, which can be schematically denoted
as k1 → k2 + k3. This process is described by the conservation laws of mechanical
momentum and energy:

k1 = k2 + k3, (1.3a)
ωk1 =ωk2 +ωk3 . (1.3b)

The fact of principal importance, which in many aspects determines the nonlinear
behaviour of inertial waves (Zakharov et al. 1992), is that equations (1.3) have a
non-zero set of solutions in k-space, called the resonance surface. In other words, the
decay of inertial wave k1→k2+ k3 is allowed by the conservation laws (in contrast to
surface gravity waves, where three-wave interactions are forbidden and the first-order
nonlinear effects are presented only by four-wave interactions (Zakharov et al. 1992)).

Inertial wave interactions can be studied by decomposition of natural variables (the
velocity field) into so-called helical modes (Cambon & Jacquin 1989; Waleffe 1993).
This approach was applied in recent years to many different problems of rotating
fluids, focusing on the dynamics and statistics of inertial waves in rapidly rotating
flows (Galtier (2003, 2014), Cambon, Rubinstein & Godeferd (2004), Bellet et al.
(2006), see also the monograph Sagaut & Cambon (2008) and references therein).
However, the advantages of another well-recognized Hamiltonian approach to study
weakly nonlinear wave systems without dissipation have not been used. The key
purpose of this paper is to fill this gap in the theory of rotating fluids by developing
the Hamiltonian formalism for inertial waves and by discussing its advantages and
future applications. This method rewrites the Euler equations as a Hamiltonian system
using canonical variables and then performs decomposition into so-called normal
variables that are analogues of the quantum mechanical creation and annihilation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.611


130 A. A. Gelash, V. S. L’vov and V. E. Zakharov

operators (see the review of Zakharov & Kuznetsov (1997) concerning the general
aspects of the Hamiltonian approach). Additionally, a Hamiltonian approach was
recently developed for the similar problem of internal waves in stratified non-rotating
fluids (Lvov & Tabak 2001), which provided an explanation of some features of wave
energy spectra in the ocean (Lvov, Polzin & Tabak 2004).

The Hamiltonian nature of the Euler equations for incompressible fluids has been
known since at least the middle of the last century, including in the case of rotating
fluids (see the monograph of Lamb 1945). More recently, this fact was discussed
by Morrison (1998) and Salmon (1988). The canonical variables for an ideal fluid
– the so-called Clebsch variables – are also well known. Therefore, the problem is
mainly technical: how to introduce canonical variables for the case of rotating fluids
in the most convenient way to describe inertial wave interactions.

In this paper, we first propose the Clebsch variables for rotating incompressible
fluid, which provide enormous technical advantages for calculating the interaction
Hamiltonian of inertial waves. We consider only inertial wave motion in the rotating
reference frame when the vortex lines make no knots. In this case, according to
well-known theory, the velocity field can be always represented by the Clebsch
variables (see Zakharov et al. (1992) and also the works of Kuznetsov & Mikhailov
(1980) and Yakhot & Zakharov (1993)).

We then focus on the wave-decay process k1→ k2+ k3, which leads to the so-called
decay instability of inertial waves with respect to weak perturbations (see, for instance,
the first paragraph of the book by L’vov (1994)). The growth rate of the instability
γ (k1, k2, k3) depends on the amplitude of the three-wave interactions Vk1

k2k3
and reaches

its maximum on the resonance surface (1.3). The properties of the growth rate play
a key role in the weakly nonlinear dynamics and statistics of inertial waves, which
can be investigated through numerical and natural experiments (Bordes et al. 2012; di
Leoni, Patricio & Mininni 2016). In the present work we study in detail the growth
rate γ (k1, k2, k3) on the whole three-dimensional resonance surface (1.3) and discuss
how the newly identified features can be observed experimentally. In addition, we
briefly study the process of wave confluence: k1 + k2→ k3.

Finally, we describe the turbulent cascade of inertial waves in the case of strong
anisotropy, give the four-wave part of the Hamiltonian and discuss its future
applications. It is important to note that the exact interaction Hamiltonian for inertial
waves in rotating fluid includes only three-wave and four-wave components. Thus,
we present the complete Hamiltonian formalism for inertial waves.

2. Inertial waves of finite amplitude in rotating fluids
We study the Euler equations in the reference frame, rotating with an incompressible

fluid:

∂tv + (v · ∇)v + 2(Ω × v)=−∇P, (2.1a)
∇ · v = 0. (2.1b)

Here, the effective pressure P = p − (Ω × r)2/2 includes the fluid pressure p and
the centrifugal force ∝Ω2, while the term 2(Ω × v) is responsible for the Coriolis
force (Landau & Lifshitz 1987). In the main part of the paper, we work only in this
rotating reference frame with the position vector r = (x, y, z) and the corresponding
unit vectors (x̂, ŷ, ẑ). Without loss of generality, we choose Ω ‖ ẑ.

The nonlinearity of the Euler equations affects only the waves moving in different
directions, which is a general consequence of incompressibility for unbounded flows
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(see, for instance, Craik & Criminale (1986)). Indeed, the plane inertial wave (as well
as a package of such waves propagating in the same direction) is the exact solution
of (2.1). Because this fact is often overlooked in recent papers (except, to the best of
our knowledge, the paper of Messio et al. (2008)), we discuss it here in more detail.

We consider the general solution of (2.1) under the assumption that the velocity
field v depends only on the coordinate ξ along an arbitrary direction n. Bearing in
mind the axial symmetry around ẑ, we can choose n lying in the xz-plane so that

n= (sin θ, 0, cos θ), ξ = r · n, v(r, t)≡ v(ξ , t)= v(x sin θ + z cos θ, t). (2.2a−c)

Then, integrating the continuity equation (2.1b) by ξ , we find

vz =−vx tan θ. (2.3)

We neglect the integration constant, which corresponds to steady motion of the whole
fluid along ẑ. Thus, the nonlinear term in (2.1a) is exactly cancelled:

(v · ∇)v = (vx sin θ + vz cos θ)
∂v

∂ξ
≡ 0. (2.4)

Now, the equation (2.1) can be written as the following system of linear equations:

∂vx

∂t
− 2Ωvy + sin θ

∂P
∂ξ
= 0,

∂vy

∂t
+ 2Ωvx = 0,

∂vz

∂t
+ cos θ

∂P
∂ξ
= 0.


(2.5)

By using (2.3), we find the exact solution for the system (2.5):

vx =−A(ξ) cos θ sinωt− B(ξ) cos θ cosωt,
vy =−A(ξ) cosωt+ B(ξ) sinωt,

vz = A(ξ) sin θ sinωt+ B(ξ) sin θ cosωt.

