
Nonlinearity
            

PAPER

Integrable turbulence and formation of rogue
waves
To cite this article: D S Agafontsev and V E Zakharov 2015 Nonlinearity 28 2791

 

View the article online for updates and enhancements.

You may also like
Controllable behaviours of rogue wave
triplets in the nonautonomous nonlinear
and dispersive system
Chao-Qing Dai, Qing Tian and Shi-Qun
Zhu

-

Roadmap on optical rogue waves and
extreme events
Nail Akhmediev, Bertrand Kibler, Fabio
Baronio et al.

-

Higher-order rogue wave solutions of the
Sasa–Satsuma equation
Bao-Feng Feng, Changyan Shi,
Guangxiong Zhang et al.

-

This content was downloaded from IP address 64.106.38.20 on 29/04/2025 at 14:07

https://doi.org/10.1088/0951-7715/28/8/2791
/article/10.1088/0953-4075/45/8/085401
/article/10.1088/0953-4075/45/8/085401
/article/10.1088/0953-4075/45/8/085401
/article/10.1088/2040-8978/18/6/063001
/article/10.1088/2040-8978/18/6/063001
/article/10.1088/1751-8121/ac6917
/article/10.1088/1751-8121/ac6917


| London Mathematical Society Nonlinearity

Nonlinearity 28 (2015) 2791–2821 doi:10.1088/0951-7715/28/8/2791

Integrable turbulence and formation of
rogue waves

D S Agafontsev1,4 and V E Zakharov1,2,3,4

1 P.P. Shirshov Institute of Oceanology, 36 Nakhimovsky prosp., Moscow 117218, Russia
2 Department of Mathematics, University of Arizona, Tucson, AZ, 857201, USA
3 P.N. Lebedev Physical Institute, 53 Leninsky ave., 119991 Moscow, Russia
4 Novosibirsk State University, 2 Pirogova, 630090 Novosibirsk, Russia

E-mail: dmitrij@itp.ac.ru and zakharov@math.arizona.edu

Received 19 September 2014, revised 3 May 2015
Accepted for publication 29 May 2015
Published 10 July 2015

Recommended by Koji Ohkitani

Abstract
In the framework of the focusing nonlinear Schrödinger equation we study
numerically the nonlinear stage of the modulation instability (MI) of the
condensate. The development of the MI leads to the formation of ‘integrable
turbulence’ (Zakharov 2009 Stud. Appl. Math. 122 219–34). We study
the time evolution of its major characteristics averaged across realizations of
initial data—the condensate solution seeded by small random noise with fixed
statistical properties.

We observe that the system asymptotically approaches to the stationary
integrable turbulence, however this is a long process. During this process
momenta, as well as kinetic and potential energies, oscillate around their
asymptotic values. The amplitudes of these oscillations decay with time t as
t−3/2, the phases contain the nonlinear phase shift that decays as t−1/2, and the
frequency of the oscillations is equal to the double maximum growth rate of the
MI. The evolution of wave-action spectrum is also oscillatory, and characterized
by formation of the power-law region ∼|k|−α in the small vicinity of the zeroth
harmonic k = 0 with exponent α close to 2/3. The corresponding modes form
‘quasi-condensate’, that acquires very significant wave action and macroscopic
potential energy.

The probability density function of wave amplitudes asymptotically
approaches the Rayleigh distribution in an oscillatory way. Nevertheless, in
the beginning of the nonlinear stage the MI slightly increases the occurrence
of rogue waves. This takes place at the moments of potential energy modulus
minima, where the PDF acquires ‘fat tales’ and the probability of rogue waves
occurrence is by about two times larger than in the asymptotic stationary state.

Presented facts need a theoretical explanation.
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1. Introduction

Today the total amount of experimental evidence of rogue waves emergence on the surface of
fluid and in optical fibers is huge [1–5]. Thus, the development of a consistent theory of these
events is urgently needed. The simplest nonlinear mathematical model for the description of
rogue waves phenomenon is the modulation instability (MI) developing from the condensate
solution in the framework of the focusing one-dimensional nonlinear Schrödinger (NLS)
equation [1–3]. Without loss of generality we will use the NLS equation in the following
form:

i�t − � + �xx + |�|2� = 0. (1)

The simplest ‘condensate’ solution � = 1 of this equation is unstable. If we consider
modulations to the condensate as

� = 1 + κ exp(ikx + i�t), |κ| � 1, (2)

and linearize equation (1) against the condensate, we obtain

�2 = k4 − 2k2. (3)

The modulations with k ∈ (−√
2,

√
2) turn out to be unstable, and the maximum growth rate

of the instability,

γ0 = max
k

Im � = 1, (4)

is realized at k = ±1. Thus, the characteristic length of the instability is � = 2π , and the
characteristic time is 1/γ0 = 1.

To study the nonlinear stage of the MI, one has to solve equation (1) with the initial data
in the form

�|t=0 = 1 + ε(x), |ε(x)| � 1. (5)

It should be noted that the problem of the MI development on the background of any condensate
solution �|t=0 = C + ε(x), |ε(x)| � |C|, and for the focusing NLS equation

i�t + B �xx + G |�|2� = 0

with arbitrary dispersion B > 0 and nonlinearity G > 0 coefficients renormalizes to
equations (1) and (5), as can be seen after the scaling and gauge transformations x =
x̃
√

B/(G|C|2), t = t̃/(G|C|2), � = �̃ Ceit̃ and ε = ε̃ Ceit̃ .
If |ε(x)| → 0 at |x| → +∞, then the problem (1), (5) can be solved analytically with

the help of the inverse scattering transformation [6–9]. The MI in this case leads to formation
of different types of solitonic solutions. The scenario of the MI essentially depends on the
fine details of the initial perturbation ε(x). The pure real perturbation leads to formation
of homoclinic solutions of Peregrine type [10], while the pure imaginary one generates
‘superregular’ solitonic solutions described in the publications of Zakharov and Gelash [8,9].
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The general case when both imaginary and real parts of the perturbation are present is not
properly studied yet.

In spite of the apparent significance of these results, they do not answer to the main
question—what happens if the perturbation ε(x) is not localized? To study it, we solve
the NLS equation (1) numerically in the box x ∈ [−L/2, L/2] with the periodic boundary.
Theoretically speaking, this problem can also be solved analytically. Any periodic solution
of the NLS equation can be expressed explicitly in terms of Jacobi theta-functions over a
certain hyperbolic curve [7]. However, this beautiful mathematical result can hardly be used
for practical purposes. In our numerical experiments ε(x) is a small random noise, and we
use the number of harmonics of order 105. Then, to model its evolution in terms of Jacobi
functions, we have to make the genus of the curve of order 105. It is unrealistic so far to follow
this evolution by the use of the exact analytical methods.

Therefore, we rely completely on numerical experiments. We use integrability of the NLS
equation only in the weakest sense. Integrability implies conservation of an infinite number
of integrals of motion. The first three of these invariants are wave action,

N = 1

L

∫ L/2

−L/2
|�(x, t)|2 dx, (6)

momentum,

P = i

2L

∫ L/2

−L/2
(�∗

x� − �x�
∗) dx, (7)

and total energy,

E = H2 + H4,

Hd = 1

L

∫ L/2

−L/2
|�x |2 dx, H4 = − 1

2L

∫ L/2

−L/2
|�|4 dx. (8)

Here Hd is the kinetic and H4 is the potential energy. We define these integrals with the
prefactor 1/L for further convenience. We use the method of numerical simulations that
conserves very well the first 12 invariants.

Our study has two main goals. First, we expect that after a very long evolution the
result of the MI of the condensate should be the stationary ‘integrable turbulence’ [11]—
thermodynamically equilibrium state defined by an infinite number of invariants. In our
experiments we indeed observe that the system asymptotically approaches towards it’s
stationary turbulent state. The investigation of this state has fundamental importance. Note that
the similar research has recently been made for the focusing NLS equation, but with incoherent
wave field initial conditions [12] (see also [13–17] for the dependence of the final state on the
Benjamin–Feir index and [18] for the defocusing NLS equation). Since we study the integrable
system which ’remembers’ it’s initial state through an infinite number of integrals of motion,
it is not surprising that our asymptotic turbulent state differs from that of [12]. Secondly, we
examine the beginning of the nonlinear stage of the MI and the subsequent evolution towards
the asymptotic turbulent state in order to understand the characteristic features of rogue waves
emergence in the framework of the focusing NLS equation. In this sense our study is in line
with the intensive modern research on the statistics of waves in different nonlinear systems,
and many of these systems fall under the category of the generalized one-dimensional NLS
equation [4, 5, 19–26].

Since we perform our simulations in the finite box L < +∞, after a very long time we
will encounter with Fermi–Pasta–Ulam (FPU) recurrence phenomenon [27, 28]. This means
that at some point of time the evolution towards the stationary integrable turbulence will stop,
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and the system will move back towards the condensate state. Thus, the system of finite size
L does not have the asymptotic stationary turbulent state in it’s true sense. However, it has
a quasi-asymptotic state in which it spends most of the time between the development of the
MI and the FPU recurrence. Since the time of the FPU recurrence tends to infinity with the
system size L, the quasi-asymptotic state approaches to the stationary integrable turbulence as
L → +∞.

We stop our simulations before we observe a tendency towards the FPU recurrence.
Technically, we perform a convergence study comparing our results obtained in the
computational boxes L and 2L. As soon as we observe deviations between these results,
we stop simulations in the smaller box L and switch to simulations in the box 2L, comparing
the results with that from the box 4L. We repeat this procedure until our computational
resources allow. In this sense our results can be considered as the subsequent approximations
of the stationary integrable turbulence. Taking this into account we will continue to use the
term ‘asymptotic state’ in its initial meaning.

