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Abstract—Different variants of resonance tunneling of a transverse electromagnetic wave through a plasma
layer containing short-scale (subwavelength) inhomogeneities, including evanescence regions to which
approximate methods are inapplicable, are analyzed in the framework of an exactly solvable one-dimensional
model. Complex plasma density profiles described by a number of free parameters determining the permit-
tivity modulation depth, the characteristic scale lengths of plasma structures, their number, and the thickness
of the inhomogeneous plasma layer are considered. It is demonstrated that reflection-free propagation of the
wave incident on the layer from vacuum (the effect of wave-barrier transillumination) can be achieved for var-
ious sets of such structures, including plasma density profiles containing a stochastic component. Taking into
account cubic nonlinearity, it is also possible to obtain an exact solution to the one-dimensional problem on
the nonlinear transillumination of nonuniform plasma. In this case, the thicknesses of the evanescence
regions decrease appreciably. The problem of resonance tunneling of electromagnetic waves through such
barriers is of interest for a number of practical applications.
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1. INTRODUCTION
The interaction of electromagnetic waves with

nonuniform media (including plasmas) containing
large-amplitude short-scale (subwavelength) inhomo-
geneities is currently an active field of research (see,
e.g., [1–9]). Special attention is paid to the analysis of
reflection-free wave propagation on the basis of
exactly solvable models. Clearly, analysis of the effects
caused by short-scale inhomogeneities is of great
interest for a number of practical applications, e.g., for
microwave heating of dense plasma, explanation of
mechanisms for the emergence of radiation generated
by sources located in dense plasma [10], and correct
interpretation of observational data on the astrophysi-
cal electromagnetic radiation and the location of its
sources. In addition, this problem is important for
increasing the efficiency of antireflective and absorb-
ing coatings in radiophysics, including the develop-
ment of thin transparent fairings for radio wave anten-
nas [11], for which it is necessary to find an optimum
permittivity profile that minimizes the coefficient of
reflection or ensures efficient transmission of electro-
magnetic signals from antennas covered with a dense
plasma layer [10]. The development of exactly solvable
models will allow one to reveal fundamentally new

features of the oscillation dynamics and wave propaga-
tion in highly inhomogeneous media and demonstrate
the possibility of interesting practical applications in
the case of media with controlled parameters. It is also
important to investigate the effect of resonance tun-
neling of electromagnetic waves through stratified
plasma in the presence of fairly broad evanescence
regions in which the square of the refractive index is
negative. Exactly solvable models allow one to analyze
how the parameters of the electromagnetic wave
should be matched to those of a nonuniform plasma
layer in order to achieve reflection-free wave propaga-
tion through inhomogeneous plasma. Earlier, the
problem of increasing the efficiency of absorption of
electromagnetic waves in plasma resonance layers was
analyzed by traditional methods, e.g., in [12–14].

In the present work, we analyze complementary (to
those considered in [5, 8, 9]) exactly solvable models
that allow one to analyze resonance tunneling of an
electromagnetic wave through a broad nonuniform
plasma layer containing large-amplitude short-scale
inhomogeneities of the plasma density. Analytical
models describing this effect are presented, and differ-
ent versions of the initial parameters of the problem
(which substantially affect the inhomogeneity profile)
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are considered. The appearance of intense spikes of
the wave field and the possibility of reflection-free
propagation in the presence of a fairly large (formally
unlimited) number of evanescence layers are investi-
gated. The essentially nonlocal coupling between the
wave vector and the effective plasma permittivity is
demonstrated. The used mathematical model of bar-
rier transillumination in the interaction of an electro-
magnetic wave with nonuniform plasma is based on
solving the Helmholtz equation. In this case, the num-
ber of the free parameters determining the number of
structures and evanescence regions, the amplitudes
and characteristic dimensions of inhomogeneities,
their spatial profiles, and the distances between spikes
of the wave field can be fairly large. This allows one to
implement very different spatial profiles of plasma
inhomogeneities for which complete transillumina-
tion of the wave barriers can be achieved.

