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Statistics of Freak Waves in Numerical Tank
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Abstract—Presented are the results of experiments on calculation of Probability Distribution
Functions for elevations of waters waves in numerical tank. Statistics of waves of anomalous
amplitude, or freak-waves were compared both for nonlinear and linear models. Obviously, linear
model demonstrates the exact Rayleigh distribution of surface elevations while PDFs for nonlinear
equation have tails (for large elevations) similar to Rayleigh distribution, but with larger σ.
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1. INTRODUCTION

The probability assessment of the ocean extreme waves appearance has important practical implica-
tions. Those peculiar object, also known as the “freak waves,” are the natural part of the open seas
surface wave dynamics, having linear dispersion and modulational instability as the causes of their
formation. These two mechanisms are studied in the current paper for the classical 1-D water wave
Hamiltonian system. Assuming moderately steep surface waves (small parameter is a steepness of the
waves), the Hamiltonian can be represented by the infinite power series expansion of its natural variables.
The Hamiltonian expansion up to 4th order is

H =
1

2

∫
gη2 + ψk̂ψdx− 1

2

∫
{(k̂ψ)2 − (ψx)

2}ηdx +
1

2

∫
{ψxxη

2k̂ψ + ψk̂(ηk̂(ηk̂ψ))}dx. (1)

Here k̂ is the modulus operator (|k|) in Fourier space and g is the gravitational acceleration. It is
well known that all of the third order terms can be excluded from the Hamiltonian (1) and the fourth
order terms can be significantly simplified by using nonlinear canonical transformation η(x, t), ψ(x, t) ↔
c(x, t), c∗(x, t). After the transformation, the Hamiltonian is drastically simplified and can be written in
X-space in the compact form (for details see [1–3]):

H(η, ψ) ↔ H(c, c∗) =

∫
c∗V̂ c dx+

1

2

∫
|c|2

[
i

2
(cc′∗ − c∗c′)− k̂|c|2

]
dx. (2)

Here, operator V̂ in Fourier space is so that Vk = ωk/k, ωk =
√
gk is the dispersion law for the gravity

waves on deep water.
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2. CALCULATION OF PDFs

Hamiltonian (2) allows to obtain not only temporal Zakharov equation in compact form, but also the
spatial compact equation. Temporal compact equation has the following form:

∂c

∂t
+ Γ̂p

kc− Γ̂d
kc+ iω̂kc− iP̂+ ∂

∂x

(
|c|2 ∂c

∂x

)
= P̂+ ∂

∂x
(k̂|c|2c). (3)

Here (P̂+)2 = P̂+ = 1
2(1− iĤ) is the projection operator to the upper half-plane (or it is step function

θ(k) in k-space). The spatial compact equation has the following form:

∂c

∂x
+ Γ̂p

ωc− Γ̂d
ωc+

i

g

∂2c

∂t2
=

P̂−

2g3
∂3

∂t3

[
∂2

∂t2
(
|c|2c

)
+ 2|c|2c̈+ c̈∗c2

]

+
iP̂−

g3
∂3

∂t3

[
∂

∂t

(
cω̂|c|2

)
+ ċω̂|c|2 + cω̂ (ċc∗ − cċ∗)

]
. (4)

It solves the spatial Cauchy problem for surface gravity wave on the deep water. Initial condition at x = 0
is provided by wavemaker. Physical variables can be recovered by canonical transformation. Calculation
of PDFs must be performed in stationary turbulent state. For this reason pumping (Γ̂p

k, Γ̂
p
ω) and damping

(Γ̂d
k, Γ̂

d
ω) were added to the temporal (3) and spatial (4) equations. Here pumping coefficients Γp

k, Γp
ω are

the following:

Γp
k(k) =

{
γk for |k − k0| ≤ π × 10−2 [m−1],

0 for |k − k0| > π × 10−2 [m−1],
Γp
ω(ω) =

{
γω for |ω − ω0| ≤ 0.2 [rad s−1],

0 for |ω − ω0| > 0.2 [rad s−1],

where k0 is the wave number of the carrier wave. Coefficient of pumping γk was equal to 10−3 [s−1] or
less, coefficient γω was equal to 10−4[m−1] or less.

Damping coefficient Γd
k was turned on, if the average value of ck (which is cC ) in the vicinity of kmax

was larger than roundoff errors. To clarify, the value of cC , which is cC = 1
10

∑0
i=9 |ckmax−i| controls the

damping in the following way:

Γd(k) =

{
αk2, if cC is 10 times greater then roundoff errors,

0, otherwise

with coefficient α = 0.9/τk2max. The choice of α maximizes the damping and controls the integration
scheme stability in the time. The damping term in spatial equation (4) was arranged similarly.

