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The dominant nonlinear wave interaction in the energy balance of a wind-driven sea

V. E. Zakharova�

Department of Mathematics, University of Arizona, Tucson, USA
�Submitted January 19, 2010�
Fiz. Nizk. Temp. 36, 971–985 �2010�

Here some aspects of the physics of a wind-driven sea are investigated theoretically. It is demon-
strated that an effective four-wave nonlinear interaction plays a leading role in the formation of
the spectra of turbulent waves. In particular, this interaction leads to non-linear damping which
exceeds standard observations at least by an order of magnitude. The theory developed here is
compared with available experimental data. © 2010 American Institute of Physics.
�doi:10.1063/1.3499239�
I. INTRODUCTION

In this talk we discuss some theoretical aspects of the
physics of a wind-driven sea. On our opinion, some impor-
tant aspects of this theory have not been sufficiently clarified
and must be elucidated. Clarification is needed to allow ad-
equate comparison of theory and experiment; otherwise,
costly and laborious field and laboratory measurements can-
not be properly interpreted and understood.

The first question concerns the correct definition of the
wave action Nk�t�, which obeys the Hasselmann kinetic
equation

dN

dt
= Snl + Sin + Sdis, �1.1�

augmented by source and dissipation terms. How does one
find the current action spectrum Nk�t� from experimental
data? In the best experiments the space-time spectrum

Qk� = ���k��2� . �1.2�

is measured. Here �k� is the Fourier transform of the surface
elevation. The most advanced definition of the wave action,
used in many research papers �see, for example Refs. 1 and
2�, is

Nk =
2

�k
	

0

�

Qk�d� . �1.3�

Equation �1.3� is certainly correct for waves of very small
amplitude in the limit �→0, where � is a characteristic
average steepness of the surface. For finite steepness, it can
be treated as the first term in the expansion

Nk = N0�k� + �2N1�k� + ¯ . �1.4�

Now N0�k� is given by Eq. �1.3�, while N1�k� needs to be
determined. One might think that this question is not very
important because, even for the steepest young waves, �2


0.01 and the accuracy of Eq. �1.3� looks good. However,
our preliminary estimates show that the ratio N1�k� /N0�k� is
a rapidly growing function of k; thus, in the spectral tails the
difference between Nk and N0�k� might be essential.

Now we formulate the inverse problem. Suppose we
know Nk. How do we find Qk�?

In the linear approximation, for �→0, the answer is
known:
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Qk� =
�k

2
�Nk��� − �k� + N−k��� + �−k�� . �1.5�

What happens if � is finite? In the neighborhood of �=�k

we should make the replacement

��� − �k� →
1

�

�k

�� − �̃k�2 + �k
2 , �1.6�

where �̃k=�k+�2�1k+¯ is the renormalized frequency and

�k
�4�̃k+¯ is the effective dissipation owing to four-wave
processes. As long as �2 is small, regard the shift in �k and
the blurring of the �-function as small effects. However, the

quotients �1k /�k and �̃k /�k are increasing functions of k;
thus, for k	kp �kp is the wave number of the spectral peak�
a derivation from Eq. �1.5� could be essential. There is one
more important effect. In a real sea all waves can be sepa-
rated in two classes: “resonant waves” with ���k and
“slave harmonics” caused by a quadratic nonlinearity in the
primitive dynamic equations. The slave waves do not obey
dispersion relations, so their frequency spectrum for a given
k is a broad function, not concentrated at �
�k.

Accurate determination of N1�k� for given Qk� and Qk�

for given N�k� is possible but it is technically cumbersome.
In sections II and III we taking the first but important steps to
solve that problem. In section IV we study axially symmetric
solutions of the equation

Snl = 0, �1.7�

which has been known since 1966 �Ref. 3, see also Refs. 4
and 5�. This equation has exactly two power-law solutions:

N1�k� = cp� P

g21/3 1

k4 , �1.8�

and

N2�k� = cq� Q

g3/21/2 1

k23/6 . �1.9�

Equation �1.8� is known as Zakharov–Filonenko spectrum.4

Here P is the flux of energy from small wave numbers and Q
is the flux of wave action from high wave numbers. The
Kolmogorov constants cp and cq were not known, but now
they can be calculated:
© 2010 American Institute of Physicsct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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cp = 0.219, cq = 0.227. �1.10�

The general, isotropic solutions of Eq. �1.7� depend on
the two constants, P and Q. In section V we discuss the
general anisotropic solution of this equation. We show that
the solution is defined by one arbitrary constant, the flux of
wave action from high wave numbers, and one arbitrary
function of angle. In the axially symmetric case this function
degenerates to the constant P. The general anisotropic solu-
tion of Eq. �1.7� describes an angular spreading of the spec-
trum that increases with frequency. The last section VI, is the
most important from a practical standpoint. We discuss the
balance equation in the universal domain �	�p,

Snl + Sin + Sdis = 0. �1.11�

It appears that, in some domain in the k-plane, Sin+Sdis
0.
Suppose that Sin=��k�Nk. We notice that Snl can be repre-
sented in the form

Snl = Fk − �kNk, �1.12�

and the nonlinear wave interaction process predominates if
�k	�k. We show that this condition is satisfied in a majority
of realistic cases, if the waves are not very young. It means
that, as stated above, the nonlinear wave interaction is the
dominant process in a wind-driven sea.

II. WHAT IS THE WAVE ACTION?

The widely used Hasselmann equation is

�N

�t
+

��̃

�k

�N

�r
= Snl, �2.1�

with

Snl = �g2	 �Tkk1,k2k3
�2��k + k1 − k2 − k3����k + �k1

− �k2

− �k3
��Nk1

Nk2
Nk3

+ NkNk2
Nk3

− NkNk1
Nk2

− NkNk1
Nk3

�dk1dk2dk3. �2.2�

Here �k=�gk tanh kH, H is the depth, Tkk1k2k3
=Tk1kk2k3

=Tk2k3kk1
=Tkk1k3k2

are coupling coefficients, and

�̃�k� = ��k� + 2g	 Tkk1,kk1
Nk1

dk1 �2.3�

is the renormalized frequency. As mentioned above, the non-
linear interaction term Snl can be written as

Snl = Fk − �kNk, �2.4�

where

Fk = �g2	 �Tkk1k2k3
�2��k + k1 − k2 − k3����k + �k1

− �k2

− �k3
�Nk1

Nk2
Nk3

dk1dk2dk3 �2.5�

and � , the dissipation rate owing to four-wave processes, is
kticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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�k = �g2	 �Tkk1,k2k3
�2��k + k1 − k2 − k3����k + �k1

− �k2

− �k3
��Nk1

Nk2
+ Nk1

Nk3
− Nk2

Nk3
�dk1dk2dk3. �2.6�

One can say that in a real nonlinear sea the dispersion rela-
tion �=�k is renormalized and becomes a complex function

�k → �̃k +
1

2
i�k. �2.7�

Equations �2.1� and �2.2� are written for the wave action
spectrum Nk�r , t�. What is the exact definition of the wave
action? How can Nk�r , t� be expressed in terms of observ-
able, measurable quantities? These are not such simple ques-
tions.