 (2.6)

Here, ω= 2Ω|cos θ |, while A(ξ) and B(ξ) are arbitrary functions. Solution (2.6) is the
wave packet of plane inertial waves propagating along n. We now introduce the wave
vector k ‖n. Choosing A(ξ)=A sin(k · r),B(ξ)=A cos(k · r), we obtain the well-known
circularly polarized inertial plane wave solution (Landau & Lifshitz 1987):

vx =−A cos θk cos(ωkt− k · r),
vy = A sin(ωkt− k · r),

vz = A sin θk cos(ωkt− k · r).

 (2.7)

The expression (2.6) gives the exact class of finite amplitude solutions of the Euler
equations in the rotating reference frame (2.1).
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3. Hamiltonian description of inertial waves
3.1. Clebsch representation of the velocity field

The Euler equations for incompressible fluids can be written as a Hamiltonian system
using the so-called Clebsch variables λ(r, t) and µ(r, t) (Lamb 1945). Here, we find
the following Clebsch representation for the velocity field v(r, t) corresponding to the
case of a rotating fluid described by (2.1):

v(r, t)=
√

2Ω [̂yλ(r, t)− x̂µ(r, t)] + λ(r, t)∇µ(r, t)+∇Φ(r, t), (3.1)

(remember that Ω ‖ ẑ). The potential Φ(r, t) is uniquely determined from the
appropriate boundary conditions and the continuity equation (2.1b). Similar variables
were introduced by Zakharov (1971) and by Kuznetsov (1972) in the theory of
magnetized plasma. The last two terms in (3.1) correspond to the standard Clebsch
representation in the case of a non-rotating fluid. The first term appears as a result
of the transformation from an inertial to a rotating reference frame (see the details in
appendix A).

Alternatively, the velocity field v(r, t) can be written using the transverse projector

P̂≡ 1−∇∆−1
∇, (3.2)

as (see appendix A)

v = P̂ · [
√

2Ω(λŷ−µx̂)+ λ∇µ]. (3.3)

The fields λ(r, t) and µ(r, t) are not uniquely defined for a particular velocity field
v(r, t). For instance, the transformation with arbitrary constant parameters a, b and c,

λ(r, t)→ aλ(r, t)+ b, µ(r, t)→µ(r, t)/a+ c, (3.4a,b)

does not change the field v given by (3.1). This type of ‘gauge invariance’ enables
the selection of special calibration for the Clebsch variables λ(r, t) and µ(r, t), which
is ideal for solving a particular problem.

The fields λ(r, t), µ(r, t) obey the Hamiltonian equations of motion in the canonical
form:

∂tλ=
δH
δµ
, ∂tµ=−

δH
δλ
, (3.5a,b)

where δ is the variational derivative, and the Hamiltonian H is the energy represented
by λ and µ:

H=
∫

1
2
|v|2 dr. (3.6)

Equations (3.5) and (3.6) yield

∂tλ=−(v · ∇)λ−
√

2Ωvx, (3.7a)

∂tµ=−(v · ∇)µ−
√

2Ωvy. (3.7b)

From equations (3.1) and (3.7), we find that v satisfies the Euler equations (2.1) with
the effective pressure

P=−∂tΦ − λ∂tµ−
1
2 |v|

2
−

1
2(Ω × r)2. (3.8)
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3.2. Hamiltonian in a rotating reference frame
Let us introduce the following notation for the velocity field (3.3):

v = v1 + v2, v1 = P̂ · [
√

2Ω(λŷ−µx̂)], v2 = P̂ · (λ∇µ), (3.9a−c)

and symmetric Fourier transform:

vk =
1

(2π)3/2

∫
v exp(−ik · r) dr, v =

1
(2π)3/2

∫
vk exp(ik · r) dk. (3.10a,b)

By representation (3.9), we distinguish the impact of linear and nonlinear combinations
(v1 and v1 respectively) of the Clebsch variables λ and µ on the velocity field.
According to (3.6) and Parseval’s theorem, the Hamiltonian can be written as the
sum of the following three terms:

H=H2 +H3 +H4. (3.11a)

Here

H2 =
1
2

∫
|v1k|

2 dk, (3.11b)

H3 =
1
2

∫
(v1k · v

∗

2k + v∗1k · v2k) dk, (3.11c)

H4 =

∫
|v2k|

2 dk. (3.11d)

The interactions of inertial waves are described by H3 and H4, which we denote
as interaction Hamiltonian

Hint =H3 +H4. (3.12)

The expression (3.11) is the exact Hamiltonian for an ideal rotating incompressible
fluid. It contains a finite number of terms since for incompressible flow we use only
one pair of canonical variables λ(r, t) and µ(r, t) (see the corresponding discussion
in Zakharov et al. (1992)).

Now, let us denote the components of wave vector k as

k= (kx, ky, kz)= (k sin θ cos ϕ, k sin θ sin ϕ, k cos θ), k⊥ = (kx, ky). (3.13a,b)

Using the expression for transverse projector P̂ in k-space

P̂αβk = δ
αβ
−

kαkβ

k2
, (3.14)

and equation (3.9), we calculate the following Fourier components of the velocity field:

v1k =
√

2Ω
[
λkŷ−µkx̂−

k
k2
(kyλk − kxµk)

]
, (3.15a)

v2k =
i

(2π)3/2

∫ (
k2 − k

k · k2

k2

)
λk1µk2δk−k1−k2 dk1 dk2. (3.15b)

When k‖k1‖k2, the expression k2− k(k · k2/k2) in (3.15b) is exactly zero, according to
the conservation law: k− k1 − k2 = 0. Thus, in this case, the interaction Hamiltonian
Hint= 0, which again demonstrates that inertial waves moving in one direction do not
interact (see § 2).
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3.3. Canonical form of the quadratic Hamiltonian
We now introduce the following canonical transformation of the fields µk and λk in
k-space:

µk = µ̃k cos ϕ + λ̃k sin ϕ =
1
k⊥
(µ̃kkx + λ̃kky),

λk =−µ̃k sin ϕ + λ̃k cos ϕ =
1
k⊥
(−µ̃kky + λ̃kkx).

 (3.16)

Introducing the normal variables ck and c∗k,

µ̃k =

√
Ω

ωk
(ck + c∗

−k), λ̃k =−
i
2

√
ωk

Ω
(ck − c∗

−k), (3.17a,b)

we present the quadratic part of the Hamiltonian H2 in diagonal form:

H2 =

∫
ωkckc∗k dk, ωk = 2Ω|cos θk|. (3.18a,b)

The plane wave in normal variables corresponds to the operator

ck = Aeiωk tδ(k− k0). (3.19)

By substituting (3.19) into (3.17) and then into (3.16) and finally calculating the
linear part of the velocity field equation (3.15a), we recover the plane inertial wave
solution (2.7) multiplied by scalar factor (kx/k⊥)

√
ωk. This normalization of the plane

wave solution in variables ck and c∗k should be taken into account when comparing
the results of this paper with the predictions of approaches formulated with physical
variables.