One of the important characteristics of the turbulence is the wave-action spectrum

Ik(t) = 〈|�k(t)|2〉. (9)

Here and below 〈...〉 stands for arithmetic average across the ensemble of initial data and
�k(t) = F [�(x, t)] is the Fourier transform of �(x, t). We define forward F and backward
F−1 Fourier transformations as

�k(t) = F [�(x, t)] = 1

L

∫ L/2

−L/2
�(x, t)e−ikx dx, (10)

�(x, t) = F−1[�k(t)] =
∑

k

�k(t)e
ikx, (11)

where k = 2πn/L is the wavenumber and n is the integer. In our simulations we use L = 2πm

where m is the integer, so that our spectral band contains exact wavenumbers k = ±1 where
the maximum growth rate of the MI is achieved. Wave-action spectrum is the spectral density
of wave action, since

〈N〉 =
∑

k

Ik(t). (12)

Thus, the right-hand side of equation (12) is conserved by the motion. According to (10), all
wave-action of the condensate � = 1 is concentrated in the zeroth harmonic k = 0,

Ik =
{

1, k = 0,

0, k 
= 0.
(13)

During the development of the MI we observe that wave action disperses across other
harmonics. This happens in the form of an oscillatory exchange of wave action between
the zeroth harmonic I0(t) from one hand, and the rest of the spectrum from the other. In
the result of this process wave-action spectrum approaches towards the asymptotic spectrum.
In the beginning of the MI the spectrum has discontinuity at k = 0 in the form of a high
peak occupying the zeroth harmonic only. This peak appears from the initial data (5). The
remarkable result of our experiments is that the peak does not disappear with the arrival to the
nonlinear stage of the MI, but instead decays in oscillatory way and remains detectable for
a long time after the beginning of the nonlinear stage. After the peak finally disappears, the
singularity in the spectrum at k = 0 transforms to power-law behavior ∼|k|−α at |k| � 0.15
with exponent α close to 2/3. The corresponding modes have very large scales in the physical
space and can be called ‘quasi-condensate’, that in the asymptotic turbulent state has about
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40% of wave action, less than 1% of kinetic energy and about 10% of potential energy. The
asymptotic spectrum decays monotonically as |k| → +∞; this decay is slower at 0.4 � |k| � 1,
very fast near |k| = 0 and |k| = √

2, and close to exponential from |k| > 1.5.
Another important characteristic of the turbulence is the (simultaneous) spatial correlation

function,

g(x, t) =
〈

1

L

∫ L/2

−L/2
�(y, t)�∗(y − x, t) dy

〉
. (14)

It is connected with wave-action spectrum by the relation

g(x, t) = F−1[Ik(t)],

that follows from equations (10)–(11). Spatial correlation function is fixed to unity g(0, t) ≈ 1
at x = 0, since

g(0, t) = 〈N〉, (15)

and for the ensemble of initial data (5) wave action N almost coincides with unity (for our
experiments [〈N〉 − 1] ∼ 10−9).

In the nonlinear stage of the MI we observe that spatial correlation function also evolves
in oscillatory way approaching towards the asymptotic correlation function. While the peak at
k = 0 in wave-action spectrum is present, g(x, t) decays with |x| → +∞ to some nonzero level
that is determined by the magnitude of the peak. When the peak disappears, the correlation
function decays to zero as 1/|x|. At lengths |x| < xcorr/2 the asymptotic spatial correlation is
close to Gaussian. Here xcorr ≈ 4 is it’s full width at half maximum.

We also measure the probability density function (PDF) of wave amplitudes P(|�|, t).
Let us suppose that the current state of a system consists of multitude of uncorrelated linear
waves,

�(x) =
∑

k

|�k| ei(kx+φk). (16)

If phases φk are random and uncorrelated, the number of waves {k} is large enough, and
amplitudes |�k| fall under the conditions of central limit theorem, then real Re �(x) and
imaginary Im �(x) parts of field �(x) are Gaussian-distributed, and the PDF of wave
amplitudes coincides with Rayleigh distribution [29] (see example on figure 1),

PR(|�|) = 2|�|
σ 2

e−|�|2/σ 2
. (17)

For a system that conserves wave action and has Rayleigh PDF, the parameter σ can be readily
calculated as

〈N〉 = 〈|�|2〉 =
∫ +∞

0
|�|2 PR(|�|) d|�| = σ 2.

Here 〈|�|2〉 is ensemble and space average of squared amplitude. For the ensemble of
initial data (5) this leads to conclusion σ ≈ 1.

Since
∫

F(x)x dx = (1/2)
∫

F(x) dx2, the PDF P(|�|2, t) of squared amplitudes is
exponential if the corresponding amplitude PDF P(|�|, t) is the Rayleigh one, and vice versa;
for σ = 1 this leads to

PR(|�|2) = e−|�|2 . (18)

It is more convenient to examine exponential dependencies than Rayleigh ones, and thereby we
measure the PDF of squared amplitudes and compare the results with exponential dependency
(18) that we call Rayleigh one for simplicity. Throughout the publication we use term ‘PDF’
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Figure 1. The PDF P(|�|) (solid black line) for linear waves �(x) =
(
√

8π/θL)1/2 F−1[A0e−k2/θ2+iξk ], θ = 5, A0 = 1, calculated in the periodic box
x ∈ [−L/2, L/2], L = 256π , using 106 different realizations of random uncorrelated
phases ξk . The average squared amplitude for such linear waves is |�|2 ≈ A2

0 = 1 (see
equations (24)–(25)). Dashed red line is the Rayleigh distribution (17) with σ = 1.

only in relation to the PDF of wave amplitudes. We measure the PDF P(|�|2, t) for the entire
field �(x, t), in contrast to PDFs for local maximums or absolute maximums, and use the
normalization, ∫ +∞

0
P(|�|2) d|�|2 = 1.

The knowledge of the PDF gives us the probability of occurrence W(Y, t) of waves
exceeding a certain threshold |�|2 > Y ,

W(Y, t) =
∫ +∞

Y

P (|�|2, t) d|�|2. (19)

In case of the Rayleigh PDF (18) this probability takes the simple form

WR(Y, t) = e−Y . (20)

In addition to the PDF we measure the ensemble average kinetic 〈Hd〉 and potential 〈H4〉
energies, and also the moments

M(n)(t) =
〈

1

L

∫ +L/2

−L/2
|�(x, t)|n dx

〉
. (21)

The moments are connected to the PDF as

M(n)(t) =
∫ +∞

0
|�|nP (|�|, t) d|�|. (22)

Thus, for a system with the Rayleigh PDF (18) the moments can be easily calculated,

M
(n)
R = 


(
n

2
+ 1

)
, (23)

where 
(m) is the gamma-function. The moment M(2)(t) does not change with time since
M(2)(t) = 〈N〉 ≈ 1.

In the nonlinear stage of the MI we observe that the kinetic 〈Hd〉 and potential 〈H4〉
energies, as well as the moments M(n)(t), n 
= 2, oscillate with time around their asymptotic
values. The amplitudes of these oscillations decay with time as t−3/2, the phases contain the
nonlinear phase shift that decays as t−1/2, and the period of the oscillations is equal to π .
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Thus, the frequency of the oscillations is equal to the double maximum growth rate of the MI.
The asymptotic values of kinetic and potential energies are 0.5 and -1 respectively, while the
asymptotic moments coincide with the Rayleigh predictions (23).

The PDF in the asymptotic turbulent state coincides with the Rayleigh one (18). Thus,
the probability of occurrence of waves turns out to be the same as for a wave field described
by linear equations (20). The level of nonlinearity of the turbulence can be estimated by the
parameter

Q = |〈H4〉|
|〈Hd〉| .

For weak turbulence |Q| � 1 the Rayleigh PDF would be a natural result. However, for
the NLS equation we observe a ’moderately strong’ turbulence with Q = 2 in the asymptotic
state.

Nevertheless, we confirm that in the beginning of the nonlinear stage the MI moderately
increases the occurrence of rogue waves. According to the standard definition [1–3], a rogue
wave is a wave that exceeds at least two times the significant wave height hs. The significant
wave height is calculated as the average wave height of the largest 1/3 waves. It is easy to
calculate that for Rayleigh PDF (18) the significant wave amplitude is hs ≈ 1.42, and rogue
waves must exceed |�| > 2.8 in amplitude or |�|2 > 8 in squared amplitude.

In our experiments we observe that in the beginning of the nonlinear stage of the MI the
PDF evolves significantly with the oscillations of kinetic and potential energies. At the points
of time corresponding to local maximums and minimums of potential energy modulus |〈H4〉|,
the PDF acquires ‘fat tails’ and significantly exceeds the Rayleigh PDF (18) in the two regions
of squared amplitudes 3 � |�|2 � 7 and 10 � |�|2 � 15, respectively. It is interesting that
the evolution of the PDF goes in such a way that in the beginning of the nonlinear stage the
‘standard’ rogue waves |�|2 > 8 appear even less frequently than predicted by the Rayleigh
PDF (20).

The waves from the first region 3 � |�|2 � 7 are ‘imperfect’ rogue waves, since they
do not match the criterion for the ‘standard’ rogue waves |�|2 > 8. The ‘imperfect’ rogue
waves are the typical outcome of the MI, and can be seen at the first several local maximums
of |〈H4〉|. In space these waves form a modulated lattice of large waves with distance between
them close to the characteristic length � = 2π of the MI. In the beginning of the nonlinear
stage the probability of occurrence of such waves with |�|2 > 4 is by about three times larger
than Rayleigh one (20). The crests of the ‘imperfect’ rogue waves are mostly composed of
the imaginary part of wave field �(x), |Re �| � |Im �|. At the first, third, and so on, local
maximums of |〈H4〉| it is positive Im � > 0, and at the second, fourth, and so on, local
maximums—negative Im � < 0.

A similar scenario is realized in the case of the Akhmediev breather [30–32] that
corresponds to the maximum growth rate of the MI. At the time of its maximal elevation this
solution is purely imaginary, and at its maximums the imaginary part is positive Im � > 0.
After the decay this solution changes the phase of the condensate by eiπ = −1. Thus,
the following Akhmediev breather—if it appears—should have a negative imaginary part
Im � < 0 at its crests, the third Akhmediev breather—positive, and so on.