In the approach used in this study, it is of funda-
mental importance that plasma contains large-ampli-
tude subwavelength inhomogeneities, i.e., traditional
approximate methods of solving this problem are
inapplicable. The analysis performed in this work
shows that the development of exactly solvable models
capable of describing reflection-free interaction of an
electromagnetic wave with nonuniform plasma allows
one to substantially improve the existing concepts of
the dynamics of electromagnetic waves and pulses in
highly inhomogeneous nonstationary dielectric media
and laboratory and space plasmas.

2. BASIC EQUATIONS AND ANALYSIS 
OF RESONANCE WAVE TUNNELING

Let us consider the one-dimensional problem on
the resonance tunneling of an electromagnetic wave
through a nonuniform plasma layer containing large-
amplitude subwavelength plasma density inhomoge-
neities. The simplest situation takes place when either
an s-polarized electromagnetic wave propagates in
plasma in the absence of an external magnetic field or
the wave propagates across a homogeneous external
magnetic field in magnetoactive plasma. In this case,
using representation of the wave field in the form

, where ω is the wave fre-
quency, we obtain the Helmholtz equation for the
function F(x),

(1)

where the x axis is directed across the plasma layer,
k0 = ω/c is the vacuum wavenumber, and εf(x) is the
effective permittivity. When the wave propagates in
unmagnetized plasma, we have εf(x) = 1 – [ωpe(x)/ω]2,
where ωpe(x) is the electron plasma frequency. When
the wave propagates in magnetoactive plasma across
the external magnetic field, we have 

, where N is the refractive index,

( , ) Re[ ( )exp( )]E x t F x i t= − ω

2 2 2
0/ ( ) 0,fd F dx k x F+ ε =

( )f xε ≡
2 2( ) ( / )cN x ⊥ ⊥= ε − ε ε

with εxx = εyy ≡ ε⊥, and εxy = –iεc being the components
of the plasma permittivity tensor [14]. For further
analysis, it is convenient to introduce the dimension-
less coordinate ξ = k0x and dimensionless wavenum-
ber p(ξ) = ckx(x)/ω. As in [2, 5, 12], the solution to
Eq. (1) can be written in the form

(2)

Taking into account Eqs. (1) and (2), we find that the
effective permittivity εf(x)is related to the dimension-
less wavenumber p(ξ) by the nonlinear equation

(3)

We see that, in contrast to classical relationships, there
is a nonlocal coupling between the functions εf(ξ) and
и p(ξ) in the exact solution. Let us also introduce the
normalized wave amplitude |F/F0| ≡ A(ξ) = [1/p(ξ)]1/2.
In this case, expression (3) can be written in the form
of the nonlinear equation for the wave amplitude A,

d2A/dξ2 + εf(ξ)A – [1/A(ξ)]3 = 0. (4)

Nonlinear equation (4) determines the spatial profile
of the dimensionless amplitude of the electromagnetic
wave for a given profile of the effective permittivity
εf(ξ). It should be noted that, in uniform plasma with
εf(ξ) = const > 0, solution to Eq. (4) for a fixed wave
frequency (the equation for a dissipationless nonlinear
oscillator) describes the propagation of both a con-
stant-amplitude wave with and a spatially
modulated wave packet with parameter (oscillator
energy) characterizing the modulation depth of the
amplitude A (Amin < A0 < Amax), which can be fairly
large.

Similar to [2, 5, 12], analysis of solutions to Eq. (4)
consists in specifying the function p(ξ) by analytic
expressions with a set of parameters, followed by the
calculation of the effective permittivity εf(ξ) corre-
sponding to resonance tunneling of an electromag-
netic wave through a nonuniform plasma layer by for-
mula (3).

