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a b s t r a c t

We apply a canonical transformation to a water wave equation to remove cubic nonlinear terms
and to drastically simplify fourth-order terms in the Hamiltonian. This transformation explicitly uses
the vanishing exact four-wave interaction for water gravity waves for a 2D potential fluid. After
transformation, the well-known but cumbersome Zakharov equation is drastically simplified and can
be written in X-space in a compact form. This new equation is very suitable for analytical studies and
numerical simulations.

© 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

The work described here was motivated by two remarkable
facts regarding the hydrodynamics of a one-dimensional free
surface:

• We previously showed that the four-wave interaction coeffi-
cient vanishes on the resonant manifold [1]

k + k1 = k2 + k3,
ωk + ωk1 = ωk2 + ωk3 .

• We have also demonstrated that a giant breather that is
highly nonlinear exists on the fluid surface in the absence
of radiation [2,3]. Moreover, the space–time spectrum of the
breather consists of waves propagating in the same direction.

These two facts indicate that fourth-order wave interactions
can be drastically simplified by some canonical transformation of
the Hamiltonian. Below we show the form of this transformation.
The dynamic equation derived using this transformation is very
elegant and simple and can easily be generalized for ‘‘almost one-
dimensional waves.

∗ Corresponding author at: Novosibirsk State University, Pirogova 2, Novosibirsk
630090, Russia.

E-mail addresses: alexd@landau.ac.ru, alexd@itp.ac.ru (A.I. Dyachenko),
zakharov@math.arizona.edu (V.E. Zakharov).

0997-7546/$ – see front matter© 2011 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.euromechflu.2011.08.001
2. Zakharov’s equation

The one-dimensional potential flow of an ideal incompressible
fluid with a free surface in a gravity field is described by the
following set of equations:

φxx + φzz = 0 (φz → 0, z → −∞),

ηt + ηxφx = φz |z=η

φt +
1
2
(φ2

x + φ2
z )+ gη = 0|z=η,

where η(x, t) is the shape of the surface, φ(x, z, t) is the potential
function for the flow and g is gravitational acceleration. As previ-
ously shown [4], the variables η(x, t) and ψ(x, t) = φ(x, z, t)|z=η
are canonically conjugated and satisfy the equations

∂ψ

∂t
= −

δH
δη

∂η

∂t
=
δH
δψ
,

whereH = K +U is the total energy of the fluid with the following
kinetic and potential energy terms:

K =
1
2


dx
 η

−∞

v2dz U =
g
2


η2dx.

It is convenient to introduce a normal complex variable ak:

ηk =


ωk

2g
(ak + a∗

−k) ψk = −i


g
2ωk

(ak − a∗

−k),
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where ωk =
√
gk is the dispersion law for the gravity waves, and

the Fourier transformations ψ(x) → ψk and η(x) → ηk are de-
fined as follows:

fk =
1

√
2π


f (x)e−ikxdx, f (x) =

1
√
2π


fke+ikxdk.

The Hamiltonian can be expanded in an infinite series in powers
of ak [4,5]:

H = H2 + H3 + H4 + · · · .

This variable ak satisfies the equation

∂ak
∂t

+ i
δH
δa∗

k
= 0,

where

H2 =


ωkaka∗

kdk,

H3 =


V k
k1k2{a

∗

kak1ak2 + aka∗

k1a
∗

k2}δk−k1−k2dkdk1dk2

+
1
3


Ukk1k2{akak1ak2 + a∗

ka
∗

k1a
∗

k2}δk+k1+k2dkdk1dk2

V k
k1k2 =

g
1
4

8
√
π


k

k1k2

 1
4

Lk1k2

−


k2
kk1

 1
4

L−kk1 −


k1
kk2

 1
4

L−kk2



Ukk1k2 =
g

1
4

8
√
π


k

k1k2

 1
4

Lk1k2

+


k2
kk1

 1
4

Lkk1 +


k1
kk2

 1
4

Lkk2


Lkk1 = (k⃗k⃗1)+ |k||k1|.