However, it is unclear how these solutions may appear from random statistically
homogeneous in space noise one after another with the short interval between them. This
interval is equal to the period of the oscillations of the moments, as well as kinetic and potential
energies, is close to 4 in the beginning of the nonlinear stage of the MI and approaches to π

with time. Also, the spatial correlation function of the ‘imperfect’ rogue waves significantly
decreases after a few characteristic lengths � of the MI, and takes (locally in time) minimal
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values. For the Akhmediev breather it remains periodic. Wave-action spectrum of the
‘imperfect’ rogue waves also is not very similar to that of the Akhmediev breather.

In the beginning of the nonlinear stage of the MI and at the local minimums of potential
energy modulus |〈H4〉| the waves from the second region 10 � |�|2 � 15 appear by about
two times more frequently for |�|2 > 12 than predicted by the Rayleigh PDF (20). These
waves are very rare events, and represent in space a singular high peak with full width at half
maximum of about xFW ∼ 1 and duration in time of about �T ∼ 1. These ‘large’ rogue
waves appear on the background of perturbed wave field that is usually less than |�| < 1.5
in amplitude. Statistically at this time the wave field is significantly correlated, the spatial
correlation function takes (locally in time) maximal values, and the wave-action spectrum has
(locally in time) a maximal zeroth harmonic with the rest of the spectrum minimally excited.

The crests of the ‘large’ rogue waves are composed mostly of the real part of the wave field
�(x), |Im �| � |Re �|. At the first, third, and so on, local minimums of |〈H4〉| it is negative
Re � < 0, and at the second, fourth, and so on, local minimums—positive Re � > 0. It is
interesting that the Peregrine solution [10] has a similar property: at the time of its maximal
elevation this solution is purely real and negative at its maximum amplitude. However, the
Peregrine solution has a slightly smaller maximal squared amplitude max |�|2 = 9.

We also observe extremely large waves with amplitudes of up to |�| ∼ 6. However,
the accuracy of our simulations is insufficient to study the time evolution of the PDF and the
probability of occurrence of such waves.

The paper is organized as follows. In the next section we describe the numerical methods
that we used in the framework of the current study. Section 3 is devoted to the investigation
of the asymptotic state of the integrable turbulence, while in section 4 we describe how
the temporal evolution towards this state is arranged. Section 5 contains conclusions and
acknowledgements. In the appendix A we provide detailed graphs for wave-action spectrum
and spatial correlation function in the beginning of the nonlinear stage of the MI. Detailed
graphs for the evolution of the probability of large waves occurrence are given in the appendix B.

2. Numerical methods

We integrate equation (1) numerically on the time interval t ∈ [0, 1000] in the box x ∈
[−L/2, L/2], L = 1024π , with the periodic boundary. We use L = 2πm, where m is
integer, in order to have in our spectral band exact wavenumbers k = ±1 where the maximum
growth rate of the MI is achieved. We continue integration for t � 1000 in order to approach
the asymptotic turbulent state as close as our computational resources allow. We do not
integrate beyond t = 1000 since starting from t ∼ 1200 we observe a tendency towards the
FPU recurrence: kinetic and potential energies, as well as the moments M(n)(t), significantly
deviate from their asymptotics, as well as from the results obtained on larger computational
box 1.5L (for that large L we cannot allow ourselves comparison with the box 2L). We
also performed simulations on smaller boxes and found the same phenomenon starting from
t ∼ 600 for L = 512π , t ∼ 300 for L = 256π , and so on.

We would like to stress that we have a very good quantitative agreement of our results
obtained on different computational boxes L before the tendency towards the FPU phenomenon
appears. Thus, results for L = 256π coincide with that obtained on larger boxes up to t ∼ 300,
for L = 512π—up to t ∼ 600 and for L = 1024π—up to t ∼ 1200. Note that in order to
compare wave-action spectrum obtained on different boxes L, we need to use it in the form
Ik/�k, since for the finite L wavenumber k actually models the area [k − �k/2, k + �k/2]
in the the spectrum. Here �k = 2π/L is the distance between the subsequent wavenumbers.
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Below we will continue to use the spectrum in the definition (9), where the spectrum of the
condensate takes the convenient form (13).

We use the Runge–Kutta 4th-order method, and calculate spatial derivatives and wave-
action spectrum with the help of fast Fourier transformations (FFT) routines. We perform our
simulations on uniform grid with the spatial grid size �x = L/M , where M is the number of
nodes on the grid. Thus, all summation over wavenumbers k = 2πn/L in (11), (12), and so
on, where n is the integer, is performed in the spectral band k ∈ [−π/�x, π/�x].

We change the spatial grid size �x adaptively after the analysis of Fourier components of
the solution �k: we reduce �x when �k at large wave numbers k exceed 10−13 max |�k| and
increase �x when this criterion allows. The distance between the subsequent wavenumbers
2π/L = 2−9 ≈ 0.002 is fixed by the length of the computational box L = 1024π , and the
range of wavenumbers k ∈ [−π/�x, π/�x] is determined by �x. Thereby, the modification
of �x only adds or removes harmonics with large wavenumbers. This allows us to perform
interpolation from one uniform grid to another by simply transferring the shared part of the
spectrum to the new grid. We checked that the error of such interpolation is comparable with
the round-off errors. In order to prevent appearance of numerical instabilities, time step �t

also changes with �x as �t = h�x2, h � 0.1.
We start our simulations on the grid with M = 65 536 nodes. In order to calculate the

ensemble average characteristics, we interpolate the solution �(x, t) from the current grid
(determined by the spectrum �k at the current time t) to the fixed grid with M = 131 072
nodes. We checked that such grids are sufficient for our computational box, comparing our
results with that obtained on larger grids. We start from the initial data (5) and use statistically
homogeneous in space initial noise that can be written symbolically as

ε(x) = A0

(√
8π

θL

)1/2

F−1

[
e−k2/θ2+iξk

]
. (24)

Here A0 is the noise amplitude, θ is the noise width in k-space and ξk are arbitrary phases for
each k and each noise realization within the ensemble of initial data. The average squared
amplitude of noise in x-space can be calculated as

|ε|2 = 1

L

∫ L/2

−L/2
|ε(x)|2 dx =

√
8π

θL

A2
0

L

∑
k1,k2

e−(k2
1 +k2

2 )/θ2+i(ξk1 −ξk2 )

×
∫ +L/2

−L/2
ei(k1−k2)x dx =

√
8π

θL
A2

0

∑
k

e−2k2/θ2

≈
√

8π

θL
A2

0

(
2π

L

)−1 ∫ +∞

−∞
e−2k2/θ2

dk = A2
0. (25)

We performed several experiments for several ensembles of initial data that differed from
each other by noise parameters A0 and θ . We didn’t find significant dependence of our results
on noise amplitude A0, except that the system arrives to the nonlinear stage of the MI faster for
larger A0. We also changed noise width in k-space θ in the broad range from θ = 5 to θ = 1,
and obtained the same results for these experiments. In the next two sections we present the
results obtained for the most broad in k-space noise distribution A0 = 10−5, θ = 5, that we
studied. Inside the range of the instability k ∈ (−√

2,
√

2) such noise can be treated as white
noise.

We also tested the following initial noise distribution,

ε2(x) = A0

(√
8π

θL

)1/2

F−1

[
10−vk × e−k2/θ2+iξk

]
, (26)
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where vk is uniformly distributed over [0, 10] random value for each k, A0 = 10−5 and θ = 5.
The multiplier 10−vk introduces the detuning between the amplitudes of noise in k-space by up
to 10 orders of magnitude. However, we came to very similar results, though the oscillatory
evolution of the system in the nonlinear stage of the MI, that we will demonstrate below,
became slightly less regular. In our opinion this means that our results should be visible for a
very wide variety of statistical distributions of noise.

The NLS equation (1) has an infinite number of integrals of motion [7]. The first three of
these integrals are wave action (6), momentum (7) and total energy (8), the fourth one is

c4[�(x)] = 1

L

∫ +∞

−∞

[
��∗

xxx +
1

2
�

d

dx
(|�|2�∗) + |�|2��∗

x

]
dx,

and so on. Our scheme provides very good conservation of the first 12 invariants with accuracy
better than 10−6. We measure absolute errors for integrals cn[�(x)] with even numbers
mod(n, 2) = 0, and relative errors for integrals cn[�(x)] with odd numbers mod(n, 2) = 1,
since for our initial data integrals with even numbers are very close to zero. The first three
invariants are conserved by our scheme with accuracy better than 10−10.

In our experiments we use ensembles of 1000 initial distributions each. We checked our
statistical results against the size of the ensembles, the parameters of our numerical scheme
and the implementation of other numerical methods (Runge–Kutta 5th-order, Split-Step 2nd-
and 4th-order methods [33, 34]), and found no difference.

We also compared our results with that for the MI of the condensate in the framework of
the Ablowitz–Ladik (AL) equation [35, 36],

i
d�n

dt
+

�n+1 − 2�n + �n−1

h2
− �n + |�n|2 �n+1 + �n−1

2
= 0. (27)

The AL system is defined on the grid −M/2 � n � M/2 − 1 with the periodic boundary,
where n is the (integer) node number and M is the total number of nodes, and is analogous
to the NLS equation. As shown in [36], the problem of the MI of the condensate for the AL
system has one free parameter h that has the meaning of the constant of coupling between
the nodes. The NLS equation can be obtained after the substitution x = nh and in the limit
h → 0. Therefore, for h � 1 the AL system (27) may be considered as the scheme of
numerical integration of the NLS equation with fixed discretization along spatial dimension.
Using this scheme together with the Runge–Kutta 4th order method, we arrived to exactly the
same results as in case of the described above numerical scheme for the integration of the NLS
equation.

Comparison of our results with that for the AL system is important from the point of view
of integrability. Indeed, the AL system is also completely integrable in terms of the inverse
scattering transformation. The schemes of numerical integration of the NLS equation break
the integrability due to discretization along both spatial and temporal dimensions. However,
during numerical simulations of the AL system the integrability is broken due to discretization
along temporal dimension only. Therefore, since our results for the NLS equation and the AL
system with h � 1 coincide, we may conclude that the violation of integrability due to spatial
discretization does not affect our results.

