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Abstract

We offer a new form for the Snl term in the Hasselmann kinetic
equation for squared wave amplitudes of wind-driven gravity wave.
This form of Snl makes possible to rewrite in differential form the con-
servation laws for energy, momentum, and wave action, and introduce
their fluxes by a natural way. We show that the stationary kinetic
equation has a family of exact Kolmogorov-type solutions governed by
the fluxes of motion constants: wave action, energy, and momentum.
The simple ”local” model for Snl term that is equivalent to the ”dif-
fusion approximation” is studied in details. In this case, Kolmogorov
spectra are found in the explicit form. We show that a general so-
lution of the stationary kinetic equation behind the spectral peak is
described by the Kolmogorov-type solution with frequency-dependent
fluxes. The domains of ”inverse cascade” and ”direct cascade” can be
separated by a natural way. The spectrum in the universal domain is
close to ω−4.

1 INTRODUCTION

The phenomenon of wind-generated gravity waves on the sea surface is a very inter-
esting subject not only for oceanographers, coastal engineers and naval architects.
The ocean is a great natural laboratory, and many phenomena taking place there
are interesting for a broad community of physicists. Gravity and capillary surface
waves on deep water represent the most conspicuous natural example of nonlinear
waves in a strongly dispersive media. The statistical theory of such waves is called a
theory of weak turbulence; it is an important part of general classical physics. This
theory has been developing for more than forty years, and its basic concepts are
now understood very well. However experimental data supporting this theory are
scarce. The situation here is opposite to that of strong hydrodynamic turbulence
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in an incompressible fluid. In this case we have a lot of experimental data but the
theory is poor and inconsistent.

The theory of weak turbulence is naturally applicable to the description of
surface gravity and capillary waves on deep and shallow water. It can also be applied
to acoustic Alfven waves in hydrodynamics, to many types of waves in plasmas, to
waves in liquid helium and spin waves in ferromagnetics, as well as to Rossby waves
in atmosphere and to internal waves; however experimental data collected so far
in these areas of physics is too poor to perform a convincing comparison with the
theory. Only the oceanographers who collect data on wave spectra, measured in
the ocean, in lakes and in wave tanks for almost half a century, have accumulated
vast quantities of very valuable experimental materials which could and should
be compared with the predictions of the theory. (A contribution of professor M.
Donelan in this process is really seminal, see for instance [Donelan, 1985]) This is
an ambitious task; a lot of work must be done to perform it, and only first results
are obtained in this direction. It was shown that the fetch dependence of wave
energy and wave frequency, obtained in basic fetch-limited experiments, can be
naturally interpreted in terms of the weak turbulent theory [Zakharov, 2002]. All
experimenters agree that the observed spectra of wind-driven sea waves just behind
the spectral peak have a universal powerlike form close to ω−4. We will show that
this dependence can be easily explained in terms of the weak-turbulent theory.

Once more, weak turbulence is the statistical theory of nonlinear waves in
dispersive media. A central point of this theory is the following: a wave ensemble
is described by the kinetic equation for square wave amplitudes. This equation has
different names; for instance, the Boltzmann equation or the Hasselmann equation.
Also, this equation could be called the Peierls equation, because it is nothing but the
classical limit of the quantum kinetic equation for phonons, derived by Peierls and
others in the late twenties. In this article we will use the term ”kinetic equation”.

The kinetic equation for gravity waves was derived by K. Hasselmann in 1962-
1963 [Hasselmann, 1962; Hasselmann 1963]; now this equation is accepted as a basic
model for the description of wave spectra evolution by the majority of oceanogra-
phers. The kinetic equation in a truncated form (known as the DIA, or Direct
Interaction Approximation) is widely used in the third generation models of wave
prediction. However the physical effects described by the kinetic equation need to
be commented.

The main function of the nonlinear interaction term Snl in the kinetic equation
is a very intensive redistributor of energy, momentum and wave action along the
spectrum. Due to Snl, the direct cascades of energy and momentum as well as
inverse cascades of wave action are formed. These processes govern the evolution of
the spectral peak and play a central role in the formation of the universal powerlike
spectrum behind the spectral peak. In the simplest idealized cases, these spectra
are Kolmogorov-type weak turbulent spectra, corresponding to constant fluxes of
energy and wave action. Strictly speaking, such spectra are realized in physical
systems, where domains of forcing and damping are essentially separated in K-
space. In the wind-driven sea the source of wave action is concentrated near the
spectral peak, while the source of energy is distributed along the spectrum. On the
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first glance this fact is an impediment for application of Kolmogorov-type theory;
actually this is not a serious difficulty. In a realistic situation the fluxes of energy
and wave action are functions of frequency. However this does not affect essentially
the spectral shape; it remains close to ω−4.

