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We study the nonlinear stage of the modulation instability of a condensate in the framework of the

focusing nonlinear Schrödinger equation (NLSE). We find a general N-solitonic solution of the focusing

NLSE in the presence of a condensate by using the dressing method. We separate a special designated

class of ‘‘regular solitonic solutions’’ that do not disturb phases of the condensate at infinity by coordinate.

All regular solitonic solutions can be treated as localized perturbations of the condensate. We find an

important class of ‘‘superregular solitonic solutions’’ which are small perturbations at a certain moment

of time. They describe the nonlinear stage of the modulation instability of the condensate.

DOI: 10.1103/PhysRevLett.111.054101 PACS numbers: 05.45.Yv, 02.30.Ik, 42.81.Dp, 47.35.Fg

Introduction.—The focusing nonlinear Schrödinger
equation (NLSE) is a universal model for studying quasi-
monochromatic wave propagation in weakly nonlinear
media. In particular it describes waves on deep water [1],
waves in optical fibers [2], and Langmuir waves in plasma
[3]. Also this equation is a model of weakly interacting
Bose gas with attraction between particles.

The NLSE has a simple solution, the monochromatic
wave with a frequency depending on amplitude—the
condensate. The condensate is unstable with respect to
modulation instability. (The history of modulation insta-
bility is described in [4].) What is a nonlinear stage of
modulation instability? In spatial dimension D ¼ 2, 3, the
answer is known—modulation instability leads to for-
mation of finite time singularities—collapses [3].

In dimension D ¼ 1 collapses are forbidden. However
in this case development of modulation instability leads to
formation of ‘‘extreme’’ (rogue, freak) waves where en-
ergy density exceeds the mean level by an order of magni-
tude. As a result, the study of long-time consequences of
modulation instability is a problem of big practical impor-
tance, crucial for creation of a rogue wave theory in the
ocean and a theory of extreme events in optical lines.

NLSE is a completely integrable system [5], having
many exact solutions. It is natural to hope that the non-
linear development of the modulation instability is
described by such a solution.

In what follows we speak only about instability growing
from a small spatially localized perturbation of condensate.
Historically the first such solution was found by Peregrine
in 1983 [6]. This equation attracted a lot of attention [7].
Its experimental confirmation was claimed [8,9]. In 1985
a second order Peregrine solution was found [10]. Today
‘‘multi-Peregrine’’ solutions are actively studied by differ-
ent groups (see for instance [11,12]). All these solutions
have a weak point—they are small perturbations of the
condensate only in the limit t ! �1. These solutions are

homoclinic—they describe freak waves appearing ‘‘from
nowhere’’ and completely disappearing in the future.
Meanwhile numerical modeling of modulation instability
[13] as well as numerical solutions of the exact Euler
equation for the potential flow of an ideal deep fluid [14]
demonstrate the formation of propagating oscillating solu-
tions (‘‘breathers’’). Thus the ‘‘homoclinic scenario’’ of
modulation instability development is not more tenable.
In this Letter we present another class of exact solutions

of the NLSE which are small perturbations of condensate
not at t ! �1 but in the initial moment of time t ¼ 0.
This is the special class of 2N-solitonic solutions of the
NLSE in the presence of a condensate.
A solitonic solution of the NLSE in the presence of

a condensate was first found by Kuznetsov in 1977 [15]
and rediscovered later in [16,17]. An important solitonic
solution was found in 1985 by Akhmediev, Eleonskii and
Kulagin [10] (the so called ‘‘Akhmediev breather’’). This is
a solution periodic in space and homoclinic in time. The
Peregrine solution is the limiting case of both Kuznetsov’s
and Akhmediev’s solutions. More general solitonic solu-
tions were found in [18–22]. To construct exact solutions
of NLSE describing the development of a localized small
perturbation of the condensate one has use 2N-solitonic
solutions. There are several mathematical schemes for
constructing such solutions (Hirota method, method of
Darboux transformation etc.) We prefer the ‘‘dressing
method’’ elaborated in [23]. The details of our mathemati-
cal procedure can be found in [24].
The main result of our Letter is the following. One

