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Abstract. The paper reviews the current state of research on
nonequilibrium (Kolmogorov type) stationary and nonstation-
ary distributions of particles with statically screened Coulomb
interaction that are exact solutions of the Boltzmann or Landau
collision integral with a source and a sink ensuring the energy
flow along the spectrum in momentum space. Analysis is made
of the advantages of the new process (based on nonequilibrium
distributions) of energy conversion and of the time-dependent
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nonequilibrium kinetics of an electron—phonon system of a
crystal in a strong electric field (electroplastic effect).

1. Introduction

Interest in the nonequilibrium states of various physical
systems is steadily growing at present, motivated by the
development and extensive use of powerful particle and
energy sources.

A universal (independent of the structure of a source and a
sink) nonequilibrium stationary energy distribution over
wavenumbers & was first proposed by A N Kolmogoroff [1]
in the theory of turbulence in an incompressible fluid for the
interval of scales 2n/k intermediate between the scales of
forced and efficiently damped motions. The well-known
Kolmogorov spectrum of hydrodynamical turbulence has
the form

e = AP (1.1)
where A is a constant, P; is the spectral energy flux, and k is
the wavenumber.

The derivation of formula (1.1) relies on the locality
hypothesis in the turbulent motion, i.e., only comparable
motion scales significantly interact with each other. This
hypothesis remains unproven for the turbulence in an
incompressible fluid (strong turbulence, etc.).
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In physical systems allowing a description of the interac-
tion between waves or particles in terms of the kinetic
equations for waves, quasiparticles, or particles, the deriva-
tion of nonequilibrium stationary distributions reduces to
solving kinetic equations. In this case, the locality of none-
quilibrium stationary distribution corresponds to the con-
vergence of the collision integral. Universal wave spectra that
are solutions of the wave collision integral were first found by
V E Zakharov [2] in the framework of the theory of weak
turbulence of waves.

2. Theoretical studies of nonequilibrium
stationary particle distribution functions
with flux over spectrum

The Fermi—Dirac or Maxwell distribution function, repre-
senting the exact solutions of the respective quantum or
classical Boltzmann collision integral, are the thermodyna-
mically equilibrium distribution functions for electrons in
degenerate or classical plasmas in the isotropic and spatially
homogeneous case [3—7]. For a classical (nondegenerate) gas,
the kinetic Boltzmann equation is written down as

5 .
% = J dp, dp, dp; W (p, p;| P2, P3)

X [f(p2)f(p3) = f(p) S (p1)]

XE+E —E—E)é(p+p —p—p;), (2.1)

where W(p,p;|p,,p;) is the transition probability due to
collisions, f(p) is the electron distribution function, p, and
E; are the momentum and energy of an /th electron, and d(x)
is the Dirac delta function.

A distribution function which satisfies the condition

f(p2)f(p3) —f(p)f(p1) =0 (2.2)

is a stationary solution to equation (2.1).

It can readily be seen that functional equation (2.2), with
account for energy and momentum conservation laws in
particle collisions, leads to the thermodynamically equili-
brium Maxwell distribution function.

The question concerning a nonequilibrium distribution
function for a small portion of electrons that are relaxing on
the equilibrium ‘background’ (the collision integral allows
linearization in this case) in the presence of a uniform energy
flux I; in momentum space, driven by ionization and
recombination processes, has been addressed earlier (see, for
example, monograph [8]). Closely related questions on the
distribution function for neutrons in crystals were considered
by A T Akhiezer and I Ya Pomeranchuk [9]. In these cases, the
distribution function may noticeably deviate from the
thermodynamically equilibrium solution, while its form
turns out to be dependent on the structure of a source and a
sink.

Universal nonequilibrium stationary power-law particle
distributions (f= A4p?), which are exact solutions of the
Boltzmann collision integral, were first obtained by A V Kats,
V M Kontorovich, V E Novikov, and S S Moiseev [10, 11] by
the group symmetry method. For such distributions to form,
the source and sink of particles or energy must exist in
momentum space, thus maintaining a constant spectral flux.

In order to determine the power-law exponent s for the
transition probability, which is a homogeneous function of

momenta of degree n, it is natural to use p;/p variables in the
integrand. In this case, equation (2.1) reduces to an integral
that does not depend on p and the factor p*+"*4. Let us
determine the particle (/y) and energy (/;) fluxes in momen-
tum space. The fluxes are linked to the collision integral in the
following way:

(i B) =-£(L) |

where I; = 4np?j;, and E is the particle energy. Solving
equation (2.3) yields

(2.3)

R(s,n)
4s+n+9+2(i—1)

I = Azalﬂ‘ p4x+n+9+2(i—l) (24)
where o = const, and 7 is the homogeneity index of transition
probability.

From Eqn (2.4) it follows that for s; satisfying the
condition

yo=4s;i+n+9+2(i—1)=0, i=0,1, (2.5)
the flux 7; is either constant in momentum space or zero if
R(s,n) has a zero of the first order at s =s; (the collision
integral is then equal to zero). The distribution function 4p>
corresponds to a nonequilibrium stationary case with a
constant energy or particle flux. In this case, the flux
direction is set by the sign of the derivative dR/dy, aty, = 0,
and A4 is defined by the expression

dR
dy,

-1

A% = Lo lim

7,—0

(2.6)

Let us demonstrate through direct computations [12, 13]
that for the Boltzmann and Landau collision integrals the
function R(s,n) satisfies the conditions formulated above in
the case of nonequilibrium power-law distributions.

2.1 Exact solutions for the Landau collision integral
It is well known that in plasmas the collision integral
describing the interaction between charged particles can be
written in the Landau form (see, for example, book [3]):
of (p) P 4 u?di — ujliy
(T Lo —divjo, Jjoi = me AJ dp’ 0
o)
op,

A D) (2.7)

: o (p)}

X AL b
[f(p) Opx

where u = (p — p’)/m, A is the Coulomb logarithm, and m

and e are the electron mass and charge, respectively. Inserting

the isotropic power-law distribution function A4p? into

Eqn (2.7) and performing fairly simple calculations, one

arrives at the following expression

of (p) B s (4s+3)(4s+5)
(T) = Lo A a3 1 3)

16m2me* AA%p* { 252 (pl )2&4’3
+ -
3 nl 2s+3 \ p

+(25—&—1)s 2} 2”2725—&—3 2 2
25+ 2 4 2 p

(2s=2)s (p1 2+3
2545 p '

(2.8)
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According to expression (2.8), the first term of the
collision integral, i.e., the function R(s,n), does indeed
contain multipliers 4s + 5 and 4s + 3, and to the first power.
This ensures, on the one hand, the constancy of energy flux,
and, on the other hand, the disappearance of the collision
integral for the power-law exponent s; = —5/4. As concerns
the exponent sy = —3/4, it corresponds to a nonlocal
distribution function, in which case the collision integral
diverges (the second term under the limit sign becomes
unbounded).

2.2 Exact solutions for the Boltzmann collision integral
Using expression (2.1) for the Boltzmann collision integral
and substituting a power-law particle distribution function in
the form Ap?, with the help of the -function expressing the
momentum conservation law, we integrate expression (2.1)
with respect to p,. Introducing new variables p, and q instead
of p; and p;, we then write down the collision integral in the
form

of
% = —mAZJ dp, dq#(p,pi|p+49.p1 —q)
* [Ip+al”py —al” = 1”11 ] 6 (a(pr —p — @) . (2.9)

where q = p; — p;. The argument of the J-function may
become zero at p,—p—q=0 or q(p —p—q) =0. The
first case presents no interest, as it simply corresponds to
permutation of particles upon their collisions, which sets the
expression in square brackets to zero [i.e., it corresponds to
condition (2.2)] and, consequently, the condition
(/1) = 0.

Let us introduce the angles 0 and 0; between the vector q
and vectors p and p;, respectively. Changing to spherical
coordinates in Eqn (2.9) for p; and q, integrating over p; with
the help of the J-function, and introducing a dimensionless
variable § (§ = ¢/p), we obtain

of (p) 2 4 J - ~J J i 1
= —mApPtt | Gdg | do | dOW
ot 194 ! cos 04
cosl + g : - ~2s
X (W) {[\1+2qcos€+q "]
cosO+g\* .. . a|” |cosO04¢q »
8 ( cos 6, ) 24(cos0+q) +4 cos 6, ’

(2.10)

where r is the dimensionality of the transition probability W,
and dO; = sin0,d0;do;.

Let us determine the particle (/y) and energy (7;) fluxes in
momentum space, taking into account that in the case under
consideration the fluxes can be expressed through the
collision integral according to formula (2.3). For the prob-
ability W, being a homogeneous function of momenta to
power n, W= Cq", where Cy is a constant, and # is any real
number (in this case, n = r), the collision integral (2.10) can
easily be integrated over 0}, ¢, and ¢, and written down as

.-

1
s = [ ax] " agg e age s g

2n2mC A?

4s+n+4 1 7(1)
J
s+1 [

—J97,

1 00
J@ :J dxj dg g™ x4+ g*"™, x=cos0.
-1

0

The integral J? can be expressed in terms of beta
functions B(x,y) as

JO = (25 +3) ' [B2s+4,n+2)

—B(-2s—n—152s+4)+B(n+2,-2s—n—735)].

To compute JU, it is convenient first to carry out
integration over ¢ (see, for example, handbook [14]), which
gives

JU =2-&+2 <%) B(n+2,—n—2s—2)

1
XJ dxx2s+2(1 _x2)(2.&'+1)/4 [PSJrl./Z (
0

1/2
nts+3/2 —-x) + Pty (’C)} )

n+s+3/2

where P/(x) is the spherical function. Making use of the

property of spherical functions, namely

s?n (mv) PH(x)

sin (1u)

sin (n(v+p)) T(v+p+ 1)
sin(mp) T(v—p+1)

PH(—x) = -

P (x),
and computing integrals over x, we arrive at

B(n + zzs_i; 25— 2) [<1 _sin (n(s +n+ 3/2)))

(1 _
T= sin (n(s + 1/2))

><3Fz<n—£—27_11—!—22s—|—27 I I—ZS 25—1—5’ ])
IF'2s+n+3)T(1/2-5) (s+5/2) (s+2)
25H T (n+2)T((4s+n+7)/2) T((2s —n+3)/2)
sin (n(2s +n +2))
sin (m(s +1/2)) }7

where ,Fy(ar,...,%;p,...,B,;2) is the hypergeometric
function. Thus, the expression for the function R(s,n)
entering into a particular solution for the flux [; [see
formula (2.4)], with account for the expressions obtained
earlier for J() and J@, takes the form

—4n3C,
(s+1)(2s+3)
—B(-2s—n—525+4)+Bn+2, -2s—n—25)

- {B(nJrZ, n2s2)<15in(n(s+n+3/2)))

sin (n(s + 1/2))
><3172(11—;—27 _n+2s+2 1. 1 -2s 2s+5; ]>

2 T2 T2
(4s+n+7)(4s+n+9)n?(2s + 1)(25 + 3)
2255T(—25) T ((4s + 1+ 11)/2) T((2s — n + 3)/2)

" I'(s+2) } }
sin’ (n(s + 1/2))

In Section 2.1 we considered a quadratic law for particle
dispersion. The generalization to an arbitrary dispersion law
E = p*t/a; (where oy and ¢ are some constants) does not lead
to any principal complications, although the expression for
R(s,n, ;) may prove to be more cumbersome. As for the
power-law exponent s; in the particle distribution function, it
is defined for a general dispersion relation by the following

R(s,n) = {B(Zs +4,n+2)
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expression

n+9+q(i—1)
= 2.11
. 2q) @10
It has been found that local nonequilibrium particle
distribution functions (the collision integral converges for
them) are associated with the power-law exponent s satisfying
the conditions

3 3 5
—s<sp< -1, <<= 2.12
3<s<-l, —5<si<—; (2.12)
Subscripts 0 (1) stand for [ (1;) = const.
According to condition (2.5), the following homogeneity
indices for the transition probability correspond to the
exponents from the ranges (2.12):

—3<n< -1, Iy=const,

(2.13)

—4<n< -3, I =const.

2.3 Formation conditions for nonequilibrium stationary

particle distribution functions in finite energy intervals

As follows from inequalities (2.13) formulated above, the
collision integral diverges (the known singularity of W for
small transferred momenta) in the case of the Coulomb
interaction (n = —4). References [10, 11, 15] propose and
Refs [12, 13] show that this divergence is alleviated by Debye
screening. Consider the collision integral (2.10); for the
transition probability, which corresponds to the screened
Coulomb potential W = 2e*/(¢%+ a?)* (with ¢ being the
transferred momentum, and ; the Debye momentum), we get

) [ 2e*
Y@ _ 40 4SJ qqudOJdOI;z
Cor 0 (G2 + a?)

1 cos0+q\* - a8
><c0s01 < cos 0 ) {|1+2qcos€+q |
cosf0+q\° - =l

cos O +g|*
=7 2.14
cos 0, }’ (2.14)

where § = ¢/p, and a = a; /p.

We integrate over the angles 0;, ¢, ¢, and 0, making use
of standard integrals [14], and transform Eqn (2.14) to the
sum of two integrals:

af(p): —8n me4A2 p4s{Jl déf] |:(1+6?2)v
o (s+1)(2543) 0 (32 4 a2)?
29
Fi| —s25 4325 +4——9
X(Z l( §7S+7S+’ 1+q2)
2~
+2F1< 1+ ))
1 dqq72r 2
2B _(1—a 2x+3:| +J
( ([) ( q) 0(q2612+1)2

_ . 2q
3 24\s
1 Fil—s52s+3;2s4+4;,———
X|:q( +q)<2 l( S, s + ) s + ’ 1+52)
25
+2F1<—s 2s + 3; 23—!—4 2))
+q

S+ (1 - a)”‘] b (2.15)

To find the existence domains for power-law distribution
functions which correspond to two different asymptotics of
the transition probability W, the collision integral in two
limiting cases: ¢ < 1 and a > 1 is worth consideration. First,
for small values of a (a < 1), we find the dependence of
collision integral (2.15) on a. It can readily be seen that the
main contribution in this case comes from the first integral in
expression (2.15). Expanding the integrand in powers of ¢ and
integrating the resulting series term by term, we obtain the
expression for the collision integral:

of(p)  8n?med? o (As+3)(4s+5)
ot _(5+1)(25+3)p4{ 2515 |:lna2

N (25 +1)(2s +3)(2s 4 5) n°T'(s + 2) ]
225451 (=25) T'((2547) /2) T((4s47)/2) sin®(n(2s+1)/2)

+Ki(s)a*lna*+ ... }

Computing the energy flux according to formula (2.4), we
find that the energy flux is negative and is determined by the
logarithmic term only for a? < 0.005. Within the interval
0.005 < a? < 0.1, the energy flux is directed oppositely (it is
positive) to its direction for large momenta.

Thus, it is shown [12, 13] that in the region of momentum
space p > a; the Debye screening, first, removes the Coulomb
divergence and, second, does not change the exponent of the
nonequilibrium stationary particle distribution function for
constant energy flux in momentum space. The power-law
exponent in this function corresponds to the asymptotics of
W with the exponent n = —4. Additionally, it is established
that within a certain domain in momentum space the
direction of energy flux is opposite (positive) to its direction
for large momenta. Then there is a local power-law distribu-
tion, the particle density in which is determined by the flux
intensity. The conservative character of flux is ensured by the
source and sink, the positions of which must agree with the
flux direction found.