The fourth-order part of Hamiltonian is:

H4 =
1
2


W k3k4

k1k2
a∗

k1a
∗

k2ak3ak4δk1+k2−k3−k4dk1dk2dk3dk4

+
1
3


Gk4
k1k2k3

(a∗

k1a
∗

k2a
∗

k3ak4 + ak1ak2ak3a
∗

k4)

× δk1+k2+k3−k4dk1dk2dk3dk4

+
1
12


Rk1k2k3k4(a

∗

k1a
∗

k2a
∗

k3a
∗

k4 + ak1ak2ak3ak4)

× δk1+k2+k3+k4dk1dk2dk3dk4,

were W k3k4
k1k2

, Gk4
k1k2k3

and Rk1k2k3k4 are equal to:

W k3k4
k1k2

=
−1
32π


Mk1k2

−k3−k4
+ M−k3−k4

k1k2
− Mk1−k3

k2−k4
− Mk2−k3

k1−k4

− Mk1−k4
k2−k3

− Mk2−k4
k1−k3


Gk4
k1k2k3

=
−1
32π


Mk3−k4

k1k2
+ Mk2−k4

k1k3
+ Mk1−k4

k2k3
− Mk1k2

k3−k4

− Mk1k3
k2−k4

− Mk2k3
k1−k4


Rk1k2k3k4 =

−1
32π


Mk3k4

k1k2
+ Mk2k4

k1k3
+ Mk2k3

k1k4

+Mk1k4
k2k3

+ Mk1k3
k2k4

+ Mk1k2
k3k4


,

where

Mk3k4
k1k2

= |k1k2|
3
4 |k3k4|

1
4 (|k1 + k3| + |k1 + k4|

+|k2 + k3| + |k2 + k4| − 2|k1| − 2|k2|).
Nowwe can apply canonical transformation from variables ak to bk
to exclude nonresonant cubic terms and nonresonant fourth-order
termswith coefficientsGk4

k1k2k3
and Rk1k2k3k4 . This transformation up

to accuracy O(b5) has the form [4,6,7]:

ak = bk +


Γ k
k1k2bk1bk2δk−k1−k2dk1dk2

− 2

Γ

k2
kk1

b∗

k1bk2δk+k1−k2dk1dk2

+


Γkk1k2b

∗

k1b
∗

k2δk+k1+k2dk1dk2

+


Bk2k3
kk1

b∗

k1bk2bk3δk+k1−k2−k3dk1dk2dk3

+


Ck3
kk1k2

b∗

k1b
∗

k2bk3δk+k1+k2−k3dk1dk2dk3

+


Skk1k2k3b

∗

k1b
∗

k2b
∗

k3δk+k1+k2+k3dk1dk2dk3, (2.1)

where

Bk2k3
kk1

= Γ
k1
k1−k2

Γ
k3
kk3−k + Γ

k1
k3k1−k3

Γ
k2
kk2−k − Γ k

k2k−k2Γ
k3
k1k3−k1

−Γ
k1
k3k1−k3

Γ
k2
k1k2−k1

− Γ
k+k1
kk1

Γ
k2+k3
k2k3

+Γ−k−k1kk1Γ−k2−k3k2k3 + B̃kk1
k2k3
,

Γ k
k1k2 = −

V k
k1k2

ωk − ωk1 − ωk2
, Γkk1k2 = −

Ukk1k2

ωk + ωk1 + ωk2

and B̃kk1
k2k3

is an arbitrary function satisfying the following symmetry
conditions:

B̃kk1
k2k3

= B̃k1k
k2k3

= B̃kk1
k3k2

= −(B̃k2k3
kk1
)∗.

Coefficients Ck3
kk1k2

and Skk1k2k3 provide vanishing corresponding
fourth-order terms in the new Hamiltonian.

After transformation of (2.1) the Hamiltonian takes the follow-
ing form:

H =


ωkbkb∗

kdk

+
1
2


(Tkk1,k2k3 − (ωk + ωk1 − ωk2 − ωk3)B̃

k2k3
kk1
)

× b∗

kb
∗

k1bk2bk3δk+k1−k2−k3dkdk1dk2dk3 + · · · . (2.2)

If B̃k2k3
kk1

= 0, Eq. (2.2) is knownas Zakharov’s equation. Here Tkk1,k2k3
satisfies the symmetry conditions:

Tkk1,k2k3 = Tk1k,k2k3 = Tkk1,k3k2 = Tk2k3kk1
and has the form:

