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Presented are the results of numerical experiments on calculation of
probability distribution functions (PDFs) for surface elevations of water
waves arising during the evolution of statistically homogeneous wave field.
Extreme waves or freak waves are an integral part of ocean waving,
and PDFs are compared both for nonlinear and linear models. Obviously,
linear model demonstrates the Rayleigh distribution of surface elevations
while PDFs for nonlinear equation have tails for large elevations similar to
Rayleigh distribution, but with much larger σ .

1. Introduction

No doubts that estimation of probability of extreme waves, or freak
wave, appearing at the surface of ocean has practical meaning. They
are a native part of the surface wave dynamics in the open seas, and
among different mechanisms of this phenomenon, linear dispersion and
modulational instability are generally recognized. We study these two
mechanisms for the classical 1-D water wave Hamiltonian system:
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where φ(x, z, t) is the potential of the fluid, g is gravity acceleration, and
η(x, t) is surface profile. As it was shown in [1] the Hamiltonian variables
are η(x, t) and ψ(x, t) = φ(x, η(x, t), t)

∂ψ

∂t
= −δH

δη

∂η

∂t
= δH

δψ
.

In the system there is natural small parameter, steepness (slope ∼ η′
x ) of the

waves μ. The Hamiltonian can be expanded as infinite series on this small
parameter (see [1, 2]):

H = H2 + H3 + H4 + . . .

H2 = 1

2

∫
(gη2 + ψ k̂ψ)dx,

H3 = −1

2

∫
{(k̂ψ)2 − (ψx )2}ηdx,

H4 = 1

2

∫
{ψxxη

2k̂ψ + ψ k̂(ηk̂(ηk̂ψ))}dx, (1)

where k̂ corresponds to the multiplication by |k| in Fourier space. This
truncated Hamiltonian is enough for gravity waves of moderate amplitudes
and cannot be reduced. The nonlinear equation we use to calculate
probability distribution functions (PDFs) is based, but does not coincide
with, on truncated Hamiltonian. The equation is obtained using canonical
transformation applied to (1) and will be discussed in the next section.

The linear model has the only quadratic part (H2) of the Hamiltonian
(1). PDF for homogeneous initial conditions is nothing but normal Gaussian
distribution for surface elevation, or Rayleigh distribution for absolute values
of elevation. Nonlinear waves present something very different.

The above leads to the problems of great practical importance: Could
a captain estimate a probability to face an extreme wave or freak wave
within the next few ours? What information about spectrum of sea waving is
enough to make the estimation?

Questions such as these have been posed in many articles dealing with
statistics of extreme (freak or rogue) waves. All physical mechanisms of
freak waves arising are demonstrated in [3] which include spatial focusing,
dispersive focusing, and nonlinear focusing. We focus on the last two. We
recall that for the linear model of water waves statistic of amplitudes of
waves is Gaussian. For nonlinear models, deviation from Gaussian statistics
was always observed [4, 5]. Oceanic waves display sharper and narrower
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crests with more rounded trough. It leads to asymmetry between crests and
troughs. Skewness of wave amplitude distribution is not equal to zero. This
asymmetry was studied in details in [6].

In our article we eliminated nonresonant three-waves interactions (no
skewness) and applied proper canonical transformation to the Hamiltonian
of the nonlinear water waves equation. The nonlinear equation obtained is
discussed below. Then we consider and compare statistics providing both
linear and nonlinear models.

2. Compact equation for water waves

We derived a compact equation (and new Hamiltonian) beginning with the
following Hamiltonian:

H = 1

2

∫
(gη2 + ψ k̂ψ)dx − 1

2

∫
{(k̂ψ)2 − (ψx )2}ηdx +

+1

2

∫
{ψxxη

2k̂ψ + ψ k̂(ηk̂(ηk̂ψ))}dx . (2)

For our purpose, Hamiltonian expanded up to the fourth order was sufficient.
However, before doing simulations, we applied canonical transformation to
the Hamiltonian (2) to make the resulting equation much more simple. This
canonical transformation is described in detail in [7, 8]. Following is our
brief explanation of the idea of the transformation:

� First instead of η and ψ normal canonical variable ak is introduced

ηk =
√
ωk

2g
(ak + a∗

−k) ψk = −i

√
g

2ωk
(ak − a∗

−k) ωk =
√

gk.

� Canonical transformation from ak to bk is chosen to cancel all nonreso-
nant terms in the Hamiltonian, both cubic and fourth order.

� The only term (that corresponds four wave interaction 2 ↔ 2) acquires a
simple form.