3. Integrable turbulence: the asymptotic state

In the linear stage of the MI, when perturbations to the condensate are small, wave-action
spectrum Ik almost coincides with the spectrum of the condensate (13), the spatial correlation
function is almost indistinguishable from unity g(x) ≈ 1, and the PDF represents a very high
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Figure 2. Graph (a): asymptotic wave-action spectrum Ik (solid black line). Graph
(b): asymptotic wave-action spectrum Ik in the vicinity of k = 0 (black circles) and its
fit by function f (k) = b|k|−α , α ≈ 0.659, b ≈ 2.97 × 10−4 (dashed red line). Graph
(a) contains about 6000 harmonics and graph (b) contains about 150 harmonics.

and thin peak around |�|2 = 1. All of the moments (21) are unity M(n) ≈ 1, the kinetic energy
is zeroth 〈Hd〉 ≈ 0, and potential energy is equal to 〈H4〉 ≈ −0.5.

With the development of the MI this situation changes; for our initial data the system
arrives to the nonlinear stage approximately at t ∼ 10 (the characteristic time of the instability
is 1/γ0 = 1). In the nonlinear stage we observe that the moments M(n)(t) with exponents
n 
= 2, and also kinetic and potential energies oscillate with time around their asymptotic
values, and the amplitudes of these oscillations decay as time increases. The evolution of
wave-action spectrum, spatial correlation function and the PDF is more complex, as in addition
to oscillations they simultaneously change their forms. These functions also evolve towards
some asymptotic forms that they take at late times. Thus, it is possible to say that during the
nonlinear stage of the MI the system evolves from the condensate state towards some asymptotic
turbulent state. The asymptotic state is characterized by the independent on time wave-action
spectrum, spatial correlation function, the PDF, the moments, and also kinetic and potential
energies, that we below call asymptotic ones. We study these asymptotic characteristics in
the current section, while the temporal evolution towards the asymptotic state—in the next
section.

We find asymptotic characteristics by averaging the corresponding functions over time
t ∈ [950, 1000], where the deviations of these functions with time are sufficiently small.
Nevertheless, their temporal evolution is still visible even at t = 1000. However, this evolution
is oscillatory-like, and averaging over a sufficiently long time interval should provide us
with a very good approximation to the asymptotic characteristics. We would like to stress
that such a time-averaging procedure gives very similar results already starting from time
interval t ∈ [150, 200]. Therefore, we believe that integration beyond t = 1000 on larger
computational boxes L should not provide us with very different behavior.

Figures 2(a) and (b) show the asymptotic wave-action spectrum Ik . The spectrum decays
monotonically as |k| → +∞. This decay is slower at 0.4 � |k| � 1, very fast near |k| = 0 and
|k| = √

2, and close to exponential from |k| > 1.5. The remarkable property of the spectrum
is that it has singularity at zeroth harmonic k = 0. As will be shown in the next section, in the
beginning of the nonlinear stage of the MI this singularity represents a high peak occupying
the zeroth harmonic only. The peak decays in an oscillatory way, remaining detectable up
to t ∼ 150. At later times we observe the formation of power-law dependence ∼|k|−α for
|k| � 0.15 with exponent α close to 2/3 (see figure 2(b)). The asymptotic wave-action spectrum
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Figure 3. Asymptotic wave-action spectrum Ik (solid black line) and its fit in the region
k ∈ [0.4, 1] by function f (k) = b|k|−α , α ≈ 0.474, b ≈ 3.32 × 10−4 (dashed red line).

for these wavenumbers is very well approximated by the function

Ik ≈ b|k|−α, (28)

where α ≈ 0.659 and b ≈ 2.97 × 10−4. At k = 0 the asymptotic spectrum has a finite value
I0 ≈ 0.032.

The power-law behavior of the asymptotic spectrum means that the corresponding modes
near k = 0 are relatively large. The wave action concentrated in modes |k| � k0 can be
calculated as

〈N(k0)〉 =
∑

|k|�k0

Ik. (29)

It coincides with the ensemble average wave action (6) in the limit k0 → +∞. It turns out that
approximately 41% of the wave action is concentrated in modes from the power-law region
|k| � k0, k0 = 0.15, since 〈N(k0)〉 ≈ 0.41, and about 7% of wave action is concentrated in just
3 modes k = 0 and k = ±2π/L (see also figure 6a). Note that integration of the asymptotic
(28) over modes |k| � k0, k0 = 0.15, gives a very similar result:

N(k0) =
∑

|k|�k0

Ik ≈ 2

�k

∫ k0

0
Ikdk ≈ 2b

(1 − α)�k
k1−α

0 ≈ 0.47,

where �k = 2π/L = 2−9 ≈ 0.002 is the distance between the subsequent wavenumbers.
The modes |k| � 0.15 have scales in the physical space comparable with the length of the
integration box L, and thus can be called ‘quasi-condensate’.

The macroscopic wave action concentration into quasi-condensate from one hand, and
the FPU phenomenon from the other are the reasons why the numerical simulations that we
perform must be implemented on computational boxes with very large lengths. For smaller
computational boxes the distance between wavenumbers 2π/L is too large, and the region
of wavenumbers |k| � 0.15 containing about 40% of the wave action cannot be carefully
resolved.

We also detect another region of power-law dependence of the asymptotic wave-action
spectrum at wavenumbers |k| ∈ [0.4, 1], where the spectrum decays close to |k|−1/2 (see
figure 3(b)). The maximum growth rate (4) of the MI is realized at |k| = 1; the corresponding
modulations have a characteristic scale � = 2π in the physical space. Thus, the second power-
law region corresponds to modes with scales ∼2π–5π , or 1–2.5 characteristic scales of the MI.
These modes acquire about 25% of the wave-action. We think that after a very long evolution
computed on a very large computational box the two power-law regions in the spectrum might
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Figure 4. Graph (a): asymptotic spatial correlation function g(x) (solid black line)
and Gaussian distribution (30) (dashed red line) versus x/xcorr , where xcorr ≈ 4.016 is
full width at half maximum for g(x). Graph (b): asymptotic spatial correlation function
g(x) (solid black line) and its fit by function f (x) = b1/(|x|+b2), b1 ≈ 16.1, b2 ≈ 82.7
(dashed red line).

merge in one Ik ∼ |k|−α , |k| � 1, with some shared exponent α. However, the computational
resources that we have at our disposal are insufficient to check this hypothesis.

Modes with wavenumbers |k| > 1.5, corresponding to scales smaller than 4π/3 in the
physical space, decay in the asymptotic spectrum close to exponential law ∼e−β|k|, β ≈ 0.9.
These modes have about 5% of the wave-action.

The asymptotic spatial correlation function is shown on figures 4(a) and (b). Its
characteristic scale, defined as full width at half maximum, is xcorr ≈ 4.016. At lengths
|x| < xcorr/2 it is close to Gaussian (see equation (15): g(0, t) ≈ 1),

g(x) ≈ exp

[
− 4 ln 2

(
x

xcorr

)2]
. (30)

At |x| > xcorr/2 the asymptotic correlation function decays very slowly to aboutg(L/2) ≈ 0.01
as |x| → L/2. In the region |x| ∈ [100, 1500] this decay is very well approximated as

g(x) ≈ b1

|x| + b2
, (31)

with the coefficients b1 ≈ 16.1 and b2 ≈ 82.7 (see figure 4(b)). In the region |x| ∈
[1500, L/2] = [1500, 512π ] the decay is even slower, but we believe that this is the effect of
the finiteness of the computational box. Indeed, by construction spatial correlation function is
periodic g(L/2) = g(−L/2), and should be even g(x) = g(−x), therefore its derivatives at
the borders of the computational box should be zeroth gx(±L/2) = 0. Thus, near the borders
the behavior of the correlation function should deviate from (31).

The squared amplitude asymptotic PDF P(|�|2) coincides with the Rayleigh PDF (18), as
shown on figure 5(a). Thus, we come to a surprising conclusion, that despite the nonlinearity
of the NLS equation its asymptotic PDF is the same that would be for a wave field described
by linear equations. We additionally checked this conclusion by calculating the asymptotic
values of the moments (21) M

(n)
A , and found that these values coincide with their Rayleigh

predictions (23), at least for exponents n = 1, ..., 10 (see figure 5(b)). The asymptotic moment
M

(4)
A ≈ 2 allows us to calculate the ensemble average potential energy 〈H4〉 in the asymptotic

state,

〈H4〉 = −1

2
M

(4)
A ≈ −1. (32)
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Figure 5. Graph (a): asymptotic squared amplitude PDF P(|�|2) (solid black line) and
the Rayleigh PDF (18) (dashed red line). Graph (b): asymptotic values of the moments
[M(n)(t)]1/n (black circles), n = 1, ..., 10, and their Rayleigh prediction [
(n/2 + 1)]1/n

(23) (dashed red line).

Combined with the conservation of total energy 〈Hd + H4〉 ≈ −0.5, this yields the ensemble
average kinetic energy 〈Hd〉,

〈Hd〉 ≈ 0.5. (33)

We also calculated 〈Hd〉 independently with the same result. Thus, in the asymptotic state
we have the ‘moderately strong’ turbulence with Q = |〈H4〉|/|〈Hd〉| ≈ 2. This makes the
conclusion of Rayleigh statistics for amplitudes |�(x, t)| even more surprising.

The relation (32) is itself truly remarkable. According to (11),

− 〈H4〉 = 1

2

∑
k1,k2,k3,k4

〈�k1�k2�
∗
k3

�∗
k4

〉δk1+k2−k3−k4 , (34)

where δk is Kronecker delta

δk =
{

1, k = 0,

0, k 
= 0.