Tkk1,k2k3 = Wk1k,k2k3 − Vkk2k−k2Vk3k1k3−k1


1

ωk2 + ωk−k2 − ωk

+
1

ωk1 + ωk3−k1 − ωk3


− Vk1k2k1−k2Vk3kk3−k

×


1

ωk2 + ωk1−k2 − ωk1
+

1
ωk + ωk3−k − ωk3


− Vkk3k−k3Vk2k1k2−k1


1

ωk3 + ωk−k3 − ωk

+
1

ωk1 + ωk2−k1 − ωk2


− Vk1k3k1−k3Vk2kk2−k

×


1

ωk3 + ωk1−k3 − ωk1
+

1
ωk + ωk2−k − ωk2


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− Vk+k1kk1Vk2+k3k2k3


1

ωk+k1 − ωk − ωk1

+
1

ωk2+k3 − ωk2 − ωk3


− U−k−k1kk1U−k2−k3k2k3

×


1

ωk+k1 + ωk + ωk1
+

1
ωk2+k3 + ωk2 + ωk3


. (2.3)

Nowwe address the key point of this article: appropriate choice
of B̃kk1

k2k3
in (2.2) is based on two items:

(1) The coefficient Tkk1,k2k3 is identically equal to zero for the res-
onant manifold [1]:

k + k1 = k2 + k3,
ωk + ωk1 = ωk2 + ωk3 , (2.4)

with nontrivial solution:

k = a(1 + ζ )2,

k1 = a(1 + ζ )2ζ 2,

k2 = −aζ 2,

k3 = a(1 + ζ + ζ 2)2, (2.5)

where 0 < ζ < 1 and a > 0. This is the only nontrivial solution
for (2.4).

(2) We also consider waves moving in the same direction, which
allows us to consider only positive wavenumbers k. This as-
sumption came from numerical simulations [2,3].

This fact and observation allow a drastic simplification of
the Hamiltonian. We can remove the cumbersome expression
for Tkk1,k2k3 in (2.2) and retain only its diagonal part, which
corresponds to trivial four-wave scattering:

k2 = k1, k3 = k, or k2 = k, k3 = k1. (2.6)

This is equal to

Tkk1 = T kk1
kk1

=
1
4π

|k||k1| (|k + k1| − |k − k1|) . (2.7)

Using this diagonal part, we can construct the following function
(with tilde):

T̃ kk1
k2k3

=


1
2
(Tkk2 + Tkk3 + Tk1k2 + Tk1k3) (2.8)

−
1
4
(Tkk + Tk1k1 + Tk2k2 + Tk3k3)


θ(k)θ(k1)θ(k2)θ(k3), (2.9)

θ(x) =


0, if x < 0;
1, if x > 0.

Consider the case in which all the waves move in the same
direction. This means that all k values have the same sign. Thus,
let ki > 0, and

b ≃ ei(kx−ωt).

Then T̃ kk1
k2k3

can be significantly simplified, and the modulus for
|k + k1|, |k| and |k1| can be dropped. Now

Tkk1 =
1
4π

kk1 (k + k1 − |k − k1|) .

Simple calculations yield

T̃ kk1
k2k3

=


−

1
8π
(kk2|k − k2| + kk3|k − k3| + k1k2|k1 − k2|

+ k1k3|k1 − k3|)+
1
8π
(kk1(k + k1)+ k2k3(k2 + k3))


× θ(k)θ(k1)θ(k2)θ(k3). (2.10)
3. Compact equation

We choose B̃kk1
k2k3

as follows:

B̃kk1
k2k3

=
T kk1
k2k3

− T̃ kk1
k2k3

ωk + ωk1 − ωk2 − ωk3
. (3.11)

This makes the four-wave coefficient in (2.2) equal to T̃ kk1
k2k3

. Note

that Eq. (3.11) for B̃kk1
k2k3

has no singularity for the resonance

manifold (2.4) because T kk1
k2k3

vanishes on that manifold. Using the
following relations for K̂ and the space derivative,

kb∗

k ⇔ i
∂

∂x
b∗(x), (3.12)

kbk ⇔ −i
∂

∂x
b(x), (3.13)

|k − k2|b∗

kbk2 ⇔ K̂(|b(x)|2), (3.14)

the Hamiltonian can easily be written in X-space:

