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Evolution of one-dimensional wind-driven sea spectra
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We analyze modern operational models of wind wave prediction on the subject for compliance dissipation.

Our numerical simulations from the “first principle” demonstrate that heuristic formulas for damping rate of

free wind sea due to “white capping” (or wave breaking) dramatically exaggerates the role of this effect in

these models.
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1. Introduction. We perform numerical simulation

of evolution of surface waves spectra that has been ex-

cited by wind. One of the motivation of writing this

article is purely practical. Measure of nonlinearity of

wave at the surface of deep water is their average steep-

ness µ = 〈∇η2〉, where η(r, t) is the shape of the sur-

face. Characteristic value of µ in real sea is moder-

ate, µ ≃ 0.06−0.07. However, even at small steepness

“white capping” (or wave breaking) happens occasion-

ally, due to what waves loose energy. This phenomenon

is not studied yet, either experimentally nor theoret-

ically. Nevertheless in the operational models of wind

waves prediction heuristics formulas for rate of wave

decay (due to this phenomenon) are widely used. They

were introduced about thirty years before [1, 2] and lit-

tle has changed since then. In our opinion they have no

serious justification. The goal of this article is to check

these heuristic formulas by numerical experiments not

assuming statistical description.

To study “white capping” model with one horizontal

dimension is enough. If steepness is moderate, µ ≤ 0.07,

one can use dynamical “Zakharov equation” [3], which

is greatly simplified in 1-D case. It reduces to the simple

Hamiltonian system which is very convenient for numer-

ical simulation [4, 5]. Canonical transformation resulting

to this model is described in detail in [6]. In the frame-

work of this model we perform numerical simulations

for very long time (hundreds of thousands of character-

istic wave period) and make sure that heuristic formu-

las [1, 2] give to large rates of energy decay. It makes
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to treat used below wave prediction operational models

highly critical.

Another motivation for this work is the desire to de-

scribe (possible more in detail) phenomenon of “white

capping” for the waves with so moderate steepness. This

work is not finished yet, but we established a most im-

portant fact – wave breaking is preceded by “freak wave”

which actually breaks. “Freak waves” appear naturally

as a result of modulational instability [3], but even sta-

ble spectra of moderate amplitude are able to generate

them. Although freak waves are now rare events sep-

arated by time interval it tens of thousands of wave

periods.

Finally, in this article we come back to the old ques-

tion about integrability of the free surface hydrodynam-

ics of the deep water. Hypothesis of integrability was

formulated in the paper [7] the result which was a key

when deriving compact equation [4, 5]. Since then it was

argued both against integrability [8, 9] and in favor in-

tegrability [10, 11]. In our experiments we observed be-

havior which is typical for integrable systems. Dynamics

of the wave field was quasi-periodical. Spectra averaged

over great time (of the order of hundred thousands wave

periods) have changed little, loosing 15 % of their energy

due to arising rare “freak waves”.

As an initial condition we used experimental and

often cited in the oceanographic literature JONSWAP

spectrum [12] with the wind speed 12 m/s.

2. JONSWAP spectrum. Hasselmann et al., in

[12], have analyzed data collected during the Joint

North Sea Wave Observation Project, and found that

the wave spectrum is never fully developed. It continues

to develop through non-linear, wave-wave interactions
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even for very long times and distances. They therefore

proposed a spectrum in the form:

SJ(ω)dω = α
g2

ω5
exp
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]

γrdω,

r = exp
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, (1)

α = 0.076

(

U2
10

Fg

)0.22

,

ωp = 22

(

g2

U10F

)1/3

,

γ = 3.3,

σ =

{

0.07 if ω ≤ ωp,

0.09 if ω ≤ ωp.

Here, U10 – wind speed at the altitude 10 m, F is fetch,

e.i. distance from the shore. Spectra with different wind

seeps are shown in Fig. 1.

Fig. 1. (Color online) Energy density for JONSWAP spec-

trum for different wind speeds

In the present article we study the relaxation of this

developed sea state.