One more point is important. If the wind-driven sea is well-developed, then
the main part of momentum fluxes from the wind is concentrated in short waves.
This fact, experimentally established and essentially stressed by M. Donelan, can
be naturally explained in terms of the weak turbulent theory.

There is no reliable parametrization for the white capping dissipation. However
it seems very probable that this fundamental process generates dissipation only
in the short-wave region. Indeed, wave breaking makes the surface more smooth,
acting like an efficient viscosity or even super-viscosity. Moreover, the wave breaking
generates turbulence in the boundary layer with a thickness comparable to the
length of the most dissipative waves. It is known that this layer is much thinner than
the wave length of the spectral peak. Hence it is possible to suggest that the white
cap dissipation in the area of the spectral peak can be neglected for the developed
sea. In the first approximation the evolution of the spectral peak is described by
the ”conservative” kinetic equation such that includes only the time derivative, the
advective term, and Snl. In the range of high frequencies the influence of wind
forcing and white capping can be taken into account as a ”boundary condition”.
This condition defines the flux of wave action to the long wave region.

The ”conservative” kinetic equation has a family of self-similar solutions de-
pending on two free parameters. It was shown recently that by choosing the pa-
rameters in a proper way one can explain the results of major fetch-limited exper-
iments made during the last three decades, including the JONSWAP experiment
[Zakharov, 2002]. We will present a detailed description of this study, supported
by a massive numerical experiment, in an another article. In this paper we present
the basic ideas of the weak turbulent theory using the simplest theoretical model
of Snl known as ”local” or ”diffusive” approximation.

2 Basic Theory

We assume that the flow in the wave motion is potential v = ∇Φ. The condition
of incompressibility imposes on potential Φ the Laplace equation:

∆Φ = 0. (1)

If η is the shape of the surface, then equation (1) should be solved in the domain
z < η under the boundary condition

Φ|z=η = ψ(~r, t),

∂Φ

∂z

∣

∣

∣

∣

z→−∞

→ 0.
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In the linear approximation we should solve equation (1) in the half-space z < 0.
The shape of the surface and the potential on the surface, η and ψ, are canonically
conjugated variables; then the Euler equation for the potential flow of an ideal fluid
with a free surface can be written

ηt =
δH

δψ
,

ψt = −δH
δη

. (2)

The solution of linearized motion equation (2) is the propagating monochro-
matic wave

η =

√

2ω~k
g

A0 cos(~k~r − ωkt− φ),

ψ =

√

2ω~k

|~k|
A0 sin(~k~r − ωkt− φ),

where ω~k =

√

g|~k| and ~k is the wave vector. We can call

A = A0 e
iφ

the complex amplitude of the propagating wave. The normalization of A is taken
in such way that the energy density is

E = ωA2
0.

By definition, A2
0 = E/ω is the density of ”wave action”; then the sea surface is a

composition of propagating waves

η =

∫ √

ω~k
2g

(A~k +A∗

−~k
) ei(

~k~r−ω~k
t) d~k,

ψ = −i
∫

√

ω~k

2|~k|
(A~k −A∗

−~k
) ei(

~k~r−ω~k
t) d~k.

A real sea should be described statistically; to do this let us introduce the
spectral density of wave action, assuming that

〈

A~k A
∗

~k′

〉

= g N~k δ(~k − ~k
′

).

Then we can express the spatial correlation function

F (~R) =
〈

η(~r) η(~r + ~R)
〉
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in the form

F (~R) =

∫

ω~k N~k cos~k ~R d~k.

In this case, the mean squared derivation σ is given by the formula

σ =
〈

η2
〉

=

∫

ω~kN~k d
~k.

Further, let us denote E~k = ω~kN~k; this is the energy density in K-space divided
by g. It has dimension

[

L4
]

. Now we can express η(~r) through its Fourier transform
η~k

η(~r) =

∫

η~k e
i~k~r d~k

and define the spatial spectrum as follows

〈

η~k η~k′

〉

= I~k δ(
~k + ~k

′

),

F (~R) =

∫

I~k e
−i~k~r d~k.