This transformation explicitly uses vanishing of four-wave interaction on the
resonant manifold with one negative k, see [9]:

k + k1 = k2 + k3,

ωk + ωk1 = ωk2 + ωk3, (3)

with nontrivial solution:

k = a(1 + ζ )2,

k1 = a(1 + ζ )2ζ 2,
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k2 = −aζ 2,

k3 = a(1 + ζ + ζ 2)2. (4)

Here 0 < ζ < 1 and a > 0. This property of four wave interaction coeffi-
cient allows for the consideration of surface waves moving in one direction.
This coefficient is not equal zero on the trivial resonant manifold only:

k = k2, k1 = k3 ωk = ωk2, ωk1 = ωk3,

or

k = k3, k1 = k2 ωk = ωk3, ωk1 = ωk2 . (5)

For this variable b(x, t) Hamiltonian (2) acquires nice and elegant form:

H =
∫

b∗ω̂kbdx + 1

2

∫ ∣∣∣∣∂b

∂x

∣∣∣∣
2 [

i

2

(
b
∂b∗

∂x
− b∗ ∂b

∂x

)
− k̂|b|2

]
dx . (6)

Corresponding equation of motion is the following:

i
∂b

∂t
= ω̂kb + i

4
P̂+

[
b∗ ∂
∂x

(b′2) − ∂

∂x

(
b∗′ ∂
∂x

b2
)]

−1

2
P̂+

[
b · k̂(|b′|2) − ∂

∂x
(b′k̂(|b|2))

]
, (7)

where b′ = ∂b

∂x
, ω̂k is just

√
gk in k-space.

Projection operator P̂+ provides vanishing four-wave interaction on the
resonant manifold (4). In the Fourier-space its eigenvalue is step-function:

P+
k = θ (k) =

{
1, k > 0;

0, k ≤ 0.

Motion equation in k-space is the following:

i
∂bk

∂t
= ωkbk + θ (k)

∫
T̃ k2k3

kk1
b∗

k1
bk2bk3δk+k1−k2−k3dk1dk2dk3. (8)

Note that b(x, t) is an analytic function of x in the upper half-plane,
because it has only positive Fourier harmonics.

Transformation from b(x, t) to physical variables η(x, t) and ψ(x, t) can
be recovered from canonical canonical transformation [10]. Following is this
transformation up to the second order:
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η(x) = 1√
2g

1
4

(
k̂

1
4 b(x) + k̂

1
4 b(x)∗

) + k̂

4
√

g

[
k̂

1
4 b(x) − k̂

1
4 b∗(x)

]2
,

ψ(x) = −i
g

1
4√
2

(
k̂− 1

4 b(x) − k̂− 1
4 b(x)∗

) + i

2

[
k̂

1
4 b∗(x)k̂

3
4 b∗(x) − k̂

1
4 b(x)k̂

3
4 b(x)

]

+ 1

2
Ĥ

[
k̂

1
4 b(x)k̂

3
4 b∗(x) + k̂

1
4 b∗(x)k̂

3
4 b(x)

]
. (9)

Here Ĥ is Hilbert transformation with eigenvalue isign(k).

3. How we calculate PDFs

Following is the idea of the numerical experiment:

� In the framework of the nonlinear equation (7), stationary turbulent state
“is prepared.” Obviously, pumping and damping must be included in the
equation.

� When stationary state is reached, one can calculate PDF for this nonlinear
equation

� Subsequently, one can turn off nonlinear term along with pumping and
damping in Equation (7) and continue a parallel RUN calculating PDF for
that linear equation.

Both of these RUNS have practically the same energy and average
steepness.

Following is the equation with added pumping and damping in k-space:

i

(
∂bk

∂t
+ �p(k)bk − �d (k)bk

)
= ωkbk +

∫
T̃ k2k3

kk1
b∗

k1
bk2 bk3δk+k1−k2−k3 dk1dk2dk3,

(10)
simulations were performed in the periodic domain L = 2π .

Here pumping coefficient �p(k) is the following:

�p(k) =
⎧⎨
⎩γmax e

− (k−k0)2

2σ2
γ if |k − k0| ≤ 5

0 if |k − k0| > 5

with k0 = 100, σγ = 5. Coefficient of pumping γmax was equal to 10−3 or
less.

Damping coefficient �d(k) was switched on if the values of bk for
k ∼ kmax were larger than roundoff errors. Namely, value of bC , which is

bC = 1

10

0∑
i=9

|bkmax −i |,
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controls the damping in the following way:

�d(k) =
{
αk2 if bC is 10 times greater than roundoff errors

0 in the other case

with α = 0.9/τk2
max (recall that all k are positive in the compact equation).