By taking a snapshot of the surface from two points one
can get a stereoscopic image and recover the elevation ��r�.
Taking a nonsymmetric Fourier transform and defining

�k =
1

�2��2 	 ��r�e−ikrdr , �2.8�

we can introduce the spatial spectrum

Qk = ���k�2� . �2.9�

By taking a series of snapshots at consecutive times, one can
restore the full space-time spectrum

Qk� = ���k��2� . �2.10�

Apparently,

Qk = 	
−�

�

Qk�d� . �2.11�

What is the wave action Nk? In some papers and monographs
we can find the following definition:

Nk =
Qk

�k
. �2.12�

This is a widespread misconception. The spectrum Qk is an
even function, i.e., Q−k=Qk, while Nk certainly does not obey
this restriction. One can present the spatial spectrum in the
form

Qk =
�k

2
�nk + n−k� , �2.13�

where nk is the wave action. We have deliberately used a
lower case letter for it, because nk and Nk are different wave
actions.

The wave field consists of “resonant” and “slave” har-
monics. The resonant harmonic with wave vector k has a
frequency close to the renormalized frequency �̃k. The stron-
gest slave harmonics are the result of the interaction of two
resonant harmonics. Suppose they have wave vectors k1 ,k2.
In the first order of nonlinearity they generate four slave
harmonics with wave vectors p1 ,p2 ,−p1 ,−p2 and frequen-
cies �1 ,�2 ,−�1 ,−�2. Here p1=k1−k2, p2=k1+k2, and
�1=�1−�2, �2=�1+�2. There is no definite relationship
between the wave vector and the frequency for slave har-
monics.
ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Returning to the wave action, we now explain the differ-
ence between nk and Nk. Nk is the “refined” wave action that
includes resonant harmonics and slave harmonics of higher
order only, while nk is the “total” wave action that includes
both resonant and all slave harmonics. Apparently, nk
Nk

and is directly related to the experimentally measurable spa-
tial spectrum by Eq. �2.13�. However, nk does not obey the
Hasselmann equation. On the other hand, the “purified”
wave action Nk cannot in principle be measured in any kind
of experiment. But exactly this sort of wave action satisfies
the Hasselmann equation. As a result, all operational models
solve the Hasselmann equation augmented with additional
terms: Sin, the input from wind, and Sdis, the dissipation due
to wave breaking. Hence, operational models do predict Nk.
At the same time, experimentalists can only measure nk.

At first glance we see a serious discrepancy; however,
nobody pays any attention. Why does this happen?

To answer this, we should estimate the relative differ-
ence between nk and Nk. Let us use the notation

�k� =
nk − Nk

nk
. �2.14�

In a typical observed spectrum of a wind-driven sea, we
should distinguish the spectral areas near the peak frequency
���p and in the tail �	�p. In the energy spectral band
close to �p,  is small:

 � �2.

The characteristic steepness � is defined as

�2 

�p

4

g2 �2,

where � is the total energy �density� of the waves. Even for
young waves �2�0.01; thus, the relative difference between
n and N for deep water is no more than one percent and can
easily be neglected. �k�, however, is a rapidly growing
function of k. An accurate estimate of the dependence of 
on frequency for ���p is beyond the scope of this article.
The article on this topic will be submitted for publication
soon, but our preliminary results show that this dependence
increases very rapidly, with

 
 �2� �

�p
3

. �2.15�

As mentioned above, for ���p one can neglect the dif-
ference between nk and Nk. In this region we can replace Eq.
�2.9� by

Qk =
�k

2
�Nk + N−k� . �2.16�

There is an essential difference between Eqs. �2.13� and
�2.16�. Because nk
0 for all k, the wave vectors of the slave
harmonics cover the entire k-plane; thus, determining nk

from Qk is impossible in principle. On the other hand, in
many practical cases Nk is nonzero only inside the bounded
domain G in the k-plane. At the same time N−k�0 only

inside the domain G̃, which is radially symmetric to G. In
other words, if the vector k belongs to G, the vector −k
belongs to G̃. Suppose that G and G̃ do not overlap. Then, in
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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the domain G we have Nk=2Qk /�k. In spite of the factor 2 in
Eq. �2.13�, the integral identity �Qkdk=��kNkdk is the same
as if we had used the naive and blatantly incorrect Eq. �2.12�.

In some important cases domains G and G̃ intersect.
Then we face some ambiguity in determining Nk from Eq.
�2.16�. To overcome this ambiguity one should use the space-
time spectrum Qk,� and define

nk =
2

�k
	

0

�

Q�k,��d� . �2.17�

An equivalent formula is given in the monograph of Monin
and Krasitsky1 printed in Russia in 1985. It was also used by
Rosental et al.2 at approximately the same time. In this case,
again,

	 �knkdk = 	
−�

�

Q�k,��d�dk . �2.18�

Note that Eqs. �2.13� and �2.17� include the slave harmonics
and can be used for comparing experimental spectral tails
with the solutions of the Hasselmann equation, both numeri-
cal and analytical, but only with caution. They work up to an
accuracy of �2 in the neighborhood of a spectral peak, but
can lead to major errors in the spectral tails. A preliminary
estimate of the accuracy of Eq. �2.17� will be made in the
next section.