Numerous concrete physical tasks face the question of the
formation, under the action of sources and sinks in momentum
space, of power-law particle distributions in bounded energy
intervals surrounded by domains where the particle distribu-
tions are in thermodynamic equilibrium. The electron—
electron collision integral in a solid state plasma is computed
in the approximation of the quadratic dispersion law. The
divergence caused by the Coulomb interaction between
particles is removed by the introduction, as above, of a matrix
element describing the screened Coulomb interaction. The
Boltzmann collision integral in the case of quantum statistics
(see, for example, book [3]) can be represented in the form

6na_(t) z 2) Jdpl dp, dp; W (p, 1| P2, ps)
x [n(p2) n(ps) (1 —n(@) (1 = n(p1)) —n(p) n(p;)
x (1= n(p )(1 —n(p3))]
X O0(E+E —E,—E3)o(p+p, —p>—p3), (2.16)
where W = (2nh)32e4(|pl —ps +a?) 7 is the matrix ele-

ment describing the screened Coulomb interaction, and #(p;)
are the occupation numbers.

Let the electron distribution function be power-law in the
inertial range (between the source and sink), and thermo-
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dynamically equilibrium (Fermi) outside it, namely

. 2nh)’
n=no). it 2" < ol <p" (n=C5 aln )

n=ne(), it p' > Ipl,Ip;| > p”
pr-pEl"!
-1 :
("F [“Xp 2kaT] >

where o is the proportionality factor, 7; is the energy flux, pg is
the Fermi momentum, kg is the Boltzmann constant, and T'is
the equilibrium temperature of electron gas. The collision
integral is computed with the goal to determine the extent of
the inertial range for the power-law distributions #; there-
fore, the momentum p over which there is no integration in
Eqn (2.16) should lie in this interval: n = n,(p). It has been
shown above that the nonequilibrium distribution function
may have the form 5, = 41p? for metals in the region of
momentum space where a; < p, i.e., the source and sink must
be arranged so that the conditions p’, p” > pg are satisfied.
When computing the integral in Eqn (2.16), we will neglect
thermal smearing of the Fermi distribution function, because
it will only lead to corrections which are insignificant by
virtue of the condition 7' < Ef (Ef is the Fermi energy). Thus,
a step function of unity amplitude can be taken for #g:

e = 0(pi —pi),
and the unit function is defined hereinafter as

x<0,
x=0.

Suppose that 5, < 1 in the entire inertial range. We will
evaluate expression (2.16) with an accuracy up to terms
logarithmic in «;, similarly as for the Landau collision
integral. This implies that we will account for interactions
with a small momentum transfer in collisions. It has been
shown above that for power-law distribution functions the
nonlogarithmic terms in the Boltzmann collision integral,
related to large momentum transfer in collisions, turn out to
be important if momenta lie in a certain range characteristic
of a solid state plasma in conductors. Computation of
nonlogarithmic terms in this case faces considerable difficul-
ties, so the conditions to be derived below take into account
only weak momentum exchange and will be valid for the
plasma in semiconductors, whereas in the plasma of con-
ductors they are more stringent than necessary. Bearing in
mind the remarks and clarifications made above, the collision
integral can be represented as

onp) _ 2

o (2nh)® .[os o1l <p'

dp, dp, dps W

x [mm0(pf — pE) — ngm (1 —n,)(1 = n3)]
XME+E —E —E3;)o(p+p —p—p3)
2

+ dp, dp, dp;s W
(2nh)6 L’é\m\ép” Prap2Ehs

X [’72’73 =g (1 —=n)(1 - ’13)]
X O(E+El —Ey— E3)d(p+p —p—p;)- (2.17)

We begin with the second integral on the right-hand side
of Eqn (2.17), and perform the same manipulations as in the
derivation of Eqn (2.10). Integrating over ¢ and ¢, and
substituting W, which corresponds to the screened Coulomb
interaction, we obtain

a " d
( n(p)) :J %J de dyF(y,x,q)
ot p 0< (x+q)y<p” (f12 _|_a2)

d
| I e[ wrviva. @18)
0< () r<p (¢ +a?)

where
16m2e*mA?p™

) l(x +q)°

F(y,x,q) =

X {(1 +2gx + ¢ [2(x + ¢)° —2gx + ¢°] —[y[*|x + Q|25},

IP1 — Pl -1 lpq|
g=——"=, x=cosf, y=(cost)  , cost=—"
Ip1 Ip| lal
2nh)?
cosd; — P14 7 4 (2nh) AL
Ipillql 2

In order to write down the integration limits in
Eqn (2.18), one needs to find the domains of existence for
the inequalities 0 < (x+¢)y <p” and 0 < (x+¢q)y <p/,
taking into account that p” >1, p’ <1, |x|<1, and
1 <yl < oo

Since the function F(y, x, g) is even with respect to y, after
carrying out the change of variable z = y?(x + q)z, formula
(2.18) can be reduced to the form

"

a p// PN*I 1 P
( '1(]7)) :J qu de dz Fi(z,x,q)
ot 0 -1 (x+q)*

P’

123

'+l p'= P
+J qu de dz Fi(z,x,q)
pr-1 -1 (x+)*

1-p’ P'—q "

—J qu dxj dz Fi(z,x,q)
0 -p'—q (x+g)°
l+])’ p/_q pzz

—J qu de dz Fi(z,x,q), (2.19)
1-p’ -1 (x+¢)*

where
8nle*mA’p®
Fl (Z7 X, q) = P 9

@)’ (¢? +a?)

x {(14+2gx+¢*)’(z = 2qx +¢*)° - °}.

We will not resolve the behavior of the power-law
distribution function near the energy source and sink, i.e., at
p' =~ land p” ~ 1. Relatedly, to maintain accuracy up to the
terms logarithmic in «, it suffices to compute contributions
from the first and third terms on the right-hand side of
Eqn (2.19). Having performed integration over z and x, we
need to expand the integrand in series in ¢ and, since the main
contribution comes from ¢ < a, retain only the terms up to
those proportional to ¢°.

Integration of the first and third terms in Eqn (2.19)
results in the following expression
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(an(p))”” _ 16m2e*mA’p*

or ), (2nh)’?
(4s+5)(4s + 3) s2s+1), , 511
1
X{[(2s+3)(2s+5)(s+1) 3 2
3 1 1
X 3F2(7S7 1,S+§,S+ 17S+§’S71)N27—|—1):|
y ‘[min(]ﬁp”l) q3 d(] |: psil 2S(—S+ 1)
0 (g% + a2)’ (25+35)(s+1)
2545 s(4s+5)  pes 2543 2ys
__ 2w TI) =22 1
P 25+3)6+1) 7 3 r ()
5 3 pl2
X3F2(_S7S+§7s+2;s+i7s+1;])”2—4—1

y J~min(p’,1—p’) q3 dq }
0 (g% +a?)’

Let us evaluate the first integral in Eqn (2.17) carrying out
the same manipulations as above, with subsequent integra-
tion by the formula
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The expression for the first integral in Eqn (2.17) will take the
form

(an(p) )p, _ 32n2e*mAp?

s r' q°dq
o ), (2nh)?

3

p .
P32 ey

The final expression for the energy flux in momentum

space, which is defined through the collision integral accord-
ing to relationship (2.3), becomes

;o 32TE3E4A2]74S+5{ 4s + 3
1= (2nh)’ (25 +35)(2s+3)(s+ 1)
y Jmin(lvl'”—l) g*dq s Pt Jplqsdq}
0 (g2 +a2)* 3(s+2) 0 (q%+a?)?
3.4 4 2545 r' 3
_Bmietdp S e J q"dg . (2.20)
@nh)®  32s+5)7" Jo (g% +a?)

From the last relationship, one can derive a condition to
be imposed on the electron density in the vicinity of a sink (the
density which governs the source intensity) to keep the flux 7
constant and, consequently, the distribution #, close to the
universal one in the inertial range (the interval between the
source and sink). This condition will be satisfied if the first
term in Eqn (2.20) is much larger that the other two:

q° dg
o (¢2+ a2)2

n(p) > i S(2S+3)(s+1)‘ Jp"

3(4s+3)
) (J; (qidjz)z)_l'

Thus, an explicit expression was found for the quantum
Boltzmann collision integral as a function of the momentum

p, exponent s, momentum p’ corresponding to the energy
sink, and momentum p” corresponding to the energy source.
It may be concluded that in the absence of particles outside
the energy range which is located between the source and sink,
the exponent s differs from the universal one by no more than
10% in the limits of the inertial range:

"_

" =p'l = (5-6)pen, p' = pen=2ar, (2.21a)

References [16, 17] consider a case more often encoun-
tered in solid state plasmas, where the electron distribution
function has a power-law form in the interval between the
energy source and sink in momentum space and follows the
thermodynamically equilibrium Fermi—Dirac distribution
outside it. It is shown that a nonequilibrium stationary
distribution of electrons is close to the universal one
(s = —5/4 for an unbounded inertial range) if the location of
source and sink, as well as their intensities, satisfies the
conditions specified below. So, the power-law exponent s in
the distribution 7, (5, are the occupation numbers) will differ
from —5/4 by less than 10% if the following conditions are
met:

Ip"=p'| #(5=6) pen, n,(p) > 107°, p’'~pen=(2-3) ar.
(2.21b)

Thus, the nonequilibrium universal electron distribution
is possible even if occupation numbers are significantly less
(by one or two orders of magnitude) than the equilibrium
ones.

3. Theoretical studies of nonequilibrium
nonstationary particle distribution functions
with flux over spectrum

3.1 Numerical modeling of the formation

of particle distribution functions

for Landau-Fokker—Planck type equations

3.1.1 Fully conservative difference schemes for Landau—
Fokker—Planck type equations. The nonlinear kinetic Boltz-
mann equation [3-8] describes a system of many particles
interacting by the laws of classical mechanics, and serves as
the basic equation in models of rarefied gas dynamics. In its
general form, the equation for the particle distribution
function f,, depending on spatial coordinates r, velocities v,
and time ¢, can be written down as

oy Oy F. 0 (O
or Y or T, av_<az>sl S, (3.)
where m, is the mass of o particles, F, is the force acting on an
o particle, S, are the sources (sinks) of particles and energy
(open systems), and (9f,/0r), is the collision integral. It
stands as the fundamental equation in applications requiring
a mathematical description of the dynamics of rarefied gases
and plasmas. Models of kinetic processes governed by
Coulomb collisions occupy a prominent place in applications
related to laboratory and magnetospheric plasmas, plasma-
chemistry, and solid state plasma.

In plasmas, the Coulomb collisions involving small-angle
scattering (with small transferred momentum) are more
important than collisions with a substantial change in
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velocity (momentum). The collision integral for charged
particles was first derived by L D Landau (see, for example,
book [3]) from the Boltzmann collision integral, with account
for the smallness of momentum transferred in Coulomb
collisions and the effect of particle charge screening by other
particles outside a sphere with Debye radius. A Landau type
equation is also obtained by accounting for small-angle
scattering, but for arbitrary potentials of interaction between
particles [18-28]. The most pertinent object for modeling with
the help of the Landau type collision integral are gases with
power-law potentials and an infinite radius of interaction
between particles.

The most widely used method of numerical modeling is
(regular) finite difference method (Monte Carlo type methods
suffer from certain drawbacks for long-range forces). How-
ever, a combined approach should be employed, ensuring
approximation of equations describing actual dynamics and
adequate representation of physical laws underlying the
physical model. This approach, based on conservative and
fully conservative finite-difference schemes, is related to the
work done by A N Tikhonov, A A Samarskii, Yu P Popov,
A V Bobylev, I F Potapenko, V A Chuyanov, and others
[18-28].

Such an approach, together with high accuracy, gave the
capability of obtaining asymptotic solutions in certain cases
and testing analytical approaches and other modeling
methods.

In a spatially homogeneous case, the Boltzmann collision
integral for the distribution function f (v, r) was written in the
form (2.1), where the transition probability W due to
collisions is defined by the differential scattering cross
section o(u, 1), which is a function of the relative velocity
u > 0 and the parameter u = cos 0 (0 < 0 < mis the scattering
angle). Finding the scattering cross section o (u, 1) for a given
interaction potential U(r) is a well-known task in classical
mechanics (see, for example, Refs [22-28]).

The collision integral in the Landau form for particles of
the same kind carrying the charge e in a spatially-homo-
geneous case was given in Section 2.1 [see Eqn (2.7)] and may
be represented in the form

e

1/125” — U u;

Uij I/l3 ) (32)
where I' = 2ne*A/m?, and the symmetric kernel U;; is a
function of particle relative velocity u=v —w. A rough
condition for the applicability of equation (3.2) is furnished
by the inequality e2n'/3 < T, implying that the mean energy
of Coulomb interaction is small compared to the mean kinetic
energy (n is the particle number density, and T is the

temperature expressed in energy units).

3.1.2 Numerical modeling of relaxation of the particle distribu-
tion function for the Landau-Fokker—Planck collision integral.
Let us consider the relaxation of the initial distribution for
gases of particles with power-law interaction potentials in the
case of isotropic distribution function f (v, #) = f(|v|, #), which
obeys the Landau—Fokker—Planck equation in the symmetric
form

g: % % {% J:de O(v, w) [Wf(w) %(vv) —vf (v) %]},
(3.3)

where Q(v, w) is the symmetric kernel, namely

1
O(v,w) = g 1)3W3J 1 du(1 — u?) uo(u),

u? =02 +w?—2owpu.

It can be verified that in the absence of sources and sinks
the conservation laws for the particle density and energy
follow from equation (3.3):

00
n= 4nJ dvv?f (v, t) = const,
0

kpT ="

4 00
;:7 J dvv*f(v,t) =const, £>0.

0

The only equilibrium stationary solution to the kinetic
Boltzmann equation is furnished by the Maxwell distribu-
tion. Exploring the formation of the particle distribution
function at energies essentially exceeding the mean energy
(the tails of the particle distribution function), apart from its
academic interest, can be helpful in tasks related to wave—
particle interactions, electron acceleration by a field and tail
formation by runaway electrons, and for the problem of
thermonuclear fusion (electron cyclotron heating, lower-
hybrid resonance, nuclear reactions at the tails of the ion
distribution function, and so on). For the Coulomb potential,
such research has been conducted in Refs [21-28].
The equilibrium solution takes on the form

4 [(3\*? 3
szm(i) exp(—ivz), v =1,

where vy, is the thermal velocity. We obtain the conservation
laws from equation (3.3) by integrating both its sides over the
velocity with an appropriate weight:

*© dE

=0, —
o dr

dn J

=== = ()], —2J Jdv=0.

0

By applying the integro-differential method to equation (3.3),
we obtain the following (implicit) difference scheme:

. _ k k
fik _f,jk 1 _ 1 [Ji+1/2Jil/2
T U,~2hi+1/2 Vit1/2 Vi-1/2

], i=2,...,M.
(3.4)

The scheme is set forth as the local conservation law for
the particle number, whereas the approximation of function
J; must ensure the implementation of energy conservation
law. We replace the upper integration limit in Eqn (3.3) by the
value of velocity at the last point. Approximating the integrals
with the trapezoidal rule, and derivatives with centered
differences, yield

M
k
i1 = E OQiv1/2,m1/2 1
m=1
k k 1k k
« (f;#l _f; ”;Um +fm+l Um+1
hiy1 2

k k k k
fm+l —fm S ”i"'fiﬂviﬂ
/R 2 ’

where Qii1/2, mt1/2 = Omt1/2,i+1/2- The particle number den-
sity is written out as
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since it is assumed that fj,;.; = 0 and that v; = 0. Accord-
ingly, the first point does not enter into the difference
equation. Let us compute the change in particle number
over a time step with the aid of difference equation (3.4) by
summing both its parts with an appropriate weight:

“ K sk J1{2+1/2 J3k/2
An = ho?(fF— k=t :r{———}.
; o ( l ' ) Um+12 V32

Assume that Jyq1, =0, since fyy =0 at the tail, and
formally set J3/, = 0 (we will learn below about its implica-
tions), then An = 0. The change in energy is given by

M-1
=2 ol (=1
i=2

2 M-1
UM+1 ]
=1 Jyus1p———J3,—2 E hi1J;
|:UM+1/2 +1/2 V32 32 2 +1Ji41)2

If we take into account that the particle number is conserved,
and that the relationship

M—1

Z hiv1Jiz12 =10

i=1

is valid, then AE =~ 0. Difference equation (3.4) is written out
at point 7 = 2 in the following way:

k _ rk—1 k
fE=r=t 1 T
== ,
T vihig12 Viv12

i=2. (3.4a)

We need to know the boundary condition for the distribution
function at the point i = 1, and we derive it from the condition
J3/2 =0.