The four-wave momentum in (34) can be represented as

〈�k1�k2�
∗
k3

�∗
k4

〉 = Ik1Ik2

(
δk1−k3δk2−k4 + δk1−k4δk2−k3

)
+ Jk1,k2,k3,k4 , (35)

where Jk1,k2,k3,k4 is the cumulant. Since
∑

Ik = 〈N〉 ≈ 1, we obtain

− 〈H4〉 ≈ 1 +
1

2

∑
k1,k2,k3,k4

Jk1,k2,k3,k4δk1+k2−k3−k4 . (36)

Together with the relation (32) this yields∣∣∣∣
∑

k1,k2,k3,k4

Jk1,k2,k3,k4δk1+k2−k3−k4

∣∣∣∣ � 1. (37)

The latter result might mean that the cumulant in the asymptotic turbulent state is zeroth.
Thus, the relation 〈H4〉 ≈ −1 can be considered as an indication that the stationary integrable
turbulence is purely Gaussian. The calculation of the cumulant is a cumbersome problem, and
we will study it in a separate publication.

It is interesting to examine the spectral distribution of the ensemble average kinetic
and potential energies. The spectral density of kinetic energy k2Ik can be obtained from
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Figure 6. Graph (a): kinetic energy 〈Hd(k0)〉 (39) (solid black line), potential energy
(−1)×〈H4(k0)〉 (42) (dashed blue line) and wave-action 〈N(k0)〉 (29) (dash–dot red line)
concentrated in modes |k| � k0 in the asymptotic turbulent state. Graph (b): asymptotic
spectral density of kinetic T (k) (38) (solid black line) and potential (−1) × U(k) (43)
(dashed blue line) energies.

equations (8) and (10)–(11). For convenience we divide it by the distance between the
subsequent wavenumbers �k, and use it in the following form:

T (k) = k2(Ik + I−k)

�k
. (38)

Kinetic energy concentrated within modes |k| � k0 can be calculated as

〈Hd(k0)〉 =
∑

|k|�k0

k2Ik = �k
∑

0�k�k0

T (k). (39)

Calculation of the spectral distribution of potential energy is more complex. For this
purpose we introduce the new function �̃(x, t),

�̃(x, t) = F−1[�̃k(t)], (40)

that contains only modes with |k| � k0 from the original solution of the NLS equation �(x, t),

�̃k(t) =
{
�k(t), |k| � k0,

0, |k| > k0,
(41)

and where �k(t) = F [�(x, t)] are the Fourier components of the original solution. Then we
find the potential energy concentrated in these modes and average it across the realizations of
initial data,

〈H4(k0)〉 = −
〈

1

2L

∫ L/2

−L/2
|�̃(x, t)|4 dx

〉
. (42)

Hence, the spectral density of potential energy can be calculated as

U(k) = 〈H4(k + �k)〉 − 〈H4(k)〉
�k

. (43)

In the limit k0 → +∞ the quantities (39) and (42) coincide with the ensemble average kinetic
and potential energies (8), respectively.

The distribution across wavenumbers of kinetic 〈Hd(k0)〉 and potential 〈H4(k0)〉 energies,
as well as their spectral densities T (k) and U(k), are shown on figures 6(a) and (b). The
spectral density of kinetic energy T (k) monotonically increases from zero at zeroth harmonic
k = 0 to T (k) ≈ 0.4 at k ≈ 1.2, where it achieves the maximum, sharply decreases at k ≈ √

2,
and then decays to zero starting from k > 1.5. The spectral density of the potential energy
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Figure 7. Evolution of ensemble average (a) kinetic 〈Hd〉 (black) and potential 〈H4〉
(blue) energies and (b) moments M(1)(t) (black), [M(3)(t)]1/3 (blue) and [M(4)(t)]1/4

(red).

modulus |U(k)| has a sharp maximum at k = 0, monotonically decreases to |U(k)| ≈ 0.3
at k ≈ 0.5, where it achieves local minimum, and then behaves similarly to T (k), acquiring
another maximum |U(k)| ≈ 0.5 at k ≈ 1.2.

It is interesting that |U(k)| is always larger than T (k), so that in the asymptotic turbulent
state all modes are essentially nonlinear. The ‘most nonlinear modes’ are those of the quasi-
condensate |k| � 0.15, that contain less than 1% of kinetic energy, about 10% of the potential
energy, and about 40% of the wave action. Modes with 0.15 � |k| � 1.5 contain about 60%
of kinetic and potential energies and about 55% of the wave action, while the exponentially
decaying modes |k| > 1.5 have about 5% of the wave action, about 40% of the kinetic energy
and 30% of the potential energy.

4. The nonlinear stage of the modulation instability: evolution towards the
asymptotic state

It will be convenient for us to study the evolution towards the asymptotic turbulent state on the
example of ensemble average kinetic 〈Hd〉 and potential 〈H4〉 energies, and also the moments
M(n)(t) (see figures 7(a) and (b)). Up to t ∼ 10 the perturbations to the condensate are small,
so that the moments and the energies do not change substantially from their initial values
M(n) ≈ 1, 〈Hd〉 ≈ 0 and 〈H4〉 ≈ −0.5 respectively. At t ∼ 10 the MI arrives to its nonlinear
stage; the moments start to oscillate around their asymptotic Rayleigh values (23), kinetic
energy—around 0.5, and potential energy—around −1. The moment M(1)(t) oscillates in-
phase with potential energy 〈H4〉, and antiphase with the moments M(n)(t), n � 3, and kinetic
energy 〈Hd〉, so that the positions in time of local maximums and minimums of M(1)(t) and
〈H4〉 coincide with the positions of local minimums and maximums of M(n)(t), n � 3, and
〈Hd〉 respectively.

We study the time dependence of the oscillations on the example of moment M(1)(t).
Figure 8(a) shows that the amplitude of the oscillations of M(1)(t), that we measure as the
modulus of deviations of local maximums and minimums of M(1)(t) from it’s asymptotic value
M

(1)
A , is very well approximated by the function p/t3/2 with the prefactor p = (3.94 ± 0.03).

The period of the oscillations changes from �T ∼ 4 at t ∼ 20 to �T ∼ 3 at t ∼ 200. We
think that this is the effect analogous to the nonlinear phase shift. Indeed, one can search for
the approximation of M(1)(t) in the form

M(1)(t) ≈ M
(1)
A +

p

t3/2
sin(�(t)), �(t) = st + φnl(t) + �0, (44)
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Figure 8. Graph (a): amplitude of the oscillations of the moment M(1)(t) (black
circles), calculated as the modulus of the deviations of the extremums of M(1)(t) from
it’s asymptotic value M

(1)

A , depending on time t . Graph (b): nonlinear phase shift (45)
calculated at the extremums of M(1)(t) (black circles), depending on time t . Dashed red
line on graph (a) is fit by function p/t3/2, p ≈ 3.94, on graph (b)—is fit by function
q/

√
t , q ≈ 57.7.

where �(t) is the phase, s is the constant frequency, �0 is the constant phase, and the nonlinear
phase shift φnl(t) should be proportional to the amplitude of the oscillations p/t3/2 multiplied
by time t , or φnl(t) = q/

√
t with constant q. Then, the phases � at the local maximums tmax

of M(1)(t) should be equal to

�(tmax) = stmax +
q√
tmax

+ �0 = π

2
+ 2πm,

and at the local minimums tmin—to

�(tmin) = stmin +
q√
tmin

+ �0 = 3π

2
+ 2πm,

where m is the integer number. We find all the subsequent extremums tmax and tmin of M(1)(t)

from one hand, and their phases � from the other hand by setting m = 0 for the first maximum,
m = 1 for the second maximum, and so on. Then, with the help of the least squares method
we determine the coefficients s ≈ 1.99, q ≈ 57.7 and �0 ≈ −44.1. After that we check that
the nonlinear phase shift

�(t) − st − �0, (45)

calculated at the extremums of M(1)(t), indeed is very well approximated by the function
q/

√
t , as shown on figure 8(b).
We observe that anzats (44) fits very well to the experimental time dependence of the

moments, and also kinetic and potential energies as well. The example of such a fit for
M(1)(t) is shown on figure 9. The phases �0 for the moment M(1)(t) and potential energy
〈H4〉 coincide, and differ by π from the phases �0 for the moments M(n)(t), n � 3, and
kinetic energy 〈Hd〉. We checked that anzats (44) without the nonlinear phase shift, or with
the exponent of the nonlinear phase shift significantly different from −0.5, fits significantly
worse to the experimental data. It is noteworthy that the period of the oscillations 2π/s ≈ 3.16
is almost equal to π , and their frequency s is almost equal to the double maximum growth
rate of the MI (4), s ≈ 2γ0. We think that the frequency s should coincide with 2, and the
period should accordingly coincide with π , and we measure s ≈ 2 for all of our experiments
irrespective of the statistics of initial noise. However, the nature of such correspondence is
unclear for us yet.
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(1)

A ≈ 0.886, p ≈ 3.94,
s ≈ 1.99, q ≈ 57.7, �0 ≈ −44.1 (dashed red line), and the Rayleigh value of the
moment M

(1)
R ≈ 0.886 (23) (horizontal dashed black line).
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Figure 10. Graph (a): wave-action spectrum Ik(t) at the points of time corresponding
to the first local maximum of the ensemble average potential energy modulus |〈H4〉| at
t = 13.7 (solid black line) and the first local minimum of |〈H4〉| at t = 15.8 (dashed
blue line), and also the asymptotic wave-action spectrum (dash–dot red line). Graph
(b): evolution of wave-action spectrum Ik(t) at k = 0 (black), k = 0.01 (blue), k = 1
(green), k = 2 (pink) and k = 4 (red).

Wave-action spectrum, spatial correlation function and the PDF of squared amplitudes also
evolve in an oscillatory way with time, approaching to their asymptotic forms at late times.
The ‘turning points’ for the evolution of these functions—the points in time where the motion
of Ik(t), g(x, t) and P(|�|2, t) at fixed k, x and |�|2 respectively changes to roughly the
opposite—approximately coincide with the local maximums and minimums of the moments,
and also kinetic and potential energies. For definiteness, below we will refer to such points in
time on the example of extremums of the potential energy modulus |〈H4〉|. This choice has
also straightforward physical sense: at the local maximums of |〈H4〉| the effect of nonlinearity
is the largest, and at the local minimums—the smallest. Note that the spectrum, the correlation
function and the PDF do not evolve exactly as |〈H4〉|, since these functions simultaneously
change their forms with time.