To reach the stationary turbulent state, one can start from different initial conditions. We started from
the initial conditions in the form of the perturbed monochromatic wave:

c(x, 0) = c0e
ik0x +

∑
δcke

ikx+φk for temporal equation,

c(0, t) = c0e
−iω0t +

∑
δcωe

−iωt+φω for spatial equation. (5)

Calculations were performed in the periodic domain x ∈ [0, L], L = 1000 [m] for temporal equa-
tion (3) and in the periodic domain t ∈ [0, T ], T = 154 [s] for spatial equation (4). The length of carrier
wave was equal to 10 [m] (k0 = π

5 [m−1]), and maximal steepness μ ∼ 0.12. Here φk and φω are random
phases. For the time-integration scheme, the 4-th order Runge–Kutta method was used. FFTW library
was used for fast Fourier transformation of the nonlinear right-hand side.

The perturbation (5) causes the development of the initial condition modulational instability, which
reaches the statistically homogeneous turbulent state after some time, allowiing to collect data for PDFs
calculation. Starting from this time, the simulation was performed for equation (3); linear equation
i∂ck∂t = ωkck and for equation (4); linear equation i∂cω∂x = ω2

g cω . We were interested in the |c| values
distribution. At the times tn data were collected into un-normalized UPDF in the following way:
N = |c(xi, tn)|/δc, UPDF (Nδc) = UPDF (Nδc) + 1. Here δc is the discrete step for PDF. UPDF
was normalized at the end of the data collection.
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Fig. 1. Total energy dependence on time t.
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Fig. 2. Average wave steepness dependence on time t.

3. RESULTS OF PDFs CALCULATION

Figures 1, 2 show the total energy and the average wave steepness dependences on the time in
the temporal equation. The solid curves on these figures correspond to the results of the numerical
experiments in the nonlinear equation (3) with γmax = 10−3 [s−1], the dashed curves correspond to the
results of the numerical experiment in the nonlinear equation (3) with γmax = 10−4 [s−1], the dotted lines
indicate the total energy and the average steepness level in the linear equation with γmax = 10−3 [s−1]
and γmax = 10−4 [s−1] respectively. Each vertical portion of the curve denotes the wave-breaking and
the turning on of the dumping.

For the linear equation (i.e. the original equation with the neglected nonlinearity), one can expect
normal distribution for Re{c(x, t)} = r(x, t) and Rayleigh distribution for |c|:

PDF (r) =
1

σ
√
2π

exp

(
− r2

2σ2

)
, PDF (|c|) = |c|

σ2
exp

(
− |c|2
2σ2

)

with the dispersion σ.

Figure 3 shows PDF(|c|)/|c| as the function of |c|2 on logarithmic scale for numerical experiment
of temporal equation with total energy level Etot ∼ 1.55× 10−2[m2] and the value of average steepness
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Fig. 3. PDF(|c|)/|c| as the function of |c|2 on logarithmic scale.
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Fig. 4. PDF(|c|)/|c| as the function of |c|2 on logarithmic scale.

μav ∼ 0.1. The PDF(|c|)/|c| as the function of |c|2 in nonlinear equation (3) is shown by the solid curve.
The dotted curve corresponds to the linear case with the same value of total energy and average steepness
level. One can see that PDF in the linear case coinsides with Rayleigh distribution with dispersion
σ = 0.134 (the dash dotted line on the Fig. 3). For the nonlinear equation (3) PDF is not Rayleigh, but
has Rayleigh tail is the straight lines for large |c|2, while the small |c|2 are different. The dispersion σ of
Rayleigh tail for large |c|2 in the nonlinear cases obviously does depend on wave steepness (linear and
nonlinear regimes coincide at small value of wave steepness) and for wave steepness μ ∼ 0.1 is about 2
times larger than in the linear case.

Figure 4 shows PDF(|c|)/|c| as the function of |c|2 in logarithmic scale for spatial equation numerical
experiment with the value of average steepness μav ∼ 0.07. The PDF in nonlinear equation (4) is shown
by the solid curve on the graph. The dotted curve corresponds to the linear case with the same value of
the total energy and the average steepness level.

The normalization (c → δ · σlin) was performed for the comparison of the PDFs for different values of
the average steepness, so that for the linear equations the dispersion σ is equals to 1.

Figure 5 shows the comparison of PDF(|δ|)/|δ| on logarithmic scale for the calculations with the
different values of the average wave steepness for the linear case. One can see that the dispersion σ of
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Fig. 5. Comparison of PDF(|δ|)/|δ| on logarithmic scale for calculations with the different values of average wave
steepness.

the Rayleigh tails for large |δ|2 in the nonlinear cases slightly increases with the average total energy,
and the wave steepness level increase.

So, both temporal and spatial equations (3) and (4) simulate real experiments in a flume. Thus, this
pair of equations can be called as numerical tank.
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