H =


b∗(gK̂)1/2bdx +

i
16

×

 
b∗2 ∂

∂x
(b′2)− b2

∂

∂x
(b∗′2)


dx

−
1
4


|b|2 · K̂(|b′

|
2)dx, (3.15)

where b′
=

∂
∂xb. After integrating by parts, the Hamiltonian takes

the form:

H =


b∗(gK̂)1/2bdx +

1
4


|b′

|
2

×


i
2
(bb′

∗

− b∗b′)− K̂ |b|2

dx. (3.16)

The corresponding equation of motion is:

i
∂b
∂t

= (gK̂)1/2b +
i
8


b∗
∂

∂x
(b′2)−

∂

∂x


b∗′

∂

∂x
b2


−
1
4


b · K̂(|b′

|
2)−

∂

∂x
(b′K̂(|b|2))


. (3.17)

4. Some solutions

4.1. Monochromatic wave

A monochromatic wave

b(x) = B0ei(k0x−ω0t) (4.18)

is the simplest solution of (3.17). Indeed, substituting (4.18) into
Eq. (3.17) yields the following relation:

ω0 = ωk0 +
1
2
k30|B0|

2. (4.19)

Recalling the transformation from ak to bk, we can see that for
waves with small amplitude (ak ≃ bk)

|B0|
2

=
ωk0

k0
η20

and relation (4.19) coincides with the well-known Stokes correc-
tion to the frequency due to finite wave amplitude.

ω0 = ωk0


1 +

1
2
k20|η0|

2

. (4.20)
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4.2. Modulational instability of a monochromatic wave

We consider a perturbation to the solution

b = B0ei(k0x−ω0t),

where

B0 =
1

√
2π


bk0e

i(k0x−kx)dx

and

ω0 = ωk0 +
1
2
|B0|

2k30,
1
4π

|bk0 |
2k30 =

1
2
T k0k0
k0k0

|bk0 |
2.

The perturbed solution has the following form:

b ⇒ (bk0 + δbk0+ke−iΩkt + δbk0−ke−iΩ−kt)e−iω0t (4.21)

with the following condition:

Ωk = −Ω−k.

Substituting the perturbed solution (4.21) into the equation

iḃk = ωkbk +
1
2


T̃ kk1
k2k3

b∗

k1bk2bk3δk+k1−k2−k3dk1dk2dk3,

we obtain the sum of two independent equations:
iδḃk0+k + (ω0 +Ωk)δbk0+k = ωk0+kδbk0+k

+ T̃ k0+kk0
k0+kk0

|bk0 |
2δbk0+k +

1
2
T̃ k0+kk0−k
k0k0

b2k0δb
∗

k0−k


× e−iω0t−iΩkt +


iδḃk0−k + (ω0 +Ω−k)δbk0−k = ωk0−kδbk0−k

+ T̃ k0−kk0
k0−kk0

|bk0 |
2δbk0−k +

1
2
T̃ k0−kk0+k
k0k0

b2k0δb
∗

k0+k


e−iω0t−iΩ−kt .

Expressions for T̃ k0+kk0
k0+kk0

and T k0−kk0+k
k0k0

can be easily obtained
from (2.10):

T̃ k0+kk0
k0+kk0

=
k30
4π

+
k0(3k0 − |k|)

4π
k +

k0
4π
(k20 − k0|k| + k2), (4.22)

T k0−kk0+k
k0k0

=
k0
2π


k20 − k0|k| −

k2

2


. (4.23)

Considering even and odd powers of k, we can see that

Ωk =
ωk0+k − ωk0−k

2
+

|B0|
2

2
(3k0 − |k|)k.

We denote

d(k) =
ωk0+k − 2ωk0 + ωk0−k

2
.

Then

iδḃk0+k = d(k)δbk0+k +
|B0|

2k0
2

(k20 − k0|k| + k2)δbk0+k

+
B2
0k0
2


k20 − k0|k| −

k2

2


δb∗

k0−k.

Suppose δbk0+k grows according to

δbk0+k ⇒ δbk0+keγkt .