3.4. Interaction Hamiltonian
We calculate the interaction Hamiltonian Hint in two steps. First, we calculate H3 and
H4 in variables µ̃k and λ̃k according to (3.11c), (3.15a), (3.15b) and (3.16). After
symmetrization, H3 takes the form

H3 =
i
√

2Ω
2(2π)3/2

∫
dk1 dk2 dk3

k1⊥k2⊥k3⊥
δk1−k2−k3(F

k1
k2k3
µk1 − Sk2k3λk1)

×[Sk2k3(µk2µk3 + λk2λk3)+ (k2⊥ · k3⊥)(µk2λk3 − λk2µk3)]. (3.20)

Here, we use the auxiliary functions

Fk1
k2k3
=

1
2

[
k2

1⊥
k1 · k2 − k1 · k3

k2
1

+ k2
2⊥ − k2

3⊥

]
,

Sk2k3 = k3xk2y − k2xk3y = k2⊥k3⊥ sin(ϕ2 − ϕ3),

 (3.21)

with the following properties:

Fki
klkm
=−Fki

kmkl
, Sklkm =−Skmkl, Sk2,k3 = Sk3,k1 = Sk1,k2 . (3.22a−c)
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For the H4 component of the interaction Hamiltonian, we find the following
expression:

H4 =
1

4(2π)3

∫
dk1 dk2 dk3 dk4

k1⊥k2⊥k3⊥k4⊥
δk1+k2−k3−k4Q

k1k2
k3k4

×[Sk1k2(µk1µk2 + λk1λk2)+ (k1⊥ · k2⊥)(µk1λk2 − λk1µk2)]

× [Sk3k4(µk3µk4 + λk3λk4)+ (k3⊥ · k4⊥)(µk3λk4 − λk3µk4)]. (3.23)

Here, we use the additional function

Qk1k2
k3k4
=
(k1 · k3)(k2 · k4)− (k1 · k4)(k2 · k3)

(k1 + k2) · (k3 + k4)
. (3.24)

The function Qk1k2
k3k4

is antisymmetric with respect to the transformations k1↔ k2 and
k3↔ k4:

Qk1k2
k3k4
=−Qk2k1

k3k4
, Qk1k2

k3k4
=−Qk1k2

k4k3
. (3.25a,b)

The interaction Hamiltonian is obviously invariant with respect to rotations by angle
ϕ (i.e. around ẑ), which can be directly seen from expressions (3.20) and (3.23).

Then, we substitute the normal variables (3.17) into (3.20), and after symmetrization,
H3 takes the standard form:

H3 =
1
2

∫
(Vk1

k2k3
c∗k1

ck2ck3 + c.c.)δk1−k2−k3 dk1 dk2 dk3

+
1
6

∫
(Uk1k2k3c

∗

k1
c∗k2

c∗k3
+ c.c.)δk1+k2+k3 dk1 dk2 dk3, (3.26)

where

Vk1
k2k3
=

i
√

2Ω
(2π)3/2k1⊥k2⊥k3⊥

{√
Ω3

ωk1ωk2ωk3

Sk3k2[F
k1
k2k3
− Fk2

k1k3
− Fk3

k2k1
]

−
3i
8

√
ωk1ωk2ωk3

Ω3
S2

k3k2
+

i
2

√
Ω

ωk1ωk2ωk3

(ωk1 −ωk2 −ωk3)S
2
k3k2

+
1
4

√
ωk2ωk3

Ωωk1

Sk3k2[−Fk1
k2k3
+ k1⊥ · k3⊥ − k1⊥ · k2⊥]

−
i
2

√
Ωωk1

ωk2ωk3

[−Fk3
k2k1
(k1⊥ · k2⊥)+ Fk2

k1k3
(k1⊥ · k3⊥)]

−
i
2

√
Ωωk3

ωk1ωk2

[−Fk1
k2k3
(k2⊥ · k3⊥)+ Fk2

k1k3
(k1⊥ · k3⊥)]

−
i
2

√
Ωωk2

ωk1ωk3

[Fk1
k2k3
(k2⊥ · k3⊥)− Fk3

k2k1
(k1⊥ · k2⊥)]

−
1
4

√
ωk1ωk3

Ωωk2

Sk3k2[F
k2
k1k3
+ k2⊥ · k3⊥ + k1⊥ · k2⊥]

+
1
4

√
ωk1ωk2

Ωωk3

Sk3k2[−Fk3
k2k1
+ k2⊥ · k3⊥ + k1⊥ · k3⊥]

}
. (3.27)
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The amplitude Vk1
k2k3

describes the three-wave interaction processes of decay and
confluence, which we study in the following paragraphs. Analogous amplitudes of
the three-wave interaction processes were obtained in the frame of helical mode
decomposition by Waleffe (1993). However, the different structures of the variables
and perturbation theory make comparison of these results a non-trivial problem that
is beyond the scope of this paper.

The amplitude Uk1k2k3 corresponds to the so-called explosive three-wave instability,
which does not appear in the system of inertial waves. We give the exact expression
for element Uk1k2k3 in appendix A for formal purposes.

The four-wave interaction Hamiltonian H4 can also be written in similar standard
form after substitution of the normal variables and appropriate symmetrization:

H4 =

∫
(Wk1k2

k3k4
c∗k1

c∗k2
ck3ck4 + c.c.)δk1+k2−k3−k4 dk1 dk2 dk3 dk4

+

∫
(Gk2k3k4

k1
ck1c

∗

k2
c∗k3

c∗k4
+ c.c.)δk1−k2−k3−k4 dk1 dk2 dk3 dk4

+

∫
R∗k1k2k3k4

ck1ck2ck3ck4δk1+k2+k3+k4 dk1 dk2 dk3 dk4. (3.28)

The coefficients Wk1k2
k3k4

, Gk2k3k4
k1

and R∗k1k2k3k4
, which correspond to k1 + k2→ k3 + k4,

k1 + k2 + k3 → k4 and k1 + k2 + k3 + k4 → 0 four-wave interaction processes, are
given in appendix A. The final representation of the Hamiltonian obviously does not
depend on the chosen calibration of the Clebsch variables (see (3.4) and (A 11)).

4. Resonance surface
Wave decay k1→ k2 + k3 is the key weakly nonlinear process that determines the

dynamics of inertial waves. For a given wave vector k1, the momentum and the energy
conservation laws (1.3a,1.3b) define a two-dimensional resonance surface in k-space
(we have only two free parameters). Assuming that k1 lies in the xz-plane and using
the momentum conservation law (1.3a) to eliminate the unknown components of the
vector k2, we find the following parametrization for vectors k1, k2, k3:

k1 = (k1 sin θ1, 0, k1 cos θ1),
k2 = (k1 sin θ1 − k3x,−k3y, k1 cos θ1 − k3z),

k3 = (k3x, k3y, k3z).