For a numerical solution, the finite-difference scheme is
rearranged into a system of nonlinear difference equations
solved at each time step and, accordingly, at each iteration by
the sweep method.

Let us rewrite the scheme in a form convenient for
numerical computations. To do so, the following notation is
introduced:

M-1
H—l Z hm+le+l/2 m+1/2 (Umfm + Ut fm+1)

m=1

O = Z Oiv1/2,m12(fmse1 = fm)

m=1

1 1
=—— (2, —vih;®;), B, = 2 ih;O;
vi—1/2hi( i vin; 1)7 i 'Ui—l/zhi( 1+U1 i 1)7
o= —— A ﬁf—(A—i—B ),
i ’Ul-2hl- i+1 i — h i+1
T k—1
y; = 2h.B,-, Vi =—f] i=2,....M—1

The set of difference equations is then written out as

Gfin—(L+B)fitvifia =y, i=2,... .M =1, (3.5)

with the first difference equation involving

T T
—— A ) =—-B ’
Uzzl’li 3 ﬁz Uzzl’li 3

From the equality J3,, = 0, it follows that the functions at
the initial points are linked to each other at any moment of
time by the following relationship

N :f2< —v5 ];]2)

If the boundary condition of the second kind (equaling zero of
the derivative) is approximated based on the formulation of
an exact problem with the first- or second-order approxima-
tion, the conservation law is not necessarily warranted. What
does the approximation imply if it is derived formally from
the requirement that a difference analog of the conservation
law be implemented? The boundary condition arising for-
mally proves to be quite reasonable. Consider, for definite-
ness, charged particles and the kernel Q(v, w) corresponding
to their Coulomb interactions. Suppose the distribution
function is quasi-Maxwellian: fM = Cexp (—v?/v3). Then,
estimating expression (3.4a) and neglecting terms on the order
of O(h3), we find

foM<l+v—22>
J1 —J2 U2 .
th

We only note that, initially conceived as just a formality, the
requirement of full conservatism leads to a more natural
approximation of exact conditions in a subsequent analysis of
exact initial data. We revisit this question when constructing a
scheme for the Landau—Fokker—Planck equation.

Since the difference schemes are chosen implicit, the time
step 7 is determined by the required solution accuracy and the
distribution character. The scheme is nonmonotonic; it can be
made monotonic but then we have to sacrifice the second-
order spatial approximation.

Since the distribution function should be nonnegative for
stability and by its physical sense, the coefficients of
difference equation (3.5) should satisfy the conditions o,
y >0, 1+ >0, which requires h; = v; — v;_1, Iy < E;j/nw;.
The Landau—Fokker—Planck equation is a parabolic one, and
as v — oo it degenerates into an almost hyperbolic equation;
therefore, to account for the exponentially decreasing func-
tions, the step should even be reduced in order to ensure
accuracy. A rough discretization step estimate based on
velocity, which can be over or under for particular tasks,
takes the form /1 < v} /nL.

For power-law interaction potentials U = a/rf, where
1 < f < 4, the symmetric kernel Q(v, w) is represented in the
form [24, 25]

o = 1, =0.

(3.6)

, _a(v,w)(v+ W) b(w, w)o — w"
Q) = S ) A 6 O
a(v,w) = (n; +4) ow — (v* +w?),
b(v,w) = (n1 +4)vw + (02 +w?), n = % .
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The negative values of n; correspond to soft potentials
(1 < p <4). For charged particles, one has f = 1 (n; = —3).
To illustrate the performance of the difference scheme, the
initial distribution is chosen as a oJ-function which is
approximated in the following manner:
2

b
Vit — Vi-1
0, Vi 7é 1.

Such an approximation models the difference delta function;
relatedly, both the number density and energy of particles
become equal to unity. We limit ourselves to only presenting
results of simulation for this type of initial distribution.

A relaxation of initial distribution to the equilibrium state
belongs to classical problems of plasma physics and is among
the test problems for any model of collisional plasma.

Moving along, we note that the particle number density is
preserved with a machine accuracy (random error), while the
energy depends on the accuracy of  iterations because of the
nonlinearity of the equation. For § = 1073, the relative error
makes Ae = 1072%, and for 6 = 1077, itis Ae = 1075%, i.e.,
the energy error does not exceed 10~7. Such a level of accuracy
is needed, for example, in exploring asymptotic problems.

Finite initial conditions are considered at ¢t = 0, with the
initial function fy(v) = f(v,0) being confined to the thermal
range v & vy,

At long times, when the relaxation in the thermal domain
is completed, the equation can be considered as a linear one in
the hot domain for v > vy,:

d 10 )
a—ip:gﬁa{v‘}o(v)(%a—f—&-vf)]

Here, we took into account that in the hot domain the kernel
O(v,w) — mw3v*a(v)/6 as v — oo, and used the scattering
cross section a(u, 1) = gg(p) u=*# [22-25] for the power-law
interaction potential. Substituting the expression for Q (v, w)
into Eqn (3.3), for v > vy, we arrive at the final form of the last
equation:

’U,'Zl,

f(v,«,O) =

of ngg 1 0[5 4p(TOf .
a8 vow |’ m6v+w( ’ (3:8)
where the following notation was introduced:
1
g =2n | dugp(i(i - ). (3.9)

For example, formula (3.9) for the Coulomb potential (f = 1)
gives g1 = 32me*L/m. In this case, Eqn (3.8) reduces to the
well-known linear Landau—Fokker—Planck equation for
plasmas.

Further, let us consider equation (3.8) for arbitrary
potentials U = a/rf, 1 < B < 4. The finite-difference scheme
has already been presented above. For the chosen variables,
the conservation laws for the particle number density and
energy look like

n:J vidof(v,t) =1, E:J viduf(v,1), t=0.
0 0
(3.10)

The thermal velocity vy, = 1, and the equilibrium solution is
written down as

32
Sm(v) = % (%) exp <f% u2> .

At the initial moment of time, the function is the delta
function f(v,0) = 6(v—1)/v?> confined in the thermal
domain. When choosing the boundary L for the velocity
interval, hot particles are estimated from the Maxwell
distribution, which yield L~ (7—8)wvy. The difference
scheme expressed by formula (3.5) is used. The initial
function is approximated as mentioned above. For this
approximation, the number of particles equals one, and the
kinetic energy v? = 1.

We present below the results of modeling. The function
smears over the thermal domain (0 < v < 2) rather rapidly
and then becomes monotonic, attaining its maximum at zero
at a certain moment #, which corresponds to the so-called
collisional time. This characteristic time #y is only weakly
dependent on the exponent f in the expression for the particle
interaction potential U = o/ r#. In this domain, the distribu-
tion functions for different exponents stay rather close to each
other during the entire relaxation process for various
potentials. The distinction is more prominent in the hotter
domain with v > 2 and at distribution tails. To make the
presentation of results more explicit, the function normalized
on the Maxwell distribution, g(v, 1) = f (v, 1) /fm(v), is intro-
duced. Figures 1-3 plot the graphs of function f(v, ) in the
velocity interval 2 < v/vy < 5 for different time moments
and values of the parameter . All curves demonstrate the
wave character of propagation of g(v, 7) toward the domain
of high velocities. For the Coulomb interaction (ff =1,
ny = —3, U= a/r), the function g(v,?) is shown in Fig. 1.
The solution has the character of a wave propagating with a
stable (stiff) front. For the particle interaction potentials with
1 < p < 2, the tail relaxation proceeds more slowly than the
relaxation of the distribution core. Beginning with 2 < f§ < 3,
the tail evolution gradually loses the wave character. Figure 2
demonstrates that the wave front slowly rises with time
(B=2,m = —1, U=a/r?). For stiff potentials (8 > 4), the
characteristic relaxation times for the distribution core and

1.0

g(v,1)

0.8

0.6

0.4

0.2

v/ Vh

Figure 1. Plots of the distribution function normalized to the Maxwell
distribution, g(v,?) =f(v,1)/fm(v), for velocities in the range
2 < v/vm < 5 for several moments of time ¢ (in arbitrary units). The time
is normalized on the time of electron—electron collisions (3.11). Plots
correspond to the case of Coulomb interactions: n; = =3, =1, U = o/r.
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v/vm

Figure 2. Plots of the distribution function normalized to the Maxwell
distribution, g(v,t) = f(v,1)/fm(v), for velocities in the range
2 < v/vy < 5 for several moments of time ¢ (in arbitrary units). The time
is normalized on the time of electron—electron collisions (3.11). Plots
correspond to the case of dipole interactions: n; = —1, =2, U = a/r>.

U/Ulh

Figure 3. Plots of the distribution function normalized to the Maxwell
distribution, g(v,t) = f(v,1)/fm(v), for velocities in the range
2 < v/vy < 5 for several moments of time ¢ (in arbitrary units). The time
is normalized on the time of electron—electron collisions (3.11). Plots
correspond to the case of interactions of Maxwell molecules: n; =0,
B=4,U=0a/r*

tail are practically indistinguishable (times of 1-2). As a
consequence, the velocities of propagation and smearing are
hardly distinguishable (Fig. 3), and the relaxation in thermal
and hotter domains occurs simultaneously.

As can be concluded, the front width A¢(7) is essentially
dependent on the power-law exponent f in the interaction
potential. Indeed, 4¢(7) takes a constant value for 1 < f§ < 2,
i.e., the propagation of g(v, f) in this case has the character of
a wave with a stable profile, which does not smear with time
for ¢ > 0. This fact was discovered numerically at f =1 in
Refs [22-25], and the respective analytical solution was
developed. Beginning from the exponent f§ =2, the front
starts to slightly smear out, following a weak logarithmic
dependence on time: A;(f) o< vInz. The solution should
preserve its wave character. The propagation speed v¢(¢) of a
front is higher than the rate of its smearing.

To facilitate the analysis, equation (3.8) is recast in a
convenient form by introducing dimensionless variables for
the velocity, time, and distribution function:

(+5)/28 (4-p)/28
e {i} X, o P4 {ﬁ} ,
Uth B Vth

(3.11)

f(,0) =) u(x, 1),
where X =28(4 — f)/(4 + p)*, and fy(v) is the Maxwell
distribution function. Substituting representation (3.11) into

Eqn (3.8), we obtain the equation for the distribution function
u(x,7) in dimensionless variables:

+

8u+x1_p Ou 1 *u
ot p dx 20x2%’ P

~
=

=2

(3.12)

~
=

The type of the last equation gives an idea about the wave
character of its solution. Indeed, it is worth mentioning that
we are interested in the hot domain x > 1 and the times at
which u(x,t) = 1 and slow establishment of the equilibrium
solution uy(x) =1 occurs at tails, while u(x,7) — 0 as
x — oo. The condition x > 1 will be taken into account with
the aid of new variables ¥ = x/xpand 7 = 7/ x(’)’ , where xp > 1
is some characteristic scale. In this case, equation (3.12)
acquires a small parameter x{ 2 <1 of the higher deriva-
tive. Hence, it follows that the Landau equation changes its
type in x — oo tails and becomes a transport operator.
Taking this into account, we introduce a formal parameter ¢
of the second derivative. We obtain, as a result, that

ou x'? du i *u

—t—— = 3.13
61+ p Ox 20x2 (3.13)

At ¢~ 0, the last equation reduces to a first-order
equation, and the equilibrium solution wum(x) is simply
carried along its characteristics. The typical solution of
equation (3.13) has the form of a step function:

4—p
ulx, 1) ~0(z'"? —x), p=2—L. 3.14
(v0)~ 0 —x), p=2577 (3.14)
Approximate solution (3.14) properly reflects the asymptotic
law followed by the wave front, x¢(t) o /7, but does not
describe the front structure. In order to analyze it, equation
(3.13) is transformed with due regard for the information on
the wave front behavior obtained earlier. Introducing new
variables
x—cl/r
z=———

7 u(x,7) = ¢(2,7),

we rewrite equation (3.13) for the new function ¢(z, 1) as
2 1p _ 1-p
%:l @_%! 1++e z -1 % .
ot 210z2 p e Ti/p 0z
(3.15)

Suppose ¢ is small but retain z finite. In this conditional
limit, formula (3.15) reduces to

0 1 (9 ¢
a—§<@‘ ‘_>’

(3.16)
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The boundary conditions for the function ¢(z, ) are as
follows: ¢ — 1 when z — —oo (behind the front), and ¢ — 0
when z — 0 (ahead the front). The function ¢(z,1) is
constructed as a solution to the initial value problem for
time t > 1 with the respective initial condition ¢(z, 1) =0(—z)
[cf. function (3.14)]. By an appropriate variable change,
equation (3.16) reduces to the heat conduction equation [24,
25]. As a result, a self-similar solution to equation (3.16) is
obtained:

11—y
P —— 1
z 2(1—1")}’ T>1,

o) = %ﬁ [“ dy exp (=»2).

Returning to the variable x and recalling that ¢ = 1, we find
the quasistationary solution to equation (3.17):

-y
>1
V2 r—fsf}’ to

o(z,71) =@

(3.17)

x—tlr

y=2—.
p

(3.18)

In order to learn where solution (3.18) is valid, let us
formulate all the assumptions made en route. The kinetic
equation is considered for x > 1 and a large time (larger than
the Coulomb collision time) t > 1 close to the wave front
xp(t) o< T'/7, x — 1'/7 < ¢'/P. The last inequality justifies the
passage from Eqn (3.15) to Eqn (3.16), subject to the
condition ¢ = 1, and leads to the following constrains. The
derived solution (3.18) is inapplicable, first, in the interval
0 < x < xr, and, second, for particles outside the region
x > 2xp. Neither case is interesting from a practical view-
point because, with a good accuracy, it can be assumed that
u(x,7) =~ 1 in the first region x < x¢(¢), and u(x, t) ~ 0 in the
second region x > 2x;. Formula (3.18) can be simplified with
account for the condition T > 1. Since the final result depends
on y, three cases may be considered for the expression under
the radical si%n in formula (3.18). The expression
(1=y)(r—17)"" for y<1 tends to (1—y)tz~!, and for
y > littends to (y — 1)t 7. The case of y = 1 is a boundary
one and is different from the other cases. Notice that y = 1
corresponds to =2, i.e., the dipole interaction between
particles. In this limiting case, the expression is rewritten as

- — ) In7]"\ !
(-pe-ey = - (e S =2y

u(x, ) ~ @[

The last expression contains only the first term at y =1,
because the coefficients of the sum disappear for all i > 2.

Thus, simplified expressions for the asymptotic solution
u(x, 1), which is a function of the exponent y, are arrived at
under the condition 7 > 1:

x—tlr 1=,
u(x,r)—@{v\;z. T/}, y<1;

(3.19)

Finally, we reformulate the results obtained above in
terms of original variables v, ¢, and for the distribution

function fp(v, 1):

m 3/2 mvz
f/}(U,l)%/’l(zn—T,) eXp (—ﬁ)

il m t@ m (4=p)/28
T 8 T ’

The constant factor gg is defined by formula (3.9). The
function u(v, ) has the form of a propagating wave, the
front of which travels according to the law

_ B/(4=P)
- (5"

(3.20)

The function u(v, ¢) is described by three expressions depend-
ing on the value of the exponent f:

7
u(v, t) = @{2 %ﬁﬁ) va(‘”ﬁ)/zﬁ} , 1< p<2;

MMoZQ{%am@””mwﬂ},ﬁzz; (3.21)

u(v, t) = (p{ 2(p—-2) {23(4 _ [;)}(4/3)/2,;

4= | 4+p

xufwmeWM},z<ﬁ<4

where V = (v — (1)) /ve(2).
The usability conditions for solution (3.21) have the form
of strong inequalities:

v> 1, vw()>1, |v—v(r)| <v(r).

