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Abstract—We present the results of a kinetic analysis of nonequilibrium dynamics of the electron–phonon
system of a crystal in a strong electric field based on the proposed method of numerically solving a set of
Boltzmann equations for electron and phonon distribution functions without expanding the electron distri-
bution function into a series in the phonon energy. It is shown that the electric field action excites the electron
subsystem, which by transferring energy to the phonon subsystem creates a large amount of short-wave pho-
nons that effectively influence the lattice defects (point, lines, boundaries of different phases), which results
in a redistribution of and decrease in the lattice defect density, in damage healing, in a decrease in the local
peak stress, and a decrease in the degradation level of the construction material properties.
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1. INTRODUCTION
In the 1960s, the phenomenon of an abrupt

decrease in the plastic deformation resistance of met-
als in the case of excitation of their conductivity elec-
tron subsystem by irradiation or conduction of the
electron current of a high density j = 108–109 A/m2

was discovered. This phenomenon has been called the
electroplastic effect (EPE) [1]. This effect is already
being applied in industry in the processes of drawing
and rolling metallic products.

Since then, Soviet and American scientists have
carried out a series of experiments on metal deforma-
tion under the effect of electric current and also under
irradiation of samples by accelerated electrons. In that
experiments, manifestation of the EPE under different
conditions was studied and also the dependence of the
phenomenon intensity was ascertained on parameters
such as:

—kind of the sample being deformed,
—temperature,
—current density amplitude,
—current pulse frequency,
—current pulse duration,
—current direction,

—dopant concentration in the sample,
—orientation of crystal samples being deformed,
—deformation rate.
Constructing an ab initio theory of the EPE is

complicated because explaning the results of experi-
ments on crystal deformation under the influence of
electric current requires taking different mechanisms
of the current influence on the deformation processes
into account. These mechanisms include:

—thermic influence of the current, resulting in
thermal expansion of the sample and also in softening,

—skin effect,
—pinch effect, i.e., the influence of the pressure of

the magnetic field created by the current inside the
sample,

—electron-dislocation interaction that appears in
the momentum and energy transfer to dislocations
from both the electrons and collective excitations such
as plasmons,

—phonon mechanism: the electrons that gain
energy from the electric field create phonons that
excite dislocation vibrations, which can result in the
dislocation depinning from stoppers.

We enumerate some experimental regularities of
the EPE.1 The article is published in the original.
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In its purest state, the EPE can be observed in
monocrystals of Zn, Cd, Sn, and Pb. If pulsed electric
current with the density j = 102–103 A/mm2 is passed
through a sample of these materials, or if the samples
are irradiated by accelerated electrons (with the energy
less than the atomic knock-out threshold from the lat-
tice node) in the slip direction, then softening of the
samples is revealed, manifesting itself in spasmodic
drops of deforming stress [1].

For monocrystals, a strongly expressed depen-
dence of the effect magnitude on the orientation of the
samples being deformed is observed. At the crystal ori-
entations such that the basal slip is complicated, the
magnitude of the deforming stress drop if small and
the stress from which plastic deformation begins is
large. The maximum stress drop magnitude can be
obtained for medium crystal orientations that are
characterized by an easy basal slip. In this case, the
stress of the drop start has its minimum [1].

The EPE magnitude dependence on the current
density has a threshold character, i.e., it becomes
apparent at a particular value of the pulsed current
density. This value depends on the sort of crystals
being deformed and also on the temperature and on
the deformation rate. For zinc at T = 77 K, it is equal
to 400–500 A/mm2 [1].

The temperature dependence is almost absent in a
wide range of temperatures. For zinc, this range is 77–
300 K. For titan, the threshold current density magni-
tude from which the effect begins with cooling from
300 to 78 K increases by hundreds of A/cm2 [1]. The
EPE is sensitive to external factors. The effect intensity
is influenced by surface-active media. For example,
the specific crystallographic shift of amalgamated zinc
monocrystals at the temperature of 300 K and under
the influence of current pulses with j = 600–
1000 A/mm2, the pulse repetition frequency 0.1–
0.5 Hz, and the pulse duration tp = 10–4 s increases by
50–60% [1].

