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INTRODUCTION

Anomalously large surface waves called rogue
waves are a rare extreme event on the ocean’s surface
[1]. The process of formation of anomalously large
surface waves is a local concentration of energy in one
to two waves [2]. The rogue waves are very interesting
for theoretical and practical studies.

In a number of publications (for example, [3, 4]),
the authors consider classification of rogue waves. In
this work we analyze the results of numerical simula�
tions of sea waves based on the exact equations of
hydrodynamics. In these experiments, we repeatedly
observed the generation of rogue waves. We prepared
an atlas of the geometry of rogue waves on the basis of
a large number (more than 3000) of numerical exper�
iments. The majority of them have a characteristic
geometry, which allowed us to distinguish the typical
profiles of rogue waves and construct their three�para�
metric regression.

NUMERICAL EXPERIMENTS

We performed numerical modeling of the dynamics
of an ideal fluid with a free surface in the domain

We assumed that 2π periodical conditions were estab�
lished along the x variable. Zero flow condition was
assumed at the bottom (y = –∞). The fluid flow was
assumed as potential. Function η(x, t) in the model
describes the geometry of the free surface at time
moment t. In the numerical experiments, we used
dynamic equations obtained by Dyachenko written in
conformal variables [5]. These equations are equiva�
lent to the Euler equation system and allow us to per�
form the calculations correctly with a high accuracy
[6–8]. These and other versions of equations in con�
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formal variables have been used widely to study rogue
waves [9–11].

The formulations of the numerical experiments
used in this work are described in [12, 13]. We recorded
a rogue wave according to the standard amplitude cri�
terion: a rogue wave is observed at time moment t* if
the following inequality is true:

where (t*) = (τ)dτ is the mean significant

wave height and Hmax(t) is the maximum wave height
at time moment t. The value v* = 2.1 was selected
experimentally; it is used in many publications on
rogue waves.

GEOMETRY OF ROGUE WAVES

As a result of a series of numerical experiments, we
obtained approximately 3000 geometric profiles of
rogue waves corresponding to various wave parame�
ters. We note that the profiles of rogue waves obtained
in our experiments were compared with different types
of such rogue waves recorded in the sea during the field
experiments. A qualitative and quantitative correspon�
dence was established between the realistic records of
the waves with the waves modeled in the numerical
experiments (see [14]).

In our numerical experiments, we observed three
classes of rogue waves: “wall of water,” “hole in the
sea,” and “three sisters.” The names of these forms of
extreme waves were previously given by the seafarers
who encountered rogue waves. “A wall of water” is a
solitary anomalous wave with a steep crest. “A hole in
the sea” is a deep depression that appears between two
neighboring wave crests. “Three sisters” is a packet of
several (most frequently, three) sequential anoma�
lously large waves. Approximately 95% of these pro�
files have almost the same geometry and correspond to
the first class: “wall of water.” The diagram in Fig. 1
shows the frequency distribution corresponding to the
most frequently existing class. Let us find a cubical
regression for the left and right sides of waves in the
following form:
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We can consider without loss of generality that the
coordinates of the summit are (0, 1); hence a0 = 1. We
get the following numerical values for the typical pro�
file:

Figure 2 presents a graph of the profile and the sug�
gested regression, and Fig. 3 shows the relative accu�
racy of our approximation. The suggested regression
with cubic polynomials also appeared effective for the

Pleft/right x( ) a3x3 a2x2 a1x a0.+ + +=

Pleft 0.0012x3– 0.0127x2 0.3676x 1,+ + +=

Pright 0.0028x3 0.0063x2 0.2756x 1.+ + +=

other profiles of rogue waves, which were observed in
our experiments.

After the approximation is constructed using ana�
lytical functions, one can analyze different geometri�
cal characteristics of rogue waves. In particular, the
maximum steepness κ of approximately 95% of the
rogue wave profiles is within κ ∈ [0.25, 0.6], while the
mean steepness is 〈κ〉 = 0.38.

The steepness of the remaining 5% of rogue waves
is smaller than 0.25.

Figure 4 gives a diagram of the distribution of the
maximum steepness of rogue waves.
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Fig. 1. Relation between the types of rogue waves: “wall of
water” 95%; “hole in the sea” 3%; “three sisters” 2%.
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Fig. 2. Approximation of the profile with cubic polynomi�
als.
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Fig. 3. Relative errors of approximation.
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Fig. 4. Distribution of the maximum steepness of rogue
waves.
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We note that the observed extreme waves with a
similar form can have a wide range of maximum steep�
ness, from moderate to strongly nonlinear. This indi�
cates that not all waves called rogue waves are really
hazardous.

CONCLUSIONS

In this work we presented a quantitative classifica�
tion of different types of rogue waves based on a large
number of results of numerical experiments. It was
shown that in the overwhelming majority the geometry
of such rogue waves is similar, which makes it possible
to realize the regression of the surface form of anoma�
lously high surface waves using cubic polynomials.

The results presented in this paper can be used for
construction of the typical profiles of rogue waves and
for developing engineering methods to estimate the
hazard of such waves for ships and marine construc�
tions.
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