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Abstract
We study numerically the nonlinear stage of the modulational instability (MI) 
of cnoidal waves in the framework of the focusing one-dimensional nonlinear 
Schrödinger (NLS) equation. Cnoidal waves are exact periodic solutions of 
the NLS equation  which can be represented as the lattices of overlapping 
solitons. The MI of these lattices leads to the development of ‘integrable 
turbulence’ (Zakharov 2009 Stud. Appl. Math. 122 219–34). We study the 
major characteristics of turbulence for the dn-branch of cnoidal waves and 
demonstrate how these characteristics depend on the degree of ‘overlapping’ 
between the solitons within the cnoidal wave.

Integrable turbulence, which develops from the MI of the dn-branch of 
cnoidal waves, asymptotically approaches its stationary state in an oscillatory 
way. During this process, kinetic and potential energies oscillate around their 
asymptotic values. The amplitudes of these oscillations decay with time as α−t , 
α< <1 1.5, the phases contain nonlinear phase shift decaying as t−1/2, and the 

frequency of the oscillations is equal to the double maximal growth rate of the 
MI, γ=s 2 max. In the asymptotic stationary state, the ratio of potential to kinetic 
energy is equal to  −2. The asymptotic PDF of the wave intensity is close to 
the exponential distribution for cnoidal waves with strong overlapping, and is 
significantly non-exponential for cnoidal waves with weak overlapping of the 
solitons. In the latter case, the dynamics of the system reduces to two-soliton 
collisions, which occur at an exponentially small rate and provide an up to two-
fold increase in amplitude compared with the original cnoidal wave. For all 
cnoidal waves of the dn-branch, the rogue waves at the time of their maximal 
elevation have a quasi-rational profile similar to that of the Peregrine solution.
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1. Introduction

The statistics of waves for different nonlinear systems has been intensively studied in recent 
years [1–10], especially since the first experimental observation of optical rogue waves [11]. 
Known previously for hydrodynamics [12–14], rogue waves are very large short pulses that 
may endanger marine navigation and optical communications. These pulses appear randomly 
from initially smooth waves and their statistics may significantly exceed those predicted by 
the approximations of random wave fields governed by linear equations.

Let us suppose that wave field ψ is a random superposition of a multitude of uncorrelated 
linear waves,

( ) ( )∑ψ ψ= | | φ+x e .
k

k
kxi k

If phases φk are random and uncorrelated, the number of waves {k} is large, and amplitudes 
ψ| |k  fall under the conditions of the central limit theorem, then the real ( )ψ xRe  and imaginary 

( )ψ xIm  parts are Gaussian-distributed, and the probability density function (PDF) for wave 
amplitude is the Rayleigh distribution [15],

( ) /ψ
ψ
σ

| | =
| | ψ σ−| |P

2
e .R 2

2 2
 (1)

Here, ⟨ ⟩σ ψ= | |2 2  is the average square amplitude, and we use normalization for the PDF as 

∫ ψ ψ| | | | =P d 1( ) . For convenience, below we study the PDFs for a normalized square ampl-
itude /⟨ ⟩ψ ψ=| | | |I 2 2 , which has a meaning of relative intensity: the small waves correspond 
to �I 1, the moderate ones to ∼I 1, and the large ones to �I 1. Then, the Rayleigh PDF (1) 
takes the simple form

( ) = −P I e ,I
R (2)

which we will call the exponential PDF (note that we called the same PDF Rayleigh in our 
previous paper [7]). If the evolution is governed by linear equations, then the superposition 
of the linear waves stays uncorrelated, and its PDF remains exponential (2). Nonlinear evo-
lution may introduce a correlation, which in turn may lead to the enhanced appearance of 
large waves.

With a certain degree of accuracy, many physical systems can be described by completely 
integrable (nonlinear) mathematical models. In comparison with nonintegrable models, the 
corresponding integrable equations  demonstrate significantly different statistical properties 
[16–18]. The new emerging field of nonlinear science which studies these properties was 
introduced in 2009 by Zakharov [16] as ‘integrable turbulence’. The one-dimensional nonlin-
ear Schrödinger (NLS) equation of focusing type,

ψ ψ ψ ψ+ + | | =i 0,t xx
2 (3)
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is paid special attention in these studies, since it is a simple mathematical model suitable 
for the description of rogue waves in optics and hydrodynamics [12–14]. The simplest ‘con-
densate’ solution ψ = e ti  of equation (3) is modulationally unstable, and the development of  
this instability from an initially small perturbation may lead to the appearance of rogue waves 
[12, 13].

However, as we demonstrated in our previous paper [7], for the NLS equation and in the 
scenario of the modulational instability (MI) of the condensate, the PDF of the wave intensity, 
averaged over realizations of the initial perturbation, does not exceed the exponential PDF 
significantly (2). The development of MI leads to integrable turbulence, which asymptotically 
approaches its stationary state in an oscillatory way. The PDF in this state is exponential (2). 
During evolution toward the stationary state, the PDF significantly deviates from (2), however 
it does not exceed the exponential PDF by more than a few times.

Another physically relevant scenario of the emergence of rogue waves in the framework 
of the NLS equation was studied in [8, 10] for incoherent waves as initial conditions (see 
also the earlier studies [19–21] with similar results for the long crested water waves of the 
JONSWAP spectrum, and also a similar study for the defocusing NLS equation [6]). For inco-
herent waves, integrable turbulence quickly reaches its stationary state, in which the tail of the 
PDF at high intensities exceeds exponential distribution (2) by orders of magnitude.

The fact that the different initial conditions of these studies lead to entirely different results 
is not surprising: integrable systems ‘remember’ their initial condition through the conserva-
tion of an infinite series of invariants (integrals of motion). These invariants are different for 
different types of initial conditions, and thus the stationary states and the evolution toward 
them are different too. However, so far there has been no explanation why in one case integra-
ble turbulence approaches its stationary state for a very long time and the probability of the 
appearance of rogue waves is small, while in the other case the stationary state is reached very 
quickly and rogue waves appear much more frequently.

In this publication we study one more scenario, in which integrable turbulence develops 
from the MI of cnoidal waves. Cnoidal waves are exact periodic solutions of the NLS equa-
tion  (3), essentially depending on two parameters ω0 and ω1, which we will call real and 
imaginary half-periods respectively. There are dn- and cn-branches of such solutions. The 
dn-branch of cnoidal waves can be written as

( ) ( )ψ ν ν= Ωx t x s, e 2 dn ; ,t
dn

i 2 (4)

where ( )x sdn ; 2  is the corresponding Jacobi elliptic function and Ω, ν and s are specific values 
defined by the half-periods ω0 and ω1 (see appendix A for more details). The solutions (4) are 
periodic with the period ω2 0, and at t  =  0 they are purely real and positive, ( )ψ >x, 0 0dn ; an 
example of one such solution with half-periods ω π=0  and ω = 1.61  is shown in figure 1(a). 
The cn-branch of cnoidal waves can be written as

( ) ( )ψ ν ν= Ωx t s x s, e 2 cn ; ,t
cn

i 2 (5)

where ( )x scn ; 2  is the corresponding Jacobi elliptic function. These solutions are periodic with 
the period ω4 0, and at t  =  0 they are purely real and change their sign periodically with x. 
An example of such a solution for the same half-periods ω π=0  and ω = 1.61  is shown in 
figure 1(b).

As described in appendix A, both types of cnoidal waves can be viewed as infinite lattices 
of overlapping NLS solitons,

D S Agafontsev et alNonlinearity 29 (2016) 3551
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( ) /ψ
λ
λ

λ π ω= =λx t
x

, e
2

cosh
, 2 ,s

ti
1

2
 (6)

with the width of the solitons proportional to ω1 and the distance between them equal to 
ω2 0. For weak ‘overlapping’ between the solitons /ω ω � 11 0 , cnoidal waves transform into the 

arithmetic sum of NLS solitons,

( ) → ( )
( )∑ψ

λ
λ ω
−

−
λ

=−∞

+∞ �

x t
x m

, e
1 2

cosh 2
,t

m

m
i

0

2

 (7)

where =� 0 for the dn-branch and =� 1 for the cn-branch. For strong ‘overlapping’ /ω ω � 11 0 , 
the cnoidal waves of the dn-branch transform into condensate,

( ) →ψ κ κx t, 2 e ,tdn
2i 2

 (8)

while the cnoidal waves of the cn-branch transform into sinusoidal waves with an exponen-
tially small amplitude,

( ) → [ ( )] ( )ψ κ κ ω κ− κ−x t x, 4 2 exp e cos ,t
cn 1

i 2
 (9)

where /κ π ω= 2 0. Both branches of cnoidal waves are modulationally unstable. For the dn-
branch, the maximal growth rate of the MI was found in [22],

( ) /γ ν= −e e2 .max 1 2
1 2 (10)

For a fixed ω0, this relation is exponentially small for small ω1, monotonically increases with 
ω1, and approaches κ2 2 as →ω +∞1 . To the authors’ knowledge, γmax has not been found for 
the cn-branch so far.