III. HOW TO SEPARATE RESONANT AND SLAVE
HARMONICS?

For accurate separation of resonant and slave harmonics
and finding an explicit formula that connects Q�k ,�� and Nk,
one should use a Hamiltonian formalism and implement a
canonical transformation, excluding cubic terms in the
Hamiltonian. This is a cumbersome mathematical procedure.
In this section we demonstrate a more economical way of
doing this. We study weakly nonlinear waves on the surface
of an ideal fluid of infinite depth in an infinite basin. The
vertical coordinate is

− H � z � ��r,t�, r = �x,y� , �3.1�

the fluid is incompressible, H is the depth of fluid,

div V = 0, �3.2�

and, the velocity V is a potential field, i.e.,

V = �� , �3.3�

where the potential � satisfies the Laplace equation

�� = 0 �3.4�

with the boundary conditions

���z=� = ��r,t�, ��z�z=−� = 0. �3.5�

The total energy of the fluid, H=T+U, has the following
terms:

T =
1

2
	 dr	

−�

�

����2dz =
1

2
	 ��ndS , �3.6�

and

U =
1

g	 �2dr . �3.7�

2ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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The Dirichlet–Neumann boundary value problem �3.4�
and �3.5� is uniquely solved; thus the flow is defined by
fixing � and �. This pair of variables is canonical; thus, the
equations for the evolution of � ,� take the form:6

��

�t
=

�H

��
,

��

�t
= −

�H

��
. �3.8�

After taking the non-symmetric Fourier transform,

��r� =	 ��k�eikrdk, ��k� =
1

�2��2 	 ��r�e−ikrdr .

�3.9�

Equation �3.8� becomes

��

�t
=

�H̃

��
k
* ,

��

�t
= −

�H̃

��
k
* , �3.10�

with

H̃ =
1

4�2H = H0 + H1 + H2 + ¯ �3.11�

It has been shown7–9 that the Hamiltonian H̃ can be ex-
panded in a Taylor series in powers of k�k:

H0 =
1

2
	 �Ak��k�2 + g��k�2�dk, Ak = k tan kH

H1 =
1

2
	 L�1��k1,k2��k1

�k2
�k3

��k1 + k2 + k3�dk1dk2dk3.

H2 =
1

2
	 L�2��k1,k2,k3,k4��k1

�k2
�k3

�k4
��k1 + k2 + k3

+ k4�dk1dk2�k3
�k4

. �3.12�

Here

L�1��k1,k2� = − �k1,k2� − Ak1
Ak2

,

L�2��k1,k2,k3,k4� =
1

2
�k1

2A2 + k2
2A1� +

1

4
A1A2�A1+3 + A2+4

+ A1+4 + A2+3� . �3.13�

Now we introduce the normal variables ak:

�k =
1
�2

�Ak

g
1/4

�ak + a
−k
* � ,

�k =
i

�2
� g

Ak
1/4

�ak − a
−k
* � . �3.14�

Normal variables obey the following Hamiltonian equations:

�ak

�t
+ i

�H

�a
k
* = 0. �3.15�

All terms in the expansion of Hamiltonian �3.11� must be
expressed in terms of the ak:

H =	 � �a �2dk ,
0 k kticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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H1 =
1

2
	 Vkkak2

�1,2� �akak1

* a
k2

* + a
k
*ak1

ak2
���k − k1

− k2�dkdk1dk2 +
1

6
	 Vkkak2

�0,3� �akak1
ak2

+ a
k
*a

k1

* a
k2

* ���k

+ k1 + k2�dkdk1dk2, �3.16�

Vkk1k2

�1,2� =
g1/4

2�2
�� Ak

Ak1
Ak2

1/4
L�1��k1,k2� − � Ak1

AkAk2

1/4

�L�1��− k,k1� − � Ak2

AkAk1

1/4

L�1��− k,k2�� ,

�3.17�

Vkk1k2

�0,3� =
g1/4

2�2
�� Ak

Ak1
Ak2

1/4
L�1��k1,k2� + � Ak1

AkAk2

1/4

�L�1��k,k1� + � Ak2

AkAk1

1/4

L�1��k,k2�� . �3.18�

Now we can define the “total” or rough action:

nk��k − k�� = g�akak�
* � . �3.19�

It is clear that fundamental relation �2.13� is satisfied. Now
we take the temporal Fourier transform

ak� =
1

2�
	 a�k,t�e−i�tdt �3.20�

and introduce

nk���k − k����� − ��� = g�ak�a
k�,��
* � . �3.21�

The space-time spectrum of the elevation is simply

Qk,� =
�k

2
�nk,� + n−k,−�� . �3.22�

To separate the resonant and slave harmonics we must per-
form a canonical transformation to new variables, excluding
cubic terms in the Hamiltonian. This is a standard procedure
known in celestial dynamics since the nineteenth century. In
our case, however, this procedure is rather cumbersome. It
was first done by Krasitski.9 He transformed the initial ca-
nonical variables ak to new canonical variables bk, which
contain first order slave harmonics only. The variables ak are
represented by infinite series in the new variables bk:

ak = bk + ak
�1� + ak

�2� + ak
�3�. �3.23�

He calculated first two terms in this expansion and found
the following expressions:

ak
�1� =	 ��1��k,k1,k2�bk1

bk2
��k − k1 − k2�dk1dk2

− 2	 ��1��k2,k,k1�b
k1

* bk2
��k + k1 − k2�dk1dk2

+	 ��2��k,k ,k �b* b* ��k + k + k �dk dk ,
1 2 k1 k2
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ak
�2� =	 B�k,k1,k2,k3�b

k1

* bk2
bk3

��k + k1 − k2

− k3�dk1dk2dk3 + ¯ �3.24�

where

��1��k,k1,k2� = −
1

2

V�1,2��k,k1,k2�
��k − �k1

− �k2
�

,

��2��k,k1,k2� = −
1

2

V�0,3��k,k1,k2�
��k + �k1

+ �k2
�

, �3.25�

and

B�k,k1,k2,k3� = ��1��k1,k2,k1 − k2���1��k3,k,k3 − k�

+ ��1��k1,k3,k1 − k3���1��k2,k,k2 − k�

− ��1��k,k2,k − k2���1��k3,k1,k3 − k1�

− ��1��k1,k3,k1 − k3���1��k2,k1,k2 − k1�

− ��1��k + k1,k,k1���1��k2 + k3,k2,k3�

+ ��2��− k − k1,k,k1���2��− k2

− k3,k2,k3� . �3.26�

On our opinion, Krasitski used a rather long way for calcu-
lation of terms in expansion �3.23�. He directly checked the
validity of canonicity condition

�ak,ak�� =	 � �ak

�bk�

�ak�

�
k�
* −

�ak

�b
k�
*

�ak�

�bk�
�dk� = 0,

�ak,ak�
* � =	 � �ak

�bk�

�a
k�
*

�
k�
* −

�ak

�b
k�
*

�a
k�
*

�bk�
�dk� = ��k − k�� .