The dopant presence also affects the spasmodic
metal deformation. As a result of doping, the drop
magnitude can increase by dozens of percents (up to
100%). Within the scope of a relatively small substitu-
tional impurity, the magnitude of the effect increases
linearly with the concentration, as has been shown in
the experiments with zinc doped by cadmium from
10–3 to 10–1 at % (other impurities content did not
exceed 2 × 10–3 at %). The brittle strength of zinc crys-
tals increases by 50–70% depending on the dopant
concentration. This fact can be connected with the
general increase in the critical shearing stress in doped
crystals [1]. The increase in the current pulse repeti-
tion frequency decreases the deforming stress thresh-
old value but also decreases the stress drop magnitude.
The pulse duration increase at constant amplitude
increases the depth of stress drops. This phenomenon
was registered both in stress relaxation tests and in
creep tests [1].

The main EPE regularities, revealed at monocrys-
tal deformation, can be observed in a weaker form also
in experiments with polycrystal materials. However,
the EPE magnitude decreases with structure refine-
ment and even disappears in the nanocrystal state [2].
Hence, the EPE is a structure-sensitive phenomenon.
Similar phenomena are observed under irradiation of
the material by pulse packets of accelerated electrons.
Plasticizing action enhances with the increase in the
electron energy to the atomic knockout threshold.
Under a further energy increase, the intensity of the
effect decreases at the expense of radiation strengthen-
ing. The combination of current action and irradiation
results in the intensification of the metal strength loss
effect [1].

The mechanisms connected with the action of
electron wind on dislocations, pinch effect, and ther-
mal influence of the current on deformation processes
are reviewed in detail in [1]. It is shown that they are
not sufficient for a quantitative explanation of the
EPE. In this paper, the phonon mechanism of the
influence on dislocation is considered (see [3, 4]).
Some preliminary results of such studies were reported
at the International Conference MSS-14 “Mode Con-
version, Coherent Structures, and Turbulence”
(November 24–27, 2014, Moscow) and were also pub-
lished in the conference proceedings [5, 6].

The purpose of this paper is to show that the exper-
imentally observed regularities of the electroplastic
effect can be explained quantitatively if we take into
account the influence of nonequilibrium phonons
excited by electrons that gain energy from the electric
field on the dislocations.

2. THE INFLUENCE OF PHONONS 
ON DISLOCATIONS

Plastic deformation of crystals under the action of
external loads is in most cases accomplished by dislo-
cation glide. The main equation describing the kinet-
ics of the plastic deformation process is the Orovan
modified equation (see, e.g., [7])

 (1)

where  is the strain rate, b is Burgers vector, l is the
mean distance between stoppers, ρd is the mobile dis-
locations density, νd(σ*) is the frequency of the stop-
pers overcome by dislocations, σ* is the effective shear
stress, and σi is the internal shearing stress in the glide
plane. For thermodynamic equilibrium, the expres-
sion νd(σ*, T) has the form

(2)

where kB is the Boltzmann constant and T is the tem-
perature. The explicit form of the H(σ*) function
depends on the potential barrier model. To consider a
more general case where the electron and phonon sub-
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systems are not in equilibrium in general, we use the
Landau–Hoffman model [8]. The potential pit has a
parabolic form,

 (3)

The displacement of the dislocation segment of
length L under the stress σ is described in the approx-
imation of elastic string vibrations (the Granato–
Lücke model [8, 9]):

 (4)

Here, u(y, t) is the displacement of the dislocation
line at a point y in the direction x, M = ρb2/2 is the
effective mass of the length unit, ρ is the material den-
sity, B is the coefficient of the dynamic friction force
per unit length, C = Gb2/2 is the linear tension of the
string, G is the shear modulus, and f(t) is the force of
the random pushes exerted by the crystal on the unit
dislocation length. The boundary conditions are

 (5)

The equation is linear, and therefore its solution
can be written as a sum

where ust(y) is the static deflection caused by the exter-
nal stress σ, and uosc(y, t) stands for the oscillations
under the action of a random force:

 (6)

The quantity Qn(t) satisfies the equation

 (7)

We consider a “fixing point” at y = 0. Let the seg-
ment lengths on both sides of it be equal to L. Then the
total deflection at the “fixing point” is

 (8)
The case of a random force was considered in [10].