Then we can easily obtain the following formula for γk:

γ 2
k =


−d(k)−

3|B0|
2

4
k0k2



×


d(k)+ |B0|

2k0


k0 −

|k|
2

2

. (4.24)
If we introduce the steepness of the carrier wave ωk0µ
2

= |B0|
2k20

and approximate d(k) as

d(k) ≃ −
1
8
ω′′

k0k
2

= −
1
8
ωk0

k2

k20
,

then the growth rate is

γ 2
k =

1
8

ω2
k0

k40
(1 − 6µ2)k2


µ2

k0 −

|k|

2

2

−
k2

8


.

The difference between this formula and the well-known expres-
sion derived from the nonlinear Schrodinger equation is high-
lighted by the two terms in bold.

4.3. Breathers

An equation for the amplitude of the wave train can easily be
derived from (3.17). We introduce envelope B(x, t) so that

b(x, t) = B(x, t)ei(k0x−ω0t). (4.25)
B(x, t) is also a normal Hamiltonian variable and the Hamiltonian
takes the form:

H =


B∗(ω̂k0+k − ωk0)Bdx +

1
4


|B′

+ ik0B|2

×


i
2
(B(B′∗

− ik0B∗)− B∗(B′
+ ik0B))− K̂ |B|2


dx,

where the operator ω̂k0+k acts in k-space as
√
g(k0 + k).

It is convenient to introduce the following operator Ŝ:

ŜB =
∂

∂x
B + ik0B.

Then the Hamiltonian can be written as:

H =


B∗(ω̂k0+k − ωk0)Bdx +

1
4


|ŜB|2

×


i
2
(B(ŜB)∗ − B∗ŜB)− K̂ |B|2


dx. (4.26)

A variation of the Hamiltonian (4.26) dynamic equation for
B(x, t) is:

iḂ = (ω̂k0+k − ωk0)B −
1
4
Ŝ


i
2
(B(ŜB)∗ − B∗ŜB)− K̂ |B|2


ŜB


−
i
8
(Ŝ(|ŜB|2B)+ |ŜB|2ŜB)−

1
4
B ∗ K̂ |ŜB|2. (4.27)

The breather is the solution of (4.27) in the following form:

B(x, t) = B(x − Vt)e−iΩt . (4.28)
It satisfies the following equation:
− iVB +ΩB = (ω̂k0+k − ωk0)B

−
1
4
Ŝ


i
2
(B(ŜB)∗ − B∗ŜB)K̂ |B|2


ŜB


−
i
8
(Ŝ(|ŜB|2B)+ |ŜB|2ŜB)−

1
4
B ∗ K̂ |ŜB|2. (4.29)

V is close to the linear group velocity. The solution to (4.29) can
be found numerically and is a generalization of the well-known
soliton solution for the nonlinear Schrodinger equation. Indeed, for
very small steepnesswe can neglect the derivative in the nonlinear
terms, set V = ω′

k0
and obtain a stationary NLS equation:

ΩB = −ω′′

k0B
′′
+

1
2
k30|B|

2B. (4.30)

Taking into account first derivatives and the operator K̂ in the
nonlinear term, we can easily obtain the Dysthe equation.
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5. Conclusion

A simple equation describing the evolution of 1D water waves
is derived based on the important property of a vanishing four-
wave interaction for gravity water waves. This property allows
drastic simplification of the well-known Zakharov equation for
water waves, which is very cumbersome. When written in
X-space instead of K -space, the equation allows further analytical
and numerical study. The simple Hamiltonian obtained after
canonical transformation raises a question about the integrability
of equations for the potential flow of a fluid in a gravity field. This
question remains open.

This new equation can be generalized for ‘‘almost 2D waves’’
or ‘‘almost 3D fluid’’. Waves that are slightly inhomogeneous
in the transverse direction can be considered in the spirit of
the Kadomtsev–Petviashvili equation for the Korteweg–de-Vries
equation: the frequency ωk can be treated as 2D, ωkx,ky, while
leaving the coefficient T̃ kk1

k2k3
in (2.10) not dependent on y. b now

depends on both x and y:

H =


b∗ω̂kx,kybdxdy +

1
4


|b′

x|
2

×


i
2
(bb′∗

x − b∗b′

x)− K̂x|b|2

dxdy. (5.31)

For the pure 1D case, this is much more applicable than the
nonlinear Schrodinger equation or the Dysthe equation. Note that
it does not contain multiple integrations in Fourier space and is
written in coordinate space.
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