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A single nonlinear partial differential equation of the wave type for an axisymmetric case is obtained by 
the introduction of special auxiliary function. In contrast to cylindrical Korteweg–de Vries equation, new 
equation describes centrifugal and centripetal waves not only far from the center, but in its vicinity as 
well. With the use of this equation a number of specific problems on the evolution of the free surface 
disturbances are numerically solved for the cases of a horizontal bottom and a drowned concave. The 
research also demonstrates the difference between the results of calculations on the base of the complete 
equation and on the basis of the linearized equation.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A study of gravitational waves of small but finite amplitude in 
shallow liquid layers is one of the classical problems of nonlin-
ear physics. The well-known example is the Korteweg–de Vries 
equation, derived by the authors specifically for moderately long 
weakly nonlinear disturbances of a free surface (e.g., [1]). Only 
75 years later it was generalized to the case of axisymmetric waves 
(see [2]). It should be emphasized that the so-called cylindrical 
Korteweg–de Vries equation was obtained and applied not only for 
the surface waves [3–8], but also for the waves of different physi-
cal nature (for example, ion-acoustic waves in plasma [9–12]).

The cylindrical Korteweg–de Vries equation allows investigat-
ing diverging waves. Moreover, it is valid only in the region that 
is quite far from the center of symmetry. These are fundamental 
limitations of the equation. Simulation of the evolution of waves 
moving in different directions until recently was possible only with 
the use of the systems of nonlinear equations containing the liq-
uid velocity vector even in the linear terms of all equations (e.g., 
[13,14]).
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A combined system of equations, which is more convenient for 
analysis, was proposed in [15]. The model consists of a basic non-
linear evolution equation for the disturbance of the free surface 
and two linear auxiliary equations, which are required to deter-
mine the horizontal liquid velocity vector involved only in the 
second-order terms of the main equation. This article covers only 
the results of two simple calculations for the case of the horizontal 
bottom. A slightly more compact version of the model and more 
detailed calculations of the centripetal and centrifugal waves, as 
well as of the collision of several disturbances (initially solitary in 
space) over the sloping bottom were published in [16].

Finally, in [17] a single non-standard wave equation was de-
rived to model interaction of plane localized disturbances. In con-
trast to the Boussinesq equation, a new equation correctly de-
scribes the head-on collision of the moderate amplitude waves. 
It was shown analytically that in the first-order perturbation the-
ory, the head-on collision of solitons is inelastic, and its nonlinear 
dynamics qualitatively differs from that of the Boussinesq equa-
tion.

The purpose of this article is derivation of a new model equa-
tion to describe the transformation of weakly nonlinear moderately 
long axisymmetric localized disturbances of the free surface of liq-
uid layer, both divergent and convergent to the center of the tank 
with the bottom of the same symmetry. Below there are some 
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Fig. 1. Radial profiles of the initially quiescent bell-shape disturbance over the hor-
izontal bottom in 4 points of time: t = 0 (a), t∗ = t

√
g/h0 = 60 (b), t∗ = 120 (c), 

and t∗ = 210 (d); calculations based on Eq. (3) (solid curves) and on the linearized 
Eq. (3) (dashed curves).

applications of the equation that serve to find solutions to several 
typical problems.

2. Assumptions and the model equation

Assume that, firstly, the characteristic horizontal scale of the 
disturbances Lw is substantially greater, and the amplitude ηa

is considerably smaller than the equilibrium layer depth of the 
layer h (h/Lw ∼ ε1/2, ηa/h ∼ ε, where ε is a small parame-
ter). Secondly, the slope of the fixed solid bottom is insignificant 
(the derivative of the layer depth along any horizontal direction 
dh/dl ∼ ε3/2). Thirdly, the capillary effects are relatively small 
(σ/(ρgh2) < 1, here σ is the surface tension, ρ is the liquid den-
sity, and g is the free fall acceleration). Fourthly, the stationary 
components of the liquid flow are equal to zero, and, at last, dis-
sipation may be neglected. In addition, as the propagation velocity 
of gravitational waves is much lower than the sound speed in the 
fluid we can use the incompressible liquid approximation. Within 
the frames of these assumptions the following system of equations 
was derived in [15,16]:

∂2η
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− gh∇2η − g ∇h · ∇η − g
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Here t is the time, and ∇ = (∂/∂x, ∂/∂ y) is the gradient opera-
tor in the horizontal plane. Eq. (1) was obtained from the system 
of Euler’s equations and the continuity equation. Eqs. (2) are the 
potential flow condition and the linearized law of conservation of 
mass for the layer. They are sufficient to determine the averaged 
horizontal fluid velocity u, which is contained only in the second-
order terms of the main equation (1).
Fig. 2. Radial profiles of the initially quiescent bell-shape disturbance over the bot-
tom with concave in 4 points of time: t = 0 (a), t∗ = 60 (b), 120 (c), and 210 (d); 
calculations based on Eq. (3) (solid curves) and on the linearized Eq. (3) (dashed 
curves).

