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We study numerically the statistics of waves for generalized one-dimensional Nonlinear Schrödinger 
(NLS) equation that takes into account focusing six-wave interactions, dumping and pumping terms. 
We demonstrate the universal behavior of this system for the region of parameters when six-wave 
interactions term affects significantly only the largest waves. In particular, in the statistically steady 
state of this system the probability density function (PDF) of wave amplitudes turns out to be strongly 
non-Rayleigh one for large waves, with characteristic “fat tail” decaying with amplitude |�| close to 
∝ exp(−γ |�|), where γ > 0 is constant. The corresponding non-Rayleigh addition to the PDF indicates 
strong intermittency, vanishes in the absence of six-wave interactions, and increases with six-wave 
coupling coefficient.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The studies of statistics of waves for different nonlinear systems 
have drawn much scientific attention in the recent time [1–6], es-
pecially since the first observation of optical rogue waves [7]. The 
experimental evidence of rogue waves emergence in both optics 
and hydrodynamics [1,6–9] implies that such waves may appear 
much more frequently than predicted by the approximation of 
random wave field governed by linear equations. Thus, the de-
velopment of a consistent nonlinear theory for rogue waves phe-
nomenon is urgently needed.

Let us suppose, that wave field � is a random superposition 
of a multitude of uncorrelated linear waves. Then, the probabil-
ity density function (PDF) of wave amplitudes in such a state is 
Rayleigh PDF [10],

PR(|�|) = 2|�|
σ 2

e−|�|2/σ 2
. (1)

Here σ is constant and we use normalization for the PDF as ∫
P(|�|) d|�| = 1. Below it will be convenient for us to study the 

PDFs for normalized squared amplitudes I = |�|2/〈|�|2〉, where 
〈|�|2〉 is the averaged squared amplitude. The quantity I has the 
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meaning of “relative power”; values I � 1 represent small waves, 
I ∼ 1 – moderate waves and I � 1 – large waves. Then, Rayleigh 
PDF (1) takes the simple form

PR(I) = e−I . (2)

Here we used relations 
∫

2xF (x) dx = ∫
F (x) dx2 and 〈|�|2〉 = σ 2, 

the latter of which follows from Eq. (1). We will call the PDF (2)
as Rayleigh one for simplicity.

If evolution of a random wave field is governed by linear equa-
tions, then the superposition of linear waves stays uncorrelated, 
and the PDF remains the Rayleigh one (2). The nonlinear evolution 
may introduce correlation, that in turn may lead to enhanced ap-
pearance of large waves. Today the most popular nonlinear model 
for the description of rogue waves in both optics and hydrodynam-
ics is the focusing one-dimensional Nonlinear Schrödinger (NLS) 
equation [6,8,9],

i�t + �xx − � + |�|2� = 0. (3)

Here t is time, x is spatial coordinate and � is wave field or wave 
field envelope. The simplest “condensate” solution of this equation 
� = 1 is modulationally unstable. The development of this insta-
bility from initially small perturbation ε(x),

�|t=0 = 1 + ε(x), |ε(x)| � 1, (4)
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leads to formation of “integrable turbulence” [11], during which 
rogue waves may emerge. Some of the rogue wave solutions can 
by analyzed analytically, see [12–16].

However, as was demonstrated in [17], in the framework of the 
modulation instability (MI) model the PDF of wave amplitudes, av-
eraged over realizations of initial perturbations, does not exceed 
significantly Rayleigh distribution (2). The development of the MI 
leads after a very long evolution to the asymptotic state of the sta-
tionary integrable turbulence. The PDF in this state coincides with 
the Rayleigh one (2). During the evolution towards the asymptotic 
state, the PDF may significantly deviate from (2), however, it does 
not exceed Rayleigh PDF by more than 3 times.

In [18] the different scenario for the integrable turbulence in 
the framework of the focusing NLS equation was studied, with the 
incoherent wave field as initial conditions. In this case the sys-
tem after a short evolution reaches the stationary state, where the 
tail of the PDF at large amplitudes may exceed Rayleigh distri-
bution (2) by orders of magnitude. However, this tail still decays 
according to modified Rayleigh law ∝ e−γ I , where γ > 0 is con-
stant.