The evolution of the wave-action spectrum is shown on figures 10(a) and (b) (see also
more detailed graphs in the appendix A). In full correspondence with (2), we observe that in
the linear stage of the MI the modes with wavenumbers from the instability band |k| <

√
2

grow exponentially, and the fastest growth rate is achieved at |k| = 1, while modes outside
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Figure 11. Graph (a): wave-action spectrum Ik(t) at the points of time corresponding
to the first local maximum of the ensemble average potential energy modulus |〈H4〉| at
t = 13.7 (solid black line) and the first local minimum of |〈H4〉| at t = 15.8 (dashed
blue line), and also the asymptotic wave-action spectrum (dash–dot red line). Graph
(b): evolution of the peak at zeroth harmonic h(t) (46) (solid black line).
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Figure 12. Graph (a): spatial correlation function g(x, t) at the points of time
corresponding to the first local maximum of the ensemble average potential energy
modulus |〈H4〉| at t = 13.7 (solid black line) and the first local minimum of |〈H4〉|
at t = 15.8 (dashed blue line), and also the asymptotic spatial correlation function
(dash–dot red line). Graph (b): evolution of spatial correlation function g(x, t) at x = 0
(black), x = π/2 (blue), x = 2π (green), x = 4π (pink) and at the border of the
computational box x = L/2 (red).

the instability band |k| >
√

2 do not change with time substantially. Nonlinear interaction
produces multiple harmonics, so that starting from some time when the instability band is
sufficiently exited, the entire spectral band—except for the zeroth harmonic—should rise with
the highest growth for modes with integer wavenumbers. We observe such an effect starting
from t ∼ 5 (see the fast growth of modes k = 2 and k = 4 on figure 10(b) from t ∼ 5 up to
t ∼ 10, and also wave-action spectrum at t = 13.7 shown on figure 10(a)).

In the linear stage of the MI, and also for a long time in the nonlinear stage, the wave-action
spectrum has discontinuity at k = 0 in the form of a high peak occupying the zeroth harmonic
only (see figure 11(a)). This peak appears from the initial data (5), when we add the singular
spectrum of the condensate (13) to the continuous spectrum of noise (24). We observe that this
peak does not fully disappear in the nonlinear stage, but decays in oscillatory way, as shown
on figure 11(b), where we measure the peak as the difference between the zeroth harmonic
k = 0 and the arithmetic average of the two neighbor harmonics k = ±2π/L,

h(t) = I0(t) − 1

2
[I2π/L(t) + I−2π/L(t)]. (46)
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Both the peak in the spectrum h(t) and the zeroth harmonic I0(t) take (locally) minimal
values at the local maximums of potential energy modulus |〈H4〉|, and (locally) maximal values
at the local minimums of |〈H4〉| (see also figure A1 in the appendix A). The rest of the spectrum
Ik(t), |k| > 0, evolves similar to antiphase with I0(t), so that we observe decaying with time
oscillatory exchange of wave action between the zeroth harmonic from one hand, and all other
harmonics from the other. At late times t ∼ 150 the peak in the spectrum disappears and the
discontinuity at k = 0 transforms into singularity of ∼|k|−a type with exponent α close to 2/3.

The evolution of the spatial correlation function is shown on figures 12(a) and (b) (see
also more detailed graphs in the appendix A). In the linear stage of the MI t � 10 the
correlation function is close to unity g(x, t) ≈ 1 since at this time �(x, t) = 1 + ζ(x, t),
|ζ(x, t)| � 1. In the nonlinear stage g(x, t) evolves in an oscillatory way, approaching at late
times to its asymptotic form. Due to conservation of the wave action, the maximum value of the
correlation function at x = 0 is fixed to unity g(0, t) ≈ 1 (see equation (15) and figure 12(b)).
At fixed |x| > 0 the correlation function evolves similar to antiphase with potential energy
modulus |〈H4〉|.

The remarkable property of the spatial correlation function is that it decays at |x| → L/2
to some clearly nonzero level, and this situation takes place not only in the linear stage of
the MI, but also for a long time during the nonlinear stage. This behavior is the result of the
presence of the peak at the zeroth harmonic in the wave-action spectrum. We checked this
fact by subtracting from the correlation function its level at the edges of the computational box
|x| = L/2,

g̃(x, t) = g(x, t) − 1

2
[ lim
x→L/2

g(x, t) + lim
x→−L/2

g(x, t)],

and calculating the new wave-action spectrum as

Ĩk(t) = F [g̃(x, t)].

As follows from (10)–(11), such a transformation changes only the zeroth harmonic in
wave-action spectrum, so that Ĩk(t) = Ik(t) for all |k| > 0. It turns out that the peak at
the zeroth harmonic in the new spectrum Ĩk(t) is very small and changes it’s sign with time.
Therefore, the peak in the original wave-action spectrum directly corresponds to the nonzero
level to which spatial correlation function decays at large lengths |x|, and vice versa.

The evolution of the squared amplitude PDF P(|�|2, t) is shown on figures 13(a) and
(b). In the linear stage of the MI t � 10 the PDF represents a very thin peak at |�|2 = 1,
gradually widening with time. In the nonlinear stage the PDF evolves in oscillatory way and
becomes almost indistinguishable from the Rayleigh PDF (18) already at t ∼ 100. The time
dependence of the PDF is quite similar to that of potential energy modulus |〈H4〉|, especially at
|�|2 ∈ (0.5, 1.5) and |�|2 ∈ (4, 6), where at fixed |�|2 the PDF oscillates according to anzats
(44) antiphase and in-phase with |〈H4〉| respectively. Figure 14 shows that the probability of
occurrence of waves W(|�|2, t) (19) evolves very similar to the PDF P(|�|2, t), oscillating
around the probabilities determined by Rayleigh PDF (20). More detailed graphs for the
probability of rogue waves occurrence are shown in the appendix B.

The evolution of the PDF demonstrates that in the beginning of the nonlinear stage of
the MI there are two regions of squared amplitudes 3 � |�|2 � 7 and 10 � |�|2 � 15,
where the PDF P(|�|2, t) significantly exceeds Rayleigh PDF (18). The maximum increase
in comparison with Rayleigh PDF takes place for these regions of waves at the points of time
corresponding to local maximums and local minimums of potential energy modulus |〈H4〉|
respectively. Thus, at the local maximums of |〈H4〉| the probability of occurrence of waves
with |�|2 > 4, that is approximately the center of the first region, is by about 3 times larger
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Figure 13. Graph (a): squared amplitude PDF P(|�|2, t) at the points of time
corresponding to extremums of the ensemble average potential energy modulus |〈H4〉|—
at t = 13.7 (black line, local maximum of |〈H4〉|), t = 15.8 (blue, minimum), t = 17.7
(green, maximum), t = 19.6 (pink, minimum), and the asymptotic squared amplitude
PDF (dashed red line). Graph (b): time dependence of the squared amplitude PDF
P(|�|2, t) at |�|2 = 1 (black), |�|2 = 2 (blue), |�|2 = 4 (green), |�|2 = 8 (pink) and
|�|2 = 12 (red).
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Figure 14. Probability of occurrence of waves W(|�|2, t) (19) with amplitudes
|�|2 > 1 (black), |�|2 > 2 (blue), |�|2 > 4 (green), |�|2 > 8 (pink) and |�|2 > 12
(red), versus time.

than the Rayleigh one (20) (see figure 14). Below we will refer to these waves as ‘imperfect’
rogue waves since they do not match the standard criterion |�|2 > 8.

The typical amplitude distribution |�(x)| at the first local maximum of |〈H4〉| at t = 13.7,
shown on figures 15(a) and (b), indeed contains significant fraction of the ‘imperfect’ rogue
waves that exceed about two times the initial condensate amplitude. The ‘imperfect’ rogue
waves are the typical outcome of the MI, and we observe such waves at the first several local
maximums of |〈H4〉|. In space these waves form a modulated lattice of large waves with
distance between them close to the characteristic length � = 2π of the MI. The crests of the
‘imperfect’ rogue waves are mostly composed of the imaginary part of the wave field �(x),
|Re �| � |Im �|. At the first, third, and so on, local maximums of |〈H4〉| it is positive
Im � > 0, and at the second, fourth, and so on, local maximums—negative Im � < 0. We
observe such behavior for sufficiently long time, at least up to t ∼ 50. We checked these
facts directly and also by measuring the evolution of the PDF for real Re � and imaginary
Im � parts of wave field. We will report our results for the evolution of such PDFs in the next
publication.

The similar scenario is realized for the Akhmediev breather that corresponds to the
maximum growth rate of the MI. The Akhmediev breathers [30–32] are the solutions of the

2811



Nonlinearity 28 (2015) 2791 D S Agafontsev et al

−30 −20 −10 0 10 20 30
0

0.5

1

1.5

2

2.5

3

x

|Ψ
(x

)|
(a)

−200 −100 0 100 200
0

0.5

1

1.5

2

2.5

3

x

|Ψ
(x

)|

(b)

Figure 15. Spatial distribution of the amplitude |�(x)| at the first local maximum of the
ensemble average potential energy modulus |〈H4〉| at t = 13.7 for one of the realizations
of initial data at x ∈ [−30, 30] (a) and x ∈ [−200, 200] (b).

NLS equation that are periodic in space and localized in time,

�AB(x, t) = e−2iφ cosh(ωt − 2iφ) − cos(φ) cos(bx)

cosh(ωt) − cos(φ) cos(bx)
, (47)

where 0 < φ < π/2 is free parameter and

ω = sin(2φ), b =
√

2 sin φ. (48)

These solutions appear at t → −∞ on the background of the condensate � = 1, develop
with the growth rate ω, become maximal at t = 0, and then decay into the condensate e−4iφ

as t → +∞. At t = 0 these solutions have phase (−1) × e−2iφ at the points of their maximal
amplitude.

