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Evolution of One-Dimensional Wind-Driven Sea Spectra1
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We analyze modern operational models of wind wave prediction on the subject for compliance dissipation.
Our ab initio numerical simulations demonstrate that heuristic formulas for damping rate of free wind sea due
to “white capping” (or wave breaking) dramatically exaggerates the role of this effect in these models.
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1. INTRODUCTION
We perform numerical simulation of evolution of

surface waves spectra that has been excited by wind.
One of the motivation of writing this article is purely
practical. Measure of nonlinearity of wave at the sur-
face of deep water is their average steepness μ = 〈 ∇η2〉,
where η(r, t) is the shape of the surface. Characteristic
value of μ in real sea is moderate, μ ≃ 0.06–0.07. How-
ever, even at small steepness “white capping” (or wave
breaking) happens occasionally, due to what waves
loose energy. This phenomenon is not studied yet,
either experimentally nor theoretically. Nevertheless,
in the operational models of wind waves prediction
heuristics formulas for rate of wave decay (due to this
phenomenon) are widely used. They were introduced
about thirty years before [1, 2] and little has changed
since then. In our opinion, they have no serious justi-
fication. The goal of this article is to check these heu-
ristic formulas by numerical experiments not assum-
ing statistical description.

To study the white capping model with one hori-
zontal dimension is enough. If steepness is moderate,
μ ≤ 0.07, one can use the dynamical “Zakharov equa-
tion” [3], which is greatly simplified in 1-D case. It
reduces to the simple Hamiltonian system that is very
convenient for numerical simulation [4, 5]. Canonical
transformation resulting in this model is described in
detail in [6]. In the framework of this model, we per-
form numerical simulations for very long time (hun-
dreds of thousands of characteristic wave period) and
make sure that heuristic formulas [1, 2] give to large
rates of energy decay. It makes to treat used below
wave prediction operational models highly critical.

Another motivation for this work is the desire to
describe (possible more in detail) a phenomenon of
white capping for the waves with so moderate steep-
ness. This work is not finished yet, but we established
the most important fact: wave breaking is preceded by
“freak wave” which actually breaks. Freak waves
appear naturally as a result of modulational instability
[3], but even stable spectra of moderate amplitude are
able to generate them. Although freak waves are now
rare events separated by time interval it tens of thou-
sands of wave periods.

Finally, in this article we come back to the old
question about integrability of the free surface hydro-
dynamics of the deep water. Hypothesis of integrabil-
ity was formulated in [7] the result which was a key
when deriving the compact equation [4, 5]. More
recently, it was argued both against integrability [8, 9]
and in favor integrability [10, 11]. In our experiments,
we observed behavior that is typical for integrable sys-
tems. Dynamics of the wave field was quasi-periodi-
cal. Spectra averaged over great time (of the order of
hundred thousand wave periods) have changed little,
losing 15% of their energy due to arising rare freak
waves.

As an initial condition we used experimental and
often cited in the oceanographic literature JONSWAP
spectrum [12] with the wind speed 12 m/s.

2. JONSWAP SPECTRUM
Hasselmann et al. [12] analyzed data collected

during the Joint North Sea Wave Observation Project,
and found that the wave spectrum is never fully devel-
oped. It continues to develop through nonlinear,
wave–wave interactions even for very long times and1 The article is published in the original.
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distances. They therefore proposed a spectrum in the
form:

, (1)

,

,

Here, U10 is the wind speed at the altitude 10 m, F is
fetch, i.e., distance from the shore. Spectra with dif-
ferent wind seeps are shown in Fig. 1.

In this work, we study the relaxation of this devel-
oped sea state.

3. COMPACT EQUATION FOR WATER WAVES
We start with the well-known Hamiltonian for

water waves

 (2)

which is expanded up to the fourth order as a function
of Hamiltonian variables η and ψ (see [3]): after intro-
ducing complex canonical variables ak
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in [4, 5], we applied canonical transformation to the
Hamiltonian variable ak to introduce normal canoni-
cal variable b(x, t):

(i) ηk, ψk ⇒ normal canonical variable ak,

(ii) ak ⇒ bk.

This transformation explicitly uses vanishing of
four-wave interaction and possibility to consider sur-
face waves moving in the same direction, see [4, 5].
For this variable b(x, t) Hamiltonian (2) acquires nice
and elegant form:

 (3)

The corresponding equation of motion is the follow-
ing:

 (4)

The eigenvalue of the projection operator  in the
Fourier space is the Heaviside step function:

 (5)

Transformation from b(x, t) to physical variables
η(x, t) and ψ(x, t) can be recovered from canonical
transformation. It was derived in [6]. Here, we write
this transformation up to the second order:
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Here,  is the Hilbert transformation with the eigen-
value isgn(k).
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Fig. 1. (Color online) Energy density for the JONSWAP
spectrum for different wind speeds.
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4. KINETIC EQUATION
Along with simulation in the framework of Eq. (4),

we solved the same initial problem with simple quasi-
linear model

, (7)

performing averaging by time and wavenumbers, so
that

. (8)

The constants γdiss in Eq. (7) are:

 (9)