3. Compact equation for water waves. We start

with well known Hamiltonian for water waves

H =
1

2

∫

gη2 + ψk̂ψdx− 1

2

∫
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2}ηdx+

+
1
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2k̂ψ + ψk̂[ηk̂(ηk̂ψ)]}dx+ . . . (2)

which is expanded up to the fourth order as a function

of Hamiltonian variables η and ψ (see [3]): after intro-

ducing complex canonical variables ak

ηk =

√

ωk

2g
(ak + a∗

−k), ψk = −i
√

g

2ωk
(ak − a∗

−k),

ωk =
√

gk

in the articles [4, 5] we applied canonical transforma-

tion to the Hamiltonian variable ak to introduce normal

canonical variable b(x, t):

1) ηk, ψk ⇒ normal canonical variable ak,

2) ak ⇒ bk.

This transformation explicitly uses vanishing of four-

wave interaction and possibility to consider surface

waves moving in the same direction, see [4, 5]. For this

variable b(x, t) Hamiltonian (2) acquires nice and ele-

gant form:

H =

∫
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+
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Corresponding equation of motion is the following:
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Eigenvalue of the projection operator P̂+ in the Fourier-

space is step-function:

P+
k = θ(k) =

{

1, k > 0;

0, k ≤ 0.
(5)

Transformation from b(x, t) to physical variables η(x, t)

and ψ(x, t) can be recovered from canonical transfor-

mation. It has been derived in [6]. Here we write this

transformation up to the second order:

η(x) =
1√
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Here Ĥ is Hilbert transformation with eigenvalue

i sign(k).

4. Kinetic equation. Along with simulation in the

framework of equation (4) we have been solving the

same initial problem with simple quasi-linear model

∂|bk|2
∂t

= −γdiss|bk|2, (7)
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performing averaging by time and wave numbers, so

that

|bk|2 → nk = 〈|bk|2〉, (8)

here γdiss are:

γWAM3

1 = 3.33 · 10−5ω̄
(ω

ω̄

)2
(

ᾱ

ᾱPM

)2

,

γWAM3

2 = 2.33 · 10−5ω̂
(ω

ω̂

)2
(

α̂

α̂PM

)2

. (9)

Here ω̄ and ω̂ mean averaging over spectrum, α is an

integral wave steepness, and

ᾱPM = Eω̄4g−2,

ᾱPM = 4.57 · 10−3

is the theoretical value of ᾱ for a Pierson–Moskowitz

spectrum [13], and

α̂PM = 0.66ᾱPM;

E is the total energy (surface elevation variance). All

these definitions are taken from operational models from

[1, 2]. More recent models have just slight corrections to

them. In this case model (7) is equivalent to the well-

known Hasselmann kinetic equation [14] (see also [8])

because wind pumping is absent and collision term Snl

(due to the result of [7]) identically equal to zero. In

both models we add artificial damping

Γd(k) =











αk4 if highest harmonics of bkare 104 times

greater then roundoff errors;

0 in the other case

(10)

with α = 0.9/τk4max. It provides dissipation of extreme

waves due to wave breaking. We calculated effective

damping due to wave breaking, 〈γdiss〉, plugging results

of calculations in the framework of (4) into the Eq. (7).

Another words we define 〈γdiss〉 as following:

γdiss = − 1

|bk|2
∂|bk|2
∂t

. (11)

5. Evolution of the JONSWAP spectrum. We

study relaxation of developed sea with different wind

speeds – U10 = 9, 12, and 20 m/s. However in this ar-

ticle we show results of simulation for U10 = 12m/s

only. The others are very similar. Periodic domain of

the length L = 10000m was used for numerical simula-

tions. Initial conditions for bk were chosen according to

JONSWAP spectrum:

|bk|2 =

√

2g

ωk
|ηk|2 = SJ (k)

2π

L

g

ωk
. (12)

Phases of bk were chosen randomly in the interval

[0; 2π]. Fetch F was equal to 157000 m.