Let us consider the reflection-free propagation of a
transverse electromagnetic wave through a plasma
layer occupying the region 0 ≤ ξ ≤ b, which is inter-
faced by vacuum from the left (ξ = 0) and right (ξ = b).
As the model that ensures the conditions of reflection-
free matching with the electromagnetic waves incident
from vacuum (ξ < 0) at the left boundary of the plasma
layer and that propagating to the right (ξ > b) at the
right boundary, we choose the model with p(ξ) = 1 –
0.5f(ξ)[1 – cos(γξ)], where f(ξ) is a bounded (gener-
ally, arbitrary) function and γ = 2π/b. The factor [1 –
cos(γξ)] ensures the condition of reflection-free
matching of the wave fields at the plasma–vacuum
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interfaces, i.e., p(0) = p(b) = 1 and dp/dξ = 0 at ξ = 0
and ξ = b.

As an example, let us choose the following function
f(ξ), satisfying the boundary conditions f(0) = f(b) = 0:

(5)

where μ is a free parameter. Using expression (5), the
effective permittivity εf(ξ) can be calculated by for-
mula (3). Due to its complexity, the expression for
εf(ξ) is not presented here. The profiles of the func-
tions p(ξ) and εf(ξ) for b = 20 and μ = 3 are shown in
Figs. 1a and 1b, respectively. One can see that the pro-
file of the wavenumber p(ξ) has two deep minima near
the left and right boundaries of the plasma layer, where
pmin is on the order of 0.1. In the central part of the
plasma layer, p(ξ) drops by about 30%. The profile of
the permittivity εf(ξ) has two narrow peaks with the
maximum values of εf(ξ) of about 3.8, which corre-
spond to magnetoactive plasma, and four minima. In
the central part of the plasma layer, one can see small
variations of εf(ξ).

Let us now reduce the parameter μ. The profiles of
the functions p(ξ) and εf(ξ) for b = 20 and μ = 2 are
shown in Figs. 2a and 2b, respectively. According to
Fig. 2a, a decrease in μ leads to a decrease in variations
of the wavenumber p(ξ). At the same time, the ampli-
tude of variations of the permittivity εf(ξ) in the central
part of the plasma layer increases. However, the peak
values of εf(ξ) do not exceed unity, i.e., this version of
resonance tunneling of an electromagnetic wave is
possible in unmagnetized plasma. We also note that
the decrease in μ resulted in a considerably increase in
the widths of the extrema of εf(ξ) near ξ ~ 5 and ξ ~ 15.

( ) 0.25 [1 0.5cos( ) cos(2 )
cos(3 ) 0.5cos(5 )],

f ξ = μ + γξ − γξ
− γξ + γξ

The above tendencies in the change of the p(ξ) and
εf(ξ) profiles persist as the parameter μ decreases fur-
ther. The profiles of the functions p(ξ) and εf(ξ) b = 20
and μ = 0.9 are shown in Figs. 3a and 3b, respectively.
This case is also realized in unmagnetized plasma. It
can be seen from Fig. 3a that the amplitude of varia-
tions of the wavenumber p(ξ) has decreased. The local
maxima of the permittivity εf(ξ) near ξ ~ 5 and ξ ~ 15
are weakly pronounced, and variations of εf(ξ) in the
center of the plasma layer are small.

Let us now reduce the layer thickness. Figure 4
shows the profiles of the functions p(ξ) and εf(ξ) for
b = 8 and μ = 2. The profile of the wavenumber p(ξ) in
Fig. 4a is similar to that shown in Fig. 3a. At the same
time, the profile of the permittivity εf(ξ) changed dra-
matically and corresponds to magnetoactive plasma.
As compared to Fig. 3b, variations of εf(ξ) increased
considerably. In addition, there appeared evanescence
regions in which εf(ξ) is negative. We note that, in an
exactly solvable problem, the square of p(ξ) is positive
everywhere, including the evanescence regions.