can construct a broad class of 2N-solitonic solutions
depending on 7N parameters which form at t ¼ 0 a small
perturbation of condensate. Evolution of this perturbation
leads to the formation of complicated ‘‘integrable turbu-
lence’’ [25] where local concentration of energy easily
exceeds in order of magnitude the energy density in the
condensate.
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We claim that all solitonic solutions in the presence of
an unstable condensate, including the Peregrine and
multi-Peregrine solutions, are automatically unstable.
Our solutions are also unstable but we have constructed
an infinite number of such solutions. They may be used as
‘‘bricks’’ for building up a consistent statistical theory of
modulation instability development.

NLSE.—We write the NLSE in the following form

i’t � 1

2
’xx � ðj’j2 � jAj2Þ’ ¼ 0: (1)

The trivial condensate solution of Eq. (1) is ’ ¼ ’0 ¼ A.
One can consider A to be real. This solution is unstable
with respect to small perturbations. The growth rate of

instability is �ðpÞ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � p2=4

p
, where p is wave

number of perturbation. In what follows we use the
NLSE with nonvanishing boundary conditions j’j2 !
jAj2 at x ! �1. Equation (1) is the compatibility condi-
tion for the following overdetermined linear system for a
matrix function � [5]:

�x ¼ Û�; (2)

i�t ¼ ð�Ûþ ŴÞ�: (3)

Here

Û ¼ I�þ u; Ŵ ¼ 1

2

j’j2 � A2 ’x

’�
x �j’j2 þ A2

 !
;

I ¼ 1 0

0 �1

 !
; u ¼ 0 ’

�’� 0

 !
: (4)

Here � is a spectral parameter. Suppose we know a certain
particular solution ’0 of Eq. (1) together with the funda-
mental matrix solution �0ðx; t; �Þ of system (2) and (3).
Then one can construct a new solution ’ of Eq. (1)
using the following recipe. Choose N complex numbers
�n (n ¼ 1; . . . ; N; Re�n > 0) and another set ofN arbitrary
complex numbers Cn. Denote Fn ¼ �0ðx; t;���

nÞ and
define N vectors qn by relation

q�
n ¼ Fn

1

Cn

 !
: (5)

Then a new solution is given by the expression

’ ¼ ’0 þ 2 ~M12=M: (6)

Here ~M�� (� ¼ 1, 2) is the following determinant

~M�� ¼

�����������������������

0 q1;� � � � qn;�

q�1;�

..

.

q�n;�

MT
nm

�����������������������

: (7)

Where Mnm is a Hermitian matrix:

Mnm ¼ ðqn � q�
mÞ

�n þ ��
m

; M ¼ detðMnmÞ: (8)

We mention that transformation qn ! anqn, where an are
arbitrary complex numbers, does not change the result of
the dressing. If ’0 ¼ A

�0ðx; t; �Þ ¼
e�ðx;t;�Þ sð�Þe��ðx;t;�Þ

sð�Þe�ðx;t;�Þ e��ðx;t;�Þ

 !
: (9)

Here

�¼kxþ�t; k2¼�2�A2; �¼�i�k; s¼� A

�þk
:

�0 has a cut from �A to A. We perform the Jukowsky
transform and map this plane onto the outer part of the
circle of unit radius:

� ¼ A

2

�
�þ 1

�

�
; (10)

and use parametrization

�n ¼ Rne
i�n ¼ eznþi�n ; Cn ¼ ei�nþ�n: (11)

After redefinition of phase factor �n

qn1 ¼ expð��nÞ þ expð�zn � i�n þ�nÞ;
qn2 ¼ expð�zn � i�n ��nÞ þ expð�nÞ;
�n ¼ �nx� �ntþ�n=2þ iðknx�!nt� �n=2Þ;
�n ¼ A sinhzn cos�n;

kn ¼ A coshzn sin�n;