 (4.1)

Then, using the energy conservation law (1.3b) and the dispersion relation (1.1), we
obtain the following resonance condition:

|k1 cos θ1| =
|k3z|√

k2
3x + k2

3y + k2
3z

+
|k1 cos θ1 − k3z|√

(k1 sin θ1 − k3x)2 + k2
3y + (k1 cos θ1 − k3z)2

. (4.2)

The relation (4.2) defines a two-dimensional set of vectors k3, which gives the main
contribution to the decay processes (obviously the same resonance surface is also valid
for the vector k2). The resonance surface (4.2) was studied by Bellet et al. (2006), and
the experimental verification of the resonance condition (4.1) in a rotating water tank
was recently demonstrated by Bordes et al. (2012).

Since the expression (4.2) cannot be resolved explicitly, we find solutions
numerically using ‘Wolfram Mathematica’. In figure 1 we present an example of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.611


Complete Hamiltonian formalism 137

–2

–2
0

0

2

2

0

2

–2

–2

–1

0

1

2

1–1–2 0 2

(a) (b)

FIGURE 1. (Colour online) (a) The resonance surface of the wave vector k3 for the decay
process k1→ k2 + k3. The primary wave vector k1 = (sin (3π/8), 0, cos (3π/8)). (b) The
cut of this surface (resonance curve) along the kxkz-plane.

a resonance surface and its two-dimensional cut in a specific direction – the so-called
resonance curve. The energy of the primary wave k1 is always larger than the energy
of the secondary waves k2 and k3. Thus, according to the dispersion relation (1.1),
the directions of the secondary waves are always closer to the xy-plane than the
direction of the vector k1 – see the figure 1(b).

The resonance surface, having a non-trivial form with branches at k→∞, formally
allows decay into secondary waves of arbitrary small wavelength (in the experiment,
this is obviously limited by the dissipation rate). We find the following asymptotics
for the infinite branches assuming (4.2) k3→∞:

|k1 cos θ1|

2
=

|k3z|√
k2

3x + k2
3y + k2

3z

, (4.3)

(see figure 1b). In addition, we study the process of wave confluence

k1 + k2→ k3. (4.4)

In figure 2, we plot the corresponding resonance surface that is obtained similarly
to the equation (4.2) relation for the process (4.4). The confluence resonance surface
remains finite in k-space and grows in size when θ1 tends to π/2.

5. Decay instability
The decay process k1 → k2 + k3, which is allowed by the dispersion law (1.1),

leads to instability of the inertial waves with respect to weak perturbations. In
the general weakly nonlinear wave system with the decay-type dispersion law, the
perturbations grow exponentially in the initial (linear) stage of this decay instability
(see, e.g. Zakharov et al. 1992). Consider at t= 0 the primary wave of amplitude Ak1

and secondary waves of small amplitudes Ak2 and Ak3 playing the role of perturbations:

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.611


138 A. A. Gelash, V. S. L’vov and V. E. Zakharov

10 2–1–2

–2

–1

0

1

2

–2

0

2

0

2

–2

–2

0

2

(a) (b)

FIGURE 2. (Colour online) (a) The resonance surface of wave vector k3 for the confluence
process k1 + k2→ k3. The primary wave vector k1 = (sin (3π/8), 0, cos (3π/8)). (b) The
cut of this surface (resonance curve) along the kxkz-plane.

Ak1(0)� max(|Ak2(0)|, |Ak3(0)|). Then, according to the well-known theory (see, e.g.
§ 1 in L’vov (1994)), the amplitudes of the secondary waves grow with time t as

Ak2,3(t)= Ak2,3(0) exp(λt), (5.1)

during the linear stage of the decay instability (meanwhile Ak1 ∼ const.). Here,

λ=
i1ωk

2
+ γ , 1ωk ≡ωk1 −ωk2 −ωk3 . (5.2)

The growth rate of the decay instability

γ =

√
4|Vk1

k2k3
|2|Ak1 |

2 −
1ω2

k

4
, (5.3)

is localized in the layer (in k-space) of thickness 8|Vk1
k2k3
|
2
|Ak(0)|2 near the resonance

surface 1ωk = 0 (4.2), where it reaches the maximum value:

γmax = 2|Vk1
k2k3
||Ak(0)|. (5.4)

In this section, we study the absolute value of the three-wave decay amplitude
|Vk1

k2k3
| (3.27) at the resonance surface (4.2), which is sufficient to describe the main

features of the instability growth rate behaviour. In figure 3, we present the typical
examples of a resonance surface, coloured according to the value of |Vk1

k2k3
|.

We find that the decay amplitude has a non-zero value on the infinite branches
of the resonance surface (see the figure 3). Thus, decay instability appears even for
short-wave perturbations up to the dissipative threshold. We calculate the short-wave
asymptotic expression of the decay amplitude Vk1

k2k3
on the upper infinite branch of the
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FIGURE 3. (Colour online) The resonance surface of the wave vector k3 for the
decay process k1 → k2 + k3, coloured according to the value of |Vk1

k2k3
|. (a,b)

k1 = (sin (3π/8), 0, cos (3π/8)), (c,d) k1 = (sin (π/4), 0, cos (π/4)), (e, f ) k1 =

(sin (π/8), 0, cos (π/8)). (a,c,e) and (b,d, f ) Show the same surface at different scales and
from different view points.
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FIGURE 4. (Colour online) The polar diagram for the short-wave asymptotics (5.5)
of the amplitude |Vk1

k2k3
(ϕ3)| on the resonance surface. The primary wave vector k1 =

(sin θ1, 0, cos θ1). The amplitude at a certain angle ϕ3 is given by the length of the
corresponding radius vector. (a) Corresponds to the lower branch of the resonance surface;
(b) corresponds to the upper branch.

resonance surface (i.e. at k3→∞ and ωk1 = ωk2 + ωk3) using equations (3.27), (4.1),
(4.2), (4.3):

Vk1
k2k3
(ϕ3)≈

i
√

2Ω
(2π)3/2

− 1
4

√
ωk1

Ω
sin ϕ3 cos ϕ3 sin θ1

(
1+

5
16
ω2

k1

Ω2

)

−
1
2

√
Ω

ωk1

sin ϕ3 cos θ1√
1−ω2

k1
/16Ω2

(
1−

11
16
ω2

k1

Ω2
+

5
128

ω4
k1

Ω4

)