Let us analyze a version with a more complicated
(as compared to formula (5)) function f(ξ), namely,

(6)

Let us assign the values b = 20 and μ = 0.2 to the model
parameters. The results of calculations corresponding
to this case are presented by the profiles of the func-
tions p(ξ) and εf(ξ) in Fig. 5. We see that, when the
function f(ξ) is chosen in form (6), the maximum vari-
ations of p(ξ) and εf(ξ) occur in the center of the
plasma layer (at ξ = 10). In the central zone of the

( ) 0.125 [1 0.25cos( ) 0.5cos(2 )
1.25cos(3 ) cos(4 ) 0.25cos(52 )

0.5cos(6 ) 0.5cos(7 ) 0.25cos(9 )].

f ξ = μ − γξ − γξ
− γξ − γξ − γξ

− γξ − γξ − γξ

Fig. 1. Profiles of the (a) dimensionless wavenumber p(ξ)
and (b) permittivity εf(ξ) in a nonuniform plasma layer
with the function f(ξ) of form (5) for μ = 3 and b = 20.
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Fig. 2. Profiles of the (a) dimensionless wavenumber p(ξ)
and (b) permittivity εf(ξ) for a nonuniform plasma layer
with the function f(ξ) of form (5) for μ = 2 and b = 20.
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Fig. 3. Profiles of the (a) dimensionless wavenumber p(ξ)
and (b) permittivity εf(ξ) for a nonuniform plasma layer
with the function f(ξ) of form (5) for μ = 0.9 and b = 20.
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Fig. 4. Profiles of the (a) dimensionless wavenumber p(ξ)
and (b) permittivity εf(ξ) for a nonuniform plasma layer
with the function f(ξ) of form (5) for μ = 2 and b = 8.
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Fig. 5. Profiles of the (a) dimensionless wavenumber p(ξ)
and (b) permittivity εef(ξ) for a nonuniform plasma layer
with the function f(ξ) of form (6) for μ = 0.2 and b = 20.
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Fig. 6. Profiles of the (a) dimensionless wavenumber p(ξ)
and (b) permittivity εf(ξ) for a nonuniform plasma layer
with the function f(ξ) = μ[1 – αsin(βγξ)] for b = 20, μ =
0.26, α = 0.5, and β = 7.5.
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plasma layer, the ratio maxp/minp reaches a value of
about 4. In general, the profile of the permittivity εf(ξ)
in Fig. 5b is similar to that of p(ξ), but has a small-
amplitude local maximum at ξ = 10. Note that there
are no evanescence zones for this set of model param-
eters.

Finally, let us choose the function f(ξ) = μ[1 –
αsin(βγξ)] with the additional parameters α and β,

which allow one to vary the functions p(ξ) and εf(ξ).
The case corresponding to b = 20, μ = 0.26, α = 0.5,
and β = 7.5 is illustrated in Fig. 6. According to
Fig. 6a, the wavenumber p(ξ) experiences modulation
that considerably increases toward the center of the
plasma layer. As can be seen from Fig. 6b, this case can
be realized in unmagnetized plasma, because εf(ξ)
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does not exceed unity. Note that variations of the per-
mittivity εf(ξ) are essentially nonsinusoidal.

Let us consider the results of calculations for the
parameters b = 20, μ = 0.26, α = 0.7, and β = 5.37,
which correspond to unmagnetized plasma. Figure 7a
shows the profile of the dimensionless amplitude of
the wave field A(ξ) = 1/[p(ξ)]1/2. We see that variations
of A(ξ) in the plasma layer reach 30% and the profile
of the amplitude is asymmetric with respect to the
layer center ξ = 10. For convenience of comparison,
Fig. 7b shows the profiles of the wavenumber p(ξ) and
permittivity εf(ξ). According to Fig. 7b, the profiles of
these functions are differ substantially due to the non-
local nonlinear of their coupling (see formula (3)). Let
us introduce the function ε(ξ) ≡ p2(ξ). The functions
εf(ξ) and ε(ξ) are shown in Fig. 7c. We see that the pro-
files of εf(ξ) and ε(ξ) differ substantially due to the
nonlocal nonlinear coupling of p(ξ) and εf(ξ) in the
exactly solvable model. Thus, the presence of a set of

large-amplitude short-scale structures in a nonuni-
form plasma layer causes the appearance of strong gra-
dient dispersion, due to which the profiles of p2(ξ) and
εf(ξ) are substantially different, both qualitatively and
quantitatively.