Comparing with (3) we obtain

I~k =
1

2
ω~k (N~k +N

−~k),

σ =

∫

I~k d
~k. (3)

Further, it is convenient to introduce complex amplitudes

a~k = 2π A~k

and derive the motion equation (2) in the form

∂a~k
∂t

+ i
δH

δa∗~k
= 0, (4)

where the Hamiltonian H can be expanded in powers of a~k

H = H0 +H1 +H2 + . . . ,

H0 =

∫

ω~k
∣

∣a~k
∣

∣

2
d~k,

H1 =
1

2

∫

V~k~k1
~k2

(

a∗~ka~k1
a~k2

+ a~ka
∗

~k1

a∗~k2

)

×δ(~k − ~k1 − ~k2) d~k d~k1 d~k2

+
1

3

∫

U~k~k1
~k2

(

a~k a~k1 a~k2 + a∗~k a
∗

~k1

a∗~k2

)

×δ(~k + ~k1 + ~k2) d~k d~k1 d~k2.
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The Hamiltonian H2 contains terms quartic in a∗~k, a~k.

It is not very convenient to use equation (4). The cubic Hamiltonian H1 leads
to the formation of ”slave” waves; wave numbers and frequencies of ”slave waves”
are not connected by the dispersion relation. To separate ”slave” and ”free” waves
one should perform a canonical transformation to new variables b~k, eliminating the
cubic term H1. In new variables the Hamiltonian takes the form [Zakharov, 1999]:

H = H0 +H2,

H0 =

∫

ω~k b~k b
∗

~k
d~k,

H2 =
1

4

∫

T~k~k1
~k2

~k3
b∗~k b

∗

~k1

b~k2
b~k3

×δ(~k + ~k1 − ~k2 − ~k3) d~k d~k1 d~k2 d~k3,

and the dynamic equation
∂b~k
∂t

+ i
δH

δb∗~k
= 0 (5)

in new variables is known as ”Zakharov equation” [Zakharov, 1968]

∂b~k
∂t

+ i ω~k b~k +
i

2

∫

T~k~k1
~k2

~k3

b∗~k1

b~k2

b~k3

×δ(~k + ~k1 − ~k2 − ~k3) d~k1 d~k2 d~k3 = 0.

Explicit expressions for the coefficients of the Hamiltonian, the coupling coefficient
T~k~k1

~k2
~k3

, and the canonical transformation can be found in (Zakharov, 1999).
Equation (5), being approximate, has a very important feature: it conserves

the total wave action, i.e., is adiabatic invariant

N =

∫

∣

∣b~k
∣

∣

2
d~k,

thus the kinetic wave equation is imposed to the correlation function of b-variables:

〈

b~k b
∗

~k′

〉

= n~k δ(
~k − ~k

′

).

On deep water we can put approximately

n~k ≃ 4π2g N~k.

It is important to stress that the kinetic equation describes not the real sea
studied by experimenters but an idealized object: the ensemble of ”free” waves
filtered from the slave harmonics. On deep water the difference between these two
ensembles is small (1 − 2%), while on shallow water the difference can be much
more essential.
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The kinetic equation in terms of N reads

∂N

∂t
+
∂ω

δ~k
+∇N = Snl + Sin + Sds.

Here Sin and Sds are income from wind and dissipation due to white capping, and
Snl has the form

Snl =

∫

S
(

~k,~k1, ~k2, ~k3

)(

N~k1
N~k2

N~k3
+N~kN~k2

N~k3

− N~kN~k1

N~k2

−N~kN~k1

N~k3

)

δ
(

~k + ~k1 − ~k2 − ~k3

)

×δ
(

ω~k + ω~k1
− ω~k2

− ω~k3

)

d~k1 d~k2 d~k3,

where

S
(

~k,~k1, ~k2, ~k3

)

= (2π)4πg2
∣

∣

∣
T~k~k1

~k2
~k3

∣

∣

∣

2

can be found in [Hasselman, 1963], [Webb, 1978], [Zakharov, 1999].
The explicit expression for S is pretty complicated. The most important fact

is the following: S
(

~k,~k1, ~k2, ~k3,
)

is a homogeneous function of sixth order

S
(

ǫ~k, ǫ~k1, ǫ~k2, ǫ~k3,
)

= ǫ6S
(

~k,~k1, ~k2, ~k3

)

.

For a rough estimate we can put

S ≃ k6 ≃ ω12.

This is very fast growing function in frequencies. This fact is of a crucial importance.
Most authors agree that Sin can be presented in the form

Sin = β(ω, θ)N(k),

where

β(ω, θ) = µF (ξ)ω, ξ =
ω cos θ

ω0
, ω0 =

g

u10
.

