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Spatial Equation for Water Waves1
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A compact spatial Hamiltonian equation for gravity waves on deep water has been derived. The equation is
dynamical and can describe extreme waves. The equation for the envelope of a wave train has also been
obtained.
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1. INTRODUCTION
Surface gravity waves generated in the laboratory

tank (or f lume) is one of the most studied examples of
nonlinear wave evolution. Numerical simulation of
such wave evolution has to be its integral part. These
waves are usually described by the classical Hamilto-
nian system of equations for potential f lows with the
truncated Hamiltonian [1]:

 (1)

with the Hamiltonian variables, where η(x, t) is the
surface profile and ψ(x, t) is the potential at the sur-
face. Equations of motions are the following:

 (2)

These equations describe Cauchy problem in time,
one has to set up initial conditions η(x, 0) and ψ(x, 0)
at t = 0 at all x. However, in the f lume situation is dif-
ferent. Typically, at the one end of the f lume there is a
wavemaker (piston or paddle) which generates (in the
ideal case) η(0, t) and ψ(0, t). Thus, we have to solve
Cauchy problem in space. If we restrict ourselves to an
envelope of the wave train, than the equations for spa-
tial Cauchy problem were derived in [2, 3] directly
from Zakharov equation. They derived special analo-
gies of both the nonlinear Schrödinger and Dysthe
equations. Their Hamiltonian structures and new
invariants were studied in [4]. However, to study waves
with extreme amplitudes, freak-waves, the envelope

approximation is not enough. In other words, to sim-
ulate real nonlinear waves, we need spatial dynamical
equation for water waves. Below, this equation is
derived for the case of one horizontal direction (nar-
row flume).

2. SUPERCOMPACT EQUATION
Let us recall very briefly the Zakharov equation for

water waves. It can be derived by two steps.
First, instead of η and ψ, normal canonical variable

ak is introduced:

Second, canonical transformation from ak to bk is cho-
sen to cancel all nonresonant terms in the Hamilto-
nian, both the third and fourth orders.

As a result, the Hamiltonian acquires the form:

 (3)

The explicit (and cumbersome) expression for  be
found in [1, 5]. The motion equation is the following:

 (4)

For one-dimensional waves,  has very important
for further—it is equal to zero on the four resonant1The article is published in the original.
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manifold [6]. This property allows applying another
canonical transformation from bk to ck, namely,

with

 (5)

This transformation replaces  by  in (3).

Coefficient  can be any function having the same
values on the four-wave resonant manifold:

 (6)

In [7, 8], the choice of  allowed obtaining the
Hamiltonian in a compact way. However, it was shown
in [9, 10] that the best choice for  is the following:

 (7)

where θk = θ(k) is the Heaviside step function.

The Hamiltonian can be written in the x-space:

 (8)

Here, the operator  in k-space is so that Vk = ωk/k.
When introducing along with this the Gardner–
Zakharov–Faddeev bracket

 (9)

the equation of motion becomes the following:

 (10)

Introducing advection velocity

 (11)

and taking variational derivative, one can write
Eq. (10) in the form

 (12)
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3. DERIVE SPATIAL EQUATION

Equation (12) for water waves can be written in
k-space:

 (13)

Performing Fourier transformation over time and
multiplying the result by ω + ωk one can easily get:

 (14)

For the waves with small amplitudes, all harmonics ckω
are focused near the dispersion curve:

 (15)

Here,  is the nonlinear frequency shift. Obviously,

Thus, gk on the right-hand side of Eq. (14) can be
replaced by ω2. The inclusion of  would give terms
of higher order in Eq. (14). Such terms should be omit-
ted. Therefore,

 (16)

Now we can perform backward Fourier transforma-
tion of the Eq. (16) over space and get spatial equation
for water waves:

This equation can be written in the Hamiltonian form
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and the Hamiltonian

Explicit form of  in (13) is the following:

and it allows the compact form of the quartic part Hint
of the Hamiltonian:

Using the relation

 (  is the Hilbert transformation),

the fourth-order part of the Hamiltonian can be writ-
ten as

The equation of motion has the form

 (17)

or in t-space:

 (18)

Consequently, Eq. (18) with the Hamiltonian

 (19)

solves the spatial Cauchy problem for surface gravity
waves on deep water.
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4. BACK TO η AND ψ

According to canonical transformation ηk and ψk
are power series of ck up to the third order:

 (20)

Details of the recovering physical quantities η(x, t) and
ψ(x, t) are given in [9, 11]. Here, we focus on the η
only. Obviously,

or

Operators  act in Fourier space as multiplication by
|k|α. Following [9, 11], let us consider transformation
for η taking into account only first and second order
terms.

Then,

 (21)

Using approximate relation (15), one can get the fol-
lowing compact formula for the physical observed
value η:

5. FREQUENCY NARROW BAND 
APPROXIMATION

From Eq. (18), one can easily derive equation for
envelope of modulated wave train. Obviously, such a
wave train propagates with the group velocity and it is
convenient to introduce reference system moving with
this velocity. So, let c(x, t) be almost monochromatic
wave with the frequency ω0:

 (22)

where capital C(x, t) is a slowly varying function. Plug-
ging (22) into the motion Eq. (18), and keeping in the
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nonlinear part of the equation term with no more the
first time derivative, one can derive the equation

 (23)

This is Dysthe equation for spatial Cauchy problem.
Dropping the small corrections, namely the right-hand
side, we end up just with the nonlinear Schrödinger
equation. So, we have now both full dynamical equa-
tion (18) and envelope approximation (23). The Ham-
iltonian of the NLSE is the following:

and the equation of motion is:

6. CONCLUSIONS

The spatial compact equation is the most conve-
nient tool for comparison of the theory of nonlinear
gravity waves on deep water and their experimental
study in laboratory wave tanks. It can be easily solved
numerically by the use of spectral code. We plan to

present the results of our numerical simulations
shortly.
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