In this paper, we study the statistical properties of the MI for the dn-branch of cnoidal 
waves only. It will be more convenient to work with the stationary variants of the cnoidal 
waves,

( ) ( )ν νΨ =x x s2 dn ; ,dn
2 (11)

which are solutions of the slightly modified NLS equation

Ψ − Ω Ψ+ Ψ + |Ψ| Ψ=i 0,t xx
2 (12)

Figure 1. The cnoidal waves of (a) the dn-branch (4) and (b) the cn-branch (5) with 
ω π=0 , ω = 1.61 , at t  =  0 when they are purely real, ( ) ( )ψ ψ= =x xIm , 0 Im , 0 0dn cn . 
The dashed red lines show the soliton (6) with /λ π ω= 2 1.

D S Agafontsev et alNonlinearity 29 (2016) 3551
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obtained from equation  (3) after gauge transformation ψ = ΨΩe ti . To study the statistical 
properties of the MI of cnoidal waves (11), one has to solve equation  (12) with the initial 
conditions

( ) ( ) ( ) ( )Ψ| = Ψ + | | |Ψ |= �ε εx x x x, ,t 0 dn dn (13)

and average the results over different realizations of the initial noise ( )ε x . Without loss of 
generality, we will consider cnoidal waves with a real half-period ω π=0  only. Indeed, the 
NLS equation can be scaled → χt t, → ηx x and → µΨ Ψ using three independent parameters 
χ, η and μ. Two of these parameters can be used to scale the dispersion and nonlinearity 
coefficients to unity, while the last parameter can be used to scale ω0 to π. Then, in the limits 
(8) and (9) the constant /κ π ω= 2 0 is equal to 1/2, and the cnoidal waves from the dn-branch 
transform into a condensate with the amplitude /1 2  as →ω +∞1 .

Formally, the problem (12) with initial conditions (13) could be solved analytically, as any 
periodic solution of the NLS equation can be expressed explicitly in terms of the Jacobi θ-
functions over a certain hyperbolic curve, see e.g. [23–25]. However, to study the general case 
of MI, we have to use an initial noise ( )ε x  with a very large number of excited modes, which 
also makes the genus of the curve very large (for the present study we use at least 104 harmon-
ics). It is unrealistic so far to follow this evolution with exact analytical methods.

Therefore, we rely completely on numerical experiments, solving the NLS equation (12) in 
the box [ / / ]∈ −x L L2, 2  with a periodic boundary. Integrability implies the conservation of an 
infinite series of integrals of motion. The first three of these invariants are wave action,

( )
/

/

∫= |Ψ |
−

N
L

x t x
1

, d ,
L

L

2

2
2 (14)

momentum,

( )
/

/

∫= Ψ Ψ− Ψ Ψ
−

∗ ∗P
L

x
i

2
d ,

L

L

x x
2

2
 (15)

and total energy,

/

/

/

/

∫ ∫= + = |Ψ | = − |Ψ|
− −

E H H H
L

x H
L

x,
1

d ,
1

2
d .d d

L

L

x
L

L

4
2

2
2

4
2

2
4

 

(16)

Here, Hd is kinetic and H4 is potential energy. The other invariants,

[ ]
/

/

∫ φΨ =
−

c
L

x
1

d ,n
L

L

n
2

2
 (17)

can be calculated using the following recurrent series of equations [24]:

/∑φ
φ

φ φ φ=Ψ
∂
∂ Ψ

+ = |Ψ|+
+ =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
, 2.n

n

l m n
l m1 1

2 (18)

Our method of numerical simulations conserves the first ten invariants very well.
The general motivation of our study is to improve our understanding of integrable turbu-

lence. In [7, 8, 10], two cases of integrable turbulence were studied with the initial condensate 
and incoherent wave conditions respectively. With the help of scaling transformations, the 
problem of the MI of the condensate renormalizes to equation (3) and the condensate ψ = e ti  
for all dispersion and nonlinearity coefficients as well as for all condensates [7]. Thus, except 
for the noise, this problem does not depend on any free parameters. The evolution of the 
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incoherent wave in formulation [8, 10] essentially depends on one free parameter, and the initial 
potential to kinetic energy ratio can be used as such. However, so far an extensive study of how 
integrable turbulence depends on this parameter has not been performed. Cnoidal waves are a 
class of modulationally unstable solutions of the focusing NLS equation. For a fixed ω π=0 , 
the properties of these solutions essentially depend on one parameter ω1, which determines 
the degree of ‘overlapping’ between the solitons within the cnoidal wave (see appendix A).  
Thus, we can expect that integrable turbulence generated from the MI of these waves will also 
significantly depend on ω1.

Cnoidal waves with small ω1 are very close to the arithmetic sum of equally spaced very 
thin and high NLS solitons (7). Turbulence generated from the MI of such waves should be 
close to soliton turbulence in an integrable system (for soliton turbulence in nonintegrable 
systems, see e.g. [26, 27]). For large ω1 we should obtain results similar to those for initial 
condensate conditions [7], since such cnoidal waves are close to condensate (8). Changing ω1, 
we can study how the properties of integrable turbulence transform from those for integrable 
soliton turbulence to those for the MI of the condensate.

As we demonstrate in this publication, many of the presented facts do not have a theor-
etical explanation so far. We hope that the results of our study, together with the studies of the 
condensate and incoherent wave initial conditions [7, 8, 10] will help in the development of 
a consistent theory of integrable turbulence. Our study also has a practical meaning. Solitons 
(6) are proposed as information bits in optical communications, which are generally described 
very well by the NLS equation. To increase the communication bit-rate, it is necessary to pack 
these solitons sufficiently close to each other (see e.g. [28, 29]). Our study shows how often 
large waves may appear in some of the regimes of these communications.

In this publication we consider the following ensemble-averaged characteristics of the tur-
bulence: (1) kinetic ⟨ ( )⟩H td  and potential ⟨ ( )⟩H t4  energies, (2) wave-action spectrum Sk(t) and 
spatial correlation function g(x, t), and (3) moments of amplitude M(n)(t) and the PDF for rela-
tive intensity ( )P I t, . Here and below ⟨ ⟩...  stands for the arithmetic average across an ensemble 
of initial conditions. We define the wave-action spectrum as

( ) ⟨ ( ) ⟩= |Ψ |S t t ,k k
2 (19)

where ( )Ψ tk  is the Fourier transform of ( )Ψ x t, ,

F( ) [ ( )] ( )
/

/

∫Ψ = Ψ = Ψ
−

−t x t
L

x t x,
1

, e d ,k
L

L
kx

2

2
i (20)

F( ) [ ( )] ( )∑Ψ = Ψ = Ψ−x t t t, e .k
k

k
kx1 i

 (21)

Here, /π=k m L2  is the wavenumber and Z∈m  is the integer. The wave-action spectrum is the 
spectral density of the wave action ⟨ ⟩N ,

⟨ ⟩ ⟨ ⟩ ( )∑= |Ψ| =N S t ,
k

k
2

 (22)

where ⟨ ⟩|Ψ|2  is an ensemble and space average of the square amplitude. The spatial correlation 
function,

( ) ( ) ( ) /⟨ ⟩
/

/

∫= Ψ Ψ −
−

∗g x t
L

y t y x t y N,
1

, , d ,
L

L

2

2

 (23)

is connected to the wave-action spectrum as
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F( ) [ ( )] /⟨ ⟩= −g x t S t N, .k
1 (24)

Due to this definition, at x  =  0 the correlation function is always fixed to unity, g(0, t)  =  1.
Moments of amplitude,

( ) ( )( )
/

/

∫= |Ψ |
−

+
M t

L
x t x

1
, d ,n

L

L
n

2

2

 (25)

are connected to the PDF ( )|Ψ|P t,  of the wave amplitude |Ψ| as

( ) ( )( ) ∫= |Ψ| |Ψ| |Ψ|
+∞

PM t t, d .n n

0
 (26)

The second moment coincides with the wave action ( ) ⟨ ⟩ ⟨ ⟩( ) = |Ψ| =M t N2 2 , and thus 
does not change with time. The potential energy is connected to the fourth moment as 
⟨ ( )⟩ ( )/( )= −H t M t 24

4  (see e.g. [30] where this relation is extensively exploited). For the expo-
nential PDF (2) the moments would be equal to

⟨ ⟩ ( / )( ) /= Γ +M N n 2 1 ,E
n n 2 (27)

where ( )Γ m  is a gamma-function. Below we will call the moments (27) exponential moments.
In the present study, we demonstrate that after the development of the MI, all of the con-

sidered characteristics of the resulting integrable turbulence evolve with time in an oscillatory 
way, approaching their asymptotics at late times. Hence, one can say that the MI of cnoidal 
waves leads to integrable turbulence, which asymptotically approaches in an oscillatory way 
its stationary state defined by infinite series of invariants (17) and (18). The numerical simula-
tions presented below show that during evolution toward a stationary state, the kinetic ⟨ ( )⟩H td  
and potential ⟨ ( )⟩H t4  energies, as well as the moments M(n)(t), oscillate with time around their 
asymptotic values. The amplitudes of these oscillations decay with time as α−t , α< <1 1.5, 
the phases contain nonlinear phase shift decaying as t−1/2, and the frequency of the oscillations 
is equal to the double maximal growth rate of the MI, γ=s 2 max. Very similar oscillations are 
present in the condensate case [7]. Remarkably, the asymptotic potential to kinetic energy 
ratio turns out to be equal to ⟨ ⟩/⟨ ⟩= = −Q H H 2dA 4  for all cnoidal waves of the dn-branch. 
The wave-action spectrum, spatial correlation function and the PDF evolve coherently with 
the oscillations of potential energy, so that at the local maximums and minimums of ⟨ ( )⟩| |H t4  
their evolution changes to roughly the opposite. We describe the evolution of these functions 
in detail in sections 3 and 4 of this paper.