We now provide some of the calculations for the refer-
ence purpose. If a random event such that δ (0, t) ≥
δ  occurs at some instant, then the condition of
overcoming the obstacle in the direction on the load-
ing action is satisfied. Let fn(t) be a stationary Gauss
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process. Because Eq. (7) is linear, Qn(t) and accord-
ingly (0, t) is also a stationary Gauss process, for
which the mean number of the instances of exceeding
a particular value δ  per unit time is

 (9)

 (10)

 (11)

where Ψ(τ) is the correlation function of the random
process δ (0, t) expressed by means of the correlation
function ψ(τ) of the random process Qn(t); Ψ''(0) is
the second derivative with respect to τ at τ = 0. For the
Fourier components (Qn)ω of Qn(t), we can write

 (12)

where  is defined by the relation

 (13)
Each harmonic can be formally considered an

independent vibrator with the friction χ and fre-
quency ωn,

 (14)
where m is the proportionality coefficient between the
generalized momentum and the velocity , χ is the
friction coefficient, and F is the random force [11]. We
have

 (15)

For the Fourier component, we hence obtain the
formula

 (16)

The random force spectral density can be found
from the expression [8]

 (17)

Hence, to estimate the force exerted by phonons on
dislocations, we must first find the phonon distribu-
tion function N(ω).
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3. KINETIC EQUATIONS
In some works on the electron–phonon subsystem

dynamics in metal films, an assumption about the
Fermi form of the isotropic part of the electron distri-
bution function with time-dependent temperature was
used [12]. Here, we do not make that assumption, and
therefore the distribution functions can be not ther-
modynamically equilibrium in general. In that case,
the behavior of electrons and phonons is described by
means of distribution functions.

To describe the electron–phonon system nonequi-
librium dynamics, it is necessary to solve a set of
kinetic Boltzmann equations for the electron and pho-
non distribution functions. For the electron distribu-
tion function, the Boltzmann equation has the form

 (18)

 (19)

where ν is the velocity, p is the momentum, t is time, r
is the radius vector, E is the electric field strength, and
e is the electron charge. Here and hereafter, we assume
that the magnetic field is absent. We assume that the
electric field and the electron and phonon distribution
functions are spatially uniform and that the electron
distribution function isotropization occurs as a result
of electron–defect collisions. In this case, we can
neglect the umklapp processes.

In (18), Iee is the electron-electron collision inte-
gral. In the general case of quantum mechanics, it has
the form [13–15]

 (20)

where f(p) are the occupation numbers and

 (21)
is the matrix element that describes the screened cou-
lomb interaction, where W(p, p1|p2, p3) is the transition
probability for electrons with momenta p2 and p3 to the
state with momenta p and p1 as a result of collision. For
relatively small electric fields, the contribution from
electron–electron collisions is much less than the
contribution from the electron–phonon interaction,
and we therefore do not take the electron–electron
collisions at short time intervals into account in what
follows. As was shown in [4], the role of the electron–
electron collision integral amounts to a redistribution
of the energy acquired by electrons from the electric
field. The lower estimate for the characteristic elec-
tron-electron relaxation time can be obtained from the
heat balance equation
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and it turns out to be greater than the characteristic
time of the electron–phonon relaxation. Here, E is the
electric field intensity, ρS is the specific residual resis-
tance measured in experiment (3 × 10–8 Ohm ⋅ m,
while the specific resistance caused by the electron–
phonon collisions is several orders less), cp is the spe-
cific heat capacity at constant pressure (in our case, it
is approximately equal to 25 J ⋅ kg–1 ⋅ K–1), ρ is the
density of our material, δT is the increase in tempera-
ture, which is comparable to our initial temperature,
and Iep is the electron–phonon collision integral
[13‒15]:

 (22)

Next, Ied is the electron–impurity and electron-
defect collision integral. It can be obtained by setting
ℏΩ = 0 and N = 0 in Iep:

 (23)

The phonon distribution function also satisfies the
kinetic equation
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where Ipe is the phonon–electron collision integral
[13–15]
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is the thermodynamically equilibrium phonon distri-
bution function (the Bose–Einstein function), and

is the phonon distribution function averaged over
angles.