Here u10 is the wind velocity at 10 meters height; µ = 0.1 ∼ 0.3; ρa/ρw ≃ 10−3; ρa
and ρw are densities of air and water.

There is no agreement about the exact form of the function F (ξ). According
to Hsiao and Shemdin [Hsiao, 1983]

µ = 0.12, F (ξ) = (0.85ξ − 1)2,

according to Donelan [Donelan, 1985]

µ ≃ 0.194, F (ξ) = (ξ − 1)2,

while Tolman and Chalikov [Tolman, 1996] proposed a complicated form of F (ξ).
In all these models β(ω) ≃ ω3 as ω → ∞.
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According to Snyder [Snyder, 1981]

µ = 0.25, F (ξ) = ξ − 1.

In this case, β(ω) ≃ ω2 at large ω.
An analytical expression for Sds is much less certain. Komen et al (1984)

proposed the form

Sds = −Cdis

(

α̂

αpm

)4
(ω

ω̄

)n

ω̄ N. (6)

Here α is dimensionless steepness and Cdis is a dimensionless parameter. This
formula is entirely speculative. It doesn’t have any theoretical foundation and is
not derived from any real experiment in the ocean, lake or in a wave tank. Anyway,
this formula is used widely in operational models (WAM, SWAM). It is supposed
in most cases that

n = 2, α = 3.33× 10−5, αpm = 4.5× 10−3.

In our opinion, expression (6) overestimates dissipation due to white capping in low
frequencies. It can be used in absence of a better option; however on our opinion
the parameter n should be essentially larger. If n ≥ 3, the whole picture of ocean
wave turbulence does not depend on a particular value of n.

3 Constants of motion and their fluxes

In this chapter we study the conservative homogeneous equation

∂N

∂t
= Snl (7)

in absence of wind forcing and dissipation. It is considered that this equation has
the following constants of motion - wave action, energy and momentum:

N =

∫

N~k d
~k,

E =

∫

ω~kN~k d
~k,

~M =

∫

~kN~k d
~k.

Formally speaking, this statement is correct; but the reality is much more compli-
cated. Let us introduce polar coordinates |k| and φ:

|k| = ω2

g
,

k dk dφ =
2ω3

g2
dω dφ,
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and denote

Nω dω = Nk d~k,

N(ω, φ) =
2ω3

g
N

(

ω2

g
, φ

)

. (8)

In what follows we understand N(ω, φ) according to (8). We introduce also angle-
independent spectra

N(ω) =

∫ 2π

0

N(ω, φ) dφ,

E(ω) = ω
N(ω)

2π
,

Mx(ω) =
ω2

g

∫ 2π

0

N(ω, φ) cos(φ) dφ.

The conservative quantities in new variables take form

N =

∫

∞

0

N(ω) dω,

E =

∫

∞

0

E(ω) dω,

Mx =

∫

∞

0

Mx(ω) dω,

and conservation laws of these quantities can be written in the differential form

∂N(ω)

∂t
=
∂Q

∂ω
,

∂E(ω)

∂t
= −∂P

∂ω
,

∂Mx(ω)

∂t
= −∂K

∂ω
.

Here Q is the flux of wave action to small wave numbers, while P and K are fluxes
of energy and momentum directed to high wave numbers. A constant of motion
is ”real” if the corresponding flux is zero both at zero and infinite frequencies.
Otherwise it is just a ”formal” motion constant [Zakharov, Pushkarev, 2000].

Now let us introduce the differential operator

L =
1

2

∂2

∂ω2
+

1

ω2

∂2

∂φ2

and present kinetic equation (7) in the form

∂N(ω, φ)

∂t
= LA. (9)
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Here
A(ω, φ) = L−1 Snl,

and A is a result of action on N(ω, φ) of a nonlinear integral operator

A(ω, φ) =

∫

F (ω, ω1, ω2, ω3, φ− φ1, φ− φ2, φ− φ3)

×N(ω1, φ1)N(ω2, φ2)N(ω3, φ3)

×dω1 dω2 dω3 dφ1 dφ2 dφ3. (10)

The explicit expression for F is given in Appendix. F is a homogeneous function
of order 12:

F (ǫω, ǫω1, ǫω2, ǫω3) = ǫ12F (ω, ω1, ω2, ω3) ∼ g−4ω12.