�3.27�

Calculating ak
�3� by this method is an impossibly complicated

task. The canonical transformation can be found using more
sophisticated methods. The first one was offered7 in 1998.
Suppose that ak is a solution of Hamiltonian system

�ak

��
+ i

�R

�a
k
* = 0 �3.28�

where � is an “artificial time” and R is an effective Hamil-
tonian given by

R = i	 �kk2k2

�1� �a
k
*ak1

ak2
− akak1

* a
k2

* ���k − k1 − k2�dkdk1dk2

+
i

3
	 �kk1k2

�2� �a
k
*a

k1

* a
k2

* − akak1
ak2

���k + k1

+ k2�dkdk1dk2. �3.29�

Equations �3.28� and �3.29� must be supplemented by the
initial condition

�ak��=0 = bk. �3.30�

The needed canonical transformation is obtained on setting
�=1. Expanding the solution in a Taylor series in � and set-
ting �=1 at the end, we reproduce the result of Krasitski
�3.24�–�3.26� in a much more economical way. Now we
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje

128.196.226.62 On: Wed,
demonstrate another, more traditional way for constructing
the canonical transformation based on finding a generating
function. We represent ak in the form

ak =
1
�2

�qk + ipk�, q−k = q
k
*, p−k = p

k
*.

The functions qk, pk obey the equations

�qk

�t
=

�H

�p
k
* ,

�pk

�t
= −

�H

�q
k
* , �3.31�

where H is the same Hamiltonian expressed in terms of qk,
pk. Now

H0 =
1

2
	 �k��qk�2 + �pk�2�dk , �3.32�

H1 =
1

2
	 Lkk1k2

qkpk1
pk2

��k + k1 + k2�dkdk1dk2, �3.33�

Lkk−1k2
=

g1/4Ak
1/4

Ak−1
1/4 Ak2

1/2Lk1k2

�1� . �3.34�

We now transform to new variables Rk, �k using the follow-
ing generating function �see Ref. 10, as well�:

S =	 Rkqkdk +
1

2
	 Akk1k2

qkqk1
Rk2

��k + k1

+ k2�dkdk1dk2 +
1

3
	 Bkk1k2

RkRk1
Rk2

��k + k1

+ k2�dkdk1dk2. �3.35�

The “old momentum” pk and “new coordinates” �k are given
by

pk =
�S

�q−k
= Rk +	 A−k,k1,k2

qk1
Rk2

��k − k1 − k2�dk1dk2,

�3.36�

and

�k =
�S

�R−k
= qk +

1

2
	 Ak1,k2,−kqk1

qk2
��k − k1 − k

2
*�dk1dk2

+	 B−k,k1,k2
Rk1

Rk2
��k − k1 − k − 2�dk1dk2. �3.37�

Apparently Bkk1k2
is symmetric with respect to all permuta-

tions and Akk1k2
=Akk2k1

. To find A, B we notice that in the
first approximation

qk = �k −
1

2
	 Ak1,k2,−k�k1

�k2
��k − k1 − k2�dk1dk2

−	 B−k,k1,k2
Rk1

Rk2
��k − k1 − k2�dk1dk2. �3.38�

and in Eq. �3.36� we can make the substitution qk→�k. Now
we plug qk, pk into Eq. �3.32�. In Eq. �3.33� we can just make
the substitutions qk→�k and pk→Rk. From the condition of
eliminating cubic terms that proportional to �k�k1

�k2
and

� p p , and the symmetry conditions, we find after some
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calculations the following nice and elegant expressions for A
and:

Akk1k2
= −

1

4
� L0 + L1 + L2

�0 + �1 + �2
+

L0 + L1 − L2

�0 + �1 − �2


+
1

4
� L0 − L1 − L2

�0 − �1 − �2
+

L1 − L0 − L2

�1 − �0 − �2
 , �3.39�

Bkk1k2
= −

1

4
� L0 + L1 + L2

�0 + �1 + �2
+

L0 − L1 − L2

�0 − �1 − �2


−
1

4
� L1 − L0 − L2

�1 − �0 − �2
+

L2 − L0 − L1

�2 − �0 − �1
 . �3.40�

Here

L0 = Lkk1k2
, L1 = Lk1kk2

, L2 = Lk2kk1
,

�0 = �k, �1 = �k1
, �2 = �k2

. �3.41�

To reproduce the results of Krasitski one has to expand the
old variables qk, pk in powers of the new variables �k, Rk;
then take bk in the following form:

bk =
1
�2

�� g

Ak
1/4

�k − i�Ak

g
1/4

Rk . �3.42�

The new normal variables bk satisfy Zakharov’s equation6

�bk

�t
+ i�kbk +

i

2
	 Tkk1k2k3

b
k1

* bk2
bk3

�k+k1−k2−k3
dk1dk2dk3

= 0. �3.43�

Here Tkk1k2k3
is the same as in Eq. �2.2�. An explicit expres-

sion for Tkk1k2k3
is too complicated to be presented here. No-

tice that now we can calculate nk= �ak�2 by using the expan-
sion �3.23�. We will assume that triple correlations of the
new variables are zero, i.e.,

�bkbk1
bk2

� = 0, �b
k
*bk1

bk2
� = 0 �3.44�

We use also Gaussian closure for quartic variables

�b
k
*b

k1

* bk2
bk3

� = NkNk1
��k−k2

�k1−k3
+ �k−k3

�k1−k2
� . �3.45�

Here Nk is the “refined” action. After some calculations we
find that nk and Nk are connected by the following equation
�it can be found in Ref. 8�:

nk = Nk +
1

2
	 �V�1,2��k,k1,k2��2

��k − �k1
− �k2

�2 �Nk1
Nk2

− NkNk1

− NkNk2
���k − k1 − k2�dk1dk2

+
1

2
	 �V�1,2��k,k1,k2��2

��k1
− �k − �k2

�2 �Nk1
Nk2

+ NkNk1

− NkNk2
���k1 − k − k2�dk1dk2

+
1

2
	 �V�1,2��k2,k,k1��2

��k2
− �k − �k1

�2 �Nk1
Nk2

+ NkNk2

− NkNk1
���k2 − k − k1�dk1dk2
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+
1

2
	 �V�0,3��k,k1,k2��2

��k + �k1
+ �k2

�2 �Nk1
Nk2

+ NkNk1

+ NkNk2
���k + k1 + k2�dk1dk2. �3.46�

The difference between nk and Nk,

�k =
nk − Nk

Nk
,

is important in shallow water. However, even in deep water
�k is a fast growing function of k.