Notice that u(ve(1), 1) = 1/2. As usual, we define the front
width in the following form

u(v, t) -

Ou(v, t)/ov

Ou(v, 1)

Af(t) =2 o0

v=uvp v=0p

Consequently, for the cases considered above we obtain

a0 =[50 1<p<2;

Ar) = /alno(n), f=2; (3.22)
4_ _

4(1) = zn_ﬁﬁ 2(/i(+ ﬁ)Z) [ ()] 2<p<a.

It can be seen that the front width A¢(¢) essentially depends on
the exponent f3 in the interaction potential. Thus, A¢(¢) takes a
constant value for 1 < f# < 2. The propagation of u(v, 1), in
this case, has the character of a wave with a stable profile
which is left unsmeared with time for # > 0. For f > 2, the
front gradually smears out, showing a weak logarithmic
dependence Ag o VInt. The solution behavior should still
preserve its wave character. The front propagation speed
exceeds the rate at which it is smeared out:

aAf/Gt . %
avf/al o dog ’
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3.2 Numerical modeling of the formation

of nonequilibrium particle distribution functions

for stationary self-consistent sources and sinks

In this section, we analyze the formation of nonequilibrium
quasistationary distribution functions in a spatially homo-
geneous isotropic plasma composed of one kind of particles,
in the presence of localized sources (sinks) of particles
(energy) in velocity space. The existence of nonequilibrium
distribution functions assumes the presence of sources and
sinks in momentum space. An energy (particle) source and
sink can be maintained by ion beams, powerful laser
radiation, emission current, beams of charged particles
emitted in fusion or fission reactions, etc. The analysis is
based on the Landau-Fokker-Planck equation, which is a
model of the Boltzmann equation for arbitrary interaction
potentials of particles [21-26].

We concentrate now on a numerical study of the evolution
of nonequilibrium distribution functions and their depen-
dence on various input parameters — the intensity of sources,
the degree of their localization in velocity space, and so forth.
Section 4 compares results simulated numerically with those
obtained in a particular experiment dealing with the irradia-
tion of a semiconductor by fast ions [29-32]. Fully conserva-
tive difference schemes [22-28] are applied for numerical
modeling.

Numerical implementation of the problem solved here
faces a fundamental difficulty rooted in the nonlinearity of
the collision integral. As has already been mentioned, two
conservation laws should be obeyed in the absence of external
sources; otherwise, the dissipative properties of the difference
scheme may distort the result through the influence of implicit
sinks or sources. For this reason, numerical schemes capable
of appropriately handling the nonlinearity of the modelled
equation are employed [26].

Nonlinear operator (3.3) with the symmetric kernel
QO(v,w) for power-law interaction potentials (3.7) is utilized
in numerical modeling. For charged particles f = 1 (n; = —3),
so then Q(v,w)=(2/3)w? for w < v, and Q(v,w)=(2/3)v>
for w > v.

Following a common procedure of making equations
dimensionless, we change to the variables

= = £ Lty = 32mvg, V-0,
Uth g nggp
4mug 4ol tsS (3.23)
g th ’ th
= Dog = T h 5P
/ o ne

To implement the difference scheme, the infinite interval in
velocity space is replaced by a finite interval [0, vmax] selected
so as to account for high-energy particles, and the boundary
condition for the distribution function is taken as
S (Umax, t) = 0. The sources S; and sinks S_ in most cases
are chosen as d-functions:

Iié(v—vi)
=T

S, (3.24)

If the intensities of a source and sink satisfy the relation-
ship I, =1 _v2/ 1;J2r, the energy acquired by the system from
outside equals zero, but the particle density in the system
decreases (if the source is associated with larger velocities
than the sink), i.e., in this situation an analog of constant
energy flux in momentum space is realized with non-
conservation of particle density in the system. Since we are
dealing with charged particles, as the electron density drops in

a certain region, thermal electrons from its surroundings tend
to replenish it, driven by the arising electric field. In the
framework of the spatially homogeneous model considered
here, this can be taken into account by introducing yet
another source with an intensity I, so as to compensate for
the decrease in particle number and, respectively, the
generation of the electric field. In this manner, we can
formulate a consistent model with two sources of intensities
I, and I, and one sink of intensity 7_, in the framework of
which neither the energy nor the particle density will change.
This will be achieved if the intensities of sources and sinks
satisfy the two relationships

Ly—1-+1, =0, Iy —1v>+1vi=0. (325
They can be rewritten as the expressions for the intensities of
sources in terms of the sink intensity /_:

2 _ 2 2,2
v —v v —v?

=1 5= =1 T (3.26)
Uy — Y UE T Uy

Additionally, in numerical computations we will some-
times consider sources (sinks) which are distributed exponen-
tially over velocities:

Si O(Ii eXp [— b(’U—’Ui)z] . (327)
Such an expression for the source or sink proves to be
convenient for exploring the dependence of nonequilibrium
distribution functions on the source shape. We remark that,
strictly speaking, the introduction of sinks which are
independent of the distribution function may face severe
problems. In this arrangement, one may specify such initial
conditions that solutions will become negative in the vicinity
of the sink as time progresses. For this reason, the sources
(sinks) are frequently modelled by terms that are proportional
to the distribution function sought after, namely

O —ve) f(w.1).

S =1 =

(3.28)
It will be recalled that in the discrete case the function
o(v—wp) differs from zero only at v =wv;. The initial
distribution is chosen as Maxwellian or J-functional. It
should be noted that results are practically insensitive to the
shape of the initial distribution function, except for the very
initial stage. Iterations are carried out on each time step, the
particle number is preserved up to the machine precision, and
the energy is conserved up to 7-8 significant figures.

Later, we discuss the main results of numerical simula-
tions in the presence of particle or energy fluxes in momentum
space [29-31]. There are the source S, and sink S_ on the
right-hand side of kinetic equations (3.3) to maintain the flux
in momentum space. We begin with the case when the source
and sink conform in momentum space with the direction of
flux transferred as a result of collisions. Notice that analytical
consideration of equations for a localized source and sink
gives the correct flux direction — from high to low velocities.
It can be seen from Fig. 4 that, as time progresses, a
nonequilibrium stationary (Kolmogorov type) particle dis-
tribution is established in the interval between the source and
sink, in agreement with the presence of energy flux in
momentum space, while outside this interval the distribution
function remains a thermodynamically equilibrium one. To
convince ourselves once again that the location of source and
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Figure 4. Dependence of the logarithm of the nonequilibrium stationary
distribution function normalized to its value at v = 0 on the dimensionless
velocity squared. The computations use the initial Maxwell distribution
function and the source function with 7 = 10~'%, v_ = 5, v, = 6, and are
carried out for the Landau—Fokker—Planck equation at the instants of
time #, = 100 (solid line) and #; = 25 (dashed line).
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Figure 5. Dependence of stationary (equilibrium) distribution function for
nonconforming location of the source and sink, v, = 5, v_ = 7, obtained
from computations based on the Fokker—Planck and also the Landau
equations for f =1, 2, 3.

sink need to conform with the flux direction in momentum
space, we carried out computations with opposite locations of
the source and sink in energy space. Figure 5 displays the
logarithm of distribution function versus (dimensionless)
velocity squared for the incorrect arrangement of the source
and sink. Apparently, the particle distribution function stays
in thermodynamic equilibrium as the flux intensity is varied
over several orders of magnitude— this reinforces the
importance of conforming the placement of a source and sink.

For the variant presented in Fig. 6, the functional
dependence of the source and sink on velocity is exponen-
tial. The source S occupies a ‘narrow’ domain in the vicinity
of energies that corresponds to seven thermal velocities, while
the sink S_ is also sufficiently local in the region of four
thermal velocities. The localization regions of the source and
sink are controlled by the value of coefficient «; in the
exponential function. In the case considered, the coefficient
o 1is fairly large (it equals 100), which ensures their strong
localization. We explore the dependence of the electron
distribution function on the degree of source and sink
localization in energy space. With this aim, the magnitude of
coefficient o; was reduced in the next simulations by one
order to «; = 10. From the comparison of results presented in
Figs 6 and 7, it can be concluded that the character of the
nonequilibrium stationary distribution in the main domain
between the source and sink does not depend on the degree of
source (sink) localization, which witnesses in favor of the
locality of the distribution function.

Figure 8 plots the dependence of distribution functions on
the square of the dimensionless velocity for various flux
intensities. It is found that for small intensities of source 7,
(sink 7_), the universal nonequilibrium distribution is formed
in the vicinity of velocities v < v, which is caused, first, by a
reduction in the Coulomb scattering cross section as velocity
isincreased (~ v~3) and, second, by the always existing flux of
energy and particles (because of the Coulomb diffusion) into
the region of the basic, ‘background’ equilibrium distribution
function. For this reason, as the intensity is increased, the
universal nonequilibrium particle distribution forms, tending
to occupy an ever larger region between the source and sink,
which is related to the reduction in the relative role of the flux
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Figure 6. Distribution function computed from the Fokker—Planck

equation for the source (sink) Sy ~ I exp{foq(vai)z}, o = 100,

v_ =4, and vy =7. The dashed and solid lines correspond to time

moments ¢ = 25 and ¢ = 100, respectively.
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Figure 7. Distribution function computed from the Fokker—Planck
equation for the source (sink) Sy ~ Iy exp {—u (v—vi)z}, o =10,v_ =3,
and v, = 5. The dashed and solid lines correspond to time moments ¢ = 25
and ¢ = 100, respectively.
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Figure 8. Stationary distribution function obtained from the Landau
equation at § = 2 for a source (sink) in the form of J-function (3.24) for
various flux intensities 7 = 0.01 (/), 0.001 (2) and v_ =4, vy = 6.

leaving for (transferred to) the ‘background’ plasma. It is
worth noting that the magnitude of the nonequilibrium
distribution function grows together with the intensity, since
it is proportional to the magnitude of flux (2.6). Some
numerical values of the nonequilibrium stationary distribu-
tion function obtained by solving the Landau equation are
listed in Tables 1 and 2. The results present a detailed study of
the dependence of the solution on the flux intensity, which
varies in wide limits in momentum space. Function (3.24) was
chosen to describe the source (sink) of particles: the sink was
located at the point v_ =4, and the source at v, = 8, and
AE =0. The last equality implies that the energy flux
remained constant in momentum space; however, since
additional sources in the thermal domain were not involved,
the particle density did not stay constant.

From Table 1 it can be seen that the amplitude of the
distribution function increases with the intensity 7 of the flux
produced by the source and sink. At low intensities (up to
0.1), the values of the distribution function grow proportion-
ally to I, because a large contribution comes from the
interaction of nonequilibrium particles (i.e., particles from
the interval between the source and sink) with ‘background’
particles which are described by the thermodynamically
equilibrium distribution function. For intermediate intensi-
ties (from 0.1 to 20), the distribution function is the universal
one throughout the interval between the source and sink and
is proportional to the square root of flux intensity, in
agreement with expression (2.6). At large intensities, the
distribution function ceases to exhibit this proportionality,
because the sink intensity itself depends on the distribution
function, in agreement with the chosen model of sink (3.28).

Consider the formation of the nonequilibrium particle
distribution function, which corresponds to a constant energy
(AE=0, I, =1 _v?/v?) or particle (AN=0, I, = I_) flux. To
facilitate the comparison of results, it is convenient to plot the
distribution function normalized on its value at zero (Fig. 9).
It can be seen that for fluxes of both particles and energy,
gradually decaying distributions are formed, characterized by
close exponents s.

It is interesting to learn about the form of the distribution
function for various laws of interaction between particles.

Table 1.
1 /(3.95) S(7.95) /(8)
10 0.393 x10~° 0.417 x10~10 0.417 x10710
1 0.475x10~° 0.144 x10~10 0.144 x10710
0.1 0.508 x10~° 0.189 x 10~ 0.189 x10~!!
0.01 0.517 x107° 0.197 x10~12 0.197 x10~12
0.001 0.518 x107° 0.198 x10~13 0.198 x10713
0.0001 0.519 x10~° 0.196 x10~4 0.196 x10~ 4
Table 2.
p 1 1.5 2 3 4
£(8)10.197x10712{0.123x107"3{0.266x10~4]0.771 x10130.384x10~ 3
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Figure 9. Stationary distribution function derived from the Landau
equation at f =1 for the source (sink) in the form of the J-function
(3.24); |I+] = 0.01, v =4, and vy = 8. Curves / and 2 correspond to
constant energy (AE = 0) and particle (AN = 0) fluxes, respectively.

The values of the power-law exponents from the interval
1 < f < 4areconsidered. It should be kept in mind that f = 1
corresponds to the Coulomb interaction potential, =2
corresponds to the dipole interaction, and f§ = 4 describes
the interaction of the so-called Maxwell molecules.

Table 2 presents the dependence of the distribution
function f(v,) on the exponent 8 of interparticle interaction
potential for 7 = 0.01. It is evident that for equal intensities of
the source and sink, the values of the distribution function at
the same value of velocity decrease, as the parameter f§ is
increased, by almost three orders of magnitude. Figure 10
displays nonequilibrium distribution functions for the con-
stant energy flux of intensity 7/ = 0.001 (the sink and source
are of the form (3.28), and are located at v_ =4 and v, =8
points, respectively), and the exponents f =1, 2, 3. It is
apparent that nonequilibrium distribution functions with
close values of power-law exponents s are formed for all
these values of f, which agrees with the conclusions of
Ref. [30]. The absolute value of the distribution function in
the nonequilibrium region drops as the exponent f is
increased. These results are in qualitative agreement with the
analytical results presented above.

Next, consider the evolution of the distribution function
in the framework of the above-described self-consistent,
spatially homogeneous model with two sources of intensities
I_ and Iy, and one sink with intensity 7_, in which the energy
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Figure 10. Dependence of nonequilibrium stationary distribution func-
tions on velocity squared for a constant energy flux with the intensity
I = —0.01, for the source (sink) in the form (3.28) and v_ = 4, v, = 8. The
curves are computed from the Landau equation for the exponent = 1 (1),
2(2),and 4 (3).

E

Figure 12. Energy dependence of the logarithm of the nonequilibrium
distribution function obtained from the Landau equation at § = 1 for the
source and sink in the form of the J-function (3.24), I = —0.002, v_ = 2,
vy = 1, v,, =7 at various time moments ¢ = 0.001 (/), 10 (2), 20 (3), and
200 (4).
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Figure 11. Time evolution of nonequilibrium distribution function
computed from the Landau equation at = 1 for the source and sink in
the form of the é-function (3.24); I_ = —0.001,v_ =2, v, = 1, vpy = 7.

and particle density do not vary with time. The intensities of
sources expressed in terms of the sink intensity /_ satisfy
relationships (3.26):
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Figure 11 presents the time evolution of the nonequili-
brium distribution function obtained in the framework of the
self-consistent model from the Landau equation at f = 1 and
the source and sink in the form of J-function (3.24) for a sink
of intensity 7~ = —0.0001 located at the point v_ = 2, and
two sources located at points v; . =1 and v, =7, respectively,
with the intensities given above. It can be seen that the
distribution function stays in thermodynamic equilibrium
outside the inertial range, with the temperature coinciding
with the initial one.

In the inertial range (corresponding to a constant energy
flux between the source and sink), a distribution function that
barely varies with velocity (a plateau) is set. The distribution
function attains its stationary limit most rapidly in the vicinity
of a source, while its formation in the vicinity of a sink takes
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Figure 13. Evolution of the distribution function under the action of
nonstationary sources and a stationary distributed sink at several time
moments ¢ = 5 (1), 20 (2), 30 (3), 35 (4), 50 (5), and 100 (6). Time moment
t = 30 corresponds to switching the sources off. The sources with equal
intensities /;, = 0.01 are localized at velocities v;y = 3.5 and vy, = 7.0;
the sink is proportional to the distribution function and operates in the
range v_ = 2.

several hundred dimensionless time units (Figs 12, 13). The
increase in flux intensity (see Fig. 13) leads to the increase in
the magnitude of the distribution function but leaves the
temperature of the thermodynamically equilibrium distribu-
tion function without any changes.