For cnoidal waves with small ω1, we observe that the wave field remains close to a col-
lection of solitons (6) at all times with different positions and phases, even when the system 
is close to the asymptotic state. Thus, the turbulence generated from the MI of such cnoidal 
waves is indeed close to the integrable soliton turbulence of very thin and high solitons (6). 
In its asymptotic stationary state, the PDF is significantly non-exponential and the dynamics 
of the system reduces to two-soliton collisions. These collisions provide an increase of up to 
two-fold in amplitude and occur at an exponentially small rate /∝ πω ω−e 0 1. The potential to 
kinetic energy ratio ( ) ⟨ ( )⟩/⟨ ( )⟩=Q t H t H td4  remains very close to  −2 at all times, the same as 
for a singular soliton (6). For cnoidal waves with a large ω1, the asymptotic PDF coincides 
with the exponential PDF (2).

The properties of the integrable turbulence change gradually with ω1. The MI of cnoidal 
waves with ‘intermediate’ ω1 leads to turbulence with ‘intermediate’ properties between the 
two limits →ω 01  and →ω +∞1 . All the rogue waves that we examined, for all the cnoidal 

D S Agafontsev et alNonlinearity 29 (2016) 3551
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waves that we studied, have a quasi-rational profile at the time of their maximal elevation 
similar to that of the Peregrine solution [31, 32] of the NLS equation.

The paper is organized as follows. In section 2 we describe the numerical methods used in 
our study. In section 3 we consider the general properties of integrable turbulence that develop 
from the MI of the dn-branch of cnoidal waves, for the example of one cnoidal wave with 
a fixed imaginary half-period ω1. The dependence of these properties on ω1 is described in 
section 4. The final section 5 contains the conclusions. In appendix A we explain the cnoidal 
wave solutions in more detail, and in appendix B we demonstrate how the MI develops on 
the background of three cnoidal waves with ω = 0.81  (weak overlapping), ω = 1.61  (moderate 
overlapping) and ω = 51  (strong overlapping).

2. Numerical methods

We integrate equation (12) numerically in the box [ / / ]∈ −x L L2, 2  with a periodic boundary. 
Typically, we use π=L 256  and integrate equation (12) up to the final time t  =  200—although 
in some cases we use larger boxes and/or integration times. Large integration times ⩾t 200 are 
necessary, since for our initial conditions the evolution close to the asymptotic stationary state 
is a very long process. Large boxes L are necessary, because we encounter recurrence starting 
from some time T, which might be connected to the Fermi–Pasta–Ulam (FPU) phenomenon 
[33, 34]. The time of this recurrence increases linearly with the box size [7], ∝T L. To avoid 
it influencing our results, we used sufficiently large boxes L and additionally ran our experi-
ments on boxes twice as large 2L to ensure that our results did not depend quantitatively on L.

As in [7], we use the Runge–Kutta fourth-order method with adaptive change of the spatial 
grid size ∆x and a Fourier interpolation of the solution between the grids. To avoid the appear-
ance of numerical instabilities, the time step ∆t changes with ∆x as ∆ = ∆t h x2, ⩽h 0.1. The 
simulations conserve the first ten invariants (17) and (18) with an accuracy better than 10−6. 
Note, that we measure relative errors for the integrals [ ]Ψcn  with odd orders ( ) =nmod , 2 1 and 
absolute errors for integrals with even orders ( ) =nmod , 2 0, since for unperturbed cnoidal 
waves (11) the latter ones are zeroth. The first three invariants—wave action (14), momentum 
(15) and total energy (16)—are conserved with accuracy better than 10−10.

We start the simulations on the grid with =M 16 384 nodes (or proportionally larger when 
using larger boxes L) from the initial conditions (13) where the real half-period is fixed to 
ω π=0 . For each of the studied cnoidal waves characterized by the imaginary half-period ω1, 
we average our results across an ensemble of 1000 random realizations of the initial noise 
( )ε x . We use noise which is statistically homogeneous in space

)( )
/

/
⎛

⎝
⎜ ∑
π
θ

= θ ξ− + +ε x A
L

8
e ,

k

k kx
0

1 2
i ik

2 2

 (28)

where A0 is the noise amplitude, /π=k m L2  is the wavenumber, Z∈m  is the integer, θ is the 
noise width in k-space and ξk are the arbitrary phases for each k and each noise realization 
within the ensemble of initial conditions. As shown in [7], in x-space the average square 
amplitude of such noise is ⟨ ⟩| | =ε A2

0
2. Below, we will present our results for initial noise 

with parameters = −A 100
5 and θ = 5. We performed experiments with other parameters A0 

and θ too, but did not find a significant difference. We also checked our statistical results 
against the size of the ensembles and parameters of our numerical scheme, and found no 
difference either.
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3. Evolution toward the asymptotic stationary state

The results of this section are illustrated by the example of the MI of the cnoidal wave (11) 
with ω = 1.61 , which is an ‘intermediate’ cnoidal wave between the two limits →ω 01  and 

→ω +∞1 , see figure 1(a). The corresponding numerical simulations were carried out in the 
box π=L 1024  up to the final time t  =  2000. The cnoidal waves with other ω1 give qualita-
tively similar results; the dependence on ω1 will be considered in more detail in section 4.

The MI of the cnoidal wave (11) with ω = 1.61  has a maximal increment (10) γ = 0.356max  
and reaches its nonlinear stage at about ∼t 30 (see figure B1 in appendix B). Then, all the sta-
tistical characteristics that we studied start to evolve in an oscillatory way, approaching their 
asymptotics at late times. An example of such evolution for the kinetic ⟨ ( )⟩H td  and potential 
⟨ ( )⟩H t4  energies, and also moments M(n)(t), is shown in figures 2(a) and (b). Thus, one can 
conclude that after the development of the MI, the system asymptotically approaches its sta-
tionary state in an oscillatory way, which in turn is defined by an infinite series of invariants 
(17) and (18). In order to determine the characteristics of this asymptotic state (e.g. the kinetic 
and potential energies, the moments, the PDF, etc), we average the corresponding functions 
both across the ensemble of initial conditions and over the time close to the asymptotic state 

[ ]∈t 1800, 2000 .
The potential to kinetic energy ratio ( ) ⟨ ( )⟩/⟨ ( )⟩=Q t H t H td4  changes from Q(t)  =  −2.3 

at t  =  0 to = −Q 2A  in the asymptotic stationary state. The same asymptotic energy ratio 
= −Q 2A  is observed for the MI of the condensate. Following [7], we determine that in the 

nonlinear stage of the MI the evolution of moments M(n)(t) is very well approximated by the 
functions

( ) [ / ] ( / )( ) ( )≈ + + + ΦαM t M p t st q tsin ,n n
A 0 (29)

where ( )M n
A  are asymptotic moments and α, p, s, q, Φ0 are constants (different for different 

moments). An example of such an approximation for the first moment M(1)(t) is shown in fig-
ure 3. The kinetic ⟨ ( )⟩H td  and potential ⟨ ( )⟩H t4  energies also oscillate according to (29) due to 
the relation ⟨ ( )⟩ ( )/( )= −H t M t 24

4  and conservation of total energy; the second moment does 
not oscillate since ( ) ⟨ ⟩( ) =M t N2 . The potential energy ⟨ ( )⟩H t4  and the first moment M(1)(t) 
oscillate in-phase, with parameters s  =  0.71, q  =  74.6 and Φ = −1.230 . The kinetic energy 

Figure 2. (a) The evolution of ensemble averaged kinetic ⟨ ( )⟩H td  (black) and potential 
⟨ ( )⟩H t4  (blue) energies. In the asymptotic stationary state, their ratio is equal to 

⟨ ⟩/⟨ ⟩= = −Q H H 2dA 4 . (b) The evolution of moments M(1)(t) (black), [ ( )]( ) /M t3 1 3 (blue) 
and [ ( )]( ) /M t4 1 4 (red).

D S Agafontsev et alNonlinearity 29 (2016) 3551



3560

⟨ ( )⟩H td  and higher moments M(n)(t), ⩾n 3, oscillate with the parameters s  =  0.71, q  =  74.6 
and Φ = 1.910 , which are in-phase with each other and exactly anti-phase with the poten-
tial energy and the first moment. The amplitudes of these oscillations decay with time by 
the power law ∝ α−t , with the exponent decreasing from α = 1.23 for the first moment to 
α = 1.08 for the tenth moment. The asymptotic moments ( )M n

A  differ slightly from the expo-
nential moments (27), as shown in figure 4.