Further, if we denote

A(ω) =
1

2π

∫ 2π

0

A(ω, φ) dφ,

B(ω) =
1

2π

∫ 2π

0

B(ω, φ) cosφdφ,

then the fluxes Q, P , K can be expressed in terms of A, B in the following form

Q =
∂A

∂ω
, (11)

P = A− ω
∂A

∂ω
, (12)

K =
ω

g

(

2B − ω
∂B

∂ω

)

. (13)

Formulae (11-13) are of key importance for the theory of weak-turbulent spec-
tra.

4 Kolmogorov spectra

In this chapter we study solutions of the stationary equation

Snl = 0, (14)

which is equivalent to equation
LA = 0. (15)

One class of solutions for (15) is given by solution of the equation

A = 0,
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and if these solutions exist, they are thermodynamic Rayley-Jeans spectra

n~k =
T

ω~k + µ
.

In the case of surface gravity waves these solutions do not exist because of the
divergence of integrals in the operator A. To get physically significant solutions we
can partially integrate equation (15) and put

A(ω, φ) = ωQ+ P +
2Kg cosφ

ω
. (16)

In this case,

A(ω) = ωQ+ P,

B(ω) =
Kg

ω
. (17)

By substituting (17) into (11-13) we see that constants Q, P , and K in both cases
are the same.

Equation (16) defines the most general Kolmogorov-type solution of stationary
kinetic equation; due to homogeneity of operator A this equation can be written in
the form

N(ω, φ) =
g

4

3P
1

3

ω5
R

(

ωQ

P
,
2kg

ωP
, φ

)

(18)

with the energy spectrum

E(ω, φ) =
g

4

3P
1

3

ω4
R

(

ωQ

P
,
2kg

ωP
, φ

)

. (19)

Let us study the most important special cases. If Q = 0, K = 0, formulae (18),
(19) give the Zakharov-Filonenko Kolmogorov spectrum of the direct cascade

N(ω, φ) =
Cp g

4

3 P
1

3

ω5
,

Eω =
Cp g

4

3 P
1

3

ω4
. (20)

Here
Cp = R(0, 0, 0)

is the Kolmogorov constant of direct cascade (first Kolmogorov constant). We can
offer another definition of Cp.

Suppose that N(ω, φ) is an isotropic powerlike function of ω,

N(ω) = ω−x. (21)
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Special consideration (which is not at home in this article) shows that integrals in
A converge if

0 < x <
19

4
.

Plugging (21) to (10) we obtain

A(ω) = f(x)ω(15−3x). (22)

Apparently,

f |x=5 =
1

C3
p

.

Spectrum (20) has a clear physical interpretation; this spectrum is a direct
analog of the classical Kolmogorov spectrum of turbulence in an incompressible
fluid. This spectrum is realized if there is a source of energy at small wave numbers
and a sink of energy at high frequency region.

The most general isotropic solution appears if K = 0; then the spectrum is

Eω =
g

4

3P
1

3

ω4
F

(

ωQ

P

)

. (23)

Function F (ξ) depends on one variable; obviously F (0) = Cp. If ξ → ∞, spectrum
should not depend on P . Hence F (ξ) → Cq/Cp ξ

1/3 as ξ → ∞, equation (19) goes
to Zakharov-Zaslavskii spectrum of inverse cascade

E(ω) =
g

4

3CqQ
1

3

ω
11

3

, (24)

where Cq is the Kolmogorov constant of the inverse cascade. Spectrum (23) pre-
sumes that there is a source of wave action Q at high frequencies and sink of wave
action at small frequencies.

A general isotropic spectrum (23) is realized if there exists simultaneously a
source of energy and sink of wave action at small frequencies together with energy
sink and wave action source at high frequencies.

If we study the most anisotropic case Q = 0, P = 0, then equation (16) has the
following solution

N(ω, φ) =
g

4

3 h(φ) (Kg)
1

3

ω
13

3

. (25)

From the symmetry consideration we can make a conclusion that

h(φ) = −h (π − φ).

Hence solution (25) is not positive at all values. This is a reason to doubt that the
general solution (19) is essentially positive and can be realized in the whole (ω, φ)
plane. Anyway, it can be used for approximation of real spectra in some finite part
of wave-vector plane.
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In the important case of Q = 0, solution (19) takes the form

E(ω, φ) =
g

4

3P
1

3

ω4
H

(

gK

ωP
, φ

)

. (26)

Spectrum (26) can be found at small values of gK/ωP . Expanding in the Taylor
series on this parameter, we obtain

E(ω, φ) =
g

4

3 P
1

3

ω4

(

Cp +
α(φ) gK

ωP
+ · · ·

)

.