The relation between the space-time spectra of the “to-
tal” nk� and “purified” Nk� versions of the wave action is not
known so far. This is a subject for future research. However,
Nk� can be written as

Nk� =
1

�

�kNk

�� − �̃k�2 + �k
2 �3.47�

and we can approximately set

Qk� =
1

2
�k�Nk� + N−k,−�� =

1

2�
� �kNk

�� − �̃k�2 + �k
2

+
�−kN−k

�� − �̃k�2 + �k
2� . �3.48�

After integrating over � and taking arctan �k /�k��k /�k,
we get

Nk = 	
0

�

N�k,��d� +
1

�
�Nk�k

�k
−

N−k�−k

�−k
 . �3.49�

From Eq. �3.48� we see that identity

Nk = 	
0

�

N�k,��d� �3.50�

is valid up to a relative accuracy of �k /�k. This value for the
accuracy will be discussed in section VI. Near the spectral
peak it is of order 4��4. The identity �2.17� is satisfied with
much less accuracy. Even near the spectral peak, the accu-
racy is of order �2 and it becomes worse for k	kF. An
explicit expression for Q�k ,�� in terms of Nk will be the
subject of a separate article.

IV. STATIONARY SOLUTIONS OF KINETIC EQUATION:
ISOTROPIC CASE

In this section we address the question of how to solve
the stationary kinetic equation

Snl = 0? �4.1�

Formally speaking, this equation has the thermodynami-
cally equilibrium solutions

Nk =
T

�k + �
, �4.2�

where the temperature T and � are constants. It might sound
like a paradox, but in fact, the spectrum �4.2� in not a real
solution of equation �4.1� because here we are only discuss-
ing the case of deep water and assume that �=�gk. Also we
write k= �k�.
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To justify this statement we notice that in two particular
cases, �=0 and T=c�, �→�, the solution �4.2� has the form

N =
T

�k
=

T
�g

k−1/2, N = c . �4.3�

Both these solutions are isotropic power-law functions

Nk = k−x �4.4�

with particular values of x=1 /2,0. Let us study the general
power-law solution of �4.1�. By plugging �4.4� into �4.1� we
find that each particular term in Snl diverges, but the diver-
gences in different terms may add out, so there is a “window
of opportunity” for the exponent x. As a result,

Snl = g3/2k−3x+19/2F�x� . �4.5�

Here F�x� is a dimensionless function, defined inside interval
x1�x�x2. The edges of the window, x1 and x2, are to be
determined. Outside the “window of opportunity,” at x�x1

and x
x2, F�x�=�. Thus, all admitted values of x must be
lie between x1 and x2.

Let the quadruplet of waves be formed of wave vectors
satisfying the resonance conditions

k1 + k2 = k3 + k4,

�k1
+ �k2

= �k3
+ �k4

. �4.6�

Suppose that �k1�� �k�. The three-wave resonance condition,

k = k2 + k3, �k = �k2
+ �k3

, �4.7�

cannot be satisfied, thus one of vectors k2, k5 must be small.
If �k3�� �k2�, then

k2 = k + k1 − k3,

��k2� = �gk�1 +
1

2

�k,k1 − k3�
k2 + ¯  . �4.8�

In the first approximation with a small parameter �k1� / �k�, one
can set ��k2�=��k�, ��k1�=��k3� and �k3�
�k1�. In other
words, the vectors k1 ,k3 are small and have approximately
the same length k1. If the vector k is directed along the x
axis, the coupling coefficient Tkk1k2k3

depends on the four
parameters k ,k1 ,�1 ,�3. Here �1 ,�3 are angles between k1, k3

and k. Remembering that k1�k, we calculate the coupling
coefficient in this asymptotic domain. A tedious calculation11

yields the following compact result:

Tkk1k2k3



1

2
kk1

2T�1,�3
,

T�1,�2
= 2�cos �1 + cos �3� − sin��1 − �3��sin �1 − sin �3� .

�4.9�

On the diagonal k3=k1, �3=� we get a very simple expres-
sion published in 2003:29

Tkk1

 2k1

2k cos �1. �4.10�

Suppose that spectrum is separated into a low-frequency
component N0�k� and a high-frequency component N1�k�.
We assume that N �N and take into account only the in-
1 0ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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teraction between N0 and N1. One can see that N1 satisfies
the linear diffusion equation

�

�t
N1 =

�

�ki
Dijk

2 �

�kj
N1, �4.11�

where Dij is the diffusion tensor,

Dij = 2�g3/2	
0

�

dqq17/2	
0

2�

d�1

� 	
0

2�

d�3�T��1,�3��2pipjN��,q�N��3,q� , �4.12�

with

p1 = cos �1 − cos �3, p2 = sin �1 − sin �3.

If the spectrum is isotropic and does not depend on the angle
�, we get the further simplification:

Dij = D�ij, D =
5

8
�3g3/2	

0

�

q17/2N2�q�dq . �4.13�

The diffusion coefficient D diverges at k→0, if x
19 /4.
Thus, x2=19 /4.

Let us find how the function F�x� behaves near x=x2. In
the isotopic case, Eq. �3.9� becomes

�N1

�t
=

D

k

�

�k
k3 �

�k
N1. �4.14�

As k→19 /4, we get the following estimate:

F�x� =
19

4

11

4

5�3

16

1

19/4 − x



126.4

19/4 − x
�4.15�

To find x1, the lower end of the window, we should study the
influence of short waves on long waves. Suppose that
�k1� , �k2�	k. In the first approximation �k3�= �k�, and the reso-
nant interaction Snl can be separated into two groups of
terms: Snl=Snl

�1�+Snl
�2�. For Snl

�2� the integrand includes the
product Nk1

Nk2
. If we set k1=k2, we get the following expres-

sion for the low-frequency tail

Snl
�1� = 2�g2	 �Tkk1,k1,k3

�2��� − �k3
��Nk3

− Nk�Nk1

2 dk1.

�4.16�

Notice, that if �k1�	 �k�, then �Tkk1,k1,k3
�2
k1

2, and the inte-
grand in Eq. �4.16� is proportional to k1

2Nk1

2 . If x�2, the
integral diverges.