In the current study we demonstrate how even sufficiently 
small additional terms to the focusing NLS equation may quali-
tatively change the behavior of the PDF at large amplitudes. The 
natural way to modify Eq. (3) consists in addition to it’s left-hand 
side the next-order nonlinear terms that appear in the pertur-
bation theory expansion beyond the four-wave interactions term 
|�|2� . One of these terms is the six-wave interactions α|�|4� , 
that appears in many physical models including Bose–Einstein con-
densation [19,20], surface water waves [21,22], pattern formation 
in the framework of the Ginzburg–Landau equation [23], dissipa-
tive solitons in lasers [24], optical fibers [25], and so on. Here α is 
the six-wave coupling coefficient. In this publication we consider 
only the focusing case α > 0.

However, addition of only the focusing six-wave interactions to 
Eq. (3) results in generation of blow-up collapses in a finite time, 
even for very small coefficients α. Indeed, as we checked numer-
ically, the MI generates quasi-solitons that collide inelastically in 
the presence of six-wave interactions. Similarly to non-collapsing 
models [26], during these collisions the larger quasi-solitons in-
crease while the smaller quasi-solitons decay. After some time one 
of the quasi-solitons becomes so large, that the influence of six-
wave interactions for this wave exceeds significantly the four-wave 
interactions, α|�|4 � |�|2. Then, it’s subsequent evolution can be 
effectively described by the quintic NLS equation that generates 
blow-up collapses in a finite time [5,27,28].

In order to regularize these collapses we add to the left-hand 
side of Eq. (3) small linear and nonlinear dumping terms −idl�xx
and id3p|�|4� respectively, where dl > 0 and d3p > 0, d3p � α, 
are small constants. The first term prevents the appearance of too 
large gradients and may appear in the context of the complex 
Ginzburg–Landau equation, modeling viscosity in hydrodynamics, 
as well as filtering and gain dispersion in optics [29–32]. The sec-
ond term prevents the appearance of too large amplitudes and may 
appear from three-photon absorption [33] in optics and four-body 
collisions in Bose–Einstein condensates [34]. In order to balance 
the system we also add small deterministic pumping term ip�

to the right-hand side of Eq. (3). Here p > 0 is small constant. 
We checked other statistically homogeneous in x-space pumping 
terms including chaotic forcing [5], and also other nonlinear dump-
ing terms including two-photon absorption, and found no signif-
icant difference in our results. Thus, we come to the following 
generalized NLS equation:

i�t + (1 − idl)�xx − � + |�|2� + (α + id3p)|�|4� = ip�. (5)

As we observe in our simulations, if the coefficients before the 
additional terms are sufficiently small, dl, d3p, p, α � 1, then the 
initial evolution of Eq. (5) is very similar to that of the focusing 
NLS equation (3) for both the MI development and the incoherent 
wave field initial conditions. Then, the system (5) deviates from 
Eq. (3) and gradually approaches to the statistically steady state, 
which has independent on time statistical characteristics. As we 
checked, both types of initial conditions lead to the same statisti-
cally steady state (see, e.g., Fig. 1a, and also [5]).

The statistically steady state is the energy equilibrium of Eq. (5), 
since the energy input due to the pumping term is statistically bal-
anced by the energy output due to the dumping terms. It turns out 
that this equilibrium is very sensitive with respect to the specific 
values of the coefficients (dl, d3p, p, α), even when these coeffi-
cients are all small. Thus, for different sets of these coefficients 
it is possible to get statistically steady states with large influence 
of six-wave interactions already for medium waves I ∼ 1, or with 
small four- and six-wave interactions even for the largest waves 
I � 1 present in the system. Nevertheless, as we report in this 
study, in the statistically steady state of Eq. (5) the PDF of wave 
amplitudes has universal behavior.