Consider dynamics of nonlinear axisymmetric solitary distur-
bances of the free surface (η → 0 when r → ∞, where r =√

x2 + y2 is the polar radius), propagating simultaneously in the 
direction of increasing r coordinate and to the center of the tank. 
Now introduce a new auxiliary function ψ using the equations 
∂ψ/∂r = rη and ∂ψ/∂t = −r(h + η)ur (here ur is the radial com-
ponent of fluid velocity). Then the mass conservation law is sat-
isfied identically in the elementary volume of the layer (there is 
an equality of the mixed derivatives ∂2ψ/∂r ∂t and ∂2ψ/∂t ∂r). 
In our case it becomes possible to replace ur by −(∂ψ/∂t)/(rh)

in the second-order terms. Further, integrate the equation over the 
r coordinate from r to ∞. And, as a result, the model system of 
Eqs. (1) and (2) is reduced to the equation
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where β = h2/3 − σ/ρg . At that the initial-boundary problem is 
set simply as follows:

ψ(0, r) = p(r),
∂ψ

∂t
(0, r) = q(r),

ψ(t,0) = p(0),
∂ψ

∂r
(t,0) = 0.

Here p(r) and q(r) are some limited differentiable functions, and 
the last two conditions result from the limited nature of values ur

and η. Remind that the bottom is certainly axisymmetric.
Search for the analytical solutions to the nonlinear partial dif-

ferential equation (3) is a difficult task that is why only the nu-
merical results are presented below.
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Fig. 3. Two considered radial profiles of the tank bottom.

Fig. 4. Evolution of radial profiles of the initially quiescent annular disturbance over 
the drowned concave in 4 points of time: t = 0 (a), t∗ = 60 (b), 120 or 134 (c), 
and t∗ = 210 (d); calculations based on Eq. (3) (solid curves) and on the linearized 
Eq. (3) (dashed curves).

3. Examples of disturbances transformation

Although the nonlinear terms in Eq. (3) are different from the 
respective ones in two-dimensional Boussinesq equation, the nu-
merical scheme from [18] was only slightly modified. We also note 
that in all problems considered below, a liquid was initially at rest, 
that is q(r) = 0.

Fig. 1 shows the transformation of the initially quiescent bell-
shape disturbance (η(0, r) = ηa exp[−(r∗/20)2], where r∗ = r/h0) 
over the horizontal bottom. Firstly, the level of liquid lowers be-
hind the head front, and then returns to its equilibrium position. 
The leading disturbance is neither a linear wave nor a soliton, be-
cause our solitary disturbance consists of a leading wave and a 
“tail”. Therefore the radial decay of leading wave is neither propor-
tional to r−1/2 or r−2/3. In [5] the authors noted that in this case, 
both the leading wave and the “tail” have a radial decay ∼ r−1/3. 
In our calculations, the following close dependence ∼ r−0.37 for 25 
< r∗ < 250 was found.

Fig. 2 displays the evolution of the initially quiescent bell-
shape disturbance over the bottom with drowned concave: h(r) =
Fig. 5. Transformation of radial profiles of the initially quiescent bell-shaped and 
ring-shaped disturbances over the bottom with concave in 4 points of time: t∗ = 0
(a), 60 or 67 (b), 120 or 134 (c), and t∗ = 210 (d); calculations based on Eq. (3)
(solid curves) and on the linearized Eq. (3) (dashed curves).

h0[1 − 0.6(1 − exp[−(r∗/100)2])] (see Fig. 3). It is clearly seen that 
in the region of a smaller layer depth the propagation velocity 
of the cylindrical wave is noticeably lower and its amplitude is 
slightly larger than above the horizontal bottom. In addition over 
the uneven bottom the disturbance profile is transformed, firstly, 
into a triangular shape with a steep head and a sloping back fronts, 
and then oscillations arise at the head. The effect of nonlinearity 
is stronger here. Emphasize that this figure demonstrates the value 
η(r)/h(r).

Similar solutions are shown in Fig. 4 for initially quies-
cent annular disturbance η(0, r) = ηa sech2[(r∗ − 125)/(4L/h0)], 
which is four times wider than the plane soliton, because L =
2
√

β(1/3 + h0/ηa) is the width of such soliton (see, e.g., [17]). 
Firstly, as it was expected, both converging and diverging cylindri-
cal waves are formed. Then the first of them is evolving similar 
to the converging wave in Fig. 2, and the second one leads to a 
splash “fountain” in the center of the tank, and after that another 
centrifugal wave is formed. In Fig. 4(c) it is seen that the maxi-
mum splash calculated on the basis of the linearized Eq. (3) takes 
place later and is 17% lower than the one calculated by the com-
plete Eq. (3).

Fig. 5 demonstrates interaction of ring-shaped and bell-shaped 
disturbances. Arrows indicate direction of wave propagation (in 
previous time points). Fig. 5(b) clearly shows processes of collision 
of convergent and divergent cylindrical disturbances. The maxi-
mum splash calculated on the basis of the linearized Eq. (3) takes 
place later and is 4% lower than calculated by the complete Eq. (3). 
In Fig. 5(c) there is a splash “fountain” in the center of the tank, 
and in Fig. 5(d) there is a system of three final centrifugal waves 
(two first waves are nonlinear undular waves). On these figures in-
fluence of the bottom slope becomes even more obvious.
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4. Conclusion

The main results of this work are as follows. The new special 
auxiliary function has been introduced, and for this function a non-
linear partial differential equation of the axisymmetric wave type 
has been obtained. In contrast to the cylindrical Korteweg–de Vries 
equation this equation allows simultaneously simulating both cen-
trifugal and centripetal waves not only far from the center, but 
in its vicinity as well. Based on this new equation a number of 
numerical experiments have been carried out: transformations of 
the initially quiescent bell-shaped and ring-shaped disturbances as 
well as their interactions in the shallow liquid layer above the hor-
izontal bottom and above a drowned concave.
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