The group of terms that are linear in the high-frequency
tail of the spectrum is more complicated:

Snl
�2� = 2�g2Nk	 �Tkk1k2k3

�2Nk3
�Nk1

− Nk2
����k + �k1

− �k2

− �k3
���k + k1 − k2 − k3�dk1dk2dk3. �4.17�

We can perform the expansion

Nk1
− Nk3

= pi
�N

�k1i
, pi = �k − k3�i. �4.18�

In the general anisotropic case the integrand is proportional
to k2�p�N � and a divergence occurs if x=x −3. However,
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in the isotropic case this term, the most divergent one, is
cancelled after integration with respect to the angles. In this
case, we should examine the quadratic terms in the expan-
sion of the integrand in powers of the parameter �pk1� /k1

2.
The leading term arises from the expansion of the �-function
of the frequencies ���k1

−�k1−p+�k−�k3
�. Integrating over

the angles, we end up with the equation

�Nk

�t
= qk7Nk

�N

�k
, �4.19�

where

q =
25

16
�3g3/2E =

25

8
�3g3/2	

0

�

k3/2Nkdk .

Here E is the total energy. In the isotropic case, therefore,
x1=5 /2 and for F�x� we obtain the following estimate:

F =
5

2

25

8
�3 1

5/2 − x
=

241.86

5/2 − x
. �4.20�

Figure 1a is a plot of F�x� in the isotropic case that we
calculated numerically. One can see that in the interval x1

�x�x F�x� has exactly two zeros at

10001000

800800

600600

400400

200200

00

11 22 33 44 55 111/21/2111/31/3
yy

yy

xx

xx

5/2 35/2 3 23/6 423/6 4 19/419/4

11 22 33 44 55 111/21/2111/31/3

5/2 35/2 3 23/6 423/6 4 19/419/4

5050

4040

3030

2020

1010

00

aa

bb

FF

FF

FIG. 1. A plot of the function F�x� �a�. A plot of F�x� with a magnified
vertical scale �b�.
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x = y1 = 4, x = y2 =
23

6
. �4.21�

To prove this result, let us assume that the spectra are isotro-
pic and obey the differential conservation laws for energy
and wave action:

�Ik

�t
= 2�k�k

�Nk

�t
= −

�P

�k
, �4.22�

P = 2�	
0

k

k�kSnldk , �4.23�

2�k
�Nk

�t
=

�Q

�k
, �4.24�

Q = 2�	
0

k

kSnldk . �4.25�

Here P is the flux of energy directed to high wave numbers,
while Q is the flux of wave action directed to small wave
numbers. The equations

P = P0 = const, Q = Q0 = const �4.26�

appear to be solutions of the stationary equation Snl=0. We
seek a solution of the power-law form N=�k−x; then Eqs.
�4.23� and �4.25� become

P0 = 2�g2�3 F�x�
3�x − 4�

k−3�x−4�, �4.27�

Q0 = − 2�g3/2�3 F�x�
3�x − 26/3�

k−3�x−26/3�. �4.28�

One can see that P0 and Q0 are finite only if F�4�=0 and
F�26 /3�=0, and if F��4�
0 and F��26 /3��0. We conclude
that the equation Snl=0 has the following solutions:

Nk
�1� = cp�P0

g2 1/3 1

k4 , �4.29�

Nk
�2� = cq� Q0

g3/21/3 1

k23/6 . �4.30�

Here cp and cq are the dimensionless Kolmogorov constants

cp = � 3

2�F��4�
1/3

, cq = � 3

2��F��23/6��
1/3

.

Figure 1b is a plot of F�x� with a magnified vertical axis.
The calculations yield F��4�=45.2 and F��23 /6�=−40.4.
Near the zeros F�x� can be approximated by the parabola,

F�x� 
 256.8�x − 23/6��x − 4� . �4.31�

Note that

F�9/2� = 85.6 �4.32�

thus, we get

cp = 0.219, cq = 0.227, �4.33�

and can see that both Kolmogorov constants are numerically
small.
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In the isotropic case, the energy spectrum F��� can be
written in terms of Nk as

F���d� = 2��kNkkdk , �4.34�

and the energy spectrum corresponding to the solution �4.29�
has the following form, known as the Zakharov–Filonenko
spectrum:

F�1���� = 4�cp� P

g21/3 g2

�4 . �4.35�

This spectrum was found as a solution of the equation Snl

=0.3 For the spatial spectrum

Ikdk = 2��kN�k�kdk , �4.36�

the solution �4.30� transforms to

Ik
�1� = 2�cp� P

g21/3g1/2

k5/2 
 k−2.5. �4.37�

The spectra �4.29�, �4.35�, and �4.37� are realized if we have
a source of energy that is concentrated at small wave num-
bers and generates an amount of energy P per unit time. For
the spectrum �4.30�, first reported by Zakharov in 1966,3

Ik
�2� = 2�cqQ1/3k−7/3 
 2�cqQ1/3k2.33, �4.38�

and

F�2���� = 4�cqQ1/3 g4/3

�11/3 . �4.39�

The spectra �4.30� and �4.38� can be realized with a source of
wave action operating at high wave numbers.

The spectra described here exhaust all the possible
power-law isotropic solutions of the stationary kinetic equa-
tion Snl=0. It is important to stress that the thermodynamic
solutions N=const and N=c /k1/2 are not the solutions of this
equation, because their exponents x=0 and x=1 /2 lie far
below the lower end of the “window of possibility” x1

=5 /2. This means that thermodynamics has nothing in com-
mon with the theory of a wind-driven sea. The solutions
�4.29� and �4.30� are not unique stationary solutions of Snl

=0. The general isotropic solution describes a situation when
an energy source at small wave numbers and a wave action
source both exist simultaneously and have the following
form:

Nk
�3� = cp� P

g21/3 1

k4L�g1/2Qk1/2

P
 . �4.40�

Here L is an unknown function of one variable,

L → 1 at k → 0, L��� →
cq

cp
�1/3 at k → � . �4.41�

Note that if there is no flux of wave action from infinity,
we must set Q=0. Under this constraint, the general isotropic
solution is the Zakharov–Filonenko spectrum �4.29�, param-
etrized by a single arbitrary constant P, which is the flux of
energy to k→�.

Frequency spectra with tails in the form F���
�−4 have
been observed in numerous field experiments11–16 and ob-
tained in numerical simulations, as well.17–19 Spatial spectra
with asymptotes I 
k5/2 have also been observed in many
kticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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experiments.20–22 A more careful study of the experimental
results shows that in the majority of cases the spectral area
right behind the spectral peak can be better approximated by
a tail �−11/3 in frequency spectrum and by a tail k−7/3 in the
spatial spectrum. This shows up especially clearly in the ex-
periments by Huang et al.20 Figure 2, which is taken from
that article demonstrates the coexistence of both types of
Kolmogorov–Zakharov �KZ� spectra.