To reach a stationary turbulent state, one can start from different initial
conditions. We started with the initial conditions for (10) as a perturbed
monochromatic wave:

b(x, t) = b0eik0x + perturbation

with b0 = 2.2 × 10−4, k0 = 100 corresponding to the maximal steepness
μ ∼ 0.1. This perturbation undergoes modulational instability and after
some time, ∼ 1200, turbulent state (statistically homogeneous) was reached
and we began to collect data for PDFs. Starting from this time, we have
performed simulation for:

� Equation (10)
� linear equation i ∂bk

∂t = ωkbk

We were interested in distribution of values of Re{b(x, t)} = r (x, t) and |b|2.
So at some times tn data were collected into unnormalized UPDF in the
following way:

N = r (xi , tn)/δb, UPDF(Nδb) = UPDF(Nδb) + 1.

Here δb is discrete step for PDF. At the very end of data collection UPDF
was normalized.

For a linear equation, one can expect normal distribution for r (x, t) and
Rayleigh distribution for |b|:

PDF(r ) = 1

σ
√

2π
e− r2

2σ2 ,

PDF(|b|) = |b|
σ 2

e− |b|2
2σ2 ,

with some dispersion σ .
Note: normalization was done so that for linear equations σ was equal

to 1.
It is obvious that PDF of r (x, t) in even function (symmetric) of r ,

PDF(r ) = PDF(−r ).

It is the consequence of the absence of quadratic terms (three-wave
interaction) in (10) while PDF of real surface elevation η(x, t) is not
symmetric. This is because troughs have less amplitudes than the crests.
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Figure 1. Log(PDF(|b|)/|b|) as function of |b|2 is shown for μ � 0.1. 1 (solid line) –
nonlinear equation, 2 (dashed line) – linear equation. Extreme waves start at |b|2 � 9.

It is convenient to plot PDF(|b|)/|b| in logarithmic scale and as a
function of |b|2. For this case, Rayleigh distribution looks like a straight line
with the slope defined by σ :

Log(PDF(|b|)/|b|) � −|b|2
2σ 2

.

For the nonlinear equation (10) PDF also has Rayleigh tail—straight lines
for large |b|2, while the small |b|2| are different. This is clearly portrayed
in Figure 1. The level of turbulence here is moderate averaged steepness
μ ∼ 0.1.

It should be mentioned that extreme wave is the wave with the amplitude
about three times larger than the average wave amplitude. It corresponds to
|b|2 � 9 in Figure 1.

For further explanation, consult the following:
http://alexd.itp.ac.ru/SAPM/PDF.avi for dynamic (animation) of collection of
extreme waves statistics.
http://alexd.itp.ac.ru/SAPM/PDFeta.avi for distribution of η instead of |b| for
the same data (the same RUN) which clearly expresses skewness while dis-
tribution of Re{b(x, t)} has no skewness at all: http://alexd.itp.ac.ru/SAPM/
PDFReb.avi.
http://alexd.itp.ac.ru/SAPM/Spectrum.avi and http://alexd.itp.ac.ru/SAPM/
SpectrumNOLOG.avi for evolution of spectrum of |bk |.
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Figure 2. (Solid line-1) – energy of turbulent states for nonlinear equation, (dashed
line-2) – linear equation -2.
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Figure 3. Averaged steepness (dashed line) and maximal value of wave slope (solid line)
are shown for nonlinear equation.

Although average squared elevation is the same for both linear and
nonlinear cases (the energy of the system), σ 2 estimated exclusively by
tail for the nonlinear equation is two times larger than for linear equation.
Probability to face extreme wave (with |b|2 > 3) is almost 100 times larger
than in the linear case.
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Figure 4. Log(PDF(|b|)/|b|) as function of |b|2 is shown for μ � 0.08. 1 (solid line) –
nonlinear equation, 2 (dashed line) – linear equation, 3 (dotted line) – Rayleigh distribution
with σ = 1. Extreme waves start at |b|2 � 9.

Evolution of energy for both linear and nonlinear cases is shown
in Figure 2. Notice the stationary levels of turbulence are the same.
Figure 3 shows the value of maximal steepness (over x-domain) along with
the average steepness. PDFs calculated for nonlinear equations for smaller
levels of steepness and energy also have Gaussian tales, but σ is closer to 1.
See Figure 4.

4. Conclusion

We have shown numerically that the PDF of surface elevations has Gaussian
tail similar to linear equation. The reason may be due to the fact of “almost”
integrability of Equation (8). It is not integrable only in the next or sixth
order as shown in [11]. Such trivial resonance manifold as (5) could be
responsible for the “almost” Rayleigh distribution of surface elevations in
this nonlinear equation. Providing steepness and energy were the same for
both linear and nonlinear cases, we observed σN L calculated exclusively by
tails in the framework of nonlinear equation much greater than σL calculated
for linear model:

σNL = α × σL ,

α > 1 and depends somehow on average steepness.
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It should be emphasized that when calculating PDF for real surface
elevation η(x, t) from (2) (like in the article [12]) one get nonsymmetric,
non-Gaussian tails for η(x, t). It is why we call Re{b(x, t)} = r (x, t)
“surface elevation” in quotation marks.
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