The correction to the isotropic spectrum satisfies the linearized equation (16). As
far as this situation is invariant with respect to rotations in the (ω, φ) plane,

α(φ) = C2 cosφ.

Coefficient C2 is known as the second Kolmogorov constant.
If ω → ∞, then the right hand in (16) becomes independent of angle. This

means that the Kolmogorov solution becomes isotropic at large ω. The real ob-
served spectra remain anisotropic for arbitrary large ω. The explanation is the
following: in real situation the momentum flux K is not constant but is approxi-
mately proportional to frequency.

5 Local diffusion approximation

Many important features of the weak-turbulent theory can be understood in a
framework of a very simple theory.

Let us accept the following approximation for the operator A [Pushkarev, Za-
kharov, 1999]:

A(ω, φ) =
aω15

g4
N3. (27)

Here a is a dimensionless constant, which should be found by comparison with ex-
periment. In this case the kinetic equation turns to the nonlinear diffusion equation

∂N

∂t
=

a

g4

(

1

2

∂2

∂ω2
+

1

ω2

∂2

∂φ2

)

ω15N3. (28)

Function A has a very simple form and a general Kolmogorov solution is

E(ω, φ) =
g

4

3 P
1

3

a
1

3 ω4

(

1 +
ωQ

P
+

2K g cosφ

ωP

)
1

3

. (29)

Now

Cp = Cq = a−
1

3 ,

h(φ) =

(

2 cosφ

a

)
1

3

.
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Solution (29) is positive for all angles but in the case of large enough frequencies
only; that satisfies the inequality

ωP

2kg

(

1 +
ωQ

P

)

> 1.

Comparing (26) with (9) we find that in this case

A(ω, φ) =
a

g4
ω15N3,

A(ω) =
a

g4
ω15 1

2π

∫ 2π

0

N3 dφ,

B(ω) =
a

g4
ω15 1

2π

∫ 2π

0

n3 cosφdφ,

and for the general Kolmogorov solution we obtain

A(ω, φ) = P + ωQ+
2Kg cosφ

ω
,

A(ω) = P + ωQ,

B(ω) =
Kg

ω
.

Both A(ω), B(ω) are essentially positive. This is correct for the general nonlocal
case (12). The formula for A(ω, φ) presumes that a solution has sources of energy
and momentum, P and K, as well as a sink of wave action Q at the point ω = 0.

In a framework of the local approximation we can efficiently study a forced
stationary equation

Snl + Sin + Sds = 0. (30)

We can assume that
Sin + Sds = β(ω, θ)N(ω, θ),

and restrict our consideration by the case of angular symmetry β = β(ω) only.
Then equation (30) reads

a

2g4
∂2

∂ω2
ω15N3 + β(ω)N = 0. (31)

Another form of this equation is the following:

∂2

∂ω2
A+

g4/3

a1/3
β(ω)

ω5
A1/3 = 0. (32)

In a real situation solution N(ω) is concentrated in a finite frequency band

N > 0, ω1 < ω < ω2,

N = 0, ω < ω1, ω > ω2. (33)
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From continuity of N and ∂N/∂ω we obtain

N |ω=ω1
= 0,

∂N

∂ω

∣

∣

∣

∣

ω=ω1

= 0, N |ω=ω2
= 0,

∂N

∂ω

∣

∣

∣

∣

ω=ω2

= 0. (34)

Conditions (33) define the boundary value problem for equations (31), (32).
Since in neighborhood of the ends of interval (33) there exists asymptotics

A ≃ 1

6
P1(ω − ω1)

3 P1 > 0

A =
1

6
P2(ω2 − ω)3 P2 > 0 (35)

we obtain from (32) the following expressions for β:

β(ω1) = −P 2
1 ω

5
1

(

6a

g4

)1/3

,

β(ω2) = −P 2
2 ω

5
2

(

6a

g4

)1/3

. (36)

We can see now that a boundary problem has nontrivial solutions only if β(ω) is
negative at both ends of interval ω1 < ω < ω2. This conclusion is very general.
To get a stationary solution of equation (30) we should have sinks both in low and
high frequency regions. This statement without a proof can be found in the paper
[Komen, Hasselmann, Hasselmann, 1984].

Condition (34) impose four restrictions on function N(ω) satisfying to a second
order ODE. This is not too much because the ends of the interval ω1 < ω < ω2 are
unknown. They can be found from the following conditions for wave action and
energy balance:

∫ ω2

ω1

β(ω)N(ω) dω = 0,

∫ ω2

ω1

ω β(ω)N(ω) dω = 0.