−
3i
16

(ωk1

Ω

)3/2

√
1−

ω2
k1

4Ω2
sin2 ϕ3 +

i
2

ωk1

4Ω
sin θ1 cos ϕ3 −

√
1−

ω2
k1

16Ω2
cos θ1


×

3
2

√
ωk1

Ω
cos ϕ3 −

√
Ω

ωk1

(
1−

ω2
k1

16Ω2

)

×

ωk1

Ω

√
1−

ω2
k1

16Ω2
cos ϕ3 − cos θ1 sin θ1

 . (5.5)

The short-wave asymptotics for the lower infinite branch of the resonance surface can
be obtained from the expression (5.5) by the transformation ϕ3→ ϕ3+π. In figure 4,
we present the angular dependence of the asymptotic (5.5) for different values of
the primary vector k1. As one can see, the growth rate has asymptotically constant
value, depending only on polar angle. This means that the discussed problem is well
posed even in the theory without dissipation. The short-wave asymptotic is almost
isotropic around the rotational axes Ω ‖ ẑ when the direction of k1 is close to the
xy-plane (i.e. the energy of the primary wave is low). In the opposite limit – when
the primary wave propagates almost parallel to the rotational axes – the short-wave
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FIGURE 5. (Colour online) The behaviour of the amplitude |Vk1
k2k3
| (blue solid lines)

on the resonance curve as a function of k3z. The primary wave vector k1 =

(sin (π/4), 0, cos (π/4)). (a) The resonance curve at ϕ1 = π/8. The amplitude has a
local maximum at the middle branch of the resonance curve and a minimum at the point
where one branch of the resonance curve changes to another; then, it approaches to the
short-wave asymptotic (5.5) (red dotted lines). (b) The resonance curve at ϕ1 = 3π/8.
The growth rate has two local maxima and one minimum in the middle branch of the
resonance curve. Again, the short-wave asymptotic (5.5) is represented by the red dotted
curve.

asymptotic is anisotropic with maxima near ϕ3 = π/4; 3π/4, but its characteristic
amplitude decreases.

Figure 1 demonstrates that the right (k3x > 0) and left (k3x < 0) parts of the decay
resonance curve can be represented as a single-valued function of k3z. This enables
us to plot the values of the amplitude (3.27) on the resonance curve as a function of
one variable – see figure 5.

As we will discuss in the next section, the anisotropic case, when kz� k⊥, plays
a central role in the statistical behaviour of inertial waves. Such waves, propagating
predominantly in the k⊥-direction, have low energy and frequency, according to the
dispersion law (1.1). Here, we find the following asymptotics for the amplitude Vk1

k2k3

in this small frequency limit (i.e. at kz� k⊥):

Vk1
k2k3
≈

i
16π3/2

Sk2k3

k1⊥k2⊥k3⊥
√
ωk1ωk2ωk3

×[ω2
k1
(k2

3⊥ − k2
2⊥)+ω

2
k2
(k2

1⊥ − k2
3⊥)−ω

2
k3
(k2

1⊥ − k2
2⊥)]. (5.6)

The asymptotic (5.6), as a function of k3, is valid not only in the short-wave
limit but for any point of the small-frequency resonance surface. As was found
by Bayly (1986), the addition of weak ellipticity to the circular flow of the fluid
leads to excitation of parametric inertial waves with maximum growth rate at angles
θp, satisfying the condition |cos θp| = 1/2 (see also the conclusion section). In figure 6
we demonstrate how the small-frequency asymptotic (5.6) works at small frequencies
and in the especially important case where θ = θp = π/3. We find that in the first
case, the asymptotics (5.6) perfectly describe the three-wave interaction processes
on the whole resonance surface and can be used instead of the cumbersome exact
expression (3.27). Meanwhile, for the latter case, the small-frequency asymptotics (5.6)
work well only in the middle branch of the resonance surface.

The presented study of the instability growth rate is in agreement with the results
of Bordes et al. (2012), where the particular two-dimensional case (i.e. when k1, k2
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FIGURE 6. (Colour online) Comparison of the exact amplitude |Vk1
k2k3
| given by (3.27)

(blue solid lines) and its small-frequency asymptotics given by (5.6) (red dashed lines).
The resonance curves are presented for ϕ1 = π/4. (a) The primary wave vector k1 =

(sin (7π/16), 0, cos (7π/16)). (b) k1 = (sin θp, 0, cos θp).

and k3 lie in one plane) was studied experimentally and theoretically (using the helical
modes decomposition approach). In particular, the non-zero values of the growth rate
in the short-wave limit were also studied. Here, we provide a more detailed description
of the growth rate in the whole k-space, which we believe will be useful for the future
experimental and numerical works devoted to the three-wave interactions of inertial
waves.

6. Turbulent cascade of the inertial waves

Secondary waves, created as a result of the decay instability of the primary waves,
are also unstable with respect to the same process (1.3a). Thus, one can expect
that this multi-level decay instability will result in the formation of some type of
energy cascade from the large scale toward the small scale, as in usual homogeneous
turbulence. The energy spectrum in the inertial range (i.e. at intermediate scale) of
the cascade can be found from the well-known kinetic equation, which for three-wave
processes has the following form:

∂n(k1, t)
∂t

= π

∫
[|Vk1

k2k3
|
2Nk1

k2k3
δk1−k2−k3δωk1−ωk2−ωk3

+ 2|Vk2
k1k3
|
2Nk2

k1k3
δk2−k1−k3δωk2−ωk1−ωk3

] dk2 dk3. (6.1)

Here
Nk1

k2k3
= nk2nk3 − nk1(nk2 + nk3), (6.2)

and nk is the wave density in k-space. The solution of the kinetic (6.1) can be found
only in particular cases, when both matrix elements and the eigen-frequency have
some scaling properties (see the book Zakharov et al. (1992)). Unfortunately, this is
not the case for inertial waves in rotating fluid.

However, it is well established that the statistical behaviour of inertial waves
in rapidly rotating fluids is highly anisotropic (see, for instance, Galtier (2003),
Sen et al. (2012) or the book of Nazarenko (2011) and references therein). The
dispersion law (1.1) leads to the formation of an energy cascade predominantly in
the k⊥ direction, when the wave frequencies are small and our simple asymptotic
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(5.6) is valid. Under this approximation, the dispersion law and interaction amplitude
become scale invariant with respect to scaling of kz and k⊥:

ωk = 2Ω
kz

k⊥
, Vk2

k1k3
∼
√
Ωkzk⊥. (6.3a,b)

As was discovered by Kuznetsov (1972), in such cases one can find anisotropic
solutions of the kinetic equation. The result is that for the scaling, given by (6.3),
stationary solutions of the kinetic equation, corresponding to the constant densities of
the energy flux P1 and momentum flux P2 along the ẑ direction, can be found as

E1(k)≡P1/2
1 k−1/2

z k−7/2
⊥ , E2(k)≡P1/2

2 k−1/2
z k−4

⊥
. (6.4a,b)

These anisotropic weak turbulent energy spectra were first identified by Galtier
(2003) using the helical modes decomposition approach. Here, we present spectra not
averaged by the azimuth angle ϕ, which explains the difference in the power laws
of (6.4) and the paper of Galtier (2003).