The wave-action spectrum of the original cnoidal wave represents a collection of peaks 
at integer wavenumbers Z∈k0 . Since for all the cnoidal waves (11) the following equality is 
valid,

( ) /
/

/

∫ π ωΨ = Ψ ==
−L

x x
1

d 2 ,k
L

L

0
2

2

dn 0

the peak at the zeroth harmonic is equal to = |Ψ | ==S 0.5k0 0
2 . The peaks at nonzero wave-

numbers | | >k 00  nearly decay exponentially with | |k0 . The spatial correlation function for the 
unperturbed cnoidal wave is periodic with the same period π2  as the original cnoidal wave, 
everywhere positive g(x)  >  0, takes maximal values ( ) ( )= =g x gmax 0 1 at π=x m2 , Z∈m , 
and minimal values at ( / )π= +x m2 1 2 .

In the linear stage of MI, the wave-action spectrum Sk(t) at the non-integer wavenumbers 
starts to rise; the fastest increase is observed close to the half-integer wavenumbers, figure 5(a). 
At this time, the spatial correlation function g(x,t) does not change visibly, figure 5(b). At the 

Figure 3. The evolution of moment M (1)(t) (solid black) and its fit by function 

( ) [ / ] ( / )( )= + + + Φαf t M p t st q tsinA
1

0  with parameters ( ) =M 0.676A
1 , α = 1.23, 

p  =  1.82, s  =  0.71, q  =  74.6, Φ = −1.230  (dashed red).

Figure 4. The asymptotic moments [ ]( ) /M n n
A

1 , n  =  1,...,10 (black circles) and exponential 
moments [ ]( ) /ME

n n1  (27) (dashed red line).
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nonlinear stage, the spectrum and the correlation function evolve with time in an oscilla-
tory way approaching their asymptotics at late times. The ‘turning points’ for this oscillatory 
evolution—i.e. the points in time when their evolution changes to roughly the opposite—
coincide with time when the moments M(n)(t), and also the kinetic ⟨ ( )⟩H td  and potential ⟨ ( )⟩H t4  
energies, take their maximal or minimal values. For definiteness, below we will refer to such 
points in time for the example of local maximums and minimums of the potential energy 
modulus ⟨ ( )⟩| |H t4 . At the local maximums of ⟨ ( )⟩| |H t4 , the peaks at the integer wavenumbers 
k0 in the spectrum Sk(t) are the smallest and the rest of the spectrum is maximally excited, 
figures 6(a) and 7, while the correlation function g(x,t) takes (locally in time) minimal values 
at | | >x 0, figures 8(a) and (b). At the local minimums of ⟨ ( )⟩| |H t4 , the peaks at k0 are the larg-
est and the rest of the spectrum is minimally excited, figures 6(b) and 7, while the correlation 
function takes (locally in time) maximal values at | | >x 0, figures 8(a) and (b). Thus, one can 
say that during the evolution toward the asymptotic state, the wave action is being ‘pumped’ 
in an oscillatory way between the peaks at integer wavenumbers and the rest of the spectrum, 
while the correlation function ‘forms’ its tails at large lengths.

The asymptotic wave-action spectrum decays exponentially at large k as ∝ ρ− | |e k , ρ = 1.15, 
and contains peaks at = ± ± ±k 0, 1, 2, 30 , figure 9(a). Contrary to the original cnoidal wave, 
these peaks now occupy not only the integer wavenumbers k0, but also small regions around 
them. One such region around the zeroth harmonic is shown in figure 9(b). Similarly to the con-
densate case [7], the spectrum in this region behaves by the power law ∝ | | β−S kk , with almost 

Figure 5. The wave-action spectrum Sk(t) (a) and spatial correlation function g(x,t) (b) 
in the linear stage of the MI at t  =  20.

Figure 6. The wave-action spectrum Sk(t): (a) at the first local maximum of the 
potential energy modulus ⟨ ( )⟩| |H t4  at t  =  34.8 (black) and (b) at the first local minimum 
of ⟨ ( )⟩| |H t4  at t  =  40.6 (blue). The asymptotic wave-action spectrum is shown in thick 
red.
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Figure 7. The time dependence of the wave-action spectrum Sk(t) at k  =  0 (black), 
k  =  0.5 (blue), k  =  1 (cyan), k  =  1.5 (green), k  =  2 (pink) and k  =  4 (red).

Figure 8. (a) The spatial correlation function g(x, t) at the first local maximum of the 
potential energy modulus ⟨ ( )⟩| |H t4  at t  =  34.8 (black) and the first local minimum of 
⟨ ( )⟩| |H t4  at t  =  40.6 (blue). The asymptotic correlation function is shown in thick red. 
(b) The time dependence of the spatial correlation function g(x, t) at x  =  0 (black), 

/π=x 2 (blue), π=x 2  (cyan), π=x 8  (green), and at the border of the computational 
box x  =  L/2 (red).

Figure 9. (a) The asymptotic wave-action spectrum Sk. (b) The asymptotic wave-
action spectrum Sk in the vicinity of k  =  0 (black circles) and its fit by function 

( ) = | | β−f k b k , = × −b 2.2 10 4, β = 0.61 (dashed red). At k  =  0, the asymptotic 
spectrum is finite, = × −S 1.72 100

2. Graphs (a) and (b) contain about 4600 and 150 
harmonics respectively, with the distance between them / /π∆ = =k L2 1 512.
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the same exponent β = 0.61. At k  =  0, the asymptotic spectrum is finite, = × −S 1.72 100
2. 

The other peaks in the spectrum also exhibit power-law behaviour, ∝ | − | β−S k kk 0 , with dif-
ferent exponents β for different peaks (β = 0.56 for =±k 10 , β = 0.25 for =±k 20 , and peaks 
at =±k 30  are too small for analysis); at k0 the spectrum is finite. The power-law behaviour of 
the peaks means that the wave action is concentrated in the corresponding modes. The peak at 
the zeroth harmonic is sufficiently wide, with the power-law expanding in the modes ⩽ δ| |k k, 
δ =k 0.15. The other peaks are much narrower, with δ =k 0.02 for =±k 10  and δ =k 0.01 for 
=±k 20 . The modes ⩽ δ| − |k k k0  contain about 39% of all wave action ⟨ ⟩N  for the zeroth 

harmonic k0  =  0, about 4% for =±k 10 , and less than 0.1% for =±k 20 ; in total, the seven 
peaks contain about 43% of all wave action ⟨ ⟩N . The modes ⩽| |k 0.15, which contain most of 
this wave action, have extremely large scales π�� 2  in the physical space, and can be called 
quasi-condensate [7].

The asymptotic spatial correlation function is shown in figures 10(a) and (b). Its character-
istic scale, defined as full width at half maximum, is =x 4.4corr . At small lengths /| | <x x 2corr  
the correlation function is well-approximated by the Gaussian

( )
⎡
⎣⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤
⎦⎥

≈ −g x
x

x
exp ln 2

2
.

corr

2

 (30)

At large lengths | |�x xcorr it decays close to exponentially and in an oscillatory way, as shown 
in figure 10(b); the period of these oscillations is equal to π2 .

As shown in figure 4, the asymptotic moments ( )M n
A  differ from the exponential moments 

(27). This means that the PDF ( )P IA  in the asymptotic state must differ from the exponential 
PDF (2). This is indeed the case, as shown in figure 11(a). The asymptotic PDF exceeds the 
exponential PDF for relative intensities I  <  0.22, [ ]∈I 1.9, 4.2  and [ ]∈I 8.7, 14.4 . According 
to the rogue waves criterion ⟨ ⟩|Ψ| > |Ψ|82 2  (see e.g. [7, 12, 13]), or I  >  8, only the last region 
contains rogue waves. In this region [ ]∈I 8.7, 14.4  the asymptotic PDF exceeds the expo-
nential PDF by about 2.5 times the maximum at I  =  12. Note, that in the region [ ]∈I 0, 2  the 
asymptotic PDF turns out to be very close to the initial PDF ( )P I t,  at t  =  0, as shown in the 
inset of figure 11(a).

After the development of the MI, the PDF ( )P I t,  evolves with time in an oscillatory way 
approaching the asymptotic PDF at late times, as shown in figures 11(b), 12(a) and (b). This 

Figure 10. The asymptotic spatial correlation function g(x) versus /x xcorr, =x 4.4corr  
(a) and x (b). The dashed red line in graph (a) shows the Gaussian distribution (30), the 
inset in graph (b) shows the oscillations of g(x) with the period π2 .
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evolution is similar to that of a wave-action spectrum and spatial correlation function, with the 
same ‘turning points’ coinciding with local maximums and minimums of ⟨ ( )⟩| |H t4 . At the local 
maximums of ⟨ ( )⟩| |H t4  and for sufficiently large intensities � �I4 12, the PDF ( )P I t,  takes 
(locally in time) maximal values, figures 12(a) and (b). At the local minimums of ⟨ ( )⟩| |H t4  
the PDF takes (locally in time) minimal values for the same region of intensities. A maximal 
excess of the PDF ( )P I t,  over the exponential PDF (2) by about six times is observed at the 
first local maximum of ⟨ ( )⟩| |H t4  at t  =  34.8 for a relative intensity of I  =  11.5.