To satisfy the balance condition, we should have at least one domain of instability,
where β(ω) > 0, inside the interval ω1 < ω < ω2. In a typical situation there is one
such area. In this case A(ω) has only one maximum at a point ω3 (ω1 < ω3 < ω2),
and the whole interval could be divided into three domains:

1. Area, where A(ω) grows. Suppose, some interval A(ω) can be approximated
by a linear function

A(ω) = Q(ω − ω0).

In this area,

Q =
∂A

∂ω
= const,

P = A− ω
∂A

∂ω
∼ −ω0Q < 0.
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This is the area of inverse cascade. A margin of this area is a frequency ω∗, where
flux of energy P changes the sign P (ω∗) = 0.

2. Area near ω ≃ ω∗, where A(ω) is almost constant. Here Q is small, while
P = A(ω∗) is large and positive. This is the area of direct cascade.

3. Area of dissipation, where ∂A/∂ω < 0. In this area P > 0, Q < 0. Both the
energy and the wave action are carried out to a zone of high frequencies.

In the area of direct cascade, equation (32) can be approximately integrated.
We can rewrite this equation

∂

∂ω

(

ω
∂A

∂ω
−A

)

+
g4/3

A1/3

β(ω)

ω4
A1/3 = 0, (37)

and put

ω
∂A

∂ω
≪ A.

This makes possible to integrate (35); the integration yields

∂A

∂ω
=
g4/3

ω1/4

β(ω)

ω4
A1/3,

A2/3 =
2

3

g4/3

a1/3

∫ ω

ω∗

0

β(ω)

ω4
dω.

In this approximation

P = A+ P0 ln
( ω

ω∗

)3/2

,

P0 =
g2

a1/2

(

2

3
c

)3/2

,

and P0 is a slow function of ω. For the spectrum in the direct cascade area we have

E(ω) ≃ P
1/3
0

(

ln ω
ω∗

)1/2

ω4
. (38)

Since in experiments ω∗ ≤ ωp (ωp is a frequency of spectral peak), at the current
level of experimental accuracy it is not easy to distinguish formula (36) from ZF
spectrum ω−4.

We should stress again that the forced stationary equation (28) has a regular
solution if and only if there are regions of intensive damping both in small and high
wave numbers. What happens in other cases? Suppose, there is no damping at all.
In other words,

β(ω) > 0, ω1 < ω < ω2,

β(ω) = 0, ω < ω1., ω > ω2
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Then in the isotropic case, outside of the forcing areas the spectra turn to Kol-
mogorov type spectra

ǫ(ω) =
g4/3 P 1/3

a1/3 ω4
, ω > ω2,

ǫ(ω) =
g4/3Q1/3

a1/3 ω11/3
, ω < ω1, (39)

and the fluxes of energy and wave action have the form

P =

∫ ω2

ω1

β(ω)ω ǫ(ω) dω,

Q =

∫ ω2

ω1

β(ω) ǫ(ω) dω. (40)

There is a difference of principle importance between the area of direct cascade
ω > ω2 and the area of inverse cascade ω < ω1. In the area of direct cascade,
the integrals of motion, energy and wave action are finite. On the opposite, in the
inverse cascade area the energy and the wave action diverge. We can say that the
direct cascade has finite capacity, while inverse cascade has infinite capacity.

A situation with no sink at high wave numbers is pure theoretical. Such a sink
always exists due to pletora of physical reasons: viscosity, transformation of gravity
waves to capillary waves, and finally due to wave breaking. A scrupulous consider-
ation of these processes is not necessary for understanding: what happens near the
spectral peak? Moreover, according to our preliminary study, Kolmogorov spec-
trum of direct cascade can be formed in a finite time [Pushkarev, Resio, Zakharov,
2000].

On the contrary, the Kolnogorov spectrum of inverse cascade, due to its infinite
capacity, cannot be formed in a finite time. If there is no intensive enough damping
at small wave numbers, the inverse cascade cannot be arrested. The downshift of
spectral peak to small frequency area will continue infinitely until it will be stopped
by topographical (better to say, geographical) factors.

6 Discussion

The first weak-turbulent Kolmogorov spectrum for gravity waves, ǫω ≃ ω−4, was
derived analytically as an exact solution of the kinetic equation in 1966 [Zakharov,
Filonenko, 1966]. The second Kolmogorov spectrum ǫω ≃ ω−11/3 was obtained
in the same year in my PhD thesis in Novosibirsk [Zakharov, 1966]; in a regular
journal the spectrum was published in 1982 [Zakharov, Zaslavskii, 1982]. It is called
now Zakharov-Zaslavskii (ZZ) spectrum.