Here,  and  mean averaging over spectrum, α is an
integral wave steepness, and

,

is the theoretical value of  for a Pierson–Moskowitz
spectrum [13], and

;
E is the total energy (surface elevation variance). All
these definitions are taken from operational models
from [1, 2]. More recent models have just slight cor-
rections to them. In this case model (7) is equivalent to
the well-known Hasselmann kinetic equation [14] (see
also [8]) because wind pumping is absent and collision
term Snl (due to the result of [7]) identically equal to
zero. In both models, we add artificial damping

 (10)

with α = . It provides dissipation of extreme
waves due to wave breaking. We calculated effective
damping due to wave breaking, 〈γdiss〉, plugging results
of calculations in the framework of (4) into the Eq. (7).
Another words we define 〈γdiss〉 as following:

 (11)

5. EVOLUTION OF THE JONSWAP SPECTRUM
We study relaxation of developed sea with different

wind speeds U10 = 9, 12, and 20 m/s. However, in this
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article we show results of simulation for U10 = 12 m/s
only. The others are very similar. Periodic domain of
the length L = 10000 m was used for numerical simu-
lations. Initial conditions for bk were chosen according
to JONSWAP spectrum:

. (12)

Phases of bk were chosen randomly in the interval [0;
2π]. Fetch F was equal to 157000 m.

We observed much smaller dissipation than pre-
dicts WAM3 model. For the wind velocity U10 =
12 m/s energy density both in our numeric experiment
and calculated according to [1, 2] are shown in Fig. 2.
Energy density is measured in oceanographic units

.

The average steepness μ is calculated as following:

.

In the picture, one can see initial fast relaxation of
energy in numerical experiment. It is due to dissipa-
tion of long tail ≃ω–5 of JONSWAP spectrum in k-
space (see (1)). After initial relaxation, there are rare
events of energy dissipation in our experiment. Aver-
age steepness is also shown in the Fig. 2.

One of these rare events, wave breaking, taking
place at time ≃93340, is shown in detail in the Fig. 3.
One can see oscillation of the amplitude of the
extreme wave.

The spectrum S(k) along with the zoomed profile
of the surface at time ≃93340 is shown in the Fig. 4.
It is seen that the amplitude of the extreme (freak)
wave is larger than for nearby waves by a factor of more
than 3. Figure 4 also shows the energy spectrum S(k)
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Fig. 2. (Color online) Energy density and steepness for the
wind 12 m/s.
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after wave breaking. It does not have tail at high wave-
numbers.

Great difference between numerical results and
prediction of the WAM3 model is seen in Fig. 5. Both
of them had the same initial condition. However, at
the final time the spectra are very different. The
WAM3 model predicts much more energy dissipation.
It is also seen in Fig. 2.

One can see that relaxation of energy is sufficiently
long process. During hundreds of thousands seconds
it decreases by ≃20%. During this time, we calculated
average 〈γdiss〉 according to (11). To make it smooth
enough time of averaging was few hours (10000 s).
According to [2] (Eqs. (2.10) and (2.16)) with (9) plot-
ted by dotted and double dotted lines. 〈γdiss〉 calculated
with the use of dynamical equation with (10) shown

solid line. One can see that numerical experiment
gives much less value of dissipation. Moreover, dissi-
pation is absent in the core of spectral density where
k0 ≃ (0.06–0.07) m–1.

6. CONCLUSIONS
The main result of our work is the fact that heuris-

tic formulas for damping rate of free wind sea (9) due
to white capping dramatically exaggerates the role of
this effect. Especially convincing is Fig. 6 showing that
in the region of spectral maximum dissipation of
energy is practically absent. An increase in 〈γdiss〉 with
the wavenumber indicates that damping is concen-
trated in the region of high wavenumbers. It means
that white capping leads primarily to vanishing of the
spectra “tails” and smoothing of the wave field. We
stress that our simulations describe sea evolution

Fig. 3. (Color online) Drop of energy due to extreme wave
appearing (wave breaking). Last picture shows maximal
steepness of the extreme wave.

Fig. 4. (Color online) Spectral density S(k) at the moment
of freak wave appearing and freak wave almost 5 m height.

Fig. 5. (Color online) Spectral density S(k)) at initial
moment (solid line), final numerical spectrum (dashed
line), and final WAM3 spectrum (double dotted line).

Fig. 6. (Color online) Comparison of , ,
and 〈γdiss〉.

WAM3
1γ WAM3

2γ
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during few days after “switch off” wind. During this
time, sea lost no more than 20% of the energy. A sim-
ilar picture of slow energy dissipation was observed in
[15]. Because “dissipation function” γdiss plays a key
role in the massively used operational models, the
inevitable conclusion is that these models need to be
fundamentally reviewed.

Our simulations are another argument in favor of
integrability of deep-water hydrodynamics. Others
arguments in this favor are given in [10] and are very
serious. There it is shown that exact system of Euler
equations describing potential f low of deep water with
a free surface can have any number of commuted inte-
grals of motion. Weak point of this argument is the
question about completeness of this system of inte-
grals. In [9], it is shown that model (4) is not integra-
ble. However, nonintegrability arises in the fifth order
of perturbation theory where Eq. (4) strictly speaking
is not applicable. The most serious arguments con-
tained in [8], where indicated the non-existence of
higher integrals.

This work was supported by the Russian Science
Foundation (project no. 14-22-00174). The numerical
simulation was performed at the Informational Com-
putational Center, Novosibirsk State University.
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