�n ¼ �ðA2=2Þ cosh2zn sin2�n;

!n ¼ ðA2=2Þ sinh2zn cos2�n:

(12)

If n ¼ 1 we get a one-solitonic solution characterized by
four parameters R> 1, �, �, �. The first two parameters
define the location of the complex spectral parameter �
which is actually a pole of the ‘‘dressing function’’ (see
[24]). In the Kuznetsov case � ¼ 0, R> 1 and the pole is
located on the real axis outside of the cut.
In the Akhmediev case the pole is located on the unit

circle R ¼ 1, � � 0. For the Peregrine solution R ¼ 1,
� ¼ 0. Now the pole is located exactly in the branch point.
In a general case R> 1, � � 0, the pole is located on
the complex plan outside the unit circle. Parameters �, �
define the location and phase of the soliton. If � ¼ 0,
� ¼ 0 the soliton satisfies the symmetry condition:

’ð�x;�tÞ ¼ ’�ðx; tÞ: (13)

In the general case the soliton is filled with a carrying wave
moving with phase velocity Vph. The soliton’s envelope

moves with the group velocity Vgr

Vph ¼ !=k; Vgr ¼ �=�: (14)
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In the Kuznetsov and Peregrine case Vgr ¼ 0. In the

Akhmediev case Vph ¼ 0, Vgr ¼ 1. We are specifically

interested in the ‘‘quasi-Akhmediev’’ breather when the
pole is close to the unit circle (z � 1). This is a quasiperi-
odic solution of large size L � ðzA cos�Þ�1. It moves with
small phase and high group velocity:

Vph � Az cos2�

sin�
; Vgr � �A sin�

z
: (15)

Note that the number of oscillations decreases with
decreasing of �. The quasi-Akhmediev breather is plotted
in Fig. 1. The one-solitonic solution is defined by one
vector q ¼ ðq1; q2Þ. Its shape is given by the following
formula:

’ ¼ A� 4A coshz cos�q�1q2=ðjq1j2 þ jq2j2Þ: (16)

This solution has the following asymptotics

’ ! A expð�2i�Þ x ! �1: (17)

A general N-solitonic solution has asymptotics

’ ! A exp

�
�2i

XN

k¼1

�k

�
x ! �1: (18)

If we are interested in N-solitonic solutions localized in a
finite domain of space and not perturbing the remote
condensate we must put

XN

k¼1

�k ¼ 0; �	=2: (19)

We call this solution a ‘‘regular solitonic solution’’ of the
first (

P ¼ 0) and second (
P ¼ �	=2) type. The differ-

ence between them is the direction of the movement of the
solitons. If we assume that the modulation instability
develops from localized perturbation, only a regular solu-
tion can be used as a model for its nonlinear behavior. In
what follows we are interested only in a regular solitonic
solution of the first type.

Among one-solitonic solutions only the Kuznetsov and
the Peregrine solutions are regular. In the two-solitonic
case we can construct a broad class of regular solutions.

Two-solitonic solution.—The two solitonic solutions are
defined by two vectors q1 ¼ ðq11; q12Þ, q2 ¼ ðq21; q22Þ.
A general regular solitonic solution of the first type
depends on seven parameters R1, R2, �, �1, �2, �1, �2.
When z1 ¼ z2 ¼ z poles located in complex conjugated
points. In this case the two-solitonic solution can be pre-
sented in the following form:

’ ¼ A� A sinh2z sin2�ðN=�Þ;
N ¼ sinhz sin�ðjq1j2q�21q22 þ jq2j2q�11q12Þ

� i coshz cos�½ðq�
1 � q2Þq�21q12 � ðq1 � q�

2Þq�11q22�;
� ¼ cosh2zcos2�jq11q22 � q12q21j2

þ sinh2zsin2�jq1j2jq2j2: (20)