For the first time, the spectrum ǫω ≃ ω−4 was observed experimentally by Toba
in 1972. Since that this spectrum was observed by many researches [Forrestal, 1981;
Kahma, 1981; Kawai et al, 1977; Donelan et al, 1985]. In 1987 Battjes et al found
that spectrum ω−4 fits the JONSWAP experiment much better than ω−5. In 1985
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O. Phillips published a well known article, where he admitted that ω−4 spectrum
fits the experiment better than the ”Phillips spectrum” ω−5. However he did not
offer a proper theoretical explanation of this fact.

In 1982-83 Zakharov and Zaslavskii published in the Russian journal four arti-
cles on application of the weak turbulence theory to the wind-driven sea [Zakharov,
Zaslavskii. 1982; 1983]; soon after S. Kitaigorodskii used successfully these results
for interpretation of experimental data [Kitaigorodskii, 1983]. Since that time the
weak turbulent theory became known to the world community of oceanographers;
however even now this theory is not completely accepted. For almost thirty years
the obvious facts:

1. ǫω ∼ ω−4 is the exact solution of the stationary kinetic equation,
2. ǫω ∼ ω−4 is the spectrum persistently observed in all experiments,
coexist separately in the collective conscience, almost not interacting with each

other. I believe, this is a unique situation in the history of science.
The standard arguments against the weak-turbulent theory are the following

(see, for instance, Komen, Cavaliery et al, 1994).
1. Zakharov-Filonenko spectrum is isotropic, while the real spectra are anisotropic.
This argument is not a serious one. The isotropic spectrum ω−4 is the simplest

example of weak-turbulent spectra. We showed in this paper that more general Kol-
mogorov spectra, which carry momentum to high frequency region, are anisotropic.
Anyway, they are very close to ω−4.

2. In the ”classical” theory of turbulence for incompressible fluid, a source of
energy is concentrated in small wave numbers while in the case of gravity waves
the source of energy is distributed along the whole spectrum.

One can add that the source of momentum is concentrated mostly in short
waves. The answer is the following: in a real situation the flux of energy is not a
constant inside the universal interval; this flux is a slowly growing function of fre-
quency. This leads to nonessential modification: the appearance of slowly growing
pre-factor proportional to (lnω/ω∗)1/2.

We should stress again that the forced stationary kinetic equation (30) has a
solution that contains a finite amount of energy if and only if there is an intensive
dissipation in the low frequency region. This dissipation arrests the inverse cascade
and is essential in the spectral peak area. Thus in this area equation (30) can be
reduced to the form

Snl + Sds = 0.

We like to stress that the physical origin of this low frequency dissipation is unclear;
the very fact of existence of this dissipation and the whole concept of the ”full-
developed” are ”mature” sea is questionable. We will discuss this subject in details
in another article.

In the universal region behind the spectral peak, the solutions of the full equa-
tion (30) can be treated as solutions of the simple stationary equation

Snl = 0

with frequency-dependent values of energy, wave action, and momentum flux. This
is the central point of the theory of weak turbulence. We can add that this point is
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supported now by massive numerical experiments (see for instance [Badulin et al,
2002], [Lavrenov et al, 2002], [Pushkarev et al, to be published]).

The research presented in this paper was supported by NSF grant NDM0072803
and by the Army Corps of Engineers, RTDIE program, grant DACA 42-00-C0044.

Appendix

Solution of the equation

LA =

(

1

2

∂2

∂ω2
+

1

ω2

∂2

∂φ2

)

A = f(ω, φ) (41)

is given by the Green function

A(ω, φ) =

∫

∞

0

∫ 2π

0

G(ω, ω′, φ− φ′) f(ω′, φ′) dω′ dφ′,

where

G(ω, ω′, φ− φ′) = − 1

2π

∞
∑

n=−∞

√
ω ω′

∆n
ein(φ−φ′)

×
[

(

ω′

ω

)∆n

Θ

(

1− ω′

ω

)

+
( ω

ω′

)∆n

Θ

(

ω′

ω
− 1

)

]

Here

∆n =

√

1

4
+ 2n2

and

Θ(ξ) =

{

1 ξ > 0
0 ξ < 0

}

Equation (10) appears after substituting of Snl(ω
′, φ′) as f(ω′, φ′) in formula (40).
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