Thus, if the six-wave interactions term turns out to be large 
already for medium waves, then the system can be effectively 
described by the modified quintic NLS equation. As was already 
demonstrated in [5], in this case collapses appear randomly is 
space and time, and their evolution and subsequent regulariza-
tion are self-similar. The PDF of wave amplitudes is close then to 
Rayleigh PDF for small and moderate waves, but has a “fat tail” 
that decays as ∝ |�|−8 at large amplitudes.

In the current publication we study numerically the different 
scenario, when the six-wave interactions term affects significantly 
only the largest waves. We demonstrate that in this case the PDF 
P(I) is close to Rayleigh one for small and moderate waves, while 
it’s tail at large amplitudes I � 1 decays close to ∝ e−γ

√
I , where 

γ > 0 is constant. The corresponding non-Rayleigh addition to the 
PDF vanishes in the absence of six-wave interactions and increases 
with six-wave coupling coefficient α as γ ∝ α1/2. The typical rogue 
wave events in this system have short duration in time, and repre-
sent in space a singular high peak resembling the modified Pere-
grine solution [13] of the focusing NLS equation (3).

The paper is organized as follows. In Section 2 we describe the 
numerical methods that we used in the framework of the current 
study. Then, in Section 3 we present the results of our numerical 
experiments. The final Section 4 contains conclusions.

2. Numerical methods

We integrate Eq. (5) numerically in the box x ∈ [−L/2, L/2], 
L = 64π , with periodic boundary. In contrast to the MI develop-
ment for the focusing NLS equation (3), we do not observe the 
concentration of wave action N = ∫ |�|2 dx into modes with ex-
tremely large scales [17]. This allows us to perform simulations 
using not very long computational boxes L; we checked that boxes 
longer than L = 64π do not provide us different results. We imple-
ment the same method of numerical simulations that was devel-
oped in [17]. Specifically, we use Runge–Kutta 4th-order method 
with adaptive change of the spatial grid size �x and Fourier in-
terpolation of the solution between the grids. In order to prevent 
appearance of numerical instabilities, time step �t changes with 
�x as �t = h�x2, h ≤ 0.1.

We start simulations on the grid with M = 4096 nodes. We av-
erage our results across 1000 random realizations of initial data. 
The choice of the initial data is explained below. For most of 
our simulations we arrive to the statistically steady state before 
time t = 300. Since the characteristics of this state do not de-
pend on time, we additionally average these results over interval 
t ∈ [350, 400]. Also, there were two simulations when the sta-
tistically steady state was reached near t = 1000. In these cases 
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Fig. 1. (Color online.) (a) The PDFs P(I) in the statistically steady state, versus
√

I . 
Bold blue line corresponds to the incoherent wave field initial conditions (6) with 
perturbation parameters A0 = 1, θ = 1; thin red line – to the MI development 
(4) with A0 = 10−5, θ = 5; see Eq. (7). Thick dashed line indicates decay law 
∝ e−γ

√
I with γ ≈ 5.13, thin dash–dot line is Rayleigh PDF (2). (b) Spatial distribu-

tion |�(x)| for a typical rogue wave at the statistically steady state. This rogue wave 
event had duration in time of about �T ∼ 0.5, and reached maximum amplitude 
max |�| ≈ 4.83 at time t ≈ 379; the statistically steady state has average squared 
amplitude 〈|�|2〉 ≈ 0.7. Dashed blue line is fit by function (9) with A ≈ −1.6, 
b ≈ 2.4, x0 ≈ 32.9, dash–dot red line is argument (phase) arg� . The parameters 
of Eq. (5) for figures (a) and (b) are: α = 1/25, dl = 10−3, d3p = 10−3, p = 5 × 10−3.

that will be outlined below, we average the results over inter-
val t ∈ [950, 1000]. We checked the results against the size of the 
ensembles, the parameters of our numerical scheme and the im-
plementation of other numerical methods (Runge–Kutta 5th-order, 
Split-Step 2nd- and 4th-order methods [35,36]), and found no dif-
ference.