We observed much smaller dissipation than predicts

WAM3 model. For the wind velocity U10 = 12m/s en-

ergy density both in our numeric experiment and cal-

culated according to [1, 2] are shown in Fig. 2. Energy

Fig. 2. Energy density and steepness for the wind 12 m/s

density is measured in oceanographic units

energy density

g
= m2.

The average steepness µ is calculated as following:

µ =

√

∫

∞

−∞

k2|ηk|2dk.

In the picture one can see initial fast relaxation of en-

ergy in numerical experiment. It is due to dissipation

of long tail ≃ ω−5 of JONSWAP spectrum in k-space

(see (1)). After initial relaxation there are rare events of

energy dissipation in our experiment. Average steepness

is also shown in the Fig. 2.

One of this rare events, wave breaking, taking place

at time ≃ 93340, is shown in detail in the Fig. 3. One

can see oscillation of the amplitude of the extreme wave.

Spectrum S(k) along with zoomed profile of the sur-

face at time ≃ 93340 is shown in the Fig. 4. One can see

the amplitude of the extreme (freak) wave more that

3 times large then for nearby waves. Also in the Fig. 4

energy spectrum S(k) after wave breaking is shown. It

does not have tail in large wavenumbers.

Great difference between numerical results and pre-

diction of WAM3 model is seen in Fig. 5. Both of them

had the same initial condition. However at the final time

the spectra are very different. WAM3 predicts much

more energy dissipation. It is also seen in Fig. 2.

One can see that relaxation of energy is sufficiently

long process. During hundreds of thousands seconds it
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Fig. 3. Drop of energy due to extreme wave appearing

(wave breaking). Last picture shows maximal steepness

of the extreme wave

Fig. 4. Spectral density S(k) at the moment of freak wave

appearing and freak wave almost 5m height

decreases by ≃ 20%. During this time we calculated

average 〈γdiss〉 according to (11). To make it smooth

enough time of averaging was few hours (10000 s). In

the according to [2] (equations (2.10) and (2.16)) with

(9) plotted by dotted and double dotted lines. 〈γdiss〉
calculated with the use of dynamical equation with (10)

shown solid line. One can see that numerical experiment

gives much less value of dissipation. Moreover, dissi-

pation is absent in the core of spectral density where

k0 ≃ (0.06−0.07)m−1.

6. Conclusion. The main result of our work is the

fact that heuristic formulas for damping rate of free

wind sea (9) due to “white capping” dramatically ex-

aggerates the role of this effect. Especially convincing is

Fig. 6 showing that in the region of spectral maximum

dissipation of energy is practically absent. Increase of

〈γdiss〉 with increasing of wave number indicates that

Fig. 5. Spectral density S(k) at initial moment (solid line),

final numerical spectrum (dashed line), and final WAM3

spectrum (double dotted line)

Fig. 6. Compare γWAM3
1 , γWAM3

2 , and 〈γdiss〉

damping is concentrated in the region of large wave

numbers. It means that “white capping” leads primar-

ily to vanishing of the spectra “tails” and smoothing of

the wave field. We stress that our simulations describe

sea evolution during few days after “switch off” wind.

During this time sea lost no more then 20 % of the en-

ergy. Similar picture of slow energy dissipation was ob-

served in [15]. Because “dissipation function” γdiss plays

a key role in the massively used operational models the

inevitable conclusion is that these models need to be

fundamentally reviewed.

Our simulations are another argument in favor of

integrability of deep water hydrodynamics. Others ar-

guments in this favor are given in [10] and are very

serious. There it is shown that exact system of Euler

equations describing potential flow of deep water with a

free surface can have any number of commuted integrals

of motion. Weak point of this argument is the question
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about completeness of this system of integrals. In the

article [9] it is shown that model (4) is not integrable.

But nonintegrability arises in the fifth order of the per-

turbation theory where Eq. (4) strictly speaking is not

applicable. The most serious arguments contained in [8],

where indicated the non-existence of higher integrals.
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