3.3 Numerical modeling of the formation

of nonequilibrium particle distribution functions

for nonstationary, nonconforming sources and sinks

In the numerical simulations discussed in Section 3.2, we dealt
with either sources and sinks of limited intensity or with the
self-consistent model in which the sources and sinks are, first,
localized in momentum space and, second, agree in intensities
so as to provide a pure situation with constant energy
(particle) flux in momentum space. In this case, nonequili-
brium stationary distribution functions formed in the inertial
range as time elapsed.
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As shown in Section 4, in actual experimental practice (for
example, when a solid state plasma is irradiated by a beam of
high-energy ions), one is dealing not only with intensity-
unmatched but also with nonstationary sources and sinks,
i.e., with sources acting during a finite time interval which is
much shorter than the time the sinks are active. Moreover, the
sinks and sometimes the sources can be distributed over
almost the entire region of momentum space. As we shall see
in the subsequent exposition [29-31], the distribution func-
tions in this case will be quasistationary or nonstationary.

Let us analyze the evolution of the distribution function
for f;,3=1,2,4 under the action of only sources with low
intensity. The formation of nonequilibrium distribution can
be subdivided into three stages. During the first, short stage,
the system still ‘remembers’ its initial conditions. The
duration of this stage does not vary too much for different
exponents f§ and makes approximately ¢ ~ 1. The formation
of the main part of the distribution happens during the second
stage. Its duration essentially depends on the source position
v, but not on its intensity, provided it is low. The distribution
function acquires the shape of a plateau or gently decays
between the source and the cold region, depending on the
source intensity. The establishment of quasistationary dis-
tribution ends by the tail formation. Its duration depends
essentially on the exponent 5. The evolution of the main
distribution part ends in dimensionless units for ¢ = 50 at
p=1fortx~2atf=2,andforr~1latf=4.

3.4 Formation mechanism of electron distribution function
for solid state plasma interacting with beams

of electromagnetic radiation or fast charged particles

In this section, we intend to draw attention to specific features
of conductive and emissive properties that emerge when high-
energy particle beams or laser radiation act on a semiconduc-
tor plasma.

(1) Let us compare electron energy relaxation times due to
electron—electron and electron—phonon collisions. Because of
ionization caused by beams of intense electromagnetic
radiation, electrons with energies E > iw, where o is the
radiation frequency, are produced. In the case of irradiation
by particle beams, the energy spectrum of released electrons
embrace the interval from tens to tens of thousands of
electron-volts. According to Ref. [33], the frequency of
electron—electron collisions for electrons of sufficiently high
energy E (E > kgT) at high temperatures 7 > Tp (Tp is the
Debye temperature) is given by the expression

14+ (£ 2
ksT

where y°(7T') is the classical high-temperature frequency for
collisions between electrons, which is proportional to 2. The
frequency of electron—phonon collisions under the same
conditions is expressed as [34]

Vef f(TD)T

Y(E,T) =y:5(T) , (3.29)

=T, (3.30)
where f(Tp) is the classical high-temperature frequency of
collisions between electrons and phonons at 7= Tp. For the
processes discussed here, the conditions needed for formulas
(3.29) and (3.30) to be valid are satisfied, since £ > 10 eV,
T =300 K, and Tp =200—300 K. Notice that quantities
reciprocal to collision frequencies as given by Eqns (3.29)

and (3.30) do not coincide in the general case with electron
energy relaxation time, since one has to take into account the
number of collisions it takes a particle to lose its energy E, i.e.,
the factor ¢ = E/E; (E) is the energy lost by an electron per
collision). According to data from Ref. [34], in the case
considered one has

PR, v >, (3.31)
whereas the factor & for electron—electron collisions can be on
the order of unity, while for electron—phonon collisions
E/kgTp > 3 x 10%. Thus, the relaxation time due to elec-
tron—electron collisions is substantially shorter in this case
than the relaxation time owing to electron—phonon processes.

The comparison of characteristic ionization time with the
relaxation times indicates that the electron distribution
function will be quasistationary in our case, and will be
largely determined by the electron—electron collisions. Relat-
edly, it can be found from the condition that the Boltzmann
(Landau—Fokker—Planck) collision integral becomes zero.

From the analysis presented above, it follows that for a
semiconductor plasma in the energy interval £ — Er > Ef a
power-law distribution may exist, which corresponds to a
constant flux of energy or particles in momentum space. In
this case, the particle distribution will be formed by collisions
with electrons having energies satisfying the condition
E — Er > Ef, as well as with (equilibrium) electrons in the
basic background.

It was shown that the nonequilibrium electron distribu-
tion function is close to a universal distribution if the intensity
of flux created by sources and sinks in momentum space is
sufficiently large.

(2) Let us consider, as an example, the irradiation of solid
state plasma by a beam of fast ions (with velocities exceeding
the velocities of electrons in atoms). We concentrate on a
typical situation along a track of an ion. Let the energy of a
helium ion g =~ 5 MeV, the excitation potential @~ 100 eV,
and the ion range in matter R, ~ 10~ cm. Then the helium
ion creates 10* —10° particles on its path owing to ionization,
the radius of the ionization track is commensurable with the
mean free path of released electrons (R. ~ 10~° cm), the
electron number density created by a single helium ion in its
track e, ~ 10" =102 cm—3, while the equilibrium density
ne =~ 1022 cm™3. For this ratio of electron densities, the
intensity of the source (sink), as can be concluded from the
preceding consideration, is sufficient for the nonequilibrium
distribution function to form.

We dwell on the energy loss channels for a fast ion in a
solid state plasma in more detail. Notice that even for
parameters characteristic of inertial thermonuclear fusion
on ion beams, the interaction of ion beams with solid state
plasma lacks the ‘beam density effect’ (cf. Ref. [35]), i.e., the
dependence of ion energy loss on particle density in the beam.
Bearing this circumstance in mind, we estimate the energy loss
by a single ion by the Bethe—Bloch formula. According to
monographs [36, 37], the energy lost by a fast nonrelativistic
particle is transferred to matter in two ways. A part of the
energy is spent to excite collective oscillations of the wake
charge density, while the other part is transferred to
individual electrons, leading to their ionization. The first
part corresponds to macroscopic energy losses in distant
collisions and weak momentum transfer. The second part
corresponds to collisions with large transferred momenta. A
relatively large part of the energy lost by the particle is spent
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to excite collective oscillations. The energy Agy pertaining to
the oscillations of wake charge density can be presented in the
form [36, 37]

Agy _ In (v/10vy) 7 (332)
Ae  2In(v/wvg)

where Ag is the total particle energy loss, and vy is the electron
velocity in the ground state of a hydrogen atom. Expression
(3.32) indicates that the energy Ag, of wake charge density
oscillations is comparable to an order of magnitude with the
total particle energy transferred to the matter.

A fast particle traversing matter may create slow electrons
by two equally probable mechanisms — the avalanche ioniza-
tion, and the ionization through plasma oscillations. The
main features intrinsic to the ionization electron formation
through plasma oscillations are linked to the fairly long
lifetime of wake charge oscillations, as well as to their
substantial extension in space. Because of the long lifetime
of the wake charge, the secondary ionization inside the beam
persists long after the particle’s passage. A substantial
number of slow electrons in the cascade ionization are
produced at the beginning of the cascade, being triggered by
the secondary electron with large energy. Since the range of
such an electron in matter is large, the dominant number of
slow electrons are produced in cascade ionization at distances
on the order of the electron range. For this reason, the
ionization by the wake potential shows up as the main
process that determines the distribution of ionization elec-
trons near the axis of the particle track, while the cascade
ionization governs the distribution of ionization electrons at
distances on the order of the electron range from the track
axis. The ionization by the field of the charged beam particle
proper occurs only at the moments when the particle is flying
past, while the wake oscillations of charge density play the
role of the linear source of secondary electrons, which is
preserved long after the passage of the charged particle and
therefore markedly determine the behavior of the ionization
pattern with time.

As mentioned above, despite the ion travel time along its
track being small, the characteristic time of avalanche
ionization by the wake charge density is rather large, reach-
ing approximately 10-13 s

If the irradiation frequency satisfies the condition
hw > kg T, the interaction of intense electromagnetic radia-
tion with solid state plasma results in the liberation of a large
number of high-energy electrons which form, in agreement
with the consideration above, the nonequilibrium stationary
electron distribution function. Thus, in both cases of
irradiation — by beams of intense electromagnetic radiation
and by beams of fast particles—we are dealing with a
nonequilibrium electron distribution function, which is
formed in the inertial range as a result of electron—electron
collisions described by the Boltzmann or Landau—Fokker—
Planck collision integrals, and which essentially differs from
the equilibrium distribution function through a large number
of high-energy electrons.

4. Experimental studies of nonequilibrium
particle distribution functions

Section 3.4 showed that local nonequilibrium isotropic
stationary particle distributions may exist in collisional
plasmas. The existence of such distribution functions hinges

on the presence of sources or sinks of particles or energy in
momentum space. This takes place when beams of charged
particles, laser radiation, or microwave radiation interact
with dense plasmas, when nuclear or thermonuclear reac-
tions are maintained in plasma, etc. Earlier [12, 13, 15, 38],
attention was drawn to a set of important consequences
which, for one thing, stem from so radical a change in the
energy distribution of particles and, for another, have an
essential bearing on applications (influence on the Landau
damping, the Lawson criterion in tasks of controlled fusion,
application in astrophysics, and others). However, gas
plasma constitutes a highly unstable medium in which
collective processes may play a particularly important role
and ‘conceal’ the collision phenomena between particles.
From this viewpoint, solid state plasma, allowing one to
control the departure from equilibrium in a stable regime,
seems to be more attractive. Here, the source or sink of energy
(particles) can be furnished by ion beams, powerful laser
radiation, an emission current, beams of charged particles
produced in fusion or fission reactions, and so forth.

In this section, our goal is to draw attention to specific
features of conductive and emissive properties of metals and
semiconductors subject to the action of intense beams of
particles or laser radiation. In this connection, Sections 4 and
5 consider anomalies in the emissive properties of metals,
enabling one to create new sources of current or converters of
the radiation energy into electric energy, promising substan-
tial advantages over thermionic ones (see, for example,
Ref. [39]) with respect to their efficiency and emission current
[16].

4.1 Experimental studies of nonequilibrium electron
distribution functions in emission induced

by laser radiation

Paper [12] called attention to the possibility of an anomalous
increase in the photoconductivity of a semiconductor exposed
to light of frequency w insufficient to trigger the transition
between its bands, 7w < V,, where V, is the band gap width,
by creating a nonequilibrium distribution of electrons and
holes. Based on experimental research, the authors of Ref. [40]
pointed to the significant modification of the conductive
properties of semiconductors irradiated by a-particles.

It is known [41, 42] that two peaks in the emission current
are observed on illuminating metal foils by a nanosecond
pulse of a powerful laser, Q=10 erg (cm?s)~!. The first
peak, almost synchronous with the laser pulse, contains a
large number of ‘fast electrons’ (the maximum energy for
tungsten is 14.5 eV). The second peak, lagging © ~ 1077
10~8 s behind the first one, contains electrons with energies
that do not exceed 2 eV. A satisfactory explanation for the
appearance of fast electrons as being due to the Maxwell
distribution function is impossible [43], because the experi-
mental results of Refs [41, 42] would correspond to the
temperature 7. = 30,000 K, which is an order of magnitude
higher than the tungsten melting temperature. As concerns
the emission current, two mechanisms of its production are
well known: the multiquantum photoeffect and thermionic
emission, both giving emission currents which are smaller by
many orders of magnitude.

Turning to the mechanism based on a nonequilibrium
electron distribution function forming under these conditions
[13, 38], one gets plausible estimates for the magnitude of
emission current and its dependence (fast peak) on the
retarding potential. As for the slow peak, in all probability,



66 V E Zakharov, V I Karas’

Physics— Uspekhi 56 (1)

over its initial part the emission current is contributed not
only by the equilibrium distribution (thermionic emission)
but also by a nonequilibrium nonstationary component
linked to the ‘breakup’ of power-law distribution.

If the intensity of laser beams is very large, a plasma layer
builds up near the solid body surface, and the appearance of
high-energy electrons may be explained by a soliton forma-
tion under resonance pumping [44]. This mechanism,
however, has only a limited validity domain and is unsui-
table for explaining the experimental results obtained by
Knecht [41, 42].

Thus, it is shown that a series of experimental data on the
magnitude of emission current from metals, induced by laser
irradiation, and the dependence of current on the retarding
potential [41, 42] cannot be explained in the framework of
equilibrium distribution function [43], but gains a satisfactory
explanation with the help of mechanism [13, 38] that hinges
on the presence of a nonequilibrium situation.

4.2 Experimental studies of nonequilibrium electron
distribution functions in emission induced

by beams of fast ions

To describe kinetic electron emission induced by ions, one
resorts to theories proposed in Ref. [45] for low ion energies,
and in Ref. [46] for the range of high energies. According to
the mechanism of secondary emission proposed by Stern-
glass [46], secondary electrons are formed because of
ionization by fast ions, as described by the Bohr—Bethe
theory, then diffuse to the surface and exit into a vacuum.
The secondary emission coefficient 4. for this mechanism is
proportional to the specific ionization losses and does not
depend on the work function ¢, conductivity, or other basic
properties of the substance. Notice that, for the thermal
mechanism of emission, the coefficient 4. is proportional to
the square of specific ionization losses and essentially
(exponentially) depends on the electron work function.

In reviews and experimental studies [47-75] and in the
literature cited therein, it is proven that the secondary
emission coefficient 4. is proportional to the energy loss by
fast particles, i.e., available data confirm the mechanism
described in Ref. [46]. It is noteworthy that the proportion-
ality coefficient x in this dependence is practically indepen-
dent of the incident ion energy, but depends on the target
material and may change severalfold if one material is
replaced by another. Prior to research involving none-
quilibrium particle distributions, both theoretical and
empirical expressions linking the proportionality coefficient
k with the target parameters and incident ion energy were
absent.

Theoretical consideration of secondary electron emission
from aluminum, induced by protons and o particles and
carried out in Refs [65, 75, 76], is not able to predict the
values of coefficient k observed experimentally or explain the
broad energy spectrum (especially for forward emission) of
secondary electrons. Note that most experimental research is
concerned with backward emission. However, as shown in
Ref. [54], the energy spectrum of secondary (backward)
electrons is not universal if the energy of the impinging
particle is varied. In this case, even such a rough character-
istic of the process as the ratio of the forward secondary
emission coefficient to the backward one may vary (see
Refs [54, 70]).

In our opinion, the expression for the secondary electron
emission coefficient 4. that is most physically transparent is

offered by the formulas
de _ PL.

K ,

Ae = K —
dx’ &

(4.1)

proposed in accordance with Refs [46] and [59] and used in
Ref. [55], where de/dx is the energy loss by an impinging
particle, P is the probability of the event that the surface
barrier will be surmounted by an internal secondary electron,
L. is the depth of the layer from which the emission electrons
emerge, and &, is the energy spent for every internal secondary
electron formation. Reference [59] suggests taking &, equal to
that of the respective substance, but in a gaseous phase under
normal conditions.

We suppose that the secondary emission coefficient A,
should be proportional to the energy loss per atom, i.e., be
dependent on the number density of atoms N, as N, ! 3, and
be inversely proportional to the excitation potential @ taking
into account the collective character of the interaction of a
charged particle with the electron subsystem of the target
material. In accordance with Refs [77-79], the Sternglass
formula is modified as follows:

4 (Zy (_ ds)
e 1/3 d )
DN, X/

where (—de/dx) , is the energy loss by a proton moving with
the velocity of the impinging ion, Z.y is the effective ion
charge in the target, and { is some constant. In this case, it is
reasonable to use an expression for (—de/dx), proposed in
Ref. [80] and valid in the beam energy range from several keV
to 50 MeV:

(4.2)

ay—&—by2

de
) == = 43
( dx)p 0.01y2% 4 ¢’ (43)

where y is the velocity (x10% cm s~'), and a, b, ¢ are
coefficients characterizing the material of the target and
having a rather pronounced periodic dependence on the
atomic number Z of the target element. Thus, the coefficient
a varies with a period close to Z, = 18. The values of
coefficients a, b, and ¢; for aluminum, beryllium, graphite,
and nickel [80], which are used in Section 4.3, are collected
in Table 3.