We performed numerical experiments starting from the initial 
data that corresponds to the problems of (a) the MI develop-
ment (4), and (b) the propagation of incoherent wave field

�|t=0 = ε(x), (6)

when random perturbation ε(x) is not necessarily small. We found 
that the final statistically steady states for these problems coincide 
(see, e.g., Fig. 1a, and also [5]), irrespective of the different types 
of the perturbations ε(x) that we studied. This fact demonstrates 
that the statistically steady state of Eq. (5) does not depend on the 
initial conditions �|t=0.

In our final numerical experiments we used statistically homo-
geneous in space perturbations ε(x) in the form
ε(x) = A0

(√
8π

θ L

)1/2 ∑
k

e−k2/θ2+iξk+ikx, (7)

for both of the problems (4) and (6). Here k = 2πn/L is wavenum-
ber, n is integer, A0 is perturbation amplitude, θ is perturbation 
width in k-space, and ξk are arbitrary phases for each k and each 
perturbation realization within the ensemble of initial data. As was 
shown in [17], the average squared amplitude of perturbation (7)
in x-space is very close to A2

0,

|ε|2 = 1

L

L/2∫
−L/2

|ε(x)|2 dx ≈ A2
0. (8)

Since the statistically steady state does not depend on the ini-
tial conditions, and for the problem (6) we arrive to this state sig-
nificantly faster, we performed most of our numerical experiments 
starting from the incoherent wave field (6). Technically, we used 
perturbation parameters A0 = 1 and θ = 1; however, we checked 
that the statistically steady states do not depend on the specific 
values of these parameters.

In the next section we concentrate on our numerical experi-
ments with parameters dl = 10−3, d3p = 10−3, p = 5 × 10−3 and 
α = 1/25. In this case the statistically steady state realizes with 
the average squared amplitude equal to 〈|�|2〉 ≈ 0.7. Thus, for 
moderate waves |�| ∼ 1 the influence of six-wave interactions 
term α|�|4� turns out to be small in comparison with the four-
wave interactions |�|2� , since α|�|4 ∼ 1/25 and |�|2 ∼ 1. How-
ever, already for |�| ∼ 3 these interactions become comparable, 
as α|�|4 ∼ 3 and |�|2 ∼ 9.

Below we also demonstrate the dependence of our results 
on six-wave coupling coefficient α. In addition to these experi-
ments, we studied several different sets of dumping and pump-
ing coefficients dl , d3p and p. We found that if the four coeffi-
cients (dl, d3p, p, α) provided such statistically steady states, for 
which the six-wave interactions term affected significantly only the 
largest waves, we always came to the same qualitative conclusions. 
Note that the scaling and gauge transformations

x = ξ/A, t = τ/A2, � = � × Aei(1−1/A2)τ ,

where A > 0 is constant, do not change the form of Eq. (5),

i�τ + (1 − idl)�ξξ − � + |�|2� + A2(α + id3p)|�|4� = i
p

A2
�.

This means that the sets of coefficients (dl, d3p, p, α) and (dl, A2d3p,

p/A2, A2α) provide equivalent statistically steady states with aver-
age squared amplitudes relating as 〈|�|2〉 = A2〈|�|2〉, that in turn 
leads to the same PDFs for normalized squared amplitudes P(I).

3. Waves statistics in the statistically steady state

Fig. 1a demonstrates the PDF P(I) at the statistically steady 
state of Eq. (5) with parameters dl = 10−3, d3p = 10−3, p = 5 ×
10−3, and α = 1/25. At small and moderate waves I ≤ 2 the PDF 
turns out to be close to Rayleigh one (2). However, for larger waves 
I � 3 the PDF decays as ∝ e−γ

√
I , thus significantly deviating from 

Rayleigh one. For example, at I = 5 the PDF is about 103 times 
larger than Rayleigh distribution (2).