Figures 13 and 14 show two rogue wave events—a typical one and the largest detected one 
respectively. The rogue wave in figure 13 had a duration of ∆ ∼T 1 and reached a maximal 
amplitude |Ψ| =max 2.8 at t0  =  34.9, which is close to the first local maximum of ⟨ ( )⟩| |H t4  at 
t  =  34.8. With the average square amplitude ⟨ ⟩|Ψ| = 0.662 , the crest of this wave corresponds 
to the relative intensity I  =  12. The largest detected wave shown in figure 14 had a duration 
of ∆ ∼T 0.5 and reached a maximal amplitude of |Ψ| =max 4.4 at t  =  1361.4, which is suffi-
ciently close to the asymptotic stationary state. The crest of this wave corresponds to a relative 
intensity of I  =  29.

We examined several hundred of the rogue waves detected in our experiments, and found 
that all of them have a quasi-rational profile at the time of their maximal elevation, similar to 

Figure 12. The PDF ( )P I t,  at different times corresponding to the first several potential 
energy modulus ⟨ ( )⟩| |H t4  extremums: (a) at t  =  34.8 (black, first local maximum of 
⟨ ( )⟩| |H t4 ), t  =  40.6 (blue, first local minimum) and (b) at t  =  46.2 (cyan, second local 
maximum), t  =  51.4 (green, second local minimum). The thick red line shows the 
asymptotic PDF ( )P IA , the dashed black line is the exponential PDF (2).

Figure 11. (a) The asymptotic PDF ( )P IA  (thick red) and exponential PDF (2) (dashed 
black). The inset shows the same PDFs and also the initial PDF ( )P I t,  at t  =  0 (black 
solid line). (b) The time dependence of the PDF ( )P I t,  at different relative intensities 
I  =  0.5 (black), I  =  1 (blue), I  =  2 (green), I  =  4 (pink), I  =  8 (red).
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that of the Peregrine solution [31, 32] (see the similar results in [10] for incoherent wave initial 
conditions and in [9] for the generalized NLS equation accounting for six-wave interactions, 
pumping and dumping terms). The Peregrine solution is localized in the space and time alge-
braic solution of the NLS equation (3),

( ) ( )⎡
⎣⎢

⎤
⎦⎥ψ = −

+
+ +

x t
t

x t
, e 1

4 1 2i

1 2 4
.t

P
i

2 2 (31)

It is easy to see that ( )ψA X T,P , where = | | −X A x x0( ) and = | | −T A t t2
0( ), is also a solution 

of the NLS equation, which becomes maximal at x  =  x0 and t  =  t0. Figures 13(a) and 14(a) 
show the similarity of the rogue wave profile (at the time of its maximal elevation t  =  t0) with 
that of the Peregrine solution,

( ) ( )
( )

⎡
⎣
⎢

⎤
⎦
⎥ψ|Ψ | ≈ = −

+ | | −
x t A X A

A x x
, , 0 1

4

1 2
.0 P 2

0
2 (32)

Note, that the phase of rogue waves ( )Ψ x targ , 0  is almost constant near the amplitude maximum, 
as is the case for the Peregrine solution at the time of its maximal elevation. Moreover, for one 
realization from the ensemble of initial conditions we checked all the waves that exceeded the 
maximal amplitude of the original cnoidal wave by 1.5 times or more. At the time of their maxi-
mal elevation, all such waves are well approximated in space by the ansatz (32). However, the 
time evolution of the maximal amplitude ( )|Ψ |x tmax ,x  for large waves is different from that,

Figure 13. (a) The space distribution of amplitude ( )|Ψ |x t, 0  (solid black) and phase 
( )Ψ x targ , 0  (dashed-dottted red) for a typical rogue wave at t0  =  38.9 of its maximal 

elevation. The dashed blue line is fit by the Peregrine solution (32) with A  =  −0.94, 
x0  =  −317.2. (b) The time evolution of the maximal amplitude for a rogue wave (solid 
black) and a Peregrine solution (33) (dashed blue). (c) The space-time representation of 
amplitude ( )|Ψ |x t,  near the rogue wave event.
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( )
( )

( )
ψ| |= −

+ | | −
+ | | −

A T A
A t t
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0, 1 4
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1 4
,P

2
0

4
0

2 (33)

for the Peregrine solution; see examples in figures 13(b) and 14(b).
The phase of those rogue waves which appear near the first several local maximums of 

⟨ ( )⟩| |H t4  is very close to / ( )π πΨ≈ + −marg 2 1 , where m is the local maximum index number 
(i.e. /πΨ≈arg 2 for the first local maximum at t  =  34.8, /πΨ≈arg 3 2, for the second local 
maximum at t  =  46.2, etc). The phase of those rogue waves which appear near the first several 
local minimums of ⟨ ( )⟩| |H t4  is very close to ( )π πΨ≈ + −marg 1 , where m is the local mini-
mum index number. We observe such behaviour for about the ten first local maximums and 
minimums of the potential energy modulus ⟨ ( )⟩| |H t4 . We checked this fact by direct observa-
tion (see e.g. figure 13(a)) and also by measuring the PDFs for the real and imaginary parts 
of the wave field Ψ. The same ‘rotation of phase’ is present for the condensate case [7] too.

As shown in figures 13(c) and 14(c), the rogue waves in these figures look like collisions of 
two and three pulses respectively. In terms of the recent study of rogue waves on cnoidal wave 
backgrounds [35], the wave in figure 13 might be the ‘concentrated’ cnoidal rogue wave, while 
the wave in figure 14 might be the ‘fused’ second-order cnoidal rogue wave. There is also 
another possibility, which is that the waves in figures 13 and 14 are the collisions of breath-
ers that decompose from ‘superregular’ solitonic solutions on the cnoidal wave background 
[36]. Similar solutions on the condensate background were recently found theor etically [37] 
and observed experimentally [38]. Such solutions on the cnoidal wave background should 

Figure 14. (a) The space distribution of amplitude ( )|Ψ |x t, 0  (solid black) and phase 
( )Ψ x targ , 0  (dashed-dotted red) for the largest detected rogue wave at t0  =  1361.4 of 

its maximal elevation. The dashed blue line is fit by the Peregrine solution (32) with 
A  =  −1.46, x0  =  1131.6. (b) The time evolution of the maximal amplitude for the 
rogue wave (solid black) and Peregrine solution (33) (dashed blue). (c) The space-time 
representation of amplitude ( )|Ψ |x t,  near the rogue wave event.
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decompose to breathers, and subsequent collisions of these breathers may lead to the almost 
algebraic behaviour of the resulting pulse at the time of its maximal elevation (see e.g. [39] of 
how this may happen for Akhmediev breathers). We plan to study the question of the origin of 
rogue waves in more detail in another publication.

4. Dependence on cnoidal wave parameters

In this section, we describe the dependence of integrable turbulence on cnoidal wave param-
eters, namely the imaginary half-period ω1, which determines the ‘overlapping’ between the 
solitons within the cnoidal wave. For this purpose we repeated the numerical experiment of 
section 3 for another ten cnoidal waves (11) with imaginary half-periods from ω = 0.81  to 
ω = 51 , which have maximal increments of the MI (10) γmax from 0.065 to 0.5 respectively. 
These experiments were carried out in the box π=L 256  up to the final time from t  =  200 
(for ω = 51 ) to t  =  1000 (for ω = 0.81 ). The properties of the generated integrable turbulence 
turned out to be qualitatively similar to that discussed in section 3. Therefore, below we will 
focus mainly on the distinctions in the properties of the turbulence for different initial cnoidal 
waves.

For small ω1, the cnoidal waves are very close to the arithmetic sum of singular solitons (7), 
as demonstrated by the example in figure 15(a) for ω = 0.81 . After the development of the MI 
from such waves (see figure B2 in appendix B), the wave field remains close to a composi-
tion of singular solitons (6) with different phases and positions, even after a very long time 
when the system is close to the asymptotic stationary state, figure 16. Moreover, the positions 
of these singular solitons remain generally very close to the positions of the ‘solitons’ of the 
original cnoidal wave. Note, that the phase ( )Ψ x targ ,  stays almost constant on the solitons and 
randomly jumps between them. Therefore, the turbulence generated from cnoidal waves with 
small ω1 transforms into soliton turbulence in the integrable system. The potential to kinetic 
energy ratio Q(t) for such turbulence remains very close to  −2 at all times, figure 17(a)—the 
same as for a singular NLS soliton (6).

The development of the MI from cnoidal waves with a large ω1 is similar to that for the 
condensate (see figure B3 in appendix B), and these waves are themselves close to the conden-
sate (8), figure 15(b). The initial energy ratio for such cnoidal waves is large, ( )− �Q 0 1, see 
figure 18(a), and the asymptotic ratio = −Q 2A  is the same as for the condensate case [7], see 
figure 17(b). Moreover, the asymptotic energy ratio is equal to = −Q 2A  for all cnoidal waves 
of the dn-branch that we studied, though the nature of this beautiful relation remains unclear 
to us so far, figure 18(a).