7. Conclusion
In this work, we developed the complete Hamiltonian formalism for inertial waves

in rotating fluid. Namely, we suggest Hamiltonian variables for the velocity field and
found all terms of the exact Hamiltonian, which consist of linear (diagonal), three-
and four-wave interaction parts. In the important case of rapid rotation, the four-wave
interaction term has second-order accuracy by the Rossby number, so the dynamics
of the inertial waves is mostly determined by the first-order three-wave interaction
processes. Special attention was paid to the process of wave decay k1 → k2 + k3,
which is responsible for the decay instability and plays a central role in the dynamics
of inertial waves and the formation of anisotropic wave turbulence spectra. We
discussed the geometry of the resonance surface for three-wave interactions, which
has a highly non-trivial form with short-wave infinite branches. Then, we studied the
behaviour of the increased decay instability on the whole three-dimensional resonance
surface. In addition, we calculated several key asymptotics of the three-wave matrix
element to improve the understanding of the main characteristics of the decay
instability, which is useful for future studies. We believe that the newly identified
features can be observed in numerical simulations and natural experiments, such as
those presented in the works of Bordes et al. (2012) and di Leoni et al. (2016).

The structure of the decay instability growth rate on the resonance surface can
be straightforwardly observed in numerical simulations on a discrete grid (see,
e.g. the work of Dyachenko, Korotkevich & Zakharov (2003) devoted to decay
of capillary waves and the recent paper Korotkevich, Dyachenko & Zakharov (2016));
meanwhile, such research of separate waves dynamics becomes non-trivial in natural
experiments. The recently developed experimental method to study the dynamics of
internal waves in a stratified fluid is a promising tool that can also be applied to
inertial waves (Scolan, Ermanyuk & Dauxois 2013; Brouzet et al. 2016). Indeed,
this approach is based on the reflection (from the rigid boundary) properties of the
internal waves, making it possible to focus them in a wave attractor area using a
special trapezoid configuration of the experimental fluid tank (Maas et al. 1997). The
reflection properties of internal waves are determined by the following dispersion
law: ωk = ω0|sin θk|. Here, the constant ω0 is the so-called buoyancy frequency and
θk is the angle between the wave vector and the direction of stratification (see, e.g.
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Phillips (1966)). The dispersion law (1.1) determines the analogous wave reflection
properties, enabling the creation of experimental wave attractors for inertial waves in
rotating fluid (see also the discussion in Brouzet et al. (2016)).

Although internal and inertial waves have similar dispersion laws, their physical
properties have significant differences. For example, consider the small-frequency limit,
which plays the key role in the formation of the energy cascade for a rapidly rotating
fluid (see the previous section), as well as for a strongly stratified fluid. The latter
enables the existence of important non-propagating modes escaping the wave regime.
In the linear limit, the whole toroidal mode of motion is non-propagating, thereby
not affected by internal gravity waves. Thus, the turbulent behaviour of the strongly
stratified fluid is defined by the coexistence of the internal wave motions and the
non-propagating modes (see chapters 4 and 7 in the monograph of Sagaut & Cambon
(2008), where a detailed comparison of rapidly rotating and strongly stratified fluid
was presented). In a rapidly rotating fluid, the two-dimensional non-propagating modes
appear only as a singular limit when kz = 0, in accordance with Taylor–Proudman
theorem, and can thus be excluded from wave turbulence theory. Moreover, the
Hamiltonian formalism for a stratified fluid is based on another pair of Clebsch
variables, the velocity potential and a special functional of the fluid density and the
Montgomery potential, so the matrix elements have a different structure (see the
papers of Lvov & Tabak 2001; Lvov et al. 2004).

Our study of the turbulent cascade confirmed the results previously obtained in the
frame of helical mode decomposition (Galtier 2003, 2014). However, the presented
kinetic equation (6.1) enables further study. For example, the hypothesis of the local
nature for the rotating turbulence should be verified by studying the convergence of
the integral of collisions. Additionally, more general solutions of the kinetic equation
(6.1) can be obtained numerically.

At first sight, in the case of rapid rotation, the four-wave interactions can be
considered only to obtain more accurate predictions. However, such interactions
play the central role in the so-called parametric wave turbulence. The corresponding
theory was introduced by Zakharov, L’vov and Starobinets for spin waves in the
paper of Zakharov, L’vov & Starobinets 1971 and was then developed in detail
for general Hamiltonian systems (see the book of L’vov (1994)). Waves excited
by pairs as a result of parametric instability conserve their phase correlation in
four-wave interaction processes. This leads to the special phase mechanism of wave
amplitude saturation in the turbulent state. As previously mentioned, for inertial
waves, the role of parametric pumping can result in weak ellipticity of the flow. The
suggested Hamiltonian formalism for circular flow can be easily generalized to the
weakly elliptic case, which enables the use of the presented results for the future
development of parametric wave turbulence theory for inertial waves.
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Appendix A
Note that we use prime symbols here to distinguish the rotating reference frame

from the inertial frame. In the main text of the manuscript, these primes are omitted.
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A.1. Hamiltonian description of fluid in the rotating reference frame
The conventional Clebsch representation of the velocity field v for the Euler equations

∂tv + (v · ∇)v =−∇p, (A 1a)
∇ · v = 0, (A 1b)

has the following form (see, e.g. Lamb 1945 or Zakharov et al. 1992):

v = λ∇µ+∇Φ. (A 2)

Considering the continuity equation (A 1b), we can rewrite (A 2) using the transverse
projector (3.2) as

v = P̂ · (λ∇µ), (A 3)

(see also the second chapter in (Sagaut & Cambon 2008) concerning the use of
projection operators). To find an analogue of this representation for a rotating fluid (i.e.
for (2.1)), we consider a change of frame as the following transformation of variables:

λ(r, t)→ λ′(r,′ t)≡ λ′[t, R̂(t) · r′], (A 4a)

µ(r, t)→µ′(r′, t)≡µ′[t, R̂(t) · r′]. (A 4b)

Here, r′ is the position vector in the new (rotating with angular velocity Ω ‖ ẑ)
reference frame, while r = R̂(t) · r′ corresponds to the initial inertial frame. The
transformation matrix R̂(t) in our case is given by

R̂(t)=

cosΩt −sinΩt 0
sinΩt cosΩt 0

0 0 1

 . (A 5)

The transformation of variables (A 4) is not canonical: new fields λ′, µ′ obey the
equations of motion (see (3.5)) with a different Hamiltonian:

H′ ≡H−
∫
(Ω × r′) · (λ′∇µ′) dr′. (A 6)

Here, the gradient ∇ ≡ ∂/∂r′ is defined for the rotating reference frame. The main
Hamiltonian H in the new coordinates has the same form as in the inertial frame (3.6),
which can be explained as follows. The Jacobian of the transformation r′→ r is unity.
det R̂(t) = 1 and the operators ∇ and P̂ are instantaneous, so their isotropic scalar
combinations do not change under rotation.