The energy dependence of secondary emission coefficient
A, 1s explored rather thoroughly, yet the description of the
distribution of emitted electron over energies emerges as a
rather tough problem. Results of experimental research on
the energy spectrum of secondary electrons emitted when
protons or o particles traverse thin foils are reported in
Refs [47-79, 81-84]. However, in Refs [81-83] the spectrum
was explored in a narrow energy range (0-10 eV), and it is
only mentioned that the spectrum is of a nonthermal nature,
and in Refs [54, 55, 79], although their measurements cover a

Table 3. Coefficients characterizing the target material.

Material a b 1
Al 24 0.018 0.36
Be 2.42 0.001 0.37
Ci 2.92 0.018 0.4
Ni 6.8 0.01 0.77
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wide secondary-electron energy range (0-100 eV), the dis-
tribution function can be judged only by its integral
characteristic because of imperfections in the experimental
technique utilizing a nonspherical analyzer, which is not fully
satisfactory. Reference [54] proved that for a broad range of
proton energies (20-250 keV) the energy spectrum of
secondary electrons in the forward direction is defined by a
universal power-law function, whereas for the backward
emission such a universal dependence is absent. Addition-
ally, it was shown that the forward secondary emission
coefficient is almost twice as large as the backward one. It
can readily be seen that, by studying the energy spectrum of
secondary electron emission (SEE) with a spherical analyzer
for a point source of SEE, it is possible to retrieve the electron
distribution function in a metal. The emission current is
determined as

Iem = By JE‘MX Ef(E) dE7 (44)

o+Er+q. U

where U is the retarding potential, and B; is a constant;
therefore, the derivative of current over the retarding
potential is proportional to the electron distribution function:
d[em
dUu

=By(¢+ Er+q.U)f(¢ + Er +¢q:U). (4.5)

When the electron distribution function has a power-law
form, plotting the dependence of d/ey, /dU on ¢ + Ef + ¢ U
in logarithmic coordinates enables one to easily find the
power-law exponent from the slope of the curve.

To verify the theoretical ideas pertaining to the mechanism
of electron distribution function formation in interactions of
ion beams with a solid state plasma, formulated in Sections 2
and 3, an analysis was carried out of the experimental
secondary electron energy spectrum and the dependence of
the secondary emission coefficient 4. in the forward direction,
not only on energy losses of a particles and protons in matter,
but also on the excitation potential ®.

The comparison of current—voltage characteristics for
different targets with due account of thermal electrons invites
the conclusion that the mechanism of secondary emission is
not thermal and that secondary electrons knocked out the
target by o particles are distributed according to a law
different from the exponential one.

4.2.1 Study of kinetic electron emission from metals. We turn
now to presenting experimental results on the exploration of
the secondary electron energy spectrum with the aid of a
spherical three-grid analyzer. Such measurements allow one
to retrieve the power-law exponent s of the electron energy
distribution function with the help of a single differentiation
of the current—voltage characteristic because, in this case, in
the domain where the distribution function follows the power
law, we have

dlem

- B E Us+1
i 3(p + EF +q.U)™"

(4.6)

where B3 is a constant.

Accordingly, dependence (4.6) is a straight line on the
logarithmic scale with the tangent of the slope angle equal to
s+ 1.

The experimental points for the dependences of
Ig (Alem/AU) on 1g(¢p + Ep +¢.U) for aluminum and
beryllium targets are well fit by three straight lines, which

corresponds to different power-law exponents in the energy
intervals 0—-10 eV, 1040 eV, and 40-100 eV. The exponents s
for aluminum and beryllium are only different in the range of
small energies.

Departing from expression (4.3) for the particle energy
loss, and taking into account the values of coefficients a, b,
and ¢, it is possible to explain the dependence of secondary
emission coefficient 4, for aluminum and nickel on the energy
¢ of impinging particle in the form 4. ~ ¢ %7 in a wide
energy range, which was mentioned in Refs [64, 65]. Since
@ [eV] = 13.5Z, [85, 86], in the energy interval from 1 to
10 MeV the range of an « particle in matter is determined from
the empirical formula [86, 87]

Ry =0.174 x 107343 p 1632 (4.7)
where Ap, and p,, are the atomic weight and the density of
matter, respectively. For estimates, it can approximately be
assumed that

2/3
Ao ~ leeff plz Vb_l )

(4.8)

where V', is the velocity of impinging particle. Formulas (4.7)
and (4.8) provide the correct relationship between the
secondary emission coefficient 4. for aluminum, beryllium,
and graphite. High absolute values of 4. obtained in Refs [77,
79] are explained by a substantial contribution to the electron
emission from o particles flying at an angle to the normal to
the film and experiencing higher energy losses than the
particles moving in the direction of the normal.

In order to alleviate the drawback of Ref. [79] caused by
averaging the secondary electron spectrum over energies of
impinging particles and the take-off angle of the secondary
electrons, the experimental research dealing with the energy
spectra of secondary electron emission induced by a proton
beam traversing a target was carried out for different electron
take-off angles for Al, Cu, and Be [78, 88]. The dependence of
secondary emission coefficient in the forward direction was
studied not only with respect to the energy loss of protons
with an energy of 1 MeV in matter, but also to other
macroscopic characteristics of the target. The energies of
secondary electrons knocked out of the target were analyzed
by the retarding potential method with the aid of a narrow-
aperture (4 x 10~* steradian), three-grid analyzer mounted
at different angles (30°, 45°, and 75°) to the beam direction.
The secondary emission coefficient was determined by the
ratio of the total secondary electron current /. to the current
of protons [,. The experiments utilized targets with a
thickness of 5.6 um for aluminum, 9.7 um for beryllium,
and 1.2 pm for copper. The measured dependences of I./1;
on U allow one to determine the power-law exponent s by
once differentiating these dependences because, in this case, in
the range where the distribution function follows the power
law, we have

d I )
—— 2= Bi(p + Er +q.U)",

T (4.9)

where By is a constant.

Consequently, function (4.9) represents a straight line on
the logarithmic axes, the tangent of its slope being s + 1. It
was shown that the experimental points gather around three
straight lines that correspond to different power-law expo-
nents on the intervals 0-10 eV, 10-40 eV, and 40-100 eV.
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These exponents coincide rather accurately (~ 10 %) with
those found with the aid of a spherical analyzer in the
experiments on bombarding the same targets by o particles
(see above and Ref. [77]). The power-law exponents were
found to differ for different targets only in the range of small
energies 0-10 eV. Together with the energy spectrum, the
values of the integral characteristic— the secondary emission
coefficient 4, for aluminum, copper, and beryllium targets —
were determined to be equal to 2.5, 1.6, and 4.6, respectively.
As we have already mentioned, the coefficient 4. is propor-
tional to the energy loss of a fast particle:

Ae:KE

o (4.10)

where x is the proportionality coefficient, which may vary
several times between various materials.

The experimental results for the three targets considered
here agree with the data for aluminum and beryllium
discussed earlier and the data of Ref. [70] for graphite. The
coefficients A, for different targets relate as the reciprocal of
the excitation potential @ multiplied by N;/ 3. We note that
the data for copper [88] are somewhat worse, but, possibly,
this stems from the imperfect character of the surface layer for
the copper foil used.

Thus, the experimental studies of the energy spectrum of
secondary electrons demonstrated that the electron energy
distribution function is essentially nonequilibrium and decays
by a power law as energy is increased, with the same
exponents for energies in excess 10 eV for different target
materials. They confirmed the proposed theoretical depen-
dence of the secondary emission coefficient on the excitation
potential @ and the number density of atoms N,.

Electron distributions over energies have been studied in
the case of ion—electron emission induced by beams of HT
ions with energies from 0.75 to 3.0 MeV, and HJ ions with
energies from 1 to 2.5 MeV. The ion beam current comprised
0.1-0.4 pA, while the beam diameter on target was 3 mm in all
experiments. Thin foils made of silver, copper, nickel, or
titanium were used as targets, and their thickness was less
than the range of H" and Hj ions with the given energy in the
target material. The residual gas pressure in the vacuum
camera reached 107° Torr. The energy distributions of
secondary electrons were measured in a spherical analyzer
with a retarding field. The latter was created between the
target and two hemispheres. To eliminate the electron
emission under the action of a stream of striking particles,
the Faraday cylinder was under the antidynatron potential
(~ 20 V) created by a DC power source. The current of the
Faraday cylinder was amplified by an electrometric amplifier.
The signal from the amplifier was passed to a D3-28
computer. The current of electrons overcoming the retarding
field of the analyzer was collected by a forward hemisphere
and, after amplification, passed to the computer, too. The
emission current I, of secondary electrons was measured on
two intervals of electron energy U: 5-50 ¢V with a step of 1 eV,
and 35-200 eV with a step of 5 eV. The operations of
preliminary processing were performed automatically with
the assistance of specially developed software. Expression
(4.6) was rewritten in the form

y=06+1)x+a, (4.11)

where y =1g (dl./dU), x =1g(U + Er + ¢), and a = lg Bs,
and then the exponent s and parameter a were determined.

Table 4. Absolute values of power-law exponent s as a function of proton

energy.

E,, MeV Titanium Nickel Copper Silver
0.75 5.4 5.6 7.74 6.54
2.28 1.88 1.81 2.7

1.0 5.15 4.66 6.36 6.52
2.0 1.45 1.64 2.54

1.5 5.95 5.38 5.8 6.42
2.64 2.32 0.86 1.98

2.0 7.16 5.53 5.71 4.38
2.93 2.78 2.85 2.08

2.5 6.06 4.58 5.01 5.25
2.12 1.64 2.11 1.96

3.0 5.66 4.32 5.73 6.34
1.88 1.66 2.67 2.7

Table 5. Absolute values of power-law exponents s as a function of the Hf

ion energy.
EH;, MeV Titanium Nickel Copper Silver
1.0 6.04 5.34 2.81
1.98 1.87 2.43
1.5 4.66 3.40 5.36 6.73
1.82 1.18 2.36 2.0
2.0 4.56 4.09 3.66 6.11
1.49 1.57 2.16 2.54
2.5 4.31 8.73 5.73 5.48
1.28 2.62 2.67 2.7
The fit skill was characterized by the parameter
1 & ( Vexp )2
qfit = - l—— (4.12)
1 Ny ; JYtheor

Here, N, is the number of y values used in determining the
exponent s:

yexp:lg<iU§TI]>v Viheor = 1g (lUdgi}ZOr)v (4'13)
where the function d/ipeo;/dU is computed by formula (4.6)
using the values of s and B3 found.

Typical plots of the secondary electron spectrum were
approximated by two straight lines on the intervals from 5 to
30 eV, and from 30 to 250 eV, with different values for the
power-law exponent.

Table 4 lists the values of power-law exponent s for the
two regions (the upper and lower values) as a function of the
energy of the impinging beam of H' ions for different target
materials. Table 5 displays the same quantities, but for a beam
of Hi ions.

As can be seen from Tables 4 and 5, in most experiments
the power-law exponent in the first region (upper values)
increases together with the ion energy loss in the matter. In the
second region (lower values), an apparent dependence
escapes detection.

4.2 2 Studies of kinetic electron emission from semiconductors.
The information available in the literature on emissive
properties of materials irradiated by beams of fast ions
largely pertains to metals. The apparent lack of data for
effective electron emitters widely used in photoemission and



January 2013

Nonequilibrium Kolmogorov-type particle distributions and their applications 69

electronic devices cannot escape attention. The effective
secondary electron emitters based on antimony and cesium
compounds are disseminated most widely. Owing to their
high secondary photoemission and electron emission coeffi-
cients, which are commonly attributed to low heights of the
potential barrier at the interface between the sample surface
and a vacuum, materials of that type are actively used as
photocathodes and dynodes in photoelectron multipliers and
other devices [89, 90]. Indeed, the value of the secondary
electron emission coefficient for antimony—cesium cathodes
ranges A, = 3—4 for a low energy of primary electrons
E.=100 eV, and the maximum value amounting to
Aemax = 8—10 for the SEE coefficient is achieved at energies
E.=500-600 eV [89, 90]. The rather high secondary emis-
sion coefficient is the consequence of not only the low work
function for this material but, arguably, also the formation of
nonequilibrium distribution functions of the power-law form.

The study of the distribution functions of electrons
formed in the solid state plasma of an antimony—cesium
cathode hit by beams of fast light ions was carried out on a
setup described in detail in Ref. [32]. An electrostatic Van de
Graaff ion accelerator, used as a source of primary particles,
made it possible to produce beams of hydrogen (H") and
helium (He™) ions. Measurements of the energy spectra of
electrons of secondary ion—electron emission (SIEE) were
carried out for beams of H™ ions with energies from 1.00 to
2.25MeV, and He™ with energies from 1.75 to 2.25 MeV with
astep of 0.25 MeV. The explored cathode, utilized as a target,
consisted of an antimony-cesium layer with a thickness
exceeding the range of impinging ions in the material, fitted
to a massive nickel substrate. The target 10 mm in diameter
was fixed in a copper casing attached to a moving holder. The
ion beam collimated with the aid of a system of diaphragms
hit the target causing SIEE from its surface in the backward
direction. The plane of the target was installed perpendicu-
larly to the beam axis. The beam diameter on the target
measured 3 mm. The ion current density at the target did not
exceed 30 pA cm 2. The chamber was pumped out with an
NMD-0,4-1 magnetic-discharge pump and NVPR-16D for-
evacuum pump with a nitrogen trap. In all experiments
conducted, the residual vacuum in the chamber was at least
10=° Torr. Electrons emitted from the target surface were
collected at a spherical collector made of two hemispheres of
radius 100 mm. The target on the holder was placed inside the
collector. The gap between the hemispheres equaled 15 mm.
The entrance window of each hemisphere was 10 mm in
diameter. Simultaneously with the collector current I, the
target current It was measured, too. The target current
represents the sum of the ion beam current /g and the current
of secondary electrons that reached the collector: It =
|Ic| + Is. The measured currents of collector Ic and target
I, amplified by electrometric amplifiers, were passed to a
personal computer via an analog-to-digital converter. To
calibrate the measuring system, the Faraday cylinder was
located behind the rear hemisphere, enabling direct registra-
tion of the ion beam current /rc when the beam was not
traversing the target. The Faraday cylinder was 20 mm in
diameter and had the length /= 130 mm. The Faraday
cylinder current Igc was measured with the help of an F303
current instrument. The SIEE coefficient was determined
from the formula

lc|
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(4.14)

Studying the energy spectrum of electrons produced by
SIEE with the aid of a spherical analyzer for a pointwise
emission source, one can reconstruct the explicit shape of the
electron distribution function inside the solid substance [16,
32, 78]. When the distribution function exhibits a power-law
shape, the derivative of the emission current over electron
energy, d//dU, can be written out as

A Bt o+ eu),
where B is a constant. Consequently, on the logarithmic axes,
dependence (4.15) represents a straight line inclined at an
angle with tangent equal to s + 1.