Denote �� ¼ �1 � �2. Suppose that � � 0 (�þ � 0) and
z ¼ 0. Then ’ ¼ A; thus, the condensate is not perturbed.
We call this phenomenon annihilation of Akhmediev
breathers. If z ! 0 the annihilation is ‘‘not complete.’’
Solution is a small perturbation at the moment of the
solitons’ collision. Let us put �1 ¼ �2 ¼ 0. In this
case solitons collide at (x ¼ 0, t ¼ 0). Let R ’ 1þ ", z ’
". Then the solution is a condensate solution plus small
perturbation: ’¼Aþ
’. Perturbation 
’ is proportional
to ". When �þ ¼ 	 and expðA2t sin2�Þ< "�1


’� 4i"AN=coshð2A"xcos�Þ;
N¼ coshðA2t sin2�þ i�Þcosð2Ax sin����=2Þ: (21)

These perturbations grow exponentially at small times. An
initially small localized perturbation of the condensate
generates a pair of quasi-Akhmediev breathers propagating
with very fast group velocity in opposite directions.
Typical development of these small localized perturbations
of the condensate is presented in Fig. 2. We show the initial
perturbation in a larger scale in Fig. 3 (top).
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FIG. 1 (color online). The ‘‘quasi-Akhmediev’’ breather.
R ¼ 1:02, � ¼ 	=3.
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FIG. 2 (color online). The development of the symmetric
superregular two-solitonic solution. Red dashed line is small
perturbation at the moment t ¼ 0. Blue solid line is the solution
at the moment t ¼ 15. " ¼ 0:2, a ¼ 1, � ¼ 	=3, �1 ¼ 	=2,
�2 ¼ 	=2.
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Annihilation of the solitons takes place for a much more
general class of solitonic solutions. Let us consider a 2N
solitonic solution consisting of N pairs of Akhmediev
breathers such that

Rn¼RnþN ¼ 1; �¼��nþN; n¼ 1; . . . ;N: (22)

Each pair is characterized by additional parameters �n,
�nþN , �n, �nþN . We assert that if all �þn ¼ �n þ �nþN � 0
this solution annihilates completely. If the annihilation is
‘‘incomplete’’ such a solitonic solution presents a small
perturbation of condensate. We call these solutions ‘‘super-
regular solitonic solutions.’’ Notice that an incomplete
annihilation is not necessarily symmetric. Even in the
case N ¼ 1, one can put R1 ¼ 1þ ", R2 ¼ 1þ a", a �
1, " ! 0. Such an initially small perturbation generates a
pair of different quasi-Akhmediev breathers propagating in
opposite directions. A generic solution of the mentioned
type is a nonlinear superposition of N nonsymmetric pairs
of quasi-Akhmediev breathers, and can be treated as a
sort of ‘‘integrable turbulence’’ appearing as a result of

nonlinear development of the modulation instability.
The development of complicated nonsymmetric initial
perturbation into four solitons is presented in Fig. 4. We
show the initial perturbation in a larger scale in Fig. 3
(bottom). What is interesting is that when " ! 0 this
superposition is linear, so that at t ¼ 0 small perturbations
generated by separate ‘‘superregular’’ pairs of solitons
form an N-dimensional linear space. This remarkable
fact will be discussed in another article.
Conclusion.—We have constructed a broad class of

exact multisolitonic solutions of the NLSE which describes
localized in space and small at t ¼ 0 perturbations of the
condensate. These solutions form an infinite-dimensional
linear functional space. Most probably, any unstable
localized small perturbation of the condensate can be
approximated by one of our solutions. In this case the
‘‘integrable turbulence’’ (see [25]) appearing as a result
of the development of the modulation instability consists of
quasi-Akhmediev breathers propagating in both directions.
Self-consistent analytic theory of this turbulence will be a
truly reliable theory of freak waves.
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