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We determine the asymptotic behavior of the coupling coefficient for four-wave interactions of gravity waves
in deep water in the limiting case when two wave vectors of interacting waves are small with respect to the
other two (“long–short interactions”). It makes possible to find numerically dimensionless Kolmogorov
constants for the power-law Kolmogorov–Zakharov spectra. The results obtained are crucially important for
comparison of the weak turbulent theory with the experiments and natural observations.
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INTRODUCTION

Gravity waves spectra in the wind-driven sea are
shaped by the four-wave nonlinear interactions
described by the Hasselmann kinetic equation [1].
This equation has a broad family of stationary solu-
tions known as the Kolmogorov–Zakharov (KZ)
spectra (see, for instance [2]).

In the simplest isotropic case, the spectra are
power-law

(1)

(2)

where  is the energy f lux (directed to the high wave-
numbers) and  is the wave action f lux (directed to the
low wavenumbers). We assume the water density 
and the acceleration of gravity  here and below.

The features of these spectra are widely observed
both in the ocean measurements and in wave tank
experiments (see, e.g., [3]).

In this paper, we calculate  and  numerically.
The accuracy of this numerical calculation is sup-
ported by the analytical estimation of the asymptotic
behaviors of power-law spectra (see below).

ASYMTOTIC BEHAVIOR 
OF THE COUPLING COEFFICIENT

The dispersion relation for the gravity waves in
deep water is:

(3)
(here and below, we put the acceleration of gravity

).
We will use the Hamiltonian description of gravity

waves (see [4]). After the canonical transformation,
the complex normal variables  satisfy the equation
[5, 6]

(4)

where the Hamiltonian function

(5)
is presented as a series in formally small wave ampli-
tudes. The lowest order term corresponds to the linear
approximation:

(6)

The weak nonlinearity is described by the next order
term

(7)
1 The article is published in the original.
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The kernel  was first derived in [4–6]. Different
forms of the kernel expression may be compared in [7,
8]. We present here the new form of  which seems to
be the simplest one

(8)

Here, , , and  are the lengths of the vectors
, , and , respectively. It should be

stressed that Eq. (8) holds only at the resonant mani-
fold:

(9)

The coupling coefficient satisfies the symmetry con-
ditions

(10)

Now suppose that the two wave vectors, e.g.,  and 
are much shorter than the other two (  and ). Tak-
ing into account Eq. (9), we see that  and  have
nearly equal length. The vectors  and  are nearly
equal, both in length and direction. An example of
such configuration is shown in Fig. 1.

Thereafter, we define , , etc. We
have .

After the tedious algebra, one may find the follow-
ing asymptotic behavior for the coupling coefficient:
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 is the angle between the small vectors  and 
(see Fig. 1). Same stands for .

In the diagonal case , , ,

(12)

POWER-LAW SOLUTION 
OF THE KINETIC EQUATION

A random field of gravity waves is statistically
described by the wave action spectrum ,

(13)

The wave action  obeys the kinetic (Hassel-
mann) equation

(14)

(15)

We are looking for the solution of the stationary
equation

(16)

We assume that the solution of (16) is a power-law
function

(17)
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Fig. 1. Wave vector quadruplet of the long–short interac-
tion. A curve  is drawn; any two points of
the curve constitute a resonant quadruplet. The angles 
and  are given with respect to the vector

. The eight-shape figure is the Phillips
curve.
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Then

(18)

where  is a dimensionless function depending of 
only.

INTEGRAL FORM FOR THE F FUNCTION

The dimensionless  function may be presented in
integral form.

We introduce the base vector

(19)

(the resonant condition (9) is used here). Then, we
norm the wave vectors , , ,  as follows

(20)

The normalized coupling coefficient is 

(21)

Instead of normalized , we introduce the variables 
and 

(22)

(The resonance condition becomes just .)

Now, after choosing the normalized vectors  and
 as independent variables, we get the following inte-

gral form for the  function:

(23)

Here, the variables  and  are defined by , whereas
the variables  and  are defined by .

PROPERTIES OF THE FUNCTION F

It is easy to show that integrals in (23) converge if

(24)
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This is the “window of opportunity” for power-law
solutions. At the end of this interval, . Using
the asymptotic expansion (11), we find

(25)

Notice that (25) is the result of rigorous analytic
calculations.

The function  was calculated numerically. The
excellent coincidence of the asymptotic behavior of 
with analytically predicted asymptotes confirm the
accuracy of the numerical code.

The function  is shown in Fig. 2.

According to the general theory [6], the function 
has exactly two zeros  and  = 23/6. Corre-
sponding Kolmogorov–Zakharov spectra are

(26)
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Fig. 2.  function graph and its asymptotes. The second
picture is the closeup of the function zeros.
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Here,  is the energy f lux and  is the wave action
flux. The dimensionless constants  and  are
defined from the first derivatives of :

(28)

(29)

Different estimates of  and  are summarized in
[9].

Our numerical calculation of the derivatives  at
 and  = 23/6 gives

(30)

It is important to stress that the famous Phillips
spectrum [10]

though not the Kolmogorov spectrum, also belongs to
the “window of opportunity” for power-like spectra.

We have calculated that at 
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