The energy distributions of secondary electrons in back-
ward emission were measured with the help of a spherical
collector in the energy analyzer mode with a retarding field on
the interval from 0 to 100 V with a step of 1 V. The retarding
electric field was created between the target and the two
hemispheres. Since the radius of the energy analyzer was
substantially larger than the target size, the field configura-
tion was close to a spherically symmetric one. A ceramic tube
covered from the outside with a resistive layer and measuring
5Smm in diameter was used as the target holder. The resistivity
of the layer R; was varied nonlinearly along the tube so that
the holder potential did not disturb the field inside the
analyzer. The target had a galvanic contact with one end of
the resistive layer, while its other end was grounded. The
retarding potential was fed to the target inside the ceramic
tube from a source of saw-tooth voltage controlled through a
PC. Accordingly, the current flowing along the resistive layer
created the required potential distribution along the length of
the holder. In the experiment, secondary electrons reached the
collector while moving radially. When the retarding potential
was applied to the target, only electrons with energies
sufficient to overcome the retarding field reached the
collector. The software controling the experiment enabled
collecting statistics of 100 measurements of the electron
emission current during 7 s for every magnitude of retarding
potential. It then carried averaging over these 100 experi-
mental points, writing the result to computer memory.
Differentiating the measured dependences of the collector
current on the retarding potential (the retardation curves),
one may retrieve the energy spectrum of SIEE electrons and
then reconstruct their distribution function.

The experimental research of the energy spectrum of SIEE
electrons carried out in this manner indicates that, for all
explored energies of ions, the electron distribution function
formed under nonequilibrium conditions in the plasma of
antimony—cesium cathode has a power-law shape.

Figure 14 displays a typical distribution function for
nonequilibrium electrons for the explored sample hit by He™
ions with an energy of 1.75 MeV.

The experimental points are well fit by two straight lines
corresponding to different power-law exponents in the energy
ranges 5-30 eV and 30-100 eV. By processing the experi-
mental data, the respective exponents were recovered. Table 6
lists the values of exponents —sg and —sg, for the two
portions of the distribution function, which correspond to
the energy intervals specified above, as a function of the
energy of impinging H" and He™ ions.

In our opinion, the power-law exponent of the secondary
electron distribution function may preserve generally the
dependence on the energy (specific ionization losses) of fast
ions, since the intensity of the source of additional particles in

(4.15)
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Figure 14. Typical dependence of Ig (d/./dU ) onlg (Er + ¢ + eU ) for an
antimony—cesium cathode bombarded by He" ions with the energy of
1.75MeV. Section [ of the distribution function (the energy range 5-30eV)
is described by the power-law with exponent sz = —2.9, and section 2
(30-100 eV) with sz = —2.5.

Table 6.
Ton Energy, MeV —SEl —SE2
H* 1.25 2.9 2.5
1.5 3.0 2.5
1.75 2.9 2.5
2.0 3.0 2.4
2.26 3.0 2.6
He* 1.75 29 2.5
2.0 2.8 2.2
2.26 2.8 2.3

momentum space is defined precisely by the ion’s specific
ionization losses. As was pointed out in Refs [13, 16, 17], the
power-law exponent is independent of the structure of sources
and sinks only under certain special conditions. In such cases,
one speaks about the universal electron distribution function
with the exponent —5/4 [16]. In experiments conducted
earlier with the He™ ion beam and thin metallic films, the
exponents s were measured, and it was shown that the
absolute value of power-law exponent sg; of the distribution
function on the first energy interval, corresponding to the
range of slow electrons (E < 35 eV), decreases with the
growth of the ion’s specific ionization losses in metals [91].
The authors of Ref. [57] point out that a fraction of the fast
electrons increases together with the energy of impinging ions.
As is seen from Table 6, the exponents sg; differ but slightly
for different energies of impinging ions and, consequently, for
different specific ionization losses of ions in an antimony—
cesium sample, although the absolute value of the power-law
exponent grows (decays) for protons with an increase in
energy (specific ionization losses). Such behavior is not
observed for helium ions. Noteworthy is the fact that the
variation of the power-law exponent is within 10%, so that
additional research is needed to reliably establish its depen-
dence on energy losses.

Figure 15 plots the dependence of electron emission yield
A, on the energy of incident H" and He' ions for the
antimony—cesium cathode. As can be concluded from the
plot, the values of electron emission yield 4. for the explored

3.0 -

-

25

—a— He™*

Ae, rel. units

0 | | | | | | | ]
1.0 1.2 1.4 1.6 1.8 2.0 22 2.4
Ei, MeV

Figure 15. Dependence of electron emission yield 4. on the energy of
impinging H" and He™ ions for an antimony-cesium cathode.

antimony—cesium compound exceed those for many metallic
samples [59]. This may have the following cause. As has
already been mentioned, a part of the nonequilibrium
electrons, formed in a solid state plasma bombarded by
beams of fast charged particles, diffuses to the surface and
are ejected into the vacuum. The electron emission occurs
from a subsurface layer substantially thinner than the ion
penetration depth and is governed by laws defining the
motion of these electrons to the surface.

The results of experimental studies presented in Ref. [32]
also point to the dependence of the electron emission yield 4,
induced by He™ ions from a germanium sample on specific
ionization losses dE/dx of He™ ions, which is approximated
well by a straight line, thus confirming the proportionality
between these quantities. It should be mentioned that ion
beam currents considered in Ref. [32] do not exceed 10 pA. In
this case, the emission current varies noticeably with time,
reflecting the nonstationary behavior of sources and sinks in
energy space. For every ion track, the electron distribution
function has sufficient time to pass all stages of its evolution,
so that the dependence of emission current on the retarding
potential observed in the experiments stemmed from the
superposition of currents produced during all time intervals
when the nonequilibrium electron distribution function
existed. Figure 16 presents the dependence of emission
current on retarding potential [29-32]. The main result of
comparing theoretical and experimental data is the conclu-
sion that the account for source nonstationarity is an essential
factor in explaining the dependence of current on retarding
potential, when the experimental technique of collecting the
charge escaping the entire film surface over a sufficiently long
time interval (several seconds) is utilized. Figure 17 compares
electron number densities N(E) ~ f(v, t) v for nonstationary
electron distribution functions simulated numerically at
various time instants [30, 31] with those observed in the
experiment [84] for secondary emission electrons induced by
1-keV electrons from polycrystalline aluminum (Al). The
energy of the volume plasmon amounts to 15.5eV, and the A1
work function equals 5.25 eV [31, 84].

4.3 Direct transformation of particle kinetic energy

into electric energy based on nonequilibrium particle
distributions

Based on the research findings discussed in Sections 4.1 and
4.2, a secondary-emission radioisotope current source has
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Figure 16. Dependence of ion—electron emission current on the retarding
potential for gallium arsenide (GaAs) bombarded by H" ions with an
energy of 1.25 MeV. The curves correspond to the current averaged over
time ¢ = 10 (dotted line), 20 (dashed line), and 100 (solid line); the stars
display the experimental results [32].
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Figure 17. Dependence of the number density of electrons with energy E,
N(E) = f(v)v, on the energy of emission electrons produced by 1-keV
electrons bombarding polycrystalline aluminum. The solid, dashed, and
dotted curves correspond to the results of numerical modeling, and the
stars plot the experimental data [84].

been developed [92—-100], containing a radioisotope layer in a
hermetic enclosure under conditions of sufficiently high
vacuum. This layer was sandwiched between metal emitters
whose thickness does not exceed the range of charged
particles emitted by the radioisotope in the respective metal.
Each of the emitters is fabricated as a sequence of alternating
layers of two distinct metals with different secondary electron
emission coefficients, insulated electrically by vacuum gaps.
The efficiency of a radioisotope source of this type is
determined by the fact that secondary electrons are produced
along the entire path of a charged particle in metals, i.e., the
energy of charged particle is directly converted into the energy
of electrons, the number and mean energy of which are
incommensurately higher than in the thermionic emission. It
was established that making use of heavy particles in sources
of electric current leads to a high secondary electron emission
coefficient owing to a negligibly small scattering of these
particles, since their motion is approximately rectilinear. The
secondary electron distribution function is nonequilibrium,
with the mean energy of emitted electrons exceeding 10 eV.

The source efficiency coefficient increases as a result of
augmented secondary emission under the action of J-elec-
trons (see Refs [95-97]). This source, therefore, has high
energy indices which are directly proportional to the number
of emitter layers. Since the full thickness of the emitter does
not exceed the range of a charged particle emitted by the
radioisotope, the increase in layer number, and hence emitter
efficiency, is only possible by making layers thinner. How-
ever, with a reduction in thickness the layers lose their
constructive rigidity, and as a result their electric isolation
may be destroyed, for example, because of sagging when the
vacuum gap between the layers gets thinner. Subsequently, a
secondary emission source of current possessing sufficient
constructive rigidity for layers of reduced thickness was
offered [98-100]. Its emitter consists of alternating, electri-
cally isolated layers of two unlike materials with different
secondary electron emission coefficients. The emitter layers
are separated by dielectric grids which electrically insulate the
layers and increase the stiffness of the emitter’s construction.
In so doing, the dielectric grids are thicker than the working
layers of the emitter. To achieve the best results when
implementing this invention, the grid from a dielectric
material (ceramic or plastic) should be superimposed directly
on one of the emitter layers. To boost the energy efficiency of
the proposed current source, it is desirable to make one of the
alternating layers in the emitter from a metal, and the other
one from a semiconductor material with a higher secondary
electron emission coefficient than for the metal of the first
layer.

5. Kinetics of an electron—phonon system
of a crystal in a strong electric field

In the 1960s, the phenomenon of a sharp reduction in the
plastic resistance of metals was discovered, whereby the
conduction electron subsystem of metals is excited either by
irradiating them by fast charged particles or by passing high-
density electric current j = 108—10° A m~2. It could not be
reduced to a trivial thermal action (in a macroscopic
manifestation) of current, so an assumption has been put
forward on the existence of electron—dislocation interaction
influencing the mechanical properties of crystals [101, 102].

It was proposed to call the phenomenon the electroplastic
effect (EPE). The mechanism of the EPE was associated with
an increase in mobility of dislocations in the domain with
sources and, hence, with the intensification of source
operation. In its purest form, the EPE was explored in
metallic single crystals of Zn, Cd, Sn, and Pb [101]. If samples
of these materials in a process of deformation are subject to
current pulses 10> —10° A mm~2 in magnitude and 10~* s in
duration or are irradiated with accelerated electrons in the
slip direction, a reduction in strength is observed, manifested
in a jumplike drop in deforming stress. Oscillations of stress
are linked to jumps in the plastic strain of objects. It was
discovered that, synchronously with the passage of current
pulses and the reduction in the deforming force, groups of slip
bands are formed, and also that the jumps in deforming force
are much smaller in the range of quasielastic deformations
than after the yield point. These oscillations are anomalously
high in the vicinity of the material yield point. Jumps in
deforming force in diagrams decrease in tests carried out in
the stress relaxation mode. A characteristic feature of the EPE
in single crystals is the absence of temperature dependence in
a broad interval from 77 to 300 K.
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It was shown that as the electron energy is increased past
the knock-out threshold for atoms (Ey ~0.7 MeV for zinc),
the augmented plasticity of a metal on irradiation is overlain
by the effect of its hardening on irradiation, caused by the
appearance of additional stoppers for dislocations in the form
of point defects and their ensembles. If the electron density in
a pulse is increased, the plasticity on irradiation first increases
and then weakens. Weakening of the effect is explained by the
influence of possible partial degeneration of electron gas in a
metal on motion and interaction of dislocations [102].

It is shown that the activation volume does not change
considerably on irradiation of a metal by electrons and that
an increase in creep rate is explained by the decrease in the
time scale (increase in the frequency) of the process of
thermally activated passage of barriers by dislocations [102].

5.1 Kinetic description of the electroplastic deformation
effect
The plastic deformation of crystals under applying an
external load occurs in most cases through dislocation slip
[103]. The pertinent basic equation (the Orowan relationship)
governing the kinetics of plastic deformation in a slip plain
has the form
gd:bpdVd(G*aT)v (51)
where &y is the plastic deformation rate, py is the density of
mobile dislocations, b is the magnitude of their Burgers
vector, and Vy(o*,T) is the mean velocity of long-range
dislocation displacement, which depends on the effective
deforming shear stress ¢* = ¢ — g; and the temperature 7,
where o; are the internal shear stresses in the slip plane (the
analog of dry friction). In the region of sufficiently weak ¢ *, a
moving dislocation colliding with local stoppers (impurity
atoms or other defects of a crystalline lattice) may linger there
over a long time. It is believed that the mechanism by which a
dislocation segment surmounts barriers involves thermal
fluctuations, provided temperatures are not too low. Then,

one has
H(c*)
kgT )’

where /is the mean distance between stoppers, and v(¢*, T') is
the frequency they are passed through. The explicit form of
function H(¢*) depends on the model of the potential barrier
(its amplitude and shape) retarding the dislocation slipping,
and also on the barrier distribution along the dislocation line.
In experimental data processing, it is routinely assumed that

wer-mfi-(2))"

If the role of stoppers is played by impurity atoms, then Hj is
the energy parameter of dislocation—impurity interaction, o,
is the critical stress for dislocation motion through a grid of
impurity barriers in the slip plane without activation, and
Do, qo are some power-law increments determined from the
analysis of experimental curves.

Va(e*,T) =l(c",T) = Ivoexp <— (5.2)

(5.3)

5.2 Mathematical model

To quantitatively describe the dynamics of an electron—
phonon system in a metallic film, Ref. [104] resorted to an
important simplifying assumption that the isotropic part of
the electron distribution function is a Fermi type with a time-

dependent electron temperature. The authors of Ref. [104]
note that, although the introduction of electron temperature
is equivalent to a frequently used assumption on instanta-
neous thermalization of an electron subsystem, it cannot
always be strictly justified. So, in the region of very low
temperatures T. < T* (the temperature 7* ~ T3 /EF), where
electron—electron collisions dominate electron—phonon colli-
sions, the electron distribution function is thermalized on the
time scale of electron—electron interaction, 7e.. In ordinary,
relatively pure metals, 7% ~ 1 K, while in specially contami-
nated films, where the electron—electron interaction is
intensified through the occurrence of weak localization
effects, 7" can reach the value of order 10 K. For
temperatures T, > T* (but T. < Tp), the electron relaxation
in relatively thick films does not involve direct electron—
electron interaction, but occurs indirectly, through the
exchange by phonons. It was shown earlier by one of the
authors of Ref. [104] that the electron distribution function,
resembling a Fermi one in shape, is also formed in relatively
thin films (from which nonequilibrium phonons may escape
to the substrate without being re-absorbed by electrons)
solely as a result of phonons being emitted by ‘hot’
electrons. The consideration relied on a rather strong
assumption that all the energy acquired from the electric
field is converted to the electron temperature, which is
unjustified and, as will be seen from the further analysis,
does not correspond to the actual solution to the problem if
the electric field strength is not very small. In both cases, the
characteristic thermalization time for electrons is that of
electron—phonon collisions, 7.,. We also note that in
optically thick films the uniformity of electron temperature
over the film thickness is furnished by the fast withdrawal of
electrons from the skin-layer and high electron heat con-
ductivity compared to the phonon heat conductivity [103].
Because of an additional diffusive reduction in the density of
hot electrons, the electron subsystem is thermalized substan-
tially faster, so that for optically thick films the approxima-
tion of instantaneous thermalization leads to good agreement
between theoretical and experimental results. Reference [104]
dealt with the case of weak ‘heating’, but we, while consider-
ing the EPE, are dealing with very strong heating and need,
therefore, to carry out a consistent kinetic consideration of
both electron and phonon subsystems, which comprises the
main content of Refs [30, 105, 106].

In the kinetic description, the behavior of electrons obeys
the Boltzmann equation for the electron distribution function
f(r,p, ) with related collision integrals:

of  of dpof

~. ~ _:Iee Ie [e 5
ot Vortdrop T e e T e
dp

i e[E(r,t) +v x B(r,1)],
where I, Iop, and Ioq are the respective collision integrals of
electrons with electrons, electrons with phonons, and elec-
trons with impurities and lattice defects, v is the velocity, r is
the radius vector, p is the electron momentum, ¢ is the time, £
is the electric field strength, and B is the magnetic field
induction. In what follows, we assume that the magnetic
field is absent.