V. STATIONARY SOLUTIONS OF KINETIC EQUATION:
ANISOTROPIC CASE

In order to study the anisotropic solutions of Eq. �4.1�,
we introduce polar coordinates on the k-plane and set k2

=� /g. Thereafter we shall use notation

N��,��d�d� = N�k�dk ,

N��,�� =
2�3

g2 N�k� . �5.1�

In the spatially homogenous case, N�� ,�� obeys the equa-
tion

�N��,��
�t

= Snl��,�� . �5.2�

In the new variables:

Snl��,�� = 2�g2	 �T�,�1,�2,�3
�2��� + �1 − �2

− �3����2 cos � + �1
2 cos �1 − �2

2 cos �2

− �3
2 cos �3����2 sin � + �1

2 sin �1

− �2
2 sin �2 − �3

2 sin �2�

���3N��1,�1�N��2,�2�N��3,�3�

+ �1
3N��,��N��2,�2�N��3,�3�

− �2
2N��,��N��1,�1�N��3,�3�

− �3
2N��,��N��1,�1�N��2,�2��

k, rad/mk, rad/m
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FIG. 2. The dimensionless wave number spectral coefficient �i
20 plotted on

logarithmic axes �a� and semi-log axes �b�. Here the crosses represent the
omnidirectional �angle averaged� spectrum and the dots correspond to ��k�
=2�Iu*

g0.5k−2.5. The solid line in �a� and solid curve in �b� correspond to

��k�
k7/3.
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�d�1d�2d�3d�1d�2d�3. �5.3�

This very form of Snl was used in a numerical simulation
of the Hasselmann equation. Suppose that N�� ,��=�−z is an
isotropic spectrum. Then

Snl =
�−3z+13

4g4 F� z + 3

2
 =

G�z�
g4 �−3z+13, �5.4�

where F�x� is defined by Eq. �4.5�. Now the “window of
opportunity” is: 2�z�13 /2. The zeros of G�z� appear at
z1=5 and z2=14 /3 and near these zeros G�z� can be repre-
sented by the parabola,

G�z� 
 16.05�z − 5��z − 14/3� . �5.5�

To make the constants of motion more conspicuous, we in-
troduce the elliptic differential operator

Lf��,�� = � �2

��2 +
2

�2

�2

��2 f��,�� �5.6�

with the following parameters: 0����, 0���2�. The
equation

LG = ��� − ������ − ��� �5.7�

with the boundary conditions

�G��→0 = 0, G�→� � �, G�2�� = G�0� ,

can be resolved as

G��,��,� − ��� =
1

4�
���� �

n=−�

�

ein��−���

� �� �

��
�n

���� − ��

+ ���

�
�n

��� − ���� , �5.8�

where �n=1 /2�1+8n2. Now we represent Snl in the form

A��,�� = 	
0

�

d��	
0

2�

d��G��,��,� − ���Snl���,��� .

�5.9�

Notice that A�� ,�� is a regular integral operator and suppose
that N�� ,��=�−z. Then,

A��−z� =
�−3z+15

g4 H�z� ,

H�z� =
G�z�

9�z − 5��z − 14/3�
. �5.10�

H�z� is positive and has no zeros. If G�z� is represented by
the parabola �5.5�, H�z� is just a constant:

H�z� = H0 = 16.05/9 = 1.83. �5.11�

This fact leads to a bold idea. If we assume that

A =
H0

g4 �15N3, �5.12�

then the nonlinear term S turns into the elliptic operator:
nlticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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Snl =
H0

g4 � �2

��2 +
2

�2

�2

��2�15N3. �5.13�

This is the so-called “diffusion approximation.”23 Being very
simple, this approximation encompasses the basic features of
the theory of a wind-driven sea. We will refer mostly to this
model, keeping in mind that the real case, Eq. �5.9�, does not
differ much from it, at least qualitatively.

Let us integrate Eq. �5.2� over angles. This yields

�N��,t�
�t

=
�Q

��
. �5.14�

Here

B��,t� =
g

2�
	

0

2�

cos �N��,��d� , �5.15�

and the flux of the wave action is

Q =
�K

��
, K = 	

0

2�

A��,��d� . �5.16�

After multiplying Eq. �5.14� by � we obtain the equation

�F��,t�
�t

+
�P

��
= 0, �5.17�

where P=K−��K /�� is the energy flux.
Let us introduce now the following definitions: the

angle-integrated spectral density of the momentum,

Mx��,t� =
�2

g
	

0

2�

cos �B��,��d� , �5.18�

the quantity

Cx��,t� =
�

2g
	

0

2�

cos2 �N��,��d� , �5.19�

and the momentum flux

Rx = 	
0

2�

cos ���A −
�2

2

�A

��
d� . �5.20�

These quantities are all coupled by the equation

�Mx

�t
+

�Rx

��
= 0. �5.21�

Equations �5.14�, �5.17�, and �5.21� are the angle-averaged
balance equations for the basic conserved quantities. Now
we can return to the question formulated above. How many
solutions does the stationary kinetic equation �1.5� and �4.1�
have? Notice that we simplified it to the linear equation

� �2

��2 +
2

�2

�2

��2A = 0. �5.22�

In particular, the kinetic equation has anisotropic KZ solution

A =
1

2�
�P + �Q +

Rx

�
cos �� , �5.23�

where P and Rx are the fluxes of energy and momentum as
�→� and Q is the flux of wave action directed to small
wave numbers. In general, Eq. �5.23� is a nonlinear integral
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equation; however in the diffusion approximation the KZ
solution can be found explicitly as

N��,�� =
1

�2�H0�1/3
g4/3

�5 �P + �Q +
Rx

�
cos �1/3

.

�5.24�

By comparison with Eqs. �4.35� and �4.38� we easily find
that in this case

cp = cq =
1

2�2�H0�1/3 = 0.223, H0 = 1.83.

This is exactly the arithmetic mean of the Kolmogorov con-
stants given by Eq. �3.31�. Multiplying Eq. �5.24� by 2��
yields the general KZ spectrum in the diffusion approxima-
tion:

F��� = 2.78
g4/3

�4 �P + �Q +
Rx

�
cos �1/3

. �5.25�

We must make sure that in the isotropic case, Rx=0, the
expression

F��� = 2.78
g4/3

�4 �P + �Q�1/3 �5.26�

approximates the generic KZ spectrum to within a few per-
cent.