In the nonlinear stage of the MI, the kinetic ⟨ ( )⟩H td  and potential ⟨ ( )⟩H t4  energies, as well as 
the moments M(n)(t), approach their asymptotic values in an oscillatory way. These oscillations 
are very well approximated by the functions (29) for all the cnoidal waves that we studied. 
However, for ⩽ω 11  we were only able to check this for the first four moments, since the oscil-
lations for such cnoidal waves are very small—compare figures 17(a) and (b). The exponent α 
for the power-law decay ∝ α−t  of the amplitude of these oscillations is different for different 
cnoidal waves and moments M(n)(t), and stays in the range α< <1 1.5. It turns out that the fre-
quency of the oscillations is equal to the double maximal growth rate of the MI (10), γ=s 2 max, 
figure 18(b). For small ω1 the maximal growth rate (10) is exponentially small [22],

→
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
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2
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1
 (34)

and for large ω1 it approaches that of the condensate (8) with an amplitude of /1 2 ,
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→ /γ 1 2.max (35)

The same relation between the frequency of the oscillations and the maximal growth rate of 
the MI is valid for the condensate case [7] too. More study is necessary to clarify the nature 
of this beautiful phenomenon.

The asymptotic wave-action spectrum decays exponentially at large wavenumbers, 
∝ ρ− | |S ek

k . The exponent ρ increases with ω1, so that for larger ω1 the spectrum is narrower, see 
figures 19(a) and (b). For ω = 51  we obtain ρ = 1.42, which after the scaling transformations 
quantitatively corresponds to the condensate case [7]. Only one peak at the zeroth harmonic 
‘survives’ in the asymptotic spectrum for cnoidal waves with large ω1, while for small ω1 many 
of such peaks at integer wavenumbers k0 remain. The spectrum in these peaks behaves by the 
power law, ∝ | − | β−S k kk 0 , with different exponents β> 0 for different cnoidal waves and 
peaks | |k0 . The peaks accumulate about 40% of all wave action ⟨ ⟩N  for all the cnoidal waves 
that we studied. For large ω1 this fraction of wave action is concentrated in quasi-condensate 
modes ⩽ δ| |k k, δ ∼k 0.1, only. For small ω1 the peak at the zeroth harmonic becomes narrower 
and the other peaks become wider, so that their widths and the fractions of wave action con-
centrated in them become comparable. Thus, the quasi-condensate is replaced by a ‘quasi-
cnoidal wave’—a collection of power-law peaks at the same positions where the peaks of the 
original cnoidal wave were situated.

Figure 16. The amplitude ( )|Ψ |x t,  for one of the realizations of the initial conditions for 
the cnoidal wave (11) with ω = 0.81 : at t  =  0 (dashed black) and close to the asymptotic 
state at t  =  1000 (solid blue). The dashed red line shows the phase ( )Ψ x targ ,  at t  =  1000.

Figure 15. Cnoidal waves (11) with ω = 0.81  (a) and ω = 51  (b) at t  =  0. The dashed 
red lines show solitons (6) with /λ π ω= 2 1.
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At small lengths /| | <x x 2corr  the asymptotic spatial correlation function is well approxi-
mated by the Gaussian (30). Its full width at half maximum increases with ω1; for ω = 0.81  we 
measure =x 2.2corr  and for ω = 51  we find =x 5.6corr . After the scaling transformations, the 

Figure 17. The evolution of ensemble averaged kinetic ⟨ ( )⟩H td  (blue) and potential 
⟨ ( )⟩H t4  (green) energies for cnoidal waves with ω = 0.81  (a) and ω = 51  (b). Note the 
difference in scales between graphs (a) and (b), and also the different OY-axis (left for 
⟨ ( )⟩H td  and right for ⟨ ( )⟩H t4 ) in graph (a). In the asymptotic stationary state the energy 
ratio is equal to ⟨ ⟩/⟨ ⟩= = −Q H H 2dA 4  for both cnoidal waves.

Figure 18. (a) The initial  −Q(0) (solid black line) and asymptotic −QA (red circles) 
potential to kinetic energy ratio, versus ω1. (b) The frequency of the oscillations s for 
different cnoidal waves (black circles), versus ω1. The dashed red line shows the double 
maximal growth rate of the MI γ2 max, see equation (10), for these cnoidal waves.

Figure 19. The asymptotic wave-action spectrum Sk for cnoidal waves with ω = 0.81  
(a) and ω = 51  (b). Small irregularities at the bases of the peaks disappear at later times. 
At large k the spectrum decays exponentially ∝ ρ− | |S ek

k  with ρ = 0.81 for ω = 0.81  and 
ρ = 1.42 for ω = 51 .
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latter value almost coincides with that of the condensate case [7]. For small ω1 the asymptotic 
correlation function decays with | |x  in an oscillatory way; the period of these oscillations is 
equal to π2 , figure 20(a). The oscillations become more pronounced for cnoidal waves with 
smaller ω1. We think that their amplitude decays with | |x  exponentially, in a similar way to fig-
ure 10(b) for ω = 1.61 . However, for cnoidal waves with sufficiently small ⩽ω 1.21  we cannot 
check this hypothesis with our computational resources. These oscillations with period π2  are 
connected with the peaks at nonzero integer wavenumbers | | >k 00  in the asymptotic spec-
trum, since the oscillations change drastically if we ‘erase’ the spectrum near the corresponding 
modes. For large ω1 both the peaks in the asymptotic spectrum at | | >k 00  and the oscillations of 
the asymptotic spatial correlation function disappear, figures 19(b) and 20(b), and the correla-
tion function decay is inversely proportional to | |x , ( )∝ | |−g x x 1, as for the condensate case [7].

For small ω1 the asymptotic PDF is significantly non-exponential, figure  21(a). In par-
ticular, for ω = 0.81  the maximal deviation from the exponential PDF (2) is observed at 
I  =  24.2, where the asymptotic PDF ( )≈ × −P I 7.8 10A

9 exceeds the exponential PDF by 
about 250 times. However, for these ω1 the typical deviation of square amplitude |Ψ|2 is sig-
nificantly larger than its mean value ⟨ ⟩|Ψ|2 , see e.g. figure 16. Therefore, it is also instructive 
to measure the PDF ( )P I t,m  for a square amplitude /= |Ψ| |Ψ |I maxm

2
dn

2, renormalized to the 
maximal amplitude of the original cnoidal wave |Ψ |max dn . In this case, Im  =  1 corresponds 
to the maximal amplitude |Ψ| = |Ψ |max dn  of the initial cnoidal wave, Im  =  4 corresponds to a 
two-fold increase in amplitude |Ψ| = |Ψ |2 max dn , and so on. As shown in figure 22(a), for small 
ω1 the asymptotic PDF ( )P ImA  decreases sharply at Im  =  1 and Im  =  4, and ends almost exactly 
at Im  =  4. Figure  21(a) also demonstrates that the PDF almost does not change with time 
at [ ]∈I 0, 1m  (which corresponds to [ ]∈I 0, 6  in the figure), and the asymptotic PDF almost 
coincides in this region with the the initial PDF at t  =  0. These facts corroborate our observa-
tion that after the development of the MI from cnoidal waves with small ω1, the wave field 
remains close to a composition of singular solitons (6) at all times. Then, the first part of the 
PDF [ ]∈I 0, 1m  in figure 22(a) represents this composition of solitons, and the second part 

[ ]∈I 1, 4m  corresponds to very rare two-soliton collisions. During these collisions, the wave 
amplitude exceeds the maximal amplitude of the original cnoidal wave by a maximum of 
twice the amount.

The rate of such collisions should be proportional to the maximal growth rate of the MI 
γmax, which is exponentially small (34) for small ω1. As shown in figure 22(b), in the region of 
two-soliton collisions [ ]∈I 1, 4m  the renormalized asymptotic PDFs ( ) /× πω ωP I emA

0 1 coincide 
almost exactly for sufficiently small ω1 (this coincidence is worse if we compare ( )/γP ImA max). 
Thus, for small ω1 the rate of two-soliton collisions and the probability of the occurrence of 

Figure 20. Asymptotic spatial correlation function g(x) for cnoidal waves with ω = 0.81  
(a) and ω = 51  (b). In graph (a) the period of the oscillations is equal to π2 .
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waves that are twice as large as the original cnoidal wave are proportional to /πω ω−e 0 1, which 
is an exponentially small value. We think that three-soliton collisions should also be present 
on the PDF, but they are extremely rare and we do not detect them in our experiments. We 
observe the first rogue waves that look like three-pulse collisions starting from the cnoidal 
wave with ω = 1.61 , figure 14(c).

For sufficiently large ω1, the PDF in the asymptotic stationary state coincides with the 
exponential PDF (2), figure 21(b). This coincidence is already almost exact from ω = 31 . In 
the nonlinear stage of the MI, the PDF may deviate significantly from the exponential PDF. 
If we limit ourselves to rogue waves I  >  8 only, then for the cnoidal wave with ω = 51  the 
maximal excess of about 2.5 times of the PDF ( )P I t,  over the exponential PDF is achieved at 
the first local minimum of the potential energy modulus ⟨ ( )⟩| |H t4  at t  =  31.05 and for a relative 
intensity I  =  12.5. These results coincide with that of the condensate case [7].