The typical rogue waves, that contribute to the non-Rayleigh 
tail of the PDF, are rare events that have short duration in time 
and resemble in space the modified Peregrine solution [13] of the 
focusing NLS equation (see Fig. 1b),
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Fig. 2. (Color online.) The PDFs P(I) in the statistically steady states at different 
α, versus 

√
I (a) and √I/α (b). Dumping and pumping coefficients are fixed to 

dl = 10−3, d3p = 10−3, p = 5 × 10−3. The initial conditions are the incoherent wave 
field (6) with perturbation parameters A0 = 1, θ = 1. Thin dash–dot line on fig-
ure (a) is Rayleigh PDF (2), thick dashed line on figure (b) indicates decay law 
∝ e−γ̃

√
I/α with γ̃ ≈ 1.03. Experiments with α = 0 and α = 1/100 were carried out 

up to final time t = 1000, with averaging of the results over interval t ∈ [950, 1000].

�(x) ≈ A

[
1 − 4

1 + 2b2(x − x0)2

]
. (9)

Here A, b are constants, and x0 is the position of the maxi-
mum amplitude. Note that the argument (phase) arg �(x) of the 
rogue wave is almost constant near the amplitude maximum, as is 
the case for anzats (9). However, critical distinctions between the 
rogue waves of Eq. (5) and the Peregrine solution are present. First, 
the coefficients A and b are significantly different from unity (see 
Fig. 1b), which would be the case for the Peregrine solution. Sec-
ond, the rogue waves of Eq. (5) appear in the dissipative system, 
and, as we checked numerically, at the time of their appearance 
the dissipation is enhanced (see also [5]).

The non-Rayleigh addition to the PDF practically vanishes in 
the absence of six-wave interactions α = 0, and increases with α, 
Fig. 2a. In order to qualitatively study this dependence, we rep-
resent the PDFs P(I) in Fig. 2b versus 

√
I/α = |�|/√α〈|�|2〉. 

In the physical sense this renormalization choice is natural, since 
as follows from Eq. (5), the quantity α〈|�|2〉, being dimensionless, 
describes the ratio between the six-wave and the four-wave inter-
actions. Fig. 2b shows that if the six-wave coupling coefficient α
is not very close to zero, then the PDFs decay versus 

√
I/α with 

almost the same slope. This means that the slope γ of the decay 
P(I) ∝ e−γ

√
I depends on the six-wave coupling coefficient α as
γ ≈ γ̃ α1/2, (10)

where γ̃ is constant determined by dumping and pumping param-
eters. The deviations from this relation are seen for very small α
(see, e.g., α = 1/100), when the six-wave interactions term is small 
even for the largest waves I � 1 and the entire PDF is very close 
to Rayleigh distribution (2), and also for sufficiently large α (see, 
e.g., α = 1/8, at large amplitudes), where the six-wave and the 
four-wave interactions become comparable.

4. Conclusions

In the current publication we studied the statistics of waves for 
generalized one-dimensional NLS equation (5) that takes into ac-
count focusing six-wave interactions, dumping and pumping terms. 
Our main motivation was to investigate whether sufficiently small 
additional terms to the focusing NLS equation may qualitatively 
change the behavior of the PDF at large amplitudes.

We found that the system (5) approaches with time to the 
statistically steady state that has statistical characteristics indepen-
dent on time and initial conditions. This state, being the energy 
equilibrium of Eq. (5), is determined only by the set of coefficients 
(dl, d3p, p, α). We demonstrated the universal behavior for those 
statistically steady states, where the six-wave interactions term af-
fects significantly only the largest waves I � 1. Namely, in such 
states the PDF P(I) turns out to be close to Rayleigh one (2)
for small and moderate waves I � 1, and decays as ∝ e−γ

√
I at 

large waves I � 1. The corresponding non-Rayleigh addition to the 
PDF vanishes in the absence of six-wave interactions α = 0, and 
increases with α as γ ∝ α1/2. The non-Rayleigh tail of the PDF in-
dicates strong intermittency in the system, as it is created by the 
appearance of rare rogue waves of short duration in time. These 
rogue waves represent in space a singular high peak (9) resem-
bling the modified Peregrine solution.
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