The term (Ω × r) in (A 6) is not divergent. Thus, by adding the constant (
∫
|(Ω ×

r)|2 dr)/2 to the equation (A 6), we can write the Hamiltonian in the rotating frame
as

H′ =
∫

1
2
|v′|2 dr′, (A 7)

where
v′ ≡ P̂ · (λ′∇µ′)− (Ω × r′). (A 8)

Again, the operators (P̂ and ∇) act on the variable r′. The new field v′ in
the equation (A 8) is simply the velocity of fluid in the rotating frame; thus, the
only difference between Hamiltonian approaches in the inertial and rotating frames is
the form of the Clebsch transformation – compare (A 3) and (A 8).
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A.2. Clebsch representation of the velocity field in the rotating reference frame
First, we consider the fluid rotating as a whole with angular velocity Ω ‖ ẑ. In the
inertial frame, such basic circular flow v0 can be presented as

v0 = (Ω × r)=−x̂Ωy+ ŷΩx. (A 9)

The Clebsch fields λ0 and µ0 for the basic flow v0 and the corresponding potential
Φ0 satisfying equation

v0 = λ0∇µ0 +∇Φ0, (A 10)

can be found in different forms (see the discussion in § 3.1). We suggest the simplest
form, which can be obtained for the linear dependence of λ0, µ0 on coordinates r:

λ0 = ρλ · r= ρλxx+ ρλyy, (A 11a)
µ0 = ρµ · r= ρµxx+ ρµyy. (A 11b)

Here, ρλ,µ= ρλ,µxx̂+ ρλ,µxŷ are time-dependent vectors. Then, for the potential Φ0, we
obtain a couple of equations:

∂xΦ0 =−ρµxρλ · r, (A 12a)
∂yΦ0 =−ρµyρλ · r. (A 12b)

The compatibility condition for (A 12) ∂x∂yΦ0 = ∂y∂xΦ0 gives only the one restriction
to the possible choice of vectors ρλ,µ:

ρλxρµy − ρλyρµx = 2Ω. (A 13)

Then, the potential Φ0 can be found as

Φ0 =−
1
2λ0µ0. (A 14)

Note that the left-hand side of equation (A 13) is simply the determinant of the
transformation (A 11) from x, y to λ, µ. Thus, the transformation (A 11) is always
non-degenerate and can be inverted as

x=
1

2Ω
(ρµyλ0 − ρλyµ0), (A 15a)

y=
1

2Ω
(−ρµxλ0 + ρλxµ0). (A 15b)

It is convenient to choose λ0 and µ0 as time-dependent rotating vectors, which will
be stationary in the new rotating frame:

ρλ =
√

2Ω(x̂ cosΩt+ ŷ sinΩt), (A 16a)

ρµ =
√

2Ω(−x̂ sinΩt+ ŷ cosΩt). (A 16b)

ρλ and ρµ are directed along x̂′ and ŷ′, respectively. Then, in the rotating reference
frame, the Clebsch variables for basic flow (A 9) are given by

λ′0 =
√

2Ωx′, µ′0 =
√

2Ωy′. (A 17a,b)
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In this work, we study only the weak velocity perturbations on the background of
the basic circular flow (A 9). Thus, it is convenient to introduce deviations λ̃′≡λ′−λ′0
and µ̃′≡µ′−µ′0 of the real flow from the basic flow. In the rotating reference frame,
the basic flow velocity v′0 is obviously zero; however, it is useful to formally consider
the expression for velocity perturbation ṽ

′
≡ v′ − v′0 and to verify that

ṽ
′
= P̂ · (λ′∇µ′)− P̂ · (λ′0∇µ

′

0)= P̂ · [
√

2Ω(λ̃′ŷ′ − µ̃′x̂′)+ λ̃′∇µ̃′]. (A 18)

The last equality in the expression (A 18) can be verified using equation (A 17) and the
property of the projector operator to cancel the full gradient of an arbitrary function.
The canonically conjugated fields λ̃′ and µ̃′ obey the usual equations of motion (3.5).
Thus, omitting all the primes and tildes, we prove the velocity representations (3.1)
and (3.3), which we introduced at the beginning of the paper.

A.3. Coefficients of the interaction Hamiltonian
Here, we present exact expressions for the amplitudes of the interaction part of the
Hamiltonian Hint, which were discussed in § 3.4. First, we write the amplitude for the
three-wave process k1 + k2 + k3→ 0:

Uk1k2k3 = −
3i
√

2Ω
(2π)3/2k1⊥k2⊥k3⊥

{
−

√
Ω3

ωk1ωk2ωk3

Fk1
k2k3

Sk3k2 +
i
8

√
ωk1ωk2ωk3

Ω3
Sk3k2

+
1
4

√
ωk2ωk3

Ωωk1

Fk1
k2k3

Sk3k2 −
i
2

√
Ωωk1

ωk2ωk3

S2
k3k2
−

i
2

√
Ωωk3

ωk1ωk2

Fk1
k2k3
(k2⊥ · k3⊥)

+
i
2

√
Ωωk2

ωk1ωk3

Fk1
k2k3
(k2⊥ · k3⊥)+

1
4

√
ωk1ωk3

Ωωk2

Sk3k2(k2⊥ · k3⊥)

−
1
4

√
ωk1ωk2

Ωωk3

Sk3k2(k2⊥ · k3⊥)

}
. (A 19)

Then, we present amplitudes for all possible four-wave processes, such as k1 + k2 +

k3→ k4:

Gk2k3k4
k1
=

1
(2π)3k1⊥k2⊥k3⊥k4⊥

×

{(√
Ω4

ωk1ωk2ωk3ωk4

−
1
16

√
ωk1ωk2ωk3ωk4

Ω4

)
(Sk1k4Sk3k2Q

k3,k2
−k1,k4

+ Sk1k3Sk2k4Q
k4,k2
k3,−k1

)

−
1
4

(√
ωk1ωk2

ωk3ωk4

−

√
ωk3ωk4

ωk1ωk2

)
× ((k1⊥ · k4⊥)(k2⊥ · k3⊥)Q

k3,k2
−k1,k4

− (k1⊥ · k3⊥)(k2⊥ · k4⊥)Q
k4,k2
k3,−k1

)