Thus, for φ = π/4 both the growth rate ω and the period of the Akhmediev breather
2π/b are equal to the maximum growth rate γ0 = 1 and the characteristic length � = 2π

of the MI respectively. At t = 0 this solution is purely imaginary, and at its maximums
x = 2πn where n is the integer, the imaginary part is positive Im � > 0. After the decay this
solution changes the phase of the condensate to eiπ = −1. Thus, the subsequent Akhmediev
breather—if it appears—should have negative imaginary part at it’s maximums Im � < 0, the
third Akhmediev breather—positive imaginary part, and so on. However, it is unclear how
these solutions may appear one after another with short interval between them from random
statistically homogeneous is space noise. The interval between the maximal elevation of these
solutions must be equal then to the period of the oscillations of potential energy modulus
|〈H4〉|, which is close to 4 in the beginning of the nonlinear stage and approaches to π with
time.

There are also significant distinctions between the Akhmediev breather solution with
φ = π/4 and the ‘imperfect’ rogue waves. Thus, spatial correlation function of the Akhmediev
breather is periodic with period 2π , is maximal at x = 2πn where n is integer, and is equal to
unity at these maximums. For the Akhmediev breather with small perturbations it is natural
to expect that the corresponding spatial correlation function should have pronounced peaks
at the same points, and the magnitude of these peaks should sufficiently slowly decay with
distance |x|. In our experiments we observe that at the first local maximum of the |〈H4〉| spatial
correlation function have just 5 pronounced peaks at x = 2πn for n = 0, ±1, ±2, and at the
second local maximum—just 3 peaks for n = 0, ±1 (see figure 12 and also figure A2 and
A4 in the appendix A). The magnitude of these peaks quickly decays with distance |x|, and
then the spatial correlation function soon becomes almost constant and equal to ∼0.1. It is

2812



Nonlinearity 28 (2015) 2791 D S Agafontsev et al

−210 −200 −190 −180 −170 −160 −150
0

1

2

3

4

5

6

x

|Ψ
(x

)|
(a)

−590 −580 −570 −560 −550 −540
0

1

2

3

4

5

6

x

|Ψ
(x

)|

(b)

Figure 16. Spatial distribution of the amplitude |�(x)| for rogue wave events. Graph
(a): a typical rogue wave occurred near the local minimum of |〈H4〉|. The maximum
amplitude max |�| ≈ 3.6 is achieved at t ≈ 19.8, that is near the second local minimum
of |〈H4〉| at t ≈ 19.6; the duration of this event was �T ∼ 1. Graph (b): an extremely
large rogue wave occurred t ≈ 715.1 with maximum amplitude max |�| ≈ 5.7. The
duration of this event was �T ∼ 0.5.

interesting that at the local maximums of |〈H4〉| spatial correlation function takes (locally in
time) minimal values.

The wave-action spectrum of the Akhmediev breather with φ = π/4 is composed of
harmonics with only integer wavenumbers. Thus, the spectrum of this solution immersed in
a field of small perturbations should have very pronounced peaks at integer wavenumbers.
However, in our experiments we observe in the spectrum only 5 peaks k = 0, ±1, ±2 at the
first local maximum of |〈H4〉|, and just 3 peaks k = 0, ±2 at the second local maximum of
|〈H4〉| (in the latter case at k = ±1 the spectrum takes local minimums; see figure 10 and also
figures A1, A2 and A4 in the appendix A). It is interesting that at the local maximums of the
|〈H4〉| wave-action spectrum has (locally in time) minimal presence of the zeroth harmonic
with the rest of the spectrum maximally excited.

In the beginning of the nonlinear stage of the MI and at the local minimums of potential
energy modulus |〈H4〉| we observe that waves with |�|2 > 12, that is approximately the center
of the second region of squared amplitudes 10 � |�|2 � 15, appear about two times more
frequently than predicted by the Rayleigh PDF (20). These waves are rogue waves. It is
noteworthy that the ‘standard’ rogue waves |�|2 > 8 appear in the beginning of the nonlinear
stage even less frequently than the Rayleigh prediction (20) (see figures B1 and B3 in the
appendix B).

These ‘large’ rogue waves 10 � |�|2 � 15 represent in space a singular high peak with
full width at half maximum of about xFW ∼ 1 and duration in time of about �T ∼ 1 (see
figure 16(a)). These peaks are very rare events and appear on the background of the perturbed
wave field that is usually less than |�| < 1.5 in amplitude (see figure 13(a)). Statistically at
this time wave field is strongly correlated, spatial correlation function takes (locally in time)
maximal values and wave-action spectrum has (locally in time) maximal zeroth harmonic with
the rest of the spectrum minimally excited (see figures 10 and 12, and also figures A1, A3 and
A5 in the appendix A).

The crests of the ‘large’ rogue waves are mostly composed of the real part of the wave
field �(x), |Im �| � |Re �|. At the first, third, and so on, the local minimum of |〈H4〉| it is
negative Re � < 0, and at the second, fourth, and so on, local minimum—positive Re � > 0.
We observe such a behavior for a sufficiently long time, at least up to t ∼ 50. It is interesting
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that the Peregrine solution [10] of the NLS equation has a similar property. This localized in
space and time algebraic solution

�P (x, t) = 1 − 4(1 + 2it)

1 + 2x2 + 4t2
, (49)

appears at t → −∞ on the background of the condensate � = 1, at the time of its maximum
elevation t = 0 is purely real and equal to �P (0, 0) = −3 at its maximum amplitude, and
then decay back to the condensate � = 1. However, the amplitudes of the ‘large’ rogue waves
10 � |�|2 � 15 are slightly larger than the maximum amplitude of the Peregrine solution
max |�P |2 = 9.

We also observe the occurrence of extremely large waves with amplitudes up to |�| ∼ 6.
These waves represent in space a singular high peak with full width at half maximum of about
xFW ∼ 1 and duration in time of about �T ∼ 0.5 (see figure 16(b)). It is interesting that we
often observe such waves very similar to each other, despite the fact that they are generated at
different times from different realizations of initial data. These very large waves are extremely
rare events, and the accuracy of our simulations does not allow us to determine the evolution
of the PDF and the probability of occurrence for such waves with time. The only way we can
observe the influence of these waves on the PDF is the averaging the PDF over sufficiently
long time interval. The latter allows us to conclude that in the asymptotic turbulent state these
waves are distributed according to the Rayleigh PDF (18) (see figure 5).

5. Conclusions

In the current publication we performed the systematic study of the statistics of the MI
developing from the condensate solution in the framework of the focusing NLS equation.
Our goal was two-fold: first, to study the asymptotic stationary turbulent state to which the
system evolves at late times. The investigation of this state has fundamental importance as the
example of stationary integrable turbulence, that can be considered as the thermodynamically
equilibrium state defined by an infinite number of conserved quantities. Second, to examine the
beginning of the nonlinear stage of the MI and the subsequent evolution towards the asymptotic
state. This study is important in relation to the rogue waves phenomenon [1–3].

We found that the asymptotic integrable turbulence is ‘moderately strong’, with kinetic
energy 〈Hd〉 ≈ 0.5 and potential energy 〈H4〉 ≈ −1. The PDF of wave amplitudes and their
momenta in the asymptotic state are Rayleigh ones (18) and (23) with a very good accuracy.
These results would be natural for a random wave field governed by linear equations, that
has Gaussian statistics. The result 〈H4〉 ≈ −1 is itself truly remarkable, since it indicates
that the cumulant in the asymptotic turbulent state might be zeroth (37). The calculation
of the cumulant is a cumbersome problem, but we hope to publish these results in the near
future.

Note that in the recent publication [12] the authors also studied the asymptotic state of the
integrable turbulence in the framework of the focusing NLS equation, but with incoherent wave
field initial conditions. In this case the PDF significantly deviates from Rayleigh one (18) and
has ‘fat tails’, while the probability of occurrence of large waves exceeds the corresponding
Rayleigh distribution (20) by orders of magnitude. As we study the integrable system, it is
not surprising that it’s long-time evolution depends on the initial conditions. However, further
study is necessary to characterize this dependence.

At small wavenumbers |k| � 0.15 the asymptotic wave-action spectrum has a power-law
dependence Ik ∼ |k|−α with exponent α close to 2/3. At k = 0 the spectrum has a finite
value. The modes with |k| � 0.15 have very large scales in the physical space, contain
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about 40% of wave action, less than 1% of kinetic energy and about 10% of potential energy,
and can be called ‘quasi-condensate’. In the region 0.15 � |k| � 1.5 the spectrum decays
monotonically, with another area of power-law dependence Ik ∼ |k|−α at 0.4 � |k| � 1 with
exponent α close to 1/2. In the small vicinity of |k| = √

2 the spectrum decays sharply, and
starting from |k| > 1.5 the spectrum decays close to exponential law Ik ∼ e−β|k|, β ≈ 0.9.
Modes with 0.15 � |k| � 1.5 contain about 55% of wave action, and about 60% of kinetic
and potential energies, while the exponentially decaying modes |k| > 1.5 have about 5% of
wave action, about 40% of kinetic energy and about 30% of potential energy. The asymptotic
spatial correlation function has full width at half maximum xcorr ≈ 4, is close to Gaussian at
|x| < xcorr/2, and slowly decays with length |x| → +∞ as 1/|x|.

We think that after a very long evolution computed on a very large computational box L

the two power-law regions in wave-action spectrum may merge in one Ik ∼ |k|−α , |k| � 1,
with some shared exponent α. However, so far we are unable to check this hypothesis.

Approaching the asymptotic turbulent state is a long oscillatory process. During this
process the momentsM(n)(t) (21) with exponentsn 
= 2, and also kinetic and potential energies,
oscillate with time according to anzats (44) around their asymptotic (Rayleigh) values. The
amplitudes of these oscillations decay with time t as t−3/2, the phases contain the nonlinear
phase shift that decays as t−1/2, and the period of the oscillations is equal to π . Thus, the
frequency of the oscillations is equal to the double maximum growth rate of the MI, s ≈ 2γ0.
So far we do not have analytical model to describe this beautiful phenomenon. We hope that
some study can be done in the approximation of ‘quasi-kinetic’ equation, developed in the
publications of Annenkov and Shrira [38, 39].