Because the electron–impurity, electron–defect,
and electron–phonon collisions result in the distribu-
tion function isotropization, we seek it in the form of a
sum of an isotropic function and a small anisotropic
addition:

 (28)

 (29)

where ε1A is the deformation potential constant, which
in our particular model case is equal to 2εF/3, with εF
being the Fermi energy. We finally obtain

 (30)

 (31)

where m is the effective electron mass and νed = 3 ×
1013 s–1 is the electron–impurity collision frequency,
which in the given case (of low temperatures) deter-
mines the electron distribution function isotropiza-
tion. Also,
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concentration must be much greater than the concen-
tration at which the electron–defect collision fre-
quency is equal to the electron–phonon collision fre-
quency. In our case, this concentration has to be
greater than 1.77 × 1017 cm–3, that is, several orders
less than for the considered experiments. As a result,
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pic electron and acoustic phonon distribution func-
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where

 (39)

is the Debye phonon momentum. Condition (38)
expresses the fact that the number of phonons does
not have to be conserved. All quantities are taken for
nickel: s = 2.96 × 105 cm/s is the transverse sound
velocity, n = 2.5 × 1022 cm–3 is the conductivity elec-
tron concentration, a = 3.5 × 10–8 cm, and  =
0.333 × 106 S/cm.

The thermodynamically equilibrium electron energy
distribution function is the Fermi–Dirac function

 (40)

For nickel, εF = 5 × 10–19 J.

4. NUMERICAL SOLUTION OF THE SET 
OF KINETIC EQUATIONS FOR ELECTRON 

AND PHONON DISTRIBUTION FUNCTIONS

For the numerical solution of Eqs. (34), (35), the
finite-difference method of the first-order approxima-
tion over time and second-order over spatial coordi-
nates was used. System (34), (35) was represented by the
following set of difference equations [17]:
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The summation limits are determined from (26).
Grid steps were chosen such that

 (45)

where k and l are natural numbers. As a result of the
calculations, the electron and phonon distribution
functions were found.

In Fig. 1 and Fig. 2, we presented the depen-
dence of the electron distribution function decimal
logarithm on the dimensionless electron momen-
tum for different time instants and two values of the
electric field strength: 1.68 and 33.6 V/cm. In
Figs. 3 and 4, we present the dependence of the
phonon distribution function times the dimension-
less phonon momentum cubed on the dimension-
less momentum. The curves illustrate uninterrupted
growth of the number of high-energy electrons and
phonons with time. The curves for the instant t = 0
correspond to equilibrium distribution functions. In
particular, the phonon distribution function times
the dimensionless phonon momentum cubed for
the electric field strength 33.6 V/cm at the instant
(t = 1.0) of an order less than for the field 1.68 V/cm
(t = 10) is more than 66 times greater. For the same
values of t and of the electric field strengths, the val-
ues of the electron momentum at which the electron
distribution function equals 10‒30 differ by 1.23
times. Here, 10–30 is the value of the electron distri-
bution function at which we terminate our grid. It
does not have any specific meaning.

For clarity, in Fig. 5, we present a dependence of
the phonon distribution function on the dimension-
less momentum at the electric field strength E =
16.8 V/cm for different time instants.

To estimate the inf luence on the plastic defor-
mation, we plot the dependence
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Fig. 1. Dependence of the electron distribution function
decimal logarithm on the dimensionless electron momen-
tum  at E = 1.68 V/cm for different time instants t = 0 (1),
1 (2), 5 (3), 10 (4), 15 (5), 20 (6).
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 (46)

where N0( ) is the Bose–Einstein function for the
temperature 32 K, i.e., 12 K more than the initial
temperature, and N( ) is the phonon distribution
function found as a result of numerical calculations.
For the most part, the heating in the experiments in
[1] did not exceed 0.5–3 K.
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From Fig. 6 and Fig. 7 we can see that the force
exerted by phonons upon dislocation is greater than in
case of simple heating and it has trend to grow with time.