It should be noted that, in the exactly solvable
models under study, reflection-free propagation of an
electromagnetic wave through the layer is preserved if
the thickness of the plasma layer is increased a whole
number of times, i.e., relatively thick wave barriers are
also transilluminated. For another choice of the initial
parameters, large-amplitude spikes of the wave field
can appear in a nonuniform plasma layer. Moreover,
reflection-free propagation of an electromagnetic
wave through a nonuniform plasma layer can also be
realized when cubic nonlinearity of the form εf(ξ) =
εL(ξ) + χ|A|2, where χ is the parameter of nonlinearity
and εL(ξ) is the linear plasma permittivity, is taken into
consideration. In this case, in the presence of evanes-
cence zones in the profile of εL(ξ) for the nonlinear
permittivity, the value of | εf(ξ)| in the evanescence
zones decreases substantially, i.e., cubic nonlinearity
facilitates the transillumination of gradient wave barri-
ers in plasma. Thus, similar to the results obtained in
[8], in the exactly solvable model, due to nonlinearity
and resonance tunneling, an electromagnetic wave
can propagate through nonuniform plasma without
reflection, generating large-amplitude spikes of the
electromagnetic field in some sublayers.

3. CONCLUSIONS
In this work, based on the exactly solvable Helm-

holtz equation, we have studied several new variants of
resonance tunneling of a transverse electromagnetic
wave through a nonuniform plasma layer containing
short-scale (subwavelength) inhomogeneities, includ-
ing relatively broad evanescence regions [5, 8, 9]. The
spatial profile of the plasma density depends on a
number of free parameters determining the modula-
tion depth of the plasma permittivity, the characteris-
tic scale lengths of the plasma structures, their num-
ber, the thickness of the nonuniform plasma layer, and
the parameters of evanescence regions. Since the rela-
tion between the amplitude A(ξ) of the electromag-
netic wave field and the effective permittivity εf(ξ) is
described by a nonlinear equation, there is nonlocal
coupling between p2(ξ) and εf(ξ) due to the presence of
large-amplitude subwavelength structures in plasma.
We have analyzed complex profiles of the plasma per-
mittivity and showed that reflection-free propagation
of electromagnetic waves through the plasma layer can
be achieved for a rather diverse set of such structures.
Resonance tunneling of an electromagnetic wave
through a nonuniform plasma layer is possible for both
unmagnetized and magnetoactive plasmas.

The one-dimensional problem on the transillumi-
nation of a nonuniform plasma layer can be solved

Fig. 7. Profiles of the (a) dimensionless amplitude A(ξ) =
1/[p(ξ)]1/2 of the wave field, (b) functions p(ξ) (solid line)
and εf(ξ) (dashed line), and (c) functions εf(ξ) (solid line)
and ε(ξ) (dashed line) for b = 20, μ = 0.26, α = 0.7, and
β = 5.37.
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exactly also when cubic nonlinearity is taken into
account. In this case, due to nonlinearity, the thick-
nesses and depths of the evanescence regions, in which
εef(ξ) < 0, decrease substantially. Generalizing the
developed approach, it would be of great interest to
analyze the possibility of implementing another effect,
namely, strong reflection of a high-frequency electro-
magnetic wave from a moderate-thickness plasma
layer.

The problem on resonance tunneling of electro-
magnetic waves through gradient barriers is of interest
for a number of practical applications, because the
exactly solvable models allow one to reveal new spe-
cific features in the oscillation dynamics and propaga-
tion of electromagnetic waves through nonuniform
plasma and the development of nonlinear processes
under the conditions of strong inhomogeneity. Such
models can also demonstrate the possibility of inter-
esting practical applications in the case of media with
controlled parameters. As an example, we can men-
tion microwave heating of dense plasma, explanation
of the mechanism for the emergence of electromag-
netic radiation generated in the dense plasma of astro-
physical objects, the possibility of remote sensing
through a dense plasma shell, generation of electro-
magnetic waves in nonuniform plasma by charged
particle beams, and transmission of signals through
dense plasma layers.
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