The phonon distribution function also obeys the kinetic
equation with collision integrals, namely

ONy(q,) ONp(q,)
palp Ya grp = pe+lpp+1pd»

(5.4)
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where I, I, and I,q are the respective collision integrals of
phonons with electrons, phonons with phonons, and phonons
with impurities and lattice defects, vq = 710Q/0q,, is the
phonon speed, g, is its momentum, and N(q,,) is the phonon
distribution function. Recognizing that collisions of electrons
with impurities, phonons, and defects lead to the isotropiza-
tion of the electron distribution function, we seek it in the
form
S0 = (E0) + 6 (E0) 7
Taking into account that energy transfer in collisions of
electrons with phonons is very small, we simplify the
electron—photon collision integrals, namely, we expand the
isotropic part of the electron distribution function in series in
small energy transfer, retaining the quadratic terms, viz.

f(p£4q,) =f(Ep) £ 1Q(q,)

1) = LED) o

(5.5)

3% (E(p)) (hQ)*
OE2 2

and substitute this expansion into the collision integrals. Let
us take into account the specific form of transition prob-
ability w(gp) and also the frequency of phonon—phonon
collisions vpp(gp):

4n2m 2812A
w(gp) = woqp, Wy =—""=+
(ap) P 20
T3¢
2 ar-s
y =v Vop) = ——————
op(9p) pp09p 5 Vppo g Tp M, ’

where /1Q(qp) = ¢sqp, €14 is the constant of the deformation
potential, T, is the lattice temperature, M. is the net mass of
two atoms, ¢ is the speed of sound, and ay, is the lattice
parameter.

The distribution functions for electrons f'(¢), as well as for
phonons Ny (g, ), are dimensionless and satisfy the following
normalization conditions

1 2m\ %
— (= E'2f(EVdE =
2n? (h2> Jo f(E)d "

(5.6)
where 7 is the number density of electrons in the valence band
(in metals it is also the conduction band, since it is only
partially filled), and

11N [ ,
7 \w7) ), 45 Np(qp) dgp < o0,

where ¢p is the Debye phonon momentum defined by the
identity kgTp = ¢sqp. Hereinafter, all quantities are listed
for nickel (in which case computational and observational
results can be compared [108]): !

(5.7)

s =5x10°cm s !,
Tp = 375 K; hence, the maximum phonon momentum is
103 x 1071 ¢ cm s7!, the electron number density in the
valence band n=2.5x 102 cm~3, the nickel density
p = 8.9 gecm ™3, and the lattice constant (the distance between
neighboring atoms) @ = 3.5 x 108 cm

In a thermodynamically equilibrium state, the electron
distribution function f(E) is given by the Fermi-Dirac

distribution
E—E -
F) oy 7
kgT,

f(E)= [eXP ( (5.8)

where Ep = 5 x 10712 erg, and T, is the temperature of the
electron component [in experiments, it reached 20 K and 80 K,
coinciding with the lattice (phonon) temperature initially
(before the electric field £ = 0.31 CGSE units = 94 V cm™!
was switched on)]. Based on the residual nickel resistivity,
Pour = 3 X 107® Q cm, we determine the frequency of electron
collisions with impurities and lattice defects: veg =
3 x 1013 s7!. The frequency of electron-phonon collisions
depends on the phonon momentum as vep, = Vepo ¢/¢p, and
vepo = 2 x 10'° 571, Since numerical integration of the elec-
tron—electron collision integral presents considerable difficul-
ties due to its nonlinearity, and since its role consists in
redistributing the energy supplied by the outer electric field
between electrons (quasithermalization), integrating the
coupled system for isotropic electron and phonon distribu-
tion functions, we limit ourselves to retaining only the
electron—phonon and phonon—electron collision integrals,
but on the time interval 7, during which the contribution
from electron—electron collisions can be omitted. The time 7.
is estimated by its lower bound from the condition that the
energy released in the conductor upon the passage of electric
current heats (it is assumed that electrons have relaxed over
this time to a thermodynamically equilibrium state) the
electron subsystem to a temperature comparable to the
initial one, i.e., one has
2

tee = cp pTe, (5.9)

cur
where ¢, = 25 Jkg~! K~ is the specific heat for nickel. From
Eqn (5.9) we find the expression for the time interval .:

Peur
e
For the electric field strength &= 0.31 CGSE units
=94 Vcem™!, the time #.. = 451.p0. We will measure time in
units inverse to the electron—phonon collision frequency in
both equations for electron and phonon distribution func-
tions. The energies of electrons £ and phonons ¢,q, are put
into a dimensionless form by dividing their by kg T.. In this
case, the system of equations is written out as

fee = o pTe (5.10)
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Integration of systems (5.11) and (5.12) was carried out with
the help of fully conservative difference schemes. The
conservative character of the scheme is a necessary require-
ment, since only it ensures that errors do not accumulate in
computations over long time intervals (see, for example,
Ref. [107]). The essential point consists in satisfying several
conservation laws; in the case considered, they are the laws of
conservation of energy and particles.

5.3 Results of numerical modeling and their discussion

As a result of numerical simulations, nonstationary distribu-
tion functions for electrons f(p) and phonons N,(g,) over
momenta have been found. Figure 18 plots the dependence of
the electron distribution function on dimensionless momen-
tum at different instants of time. The leftmost curve
corresponds to the thermodynamically equilibrium function,
which is also the initial one for the solution of systems of
equations (5.11) and (5.12). As can be seen from Fig. 18
(curves shift to the right with time), the electron distribution
function deviates more and more from the equilibrium
function as time progresses.

It is thus established that the energy received by the
electron subsystem from the external electric field is partially
transferred to the phonon subsystem as a result of electron—
phonon collisions (a small portion is involved because of the
quasielastic character of electron—phonon collisions); its
largest part does not contribute to the formations of the
thermodynamically equilibrium electron distribution func-
tion (contrary to what is frequently assumed; see, for
example, Ref. [104]), but is channelled in the formation of
intense high-energy tails. Such a drastic modification of the
electron distribution function causes the formation of a
phonon distribution function enriched very strongly by
phonons with an energy close to the Debye one. Our results
deviate significantly from the results of Ref. [107], where the
phonon distribution function practically coincides with the
Bose—Einstein distribution in this range of momenta, but
possesses a temperature corresponding to that of the electron
subsystem. As follows from our numerical simulations, the
‘temperature’ (more precisely, the mean energy of electrons,
since the electron distribution function strongly departs from
the thermodynamically equilibrium form) of the electron
distribution function varies insignificantly, i.e., the thermali-

zation of the energy obtained from the electric field does not
happen, but high-energy tails are formed, which are respon-
sible for this cardinal change in the phonon distribution
function. High-energy tails with ever growing intensity
develop with time in the phonon distribution function,
because the momentum transfer in electron—photon colli-
sions implies a rather small energy transfer; many phonons
are born at the Debye energy, i.e., their distribution function
is enriched with the Debye phonons. Further, we analyze the
behavior of the product of the phonon distribution function
and the cubed dimensionless momentum for the thermody-
namically equilibrium case (Bose—Einstein distribution) and
the phonon distribution function at various moments of time
after the electric field starts to act (Fig. 19).

Thus, with the help of numerical modeling of the electron—
phonon system in a strong pulsed electric field, which relies on
fully conservative schemes, nonequilibrium distribution
functions of electrons and phonons have been found, and it
has been shown that:

— the isotropization of the electron distribution function
occurs because of collisions with lattice defects;

— the electron distribution function does not become a
thermodynamically equilibrium one because the electron—
electron collisions contribute essentially less in this situation
than the electron—phonon collisions, and collisions with the
‘alien’ subsystem do not result in thermalization;

— the distribution functions for electrons and phonons
contain high-energy tails because the momentum transfer in
electron—phonon collisions implies a rather small energy
transfer;

— many phonons are born in the vicinity of the Debye
energy, i.e., the phonon distribution function is enriched with
the Debye phonons.

By way of illustration, Fig. 20a presents the dependences
of the phonon distribution function multiplied by the cubed
dimensionless momentum for the thermodynamically equili-
brium Bose—Einstein function corresponding to the tempera-
ture of the substrate (dashed curve), the stationary phonon
distribution function taken from Ref. [107] (solid curve), and
the nonequilibrium phonon distribution function from
Ref. [105] (the dotted curve corresponding to the time
moment fee = 507p0, Which is a characteristic energy relaxa-
tion time due to collisions between electrons) on the
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Figure 18. Dependence of the electron distribution function on the
dimensionless momentum at different time moments (z = 0, 10, 20, 30,
40, and 50); the curves shift to the right with increasing time 7.
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Figure 19. Dependence of the phonon distribution function multiplied by
the cubed momentum (at time moments 7 = 0, 10, 20, 30, 40, and 50) on the
dimensionless momentum; the curves go up with increasing time 7.
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Figure 20. (a) Dependences of the phonon distribution function multiplied by the cubed dimensionless momentum for the thermodynamically equilibrium
Bose—Einstein function corresponding to the temperature of the substrate (lower dashed line), the stationary phonon distribution function from Ref. [107]
(solid line), and the nonequilibrium phonon distribution function from Ref. [105] (dotted curve) on the dimensionless momentum ¢, under the action of
electric field £ = 96 V em™!. (b) The drop in load at constant deformation rate as a function of current density. The solid line corresponds to Joule
heating; triangles correspond to theoretical nonequilibrium consideration; dots plot the data of Refs [27, 28] at T = 78 K, and squares plot the
experimental data obtained by V P Lebedev at Ty, = 293 K for a constant deformation rate of E4=2.7x10"* s7! and the following parameters
pg=10% cm™2, /= 103h, b = 3.52 x 107 cm, x, = 2b, Uy=8 x 10713 erg, L = 10~* cm, and p = 1.2 x 10> dyne cm~2.

dimensionless momentum. The dependences are given for the
following parameters: the acting electric field £ = 96 Vem™!,
the substrate temperature 7, = 4.2 K, the thickness of nickel
film d=10"% cm, and the electron temperature T, =41.68 K,
which is established according to results of Ref. [107].

From Fig. 20, it is seen that under the action of electric
field £ = 96 V cm~! the curve for the product of the phonon
distribution function and the cubed dimensionless momen-
tum for the thermodynamically equilibrium Bose—Einstein
function, corresponding to the temperature of the substrate,
practically coincides with the result for the stationary (in
partly nonequilibrium approximation) phonon distribution
function from Ref. [107] for phonons with small momenta,
and differs rather significantly (by almost two orders of
magnitude) from the curve for phonons with large
momenta. But, as indicated by Fig. 20, this does not lead to
a substantial growth in the effective temperature serving
actually as a quantity controling the effects of electroplastic
deformation. The nonequilibrium phonon distribution func-
tion from work [105] provides the product of the distribution
function and the cubed dimensionless momentum, which is
more than two orders of magnitude larger than the relevant
product for the partly nonequilibrium situation over the
entire range of phonon momenta. The reduction in the load
stress computed for the nonequilibrium case is in satisfactory
agreement with experimental data.

Let us compare the reduction in the load stress as a
function of the density of electric current passing through a
thin metallic sample under the condition of stationary strain
rate (the experimental dependence was obtained by
V P Lebedev) with the theoretical prediction obtained in
Section 5.3. By considering the Landau—Gofman model [108]
and formulas (5.1)-(5.3), the following expression for the
plastic strain rate was derived:

5 PR
4Suky Tere(T) o, '

Since the strain rate was stationary in the experiments, we
obtain the relationship between jumps in the load and the

Ea = bpghvo(T) exp

effective temperature, the expression for which is given in
Ref. [105]:

do=0(j=0)—0a(j)=10"%c, [\/a(j) Teir(j)—+/a(0) Teff(o)} )
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where T(j) is expressed in terms of Joule heating in an
equilibrium case or through the respective effective tempera-
ture, which is defined by the nonequilibrium phonon
distribution function. Substituting the parameters corre-
sponding to the experiment into this relationship yields the
theoretical dependence plotted together with the experimen-
tal data in Fig. 20b. From the analysis carried out and Fig. 20,
it can be seen that the dependence of load stress reduction on
the current density under a constant strain rate, which would
satisfactorily describe the experimental dependence, cannot
be obtained (the difference is 2-3 orders of magnitude) either
from the thermodynamically equilibrium approach or from
the partly nonequilibrium approach proposed in Ref. [107].
Relatedly, a more promising framework for explaining
anomalous electroplastic properties of metals and semicon-
ductors observed experimentally involves computing a none-
quilibrium phonon distribution function which is the solution
to the above-considered two-component electron—phonon
system of equations [105, 106].

Teff(o) = Teff(Tstart) , O¢

&(T) = bpylve(T),

6. Conclusions

This review discusses the current state of research pertaining
to stationary and nonstationary nonequilibrium electron
distributions with flux along the spectrum in solid state
plasmas and their application to a new radioisotope current
source design.

By analyzing the Boltzmann collision integral, it is shown
that in a homogeneous and isotropic medium for a source and
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sink localized in momentum space there is a local stationary
nonequilibrium distribution for nonrelativistic charged par-
ticles interacting by the Coulomb law with account for static
screening. This distribution corresponds to a constant energy
flux I;: fO(p) = Adp™, si=—3D—4/p+2(i—1))/4,
where D is the space dimension, f§ is the power-law exponent
in the particle interaction law (f =1 for the Coulomb
interaction), and s,-; = —5/4. This stationary nonequili-
brium distribution is also an exact solution of the collision
integral in the Landau form. For electrons in a solid state
plasma, the interaction between which is described by the
screened Coulomb potential, a local nonequilibrium distribu-
tion function may form which corresponds to a constant
energy flux in momentum space. Analytical consideration
was performed for a stationary source and sink localized in
momentum space. Numerical modeling in the framework of
the Landau—Fokker—Planck collision integral with the help of
fully conservative difference schemes allows one to find
nonequilibrium particle distribution functions for sources
and sinks which are nonlocal, nonstationary, and noncon-
forming in momentum space (as is the case, for example, in
ionization by direct collisions and wake waves). The existence
conditions and the intensity of energy flux in momentum
space are found, which allow the formation of the none-
quilibrium distribution function for electrons with energy
exceeding the Fermi energy. It is shown how the results
obtained can be used to predict the behavior of semiconduc-
tors with their intrinsic and impurity conductivities upon
irradiating them by beams of fast ions or laser radiation. The
existing and presented results of experimental research on
energy and angular distributions of secondary emission
electrons, induced by ions, including molecular ions, witness
in favor of the importance of ionization by wake fields excited
by ions. The experimental results are in good agreement with
theoretical predictions. Based on theoretical research into
nonequilibrium electron distributions induced by ion beams
in a solid state plasma, a new method is proposed for
transforming fission energy into electric energy. A detailed
comparison of the current source based on this principle with
existing ones is carried out. The advantages and disadvan-
tages of each existing type of radioisotope current sources are
considered. The advantages of the proposed source are
described and how to implement it is outlined.

The mechanism of the EPE in the framework of the model
of a dislocation string passing stoppers as a result of its
excitation by phonons is studied and substantiated. With the
aid of numerical modeling of an electron—phonon system
placed in a strong pulsed electric field, relying on fully
conservative schemes, nonequilibrium distribution functions
are found for electrons and phonons, and it is shown that the
electron and phonon distribution functions exhibit high-
energy tails, i.e., many phonons are born in the vicinity of
the Debye energy and the distribution function is enriched
with Debye phonons.

Based on the random impact model (in the framework of
the Langevin approach), which is due to phonons in our
problem, it is demonstrated that

— the thermodynamic approach cannot describe the
electroplastic deformation effect;

— based on the actual phonon distribution function
found as the solution of the two-component electron—
phonon system of equations for the case involving the
action of a strong impulse electric field on a metal, it is
possible to explain anomalous electroplastic properties of

metals and semiconductors observed experimentally, i.e.,
the EPE.

The authors regret that, because of limitations on the
review size, they had to omit certain interesting and important
results. To partly compensate for this gap, the list of
references includes several reviews [109-114].
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