+
1
4

(√
ωk1ωk3

ωk2ωk4

−

√
ωk2ωk4

ωk1ωk3

)
((k1⊥ · k4⊥)(k2⊥ · k3⊥)Q

k3,k2
−k1,k4

+ Sk1k3Sk2k4Q
k4,k2
k3,−k1

)

+
1
4

(√
ωk1ωk4

ωk2ωk3

−

√
ωk2ωk3

ωk1ωk4

)
[Sk1k4Sk3k2Q

k3,k2
−k1,k4

− (k1⊥ · k3⊥)(k2⊥ · k4⊥)Q
k4,k2
k3,−k1
]
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+
i
2

(√
Ω2ωk1

ωk2ωk3ωk4

−
1
4

√
ωk2ωk3ωk4

Ω2ωk1

)
×[Sk3k2(k1⊥ · k4⊥)Q

k3,k2
−k1,k4

− Sk4k2(k1⊥ · k3⊥)Q
k4,k2
k3,−k1
]

+
i
2

(√
Ω2ωk2

ωk1ωk3ωk4

−
1
4

√
ωk1ωk3ωk4

Ω2ωk2

)
×[Sk1k4(k2⊥ · k3⊥)Q

k3,k2
−k1,k4

+ Sk3k1(k2⊥ · k4⊥)Q
k4,k2
k3,−k1
]

−
i
2

(√
Ω2ωk3

ωk1ωk2ωk4

−
1
4

√
ωk1ωk2ωk4

Ω2ωk3

)
×[Sk1k4(k2⊥ · k3⊥)Q

k3,k2
−k1,k4

+ Sk4k2(k1⊥ · k3⊥)Q
k4,k2
k3,−k1
]

+
i
2

(√
Ω2ωk4

ωk1ωk2ωk3

−
1
4

√
ωk1ωk2ωk3

Ω2ωk4

)

× [Sk3k2(k1⊥ · k4⊥)Q
k3,k2
−k1,k4

− Sk3k1(k2⊥ · k4⊥)Q
k4,k2
k3,−k1
]

}
; (A 20)

then k1 + k2 + k3 + k4→ 0:

Rk1k2k3k4 =−
1

(2π)3

Qk1k2
k3k4

k1⊥k2⊥k3⊥k4⊥

×

{(√
Ω4

ωk1ωk2ωk3ωk4

+
1
16

√
ωk1ωk2ωk3ωk4

Ω4
−

1
4

√
ωk1ωk2

ωk3ωk4

−
1
4

√
ωk3ωk4

ωk1ωk2

)
Sk1k2Sk3k4

+
1
4

(√
ωk1ωk4

ωk2ωk3

+

√
ωk2ωk3

ωk1ωk4

−

√
ωk1ωk3

ωk2ωk4

−

√
ωk2ωk4

ωk1ωk3

)
(k1⊥ · k2⊥)(k3⊥ · k4⊥)

+
i
2

(√
Ω2ωk3

ωk1ωk2ωk4

−

√
Ω2ωk4

ωk1ωk2ωk3

+
1
4

√
ωk1ωk2ωk4

Ω2ωk3

−
1
4

√
ωk1ωk2ωk3

Ω2ωk4

)
Sk1k2(k3⊥ · k4⊥)

+
i
2

(√
Ω2ωk1

ωk2ωk3ωk4

−

√
Ω2ωk2

ωk1ωk3ωk4

+
1
4

√
ωk2ωk3ωk4

Ω2ωk1

−
1
4

√
ωk1ωk3ωk4

Ω2ωk2

)
Sk3k4(k1⊥ · k2⊥)

}
; (A 21)

and finally for the process k1 + k2→ k3 + k4:

Wk1k2
k3k4
=

1
(2π)3k1⊥k2⊥k3⊥k4⊥

{(√
Ω4

ωk1ωk2ωk3ωk4

+
1

16

√
ωk1ωk2ωk3ωk4

Ω4

)
×[Sk1k2Sk3k4Q

k1,k2
k3,k4
+ Sk1k4Sk3k2Q

k1,−k4
k3,−k2

+ Sk1k3Sk2k4Q
k1,−k3
−k2,k4
]
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−
1
4

(√
ωk1ωk2

ωk3ωk4

+

√
ωk3ωk4

ωk1ωk2

)
×[Sk1k2Sk3k4Q

k1,k2
k3,k4
− (k1⊥ · k4⊥)(k2⊥ · k3⊥)Q

k1,−k4
k3,−k2

+ (k1⊥ · k3⊥)(k2⊥ · k4⊥)Q
k1,−k3
−k2,k4
]

+
1
4

(√
ωk1ωk3

ωk2ωk4

+

√
ωk2ωk4

ωk1ωk3

)
×[(k1⊥ · k2⊥)(k3⊥ · k4⊥)Q

k1,k2
k3,k4
+ (k1⊥ · k4⊥)(k2⊥ · k3⊥)Q

k1,−k4
k3,−k2

+ Sk1k3Sk2k4Q
k1,−k3
−k2,k4
]

−
1
4

(√
ωk1ωk4

ωk2ωk3

+

√
ωk2ωk3

ωk1ωk4

)
×[(k1⊥ · k2⊥)(k3⊥ · k4⊥)Q

k1,k2
k3,k4
− Sk1k4Sk3k2Q

k1,−k4
k3,−k2

+ (k1⊥ · k3⊥)(k2⊥ · k4⊥)Q
k1,−k3
−k2,k4
]

+
i
2

(√
Ω2ωk1

ωk2ωk3ωk4

+
1
4

√
ωk2ωk3ωk4

Ω2ωk1

)
×[Sk3k4(k1⊥ · k2⊥)Q

k1,k2
k3,k4
+ Sk3k2(k1⊥ · k4⊥)Q

k1,−k4
k3,−k2
]

−
i
2

(√
Ω2ωk2

ωk1ωk3ωk4

+
1
4

√
ωk1ωk3ωk4

Ω2ωk2

)
×[Sk3k4(k1⊥ · k2⊥)Q

k1,k2
k3,k4
+ Sk1k4(k2⊥ · k3⊥)Q

k1,−k4
k3,−k2
]

−
i
2

(√
Ω2ωk3

ωk1ωk2ωk4

+
1
4

√
ωk1ωk2ωk4

Ω2ωk3

)
×[Sk1k2(k3⊥ · k4⊥)Q

k1,k2
k3,k4
+ Sk1k4(k2⊥ · k3⊥)Q

k1,−k4
k3,−k2
]

+
i
2

(√
Ω2ωk4

ωk1ωk2ωk3

+
1
4

√
ωk1ωk2ωk3

Ω2ωk4

)

× [Sk1k2(k3⊥ · k4⊥)Q
k1,k2
k3,k4
+ Sk3k2(k1⊥ · k4⊥)Q

k1,−k4
k3,−k2
]

}
. (A 22)
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