Thus, for cnoidal waves with �ω 1.51  the probability of the occurrence of rogue waves 
is not significantly larger than for a random wave field governed by linear equations. For 

Figure 21. The asymptotic PDF ( )P IA  (thick red) and exponential PDF (2) (dashed black) 
for cnoidal waves with ω = 0.81  (a) and ω = 51  (b). Solid black lines in the insets show 
the corresponding initial PDFs ( )P I t,  at t  =  0. The blue lines are the PDFs at the first 
local maximum of potential energy modulus ⟨ ( )⟩| |H t4  at t  =  151.4 (a) and t  =  26.85 (b), 
the green lines are the PDFs at the first local minimum of ⟨ ( )⟩| |H t4  at t  =  179.8 (a) and 
t  =  31.05 (b). Note that the asymptotic PDFs ( )P IA  are additionally averaged over time 
close to the asymptotic stationary state, which allows us to measure these PDFs for 
larger relative intensities I than the PDFs at specific times ( )P I t, .

Figure 22. The asymptotic PDF ( )P ImA  (a) and renormalized asymptotic PDF 
( ) /× πω ωP I emA 0 1 (b) for the renormalized square amplitude /= |Ψ| |Ψ |I maxm

2
dn

2: for 
ω = 0.81  (black), ω = 0.91  (blue), ω = 11  (cyan), ω = 1.21  (green), ω = 1.41  (yellow), 
ω = 1.61  (pink) and ω = 21  (red). Here, |Ψ |max dn  is the maximal amplitude of the 
original cnoidal wave.
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�ω 1.51  the wave field is close to a collection of singular solitons that rarely interact with each 
over. The amplitude of these solitons is already significantly larger than the mean amplitude 
⟨ ⟩ /|Ψ|2 1 2. Therefore, it is no surprise that rogue waves with an intensity much larger than the 
mean may appear in this system with probabilities exceeding the exponential PDF (2) by 
orders of magnitude. However, the amplitude of these rogue waves almost never exceeds the 
double maximal amplitude of the original cnoidal wave.

For each of the ten studied cnoidal waves ω1, we examined several of the largest rogue 
waves detected in our experiments. For ⩾ω 1.61  many of these rogue waves look like three-
pulse collisions, similar to that in figure 14(c), while for ω < 1.61  all of these rogue waves look 
like two-pulse collisions similar to that in figure 13(c). For the first several extremums of the 
potential energy modulus, the phases of the rogue waves are close to / ( )π πΨ≈ + −marg 2 1  
for local maximums and ( )π πΨ≈ + −marg 1  for local minimums of ⟨ ( )⟩| |H t4 , where m is the 
local maximum or local minimum index number respectively. Also, we studied the evolution 
of one realization from an ensemble of initial conditions for each of the ten cnoidal waves 
ω1, examining all waves that exceed the maximal amplitude of the original cnoidal wave by 
1.5 times or more at any time. For ω = 0.81  we found 14 such events in the time interval 

[ ]∈t 0, 1000 , and for ω = 51 , more than 1500 events in the interval [ ]∈t 0, 200 . All these waves, 
and also all of the largest rogue waves generated from the entire ensembles of initial condi-
tions, have a quasi-rational profile similar to that of the Peregrine solution (32) at the time of 
their maximal elevation; see examples in figures 13(a) and 14(a). The time evolution of the 
maximal amplitude for these waves differs from that of the Peregrine solution (33), see exam-
ples in figures 13(b) and 14(b).

5. Conclusions

In this paper, we studied the integrable turbulence generated from the MI of the dn-branch of 
cnoidal waves. The corresponding problem of MI essentially depends on one free parameter, 
and the ratio /ω ω1 0 between the imaginary and real half-periods of the cnoidal wave can be 
used as such. Using the scaling transformations, we fixed ω π=0  and studied the dependence 
of integrable turbulence on the imaginary half-period ω1.

We found that the properties of the integrable turbulence change gradually with ω1, so 
that cnoidal waves with ‘intermediate’ ω1 lead to turbulence with ‘intermediate’ properties 
between the two limits →ω 01  and →ω +∞1 . Our results show, that in the nonlinear stage 
of the MI, the statistical characteristics of the turbulence evolve with time in an oscillatory 
way, approaching their asymptotics at late times. This means that the system asymptotically 
approaches the stationary state of the integrable turbulence in an oscillatory way. This state 
depends on cnoidal wave parameters and is defined by an infinite series of invariants (17) 
and (18).

During the evolution toward the asymptotic state, kinetic ⟨ ( )⟩H td  and potential ⟨ ( )⟩H t4  ener-
gies, and also the moments M(n)(t), oscillate around their asymptotic values according to the 
ansatz (29). The amplitudes of these oscillations decay with time as α−t , with different expo-
nents α< <1 1.5 for different cnoidal waves and moments M(n)(t). The oscillations are very 
small for cnoidal waves with small ω1, and pronounced for cnoidal waves with large ω1. The 
phases of the oscillations contain nonlinear phase shift decaying with time as t−1/2, and the 
frequency is equal to the double maximal growth rate of the MI, γ=s 2 max. Thus, for cnoidal 
waves with small ω1 the frequency of the oscillations s is exponentially small and the oscil-
lations themselves are very small too; for large ω1 the oscillations are pronounced and their 
frequency approaches s  =  1. The ratio of potential to kinetic energy in the asymptotic state is 
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equal to ⟨ ⟩/⟨ ⟩= = −Q H H 2dA 4  for all cnoidal waves of the dn-branch, while the initial energy 
ratio is different ( ) ( )∈ −∞ −Q 0 , 2  for different cnoidal waves. The other characteristics of tur-
bulence—i.e. the wave-action spectrum, the spatial correlation function and the PDF—evolve 
with time in an oscillatory way coherently with kinetic and potential energies. We describe 
their evolution using points in time when the potential energy modulus ⟨ ( )⟩| |H t4  takes maximal 
and minimal values; at these points the evolution of the spectrum, the correlation function and 
the PDF turn roughly to the opposite.

For unperturbed cnoidal waves (11) with ω π=0 , the wave-action spectrum represents a 
collection of peaks at integer wavenumbers Z∈k0 , and the spatial correlation function is peri-
odic with period π2 . In the linear stage of the MI, the wave-action spectrum starts to rise most 
notably near the half-integer wavenumbers k0  +  1/2, while the spatial correlation function 
does not change visibly. In the nonlinear stage and at the local maximums of ⟨ ( )⟩| |H t4 , the 
peaks in the spectrum at k0 are smallest and the rest of the spectrum is maximally excited, 
while the correlation function takes (locally in time) minimal values at | | >x 0. At the local 
minimums of ⟨ ( )⟩| |H t4 , the peaks in the spectrum are largest and the rest of the spectrum 
is minimally excited, while the correlation function takes (locally in time) maximal values 
at | | >x 0. Thus, during the evolution toward the asymptotic state, the wave action is being 
‘pumped’ in an oscillatory way between the peaks at integer wavenumbers and the rest of the 
spectrum, while the spatial correlation function ‘forms’ its tails at large lengths x.

The asymptotic wave-action spectrum decays exponentially ∝ ρ− | |S ek
k  at large k. The expo-

nent ρ increases with ω1, so that for larger ω1 the spectrum is narrower. For cnoidal waves with 
large ω1 only the peak at the zeroth harmonic ‘survives’ in the asymptotic spectrum, while for 
small ω1 many of the peaks at integer wavenumbers remain. Contrary to the original cnoidal 
wave, these peaks in the asymptotic spectrum do not occupy single harmonics k0 only, but 
small regions of modes around k0 where the spectrum behaves by a power law ∝ | − | β−S k kk 0 , 
β> 0, with different exponents β for different cnoidal waves and peaks | |k0 . These power-law 
peaks contain about 40% of all wave action ⟨ ⟩N , for all the cnoidal waves that we studied. 
For sufficiently large ω1 most of this wave action is concentrated in quasi-condensate modes 

⩽ δ| |k k, δ ∼k 0.1, which have extremely large scales π�� 2  in physical space. For small ω1, the 
quasi-condensate is replaced by the ‘quasi-cnoidal wave’—a collection of power-law peaks at 
the same positions where the peaks of the original cnoidal wave were situated.

The asymptotic spatial correlation function is close to Gaussian (30) at small lengths 
/| | <x x 2corr ; its full width at half maximum xcorr increases with ω1 so that for larger ω1 the cor-

relation function is wider. For sufficiently small ω1 the asymptotic correlation function decays 
at large | |x  in an oscillatory way; these oscillations with period π2  are connected to the peaks 
at nonzero integer wavenumbers | | >k 00  in the asymptotic spectrum. We think that the ampl-
itude of these oscillations decays with | |x  exponentially as in figure 10(b). For large ω1 both the 
peaks in the asymptotic spectrum and the oscillations of the asymptotic correlation function 
disappear, and the correlation function decay is inversely proportional ( )∝ | |−g x x 1 with | |x , as 
for the condensate case [7].