5. COMPARISON WITH THE EXPERIMENTAL 
RESULTS

Figure 8 presents the dependence of the phonon
distribution function times the dimensionless phonon
momentum cubed on the dimensionless momentum
in the double logarithmic scale for different situations:

Fig. 2. Dependence of the electron distribution function
decimal logarithm on the dimensionless electron momen-
tum at E = 33.6 V/cm for different time instants t = 0.25
(1), 0.5 (2), 0.75 (3), 1 (4), 1.25 (5).
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Fig. 3. Dependence of the phonon distribution function times
the dimensionless phonon momentum  cubed on the
dimensionless phonon momentum at E = 1.68 V/cm for dif-
ferent time instants t = 0 (1), 1 (2), 5 (3), 10 (4), 15 (5), 20 (6).
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Fig. 4. Dependence of the phonon distribution function times
the dimensionless phonon momentum cubed on the dimen-
sionless phonon momentum at E = 33.6 V/cm for different
time instants t = 0.25 (1), 0.5 (2), 0.75 (3), 1 (4), 1.25 (5).
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• thermodynamic equilibrium phonon distribu-
tion functions at 20 K (curve 1) and 32 K (curve 2),

• the nonequilibrium phonon distribution func-
tion obtained as a result of numerical calculations at
the electric field strength E = 16.8 V/cm for the instant
t = 2.5 (curve 3).

The value of the loading drop was found in the fol-
lowing order. First, we substitute the obtained values
of the phonon distribution function in formula (17)
and find the random force spectral density. Then we
substitute this result in (16) and find

 (47)

Knowing , we calculate the correlation function
ψ(0) and its second derivative using formula (12):

 (48)

After that, we find Ψ(τ) and Ψ''(0) using (10):

 (49)

 (50)
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After substituting (9) in (1), we have the following
relation that allows us to find δ  when all other
quantities are known:

 (51)
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Fig. 6. Dependence of the ratio /  on the dimen-
sionless phonon momentum for different time instants t =
0.25 (1), 0.5 (2), 0.75 (3), 1 (4), 1.25 (5) at E = 16.8 V/cm.
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Fig. 7. Dependence of the ratio /  on the
dimensionless phonon momentum for different time
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33.6 V/cm.
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 (52)

Finally, we find σ from (11):

 (53)

 (54)

The calculation results and experimental data were
compared for nickel at the following values of experimen-
tal parameters: the applied external stress σext =
68.885 MPa,  = 1.19 × 10–4 s–1, b = 3.52 × 10–8 cm,
and the product lρd = 435 cm–1, U0 = 3.34 × 10–19 J, xcr =
0.2b, L = 3.5 × 10–5 cm, and B = 2 × 10–10 N s cm–2.

Figure 9 clearly demonstrates that our approach
gives results that are of the same order with experi-
mental data. The expected loading drop in the case of
heating under the conditions of thermodynamic equi-
librium is several orders less that the loading drop
observed in experiments. That is why we do not even
put it on the figure. The loading drop that was calcu-
lated using the obtained data must be considered as a
lower estimate because the time instants at which the
calculation was finished are several times less than the
current pulse duration in the experiments.
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6. CONCLUSIONS
We have performed a kinetic analysis of nonequi-

librium dynamics of the electron–phonon system of a
crystal in a strong electric field. A method for numer-
ically solving kinetic Boltzmann equations for the
electron and phonon distribution function without
expanding the electron distribution function in a series
in the phonon energy is proposed. It has been shown
that under the influence of a strong electric field, the
electron distribution function becomes nonequilib-
rium in the vicinity of the Fermi energy and the influ-
ence of electron–phonon collisions becomes compa-
rable to the influence of the field. The phonon distri-
bution function is “heated” while remaining
nonequilibrium in the region of long-wave phonons.

Basing on the Granato–Lücke and Landau–Hoff-
man model and using the calculated phonon distribu-
tion function, we have shown that the force of the
action of the phonons on the dislocations is greater
than it would be in the case of thermodynamic equilib-
rium at heating by 12 K. Previous results were defined
more precisely. The conditions of the applicability of
the Taylor expansion of the electron distribution func-
tion in the phonon energy depending on the tempera-
ture have been obtained.
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