During the evolution towards the asymptotic state, wave-action spectrum, spatial
correlation function and the PDF also evolve with time in oscillatory way, approaching to
their asymptotic forms at late times. The ‘turning points’ for the evolution of these functions,
where their motion with time changes to roughly the opposite, approximately coincide with
the extremums of the ensemble average potential energy modulus |〈H4〉|.

The zeroth harmonic in wave-action spectrum I0(t) evolves similar to antiphase, and the
rest of the spectrum—similar to in-phase with |〈H4〉|. Thus, we observe decaying with time
oscillatory exchange of wave action between the zeroth harmonic and the rest of the spectrum.
During this exchange the zeroth harmonic decays from I0 ≈ 1 at t = 0 to its asymptotic value
I0 ≈ 0.032, and at the same time the quasi-condensate modes increase. In the beginning of
the MI the spectrum has discontinuity at k = 0 in the form of a high peak occupying the
zeroth harmonic only. This peak appears from the initial data (5) and (24). The peak does not
disappear with the arrival to the nonlinear stage of the MI, but decays in an oscillatory way
remaining detectable for a long time in the nonlinear stage. After the peak finally disappears,
the discontinuity in the spectrum transforms to power-law dependence ∼|k|−α at |k| � 0.15
with exponent α close to 2/3. While the peak in the spectrum is present, spatial correlation
function decays with length |x| → +∞ to some nonzero level determined by the magnitude of
the peak. After the discontinuity at k = 0 transforms to quasi-condensate, spatial correlation
function decays with length |x| → +∞ as 1/|x|. At fixed |x| > 0 spatial correlation function
g(x, t) evolves similar to antiphase with |〈H4〉|.

We now come to the impact of our results on the theory of rogue waves. Our study was
inspired in part by the idea that the MI of a narrow-banded spectrum could be an effective
mechanism for rogue waves formation [1–3]. We tried to check this notion in the framework
of the most popular model for the description of rogue waves, which is the focusing NLS
equation. Our results turned out to be dubious. We found that after a very long development
of the MI we arrive to the asymptotic stationary turbulent state that has the Rayleigh PDF of
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wave amplitudes (18). Probability of occurrence of rogue waves in this state is the same as in
a system of non-interacting waves with random phases (20).

However, this asymptotic state is reached after a very long oscillatory evolution. In the
beginning of this process the PDF P(|�|2, t) evolves significantly and in an oscillatory way,
and becomes noticeably larger than the Rayleigh PDF (18) for two separate regions of squared
amplitudes 3 � |�|2 � 7 and 10 � |�|2 � 15. The maximal increase of the PDF for these
regions of waves takes place at the points of time corresponding to local maximums and local
minimums of potential energy modulus |〈H4〉| respectively.

In the beginning of the nonlinear stage of the MI and at the local maximums of |〈H4〉|
the waves from the first region appear about three times more frequently for |�|2 > 4
than predicted by the Rayleigh PDF (20). These waves are ‘imperfect’ rogue waves since
their amplitudes are smaller than rogue waves criterion |�|2 > 8. The ‘imperfect’ rogue
waves are the typical outcome of the MI that we observe at the first several local maximums
of |〈H4〉|. In space these waves form a modulated lattice of large waves with a distance
between them close to the characteristic length � = 2π of the MI. The crests of the
‘imperfect’ rogue waves are mostly composed of the imaginary part of the wave field �(x),
|Re �| � |Im �|. This imaginary part is positive Im � > 0 at the first, third, and so on,
local maximums of |〈H4〉|, and negative Im � < 0 at the second, fourth, and so on, local
maximums.

The similar scenario is realized for the Akhmediev breather (47) that corresponds to the
maximum growth rate of the MI. At the time of its maximum elevation this solution is purely
imaginary, and at its maximums the imaginary part is positive. After its decay, this solution
changes the phase of the condensate by eiπ = −1, so that if there appears the following
Akhmediev breather, then it should have the negative imaginary part at its crests, the third
Akhmediev breather should have the positive imaginary part, and so on.

However, it is unclear how these solutions may appear from random statistically
homogeneous in space noise with a short interval one after another. This interval then coincides
with the period of the oscillations of potential energy, is close to 4 in the beginning of the
nonlinear stage of the MI and approaches to π with time. Also, the spatial correlation function
of the ‘imperfect’ rogue waves significantly decreases after a few characteristic lengths � of
the MI, and takes (locally in time) minimal values. For the Akhmediev breather it remains
periodic. Wave-action spectrum of the ‘imperfect’ rogue waves has (locally in time) minimal
zeroth harmonic with the rest of the spectrum maximally excited, and it is not very similar to
the spectrum of the Akhmediev breather.

In the beginning of the nonlinear stage of the MI and at the local minimums of |〈H4〉| the
waves from the second region 10 � |�|2 � 15 appear by about two times more frequently for
|�|2 > 12 than predicted by the Rayleigh PDF (20). These rogue waves are very rare events
and represent in space a singular high peak with full width at half maximum of about xFW ∼ 1
and duration in time of about �T ∼ 1, and appear on the background of perturbed wave field
that is usually less than |�| < 1.5 in amplitude. Statistically at this time spatial correlation
function takes (locally in time) maximal values, and the wave-action spectrum has (locally in
time) maximal zeroth harmonic with the rest of the spectrum minimally excited.

The crests of the ‘large’ rogue waves are mostly composed of the real part of the wave
field �(x), |Im �| � |Re �|. This real part is negative Re � < 0 at the first, third, and
so on, local minimums of |〈H4〉|, and positive Re � > 0 at the second, fourth, and so on,
local minimums. The Peregrine solution (49) has similar property: at the time of its maximal
elevation this solution is purely real and is negative at its maximum amplitude �P (0, 0) = −3.
However, its maximum amplitude is slightly smaller than the amplitudes of the ‘large’ rogue
waves.
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Figure A1. Evolution of the zeroth harmonic of wave-action spectrum I0(t).

We also observe extremely large rogue waves with up to a six-fold increase in comparison
with the initial condensate amplitude. These waves represent in space a singular high peak
with full width at half maximum of about xFW ∼ 1 and duration in time of about �T ∼ 0.5,
and often look quite similar to each other despite the fact that they appear at different times
and from different realizations of initial data. However, the accuracy of our simulations is too
limited to determine the time dependence of the PDF and the probability of occurrence for
these waves.

We think that our results demonstrate that the MI of the condensate in the framework
of the focusing NLS equation is not a very promising model for the studies of rogue waves
phenomena. On the one hand, our study reveals that the maximum increase in the probability
of rogue waves occurrence is just about 2 times in comparison with Rayleigh predictions (20).
This is not a very promising value. On the other hand, the NLS equation is too specific a
model due to its complete integrability that implies the conservation of an infinite number of
invariants. Thus, even a small correction to the NLS equation that violates its integrability
may significantly change the scenario of the rogue waves formation. We hope to illustrate this
idea in our future publications.
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Appendix A. Graphs of the evolution of wave-action spectrum and spatial
correlation function.

In this Appendix we provide more detailed graphs for the evolution of the zeroth harmonic
I0(t), and also for wave-action spectrum and spatial correlation function at the first two local
maximums and minimums of potential energy modulus |〈H4〉|.
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Figure A2. Solid black lines: wave-action spectrum Ik(t) (a) and spatial correlation
function g(x, t) (b) at the first local maximum t = 13.7 of the ensemble average
potential energy modulus |〈H4〉|. Dashed red lines: wave-action spectrum (a) and
spatial correlation function (b) of the Akhmediev breather (47) with φ = π/4 at the
time of it’s maximal elevation.
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Figure A3. Solid black lines: wave-action spectrum Ik(t) (a) and spatial correlation
function g(x, t) (b) at the first local minimum t = 15.8 of the ensemble average
potential energy modulus |〈H4〉|. Dashed red lines: wave-action spectrum (a) and
spatial correlation function (b) of the Akhmediev breather (47) with φ = π/4 at the
time of it’s maximal elevation.
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Figure A4. Solid black lines: wave-action spectrum Ik(t) (a) and spatial correlation
function g(x, t) (b) at the second local maximum t = 17.7 of the ensemble average
potential energy modulus |〈H4〉|. Dashed red lines: wave-action spectrum (a) and
spatial correlation function (b) of the Akhmediev breather (47) with φ = π/4 at the
time of it’s maximal elevation.
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Figure A5. Solid black lines: wave-action spectrum Ik(t) (a) and spatial correlation
function g(x, t) (b) at the second local minimum t = 19.6 of the ensemble average
potential energy modulus |〈H4〉|. Dashed red lines: wave-action spectrum (a) and
spatial correlation function (b) of the Akhmediev breather (47) with φ = π/4 at the
time of it’s maximal elevation.
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Figure B1. Time dependence of the probability of occurrence W(|�|2, t) (19) (a) and
cumulative probability of occurrence R(|�|2, t) (B.1) (b) for waves with amplitudes
|�|2 > 8.
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Figure B2. Time dependence of the probability of occurrence W(|�|2, t) (19) (a) and
cumulative probability of occurrence R(|�|2, t) (B.1) (b) for waves with amplitudes
|�|2 > 10.

Appendix B. Graphs of the probability of rogue waves occurrence.

In this Appendix we provide more detailed version of figure 14 for the evolution of the
probability W(|�|2, t) of rogue waves occurrence for waves exceeding |�|2 > 8, |�|2 > 10
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Figure B3. Time dependence of the probability of occurrence W(|�|2, t) (19) (a) and
cumulative probability of occurrence R(|�|2, t) (B.1) (b) for waves with amplitudes
|�|2 > 12.

and |�|2 > 12 in squared amplitude. Also, we calculate the cumulative probability to meet
these waves to time t as

R(Y, t) =
∫ t

0
W(Y, t) dt. (B.1)

We calculated these results using computational box L = 256π and ensemble of about 6×104

realizations of initial data. As pointed out in the Numerical methods, the results of such
simulations coincide with the base experiment with L = 1024π up to t ∼ 300. The usage of
the smaller computational box allowed us to gather significantly larger statistics, that in turn
significantly increased the resolution of the PDF for |�|2 � 8.
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