After the development of the MI from cnoidal waves with small ω1, the wave field remains 
close to a collection of singular solitons (6) with different phases and positions at all times. 
Moreover, the positions of these solitons remain generally very close to the positions of the 
‘solitons’ of the original cnoidal wave. Thus, integrable turbulence transforms into the inte-
grable soliton turbulence of very thin and high solitons (6). The amplitude of these solitons 
is already significantly larger than the mean amplitude ⟨ ⟩ /|Ψ|2 1 2. In the asymptotic stationary 
state of this turbulence, the PDF of the wave intensity is significantly non-exponential, and 
the dynamics of the system reduce to two-soliton collisions. These collisions provide up to a 
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two-fold increase in amplitude compared with the original cnoidal wave and occur at an expo-
nentially small rate /∝ πω ω−e 0 1. Still, the probability of the occurrence of large waves during 
these collisions is much larger than it would be for an exponential PDF (2) with the same mean 
square amplitude ⟨ ⟩σ = |Ψ|2 2 . The potential to kinetic energy ratio Q(t) for such turbulence at 
all times remains very close to  −2, as for the singular soliton (6).

Integrable turbulence generated from cnoidal waves with sufficiently large ω1 is qualita-
tively and quantitatively very similar to that for the condensate case [7]. The PDF of this 
turbulence in the asymptotic state is exponential. During the evolution toward the asymp-
totic state, the PDF may significantly deviate from the exponential PDF; however, it does not 
exceed the exponential PDF by more than several times at any time.

Overall, for �ω 1.51  the probability of the appearance of rogue waves does not exceed that 
for the exponential PDF significantly. For �ω 1.51 , rogue waves may appear much more fre-
quently than predicted by the exponential PDF, however the amplitude of these waves almost 
never exceeds the double maximal amplitude of the original cnoidal wave.

According to our observations, all sufficiently large waves that appear after the development 
of the MI at the time of their maximal elevation have a quasi-rational profile similar to that of 
the Peregrine solution of the NLS equation (32). We would like to stress that this similarity 
is not a sign that the Peregrine solution emerges in the problem of the MI of cnoidal waves, 
but is merely a characteristic of the spatial profile of the rogue waves. In the terminology of 
[35], the rogue waves that we observe could be the ‘concentrated’ cnoidal rogue wave or the 
‘fused’ second-order cnoidal rogue wave. However, there is also another possibility that the 
observed rogue waves were formed from the collisions of breathers, which decomposed from 
‘superregular’ solitonic solutions on the background of the cnoidal wave [36], similar to that 
in the condensate case [37, 38]. For sufficiently small ω1, solutions that describe the formation 
of rogue waves should transform into the collisions of singular solitons (6). It is interesting 
that for the first several extremums of the potential energy modulus, the phases of the rogue 
waves are close to / ( )π πΨ≈ + −marg 2 1  for local maximums and ( )π πΨ≈ + −marg 1  for 
local minimums of ⟨ ( )⟩| |H t4 , where m is the local maximum or local minimum index number 
respectively. We plan to examine the question of the origin of rogue waves in more detail in 
another publication.

The MI of the cn-branch of cnoidal waves (5) should lead to integrable turbulence with 
many similar properties. In particular, we expect similar oscillatory evolution for the char-
acteristics of turbulence toward their asymptotics at late times. It is possible, though, that 
oscillations of the moments and also kinetic and potential energies are not described by the 
ansatz (29) exactly. We think that in the limit →ω 01  both branches of cnoidal waves should 
lead to quantitatively similar stationary states, since in this limit integrable turbulence should 
transform into integrable soliton turbulence of very thin and high solitons (6).

However, for the cn-branch some properties of the integrable turbulence should be differ-
ent. For instance, we expect that cnoidal waves (5) with large ω1 will lead to almost linear inte-
grable turbulence with a very small asymptotic potential to kinetic energy ratio | |�Q 1A , since 
these cnoidal waves are close to the sinusoidal wave with an exponentially small amplitude 
(9). Therefore, for the cn-branch the asymptotic energy ratio QA should not be fixed to  −2, 
but should instead vary from →−Q 2A  for →ω 01  to →Q 0A  for →ω +∞1 . Our preliminary 
experiments confirm these suggestions. Note, that the initial energy ratio for the cn-branch 
of cnoidal waves is also limited in the same region ( ) ( )∈ −Q 0 2, 0 . According to our observa-
tions, the study of the MI for the cn-branch of cnoidal waves is significantly more difficult 
than for the dn-branch, since development of the MI takes much more time and the subsequent 
oscillatory evolution toward the asymptotic stationary state is much slower too.
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Combined with the studies [7, 8, 10] on condensate and incoherent wave initial conditions, 
this publication poses a series of questions concerning the general properties of integrable tur-
bulence. Our results demonstrate that the turbulence generated from the MI of the dn-branch 
of cnoidal waves is quite similar to its limiting case →ω +∞1 , studied in [7] as the condensate 
initial conditions. In both cases, the turbulence approaches its asymptotic stationary state in 
an oscillatory way for a very long time. For incoherent initial wave conditions, the system 
reaches its stationary state very quickly [8, 10]. So what specifically in the initial conditions 
leads to such a dramatic difference in the time of arrival to the stationary state?

The oscillatory evolution of integrable turbulence for cnoidal wave initial conditions might 
be connected to the excitation of some multi-phase solutions of the NLS equation during the 
linear stage of the MI. This would explain why the frequency of the oscillations is equal to its 
double maximal growth rate. If true, then what are these multi-phase solutions? During our 
studies we also observed another interesting phenomenon: that the potential to kinetic energy 
ratio in the asymptotic stationary state is limited as [ ]∈ −Q 2, 0A  (this ratio is equal to  −2 for 
the dn-branch, and should be between  −2 and 0 for the cn-branch of cnoidal waves). This 
raises the question of whether the asymptotic potential energy may exceed the kinetic energy 
by more than twice the amount, and if not, then what is the nature of the constrain? We plan 
to continue our studies of integrable turbulence in future publications.
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Appendix A. Cnoidal waves

The cnoidal waves of real ω0 and imaginary ω1 half-periods have the general form [22]

( ) ( )
( ) ( )

( ) ( )ψ
σ ω
σ ω σ

=
+ +
+

ζ ζ ωΩ − −x t
x a

x a
, 2

i

i
e ,t a x a1

1

i i 1 (A.1)

and are the exact periodic solutions of the NLS equation (3). Here, ( )Ω = ℘ a3 , where a corre-
sponds to one of the two possible branches of cnoidal waves ω=a 0 (dn-branch) or ω ω= +a i0 1 
(cn-branch), ( )℘ z  is the Weierstrass elliptic function defined on the complex plane C∈z  and is 
periodic along both the real and imaginary axes with periods ω2 0 and ω2 1 respectively, while 

( )σ z  and ( )ζ z  are the auxiliary Weierstrass sigma- and zeta-functions defined as ( ) ( )ζ = −℘′ z z  
and ( )/ ( ) ( )σ σ ζ=′ z z z . The dn- and cn-branches of the cnoidal waves can be rewritten as 
equations (4) and (5) respectively. In these equations  ( ) /ν = −e e1 3

1 2, ( ) // ν= −s e e2 3
1 2 , and 

> >e e e1 2 3 are values of ( )℘ z  at ω=z 0, ω ω= +z i0 1 and ω=z i 1 respectively.
The square amplitude for both branches of cnoidal waves ω=a 0 and ω ω= +a i0 1 is equal 

to [22]

( ) ( ) ( )ψ ω| | = ℘ − ℘ +x t a x, 2 2 i .2
1 (A.2)
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The weierstrass function ( )℘ z  has a representation in the form of an infinite series of KdV-
solitons [40]

( ) ( )
( )

/∑ω
ζ ω
ω

λ
λ ω

λ π ω− ℘ + = +
−

=
=−∞

+∞

x
x m

2 i
i

i

2

cosh 2
, 2 .

m
1

1

1

2

2
0

1 (A.3)

Note, that the square root of the KdV-soliton gives a soliton solution (6) for the NLS equa-
tion  (3). Thus, one can say that cnoidal waves represent infinite lattices of overlapping  
solitons, with the width of the solitons proportional to ω1 and the distance between them equal 
to ω2 0.

Figure B1. The development of the MI on the background of a cnoidal wave with 
ω π=0 , ω = 1.61 . Significant perturbations in amplitude |Ψ| become visible starting 
from t  =  32; compare with figure 2(a).

Figure B2. The development of the MI on the background of a cnoidal wave with 
ω π=0 , ω = 0.81 . Significant perturbations in amplitude |Ψ| become visible starting 
from t  =  140; compare with figure 17(a).

Figure B3. The development of the MI on the background of a cnoidal wave with 
ω π=0 , ω = 51 . Significant perturbations in amplitude |Ψ| become visible starting from 
t  =  22; compare with figure 17(b).
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Appendix B. Development of the MI on the cnoidal wave background

In this appendix we demonstrate how the MI develops on the background of three cnoi-
dal waves with ω = 0.81  (weak overlapping), ω = 1.61  (moderate overlapping) and ω = 51   
(strong overlapping). We consider one realization of initial noise for each of these cnoidal 
waves.
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