If we know the value of A�� ,�� on the circle �=�0, we
can solve the external and internal Dirichlet boundary prob-
lems for Eq. �5.22� with boundary condition A�� ,���� at
�→�. Suppose that

A��,�� = A0��� = A0 +
A1

�
cos �

+ �
n=2

�

An��0

�
−1/2+�1/4+4n2

cos n� . �5.27�

First two terms in �5.27� represent the KZ spectrum with Q
=0, P=2�An, Rx=2��0A1. The next terms describe the fast
stabilization of any arbitrary solution to the KZ spectrum as
� /�0→�. The first additional term in Eq. �5.27� decays as
��0 /��3.53cos 2�.

This stabilization to the KZ spectrum is actually the “an-
gular spreading” of wind-driven wave spectra that is usually
observed in field experiments �see, for instance, Ref. 12�. If
Q=0, the general KZ solution �5.25� at �→0 is the follow-
ing spectrum:

F��� →
2.78

�4 g4/3p1/3�1 +
1

3

Rx

P�
cos � + ¯  . �5.28�

Similar results were predicted by Kontorovich and Kats30

and Balk.31

From Eq. �5.27� one can see that A�� ,�� is parametrized
by a function of one variable, A0���. In the presence of a flux
of action Q from infinity, Eq. �5.27� should be supplemented
by an additional term Q�. Thus in the general case, the free-
dom in determining A involves a function that has one vari-
able and one constant. We implicitly assume that the map-
ping N→A is uniquely invertible. This has not been proved,
but is very plausible.
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VI. DAMPING DUE TO NONLINEAR INTERACTION

How should we compare Snl and Sin? In this section we
show that Snl is the leading term in the balance equation
�1.11�. In fact, the forcing terms Sin and Sdis are not known
well enough, so it is reasonable to accept the simplest models
of both terms assuming that they are proportional to the ac-
tion spectrum:

Sin = �in�k�N�k� , �6.1�

Sdis = − �dis�k�N�k� . �6.2�

Hence,

��k� = �in�k� − �dis�k� . �6.3�

In reality �dis�k� depends dramatically on the overall steep-
ness �. The balance kinetic equation �1.24� can be written in
the form

Snl + ��k�Nk = 0, �6.4�

and the Snl term can be represented as

Snl = Fk − �kNk. �6.5�

The definitions of �k and Fk are given by Eqs. �2.5� and
�2.6�. The solution of the stationary equation �6.4�is

Nk =
Fk

�k − �k
. �6.6�

A positive solution exists if �k
�k. The term �k can be
treated as the nonlinear damping owing to the four-wave
interaction. This damping has a very powerful effect. A “na-
ive” dimensional consideration gives

�k 

4�g2

�k
k10Nk

2, �6.7�

however, this estimate works only if k
kp, where kp is the
wave number of the spectral maximum.

Let k	kp. Now for �k one gets

�k = 2�g2	 �Tkk1,kk3
�2���k1

− �k3
�Nk1

Nk3
dk1dk2. �6.8�

The main source of �k is the interaction of long and short
waves. To estimate the integral �2.6� more accurately, we
assume that the spectrum of long waves is narrow in angle,

with N�k1 ,�1�= Ñ�k1����1�. Long waves propagate along the
x axis and k is the wave vector of short waves propagating in
direction �. For the coupling coefficient we must put set
Tkk1,k2,k3


2k1
2k cos �. Then

�k = 8�g3/2k2 cos2 �	
0

�

k1
13/2Ñ2�k1�dk1. �6.9�

Even for the most slowly decaying KZ spectrum, Nk


k−23/6, the integrand behaves as k1
−7/6 and the integral di-

verges. For steeper KZ spectra the divergence is stronger.
Let us estimate �k for the case of a “mature sea,” when

the spectrum can be taken in the form
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Nk 

3

2

E
�g

kp
3/2

k4 ��k − kp� . �6.10�

Here E is the total energy. By plugging Eq. �6.10� to Eq.
�6.9� one gets

�� = 36��� �

�p
3

�p
4 cos2 � , �6.11�

which includes a huge enhancement factor: 36�
113.04.
For a very modest steepness, �p
0.05, we get

�� 
 7.06 · 10−4�� �

�p
3

cos2 � . �6.12�

In the isotropic case, to find �k for � /�p	1 we need to take
a simple integral over angles that yields

	
0

2� 	
0

2�

T�1,�2

2 d�1d�2 =
5

2
�2��2,

so that, instead of Eq. �6.11�, we get

�k = 5�g3/2k2	
0

�

k1
13/2Ñ�k1�2dk1 �6.13�

or

�� =
45�

2
g3/2�� �

�p
3

�p
4. �6.14�

Finally, assuming that

Nkp



3

2

E
�gkp

5/2 ,

we get from Eq. �6.8� the following estimate for �p= ���k=kp:

�p 
 9��p�p
4. �6.15�

Even in this case we have a fairly high enhancement factor:
9�
28.26. In fact in all known models �k surpasses �̃k by at
least an order of magnitude, even for these very smooth
waves.

In the presence of peakedness

�p 
 ��p�p
4. �6.16�

Here �
4��p /�� is the enhancement factor owing to
peakedness. If ��p

2 �1, then �p is associated with maximal
growth of the modulational instability for monochromatic
waves: �p
�mod��p�p

2. If ��1 /�p
2, the nonlinearity be-

comes so strong that the weak-turbulent statistical approach
is no longer applicable. This is s quite realistic situation.
Suppose that �p
0.11 and �p /��
5. Then ��p

2 �0.76 and
the weak turbulence model is hardly correct. In the situation
of strong nonlinearity a wind-driven sea generates freak
waves �see Refs. 24 and 25�. The very fact of their existence
as a common phenomenon is an implicit proof that Snl domi-
nates the energy balance.

Note that �k diverges for KZ spectra. However, this does
endanger the existence of the spectra because in the full ki-
netic equation the divergence in �k is cancelled by the diver-
gence in Fk. Indeed, if we consider the contribution of small
wave-numbers to the integral �2.5�, we end up with
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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Fk = 2�g2Nk	 �Tkk1,kk3
�2���k1

− �k3
�Nk1

Nk3
dk1dk3


 Nk�k. �6.17�

When �k is neglected, Eq. �4.1� is satisfied automatically.
The results obtained in this section show that the four-

wave nonlinear interaction is a very strong effect. Strong
turbulence of near-surface air boundary layer makes the de-
velopment of a reliable theory of the air-water interaction,
including a well-justified analytical calculation of �k, an ex-
tremely difficult task. Field and laboratory measurements of
�k are difficult, and the scatter in the determination of �k is
on the order of �k, itself. In any case, comparison of the �k

calculated above with experimental data on �k shows that �k

surpasses �k by at least an order of magnitude. This fact is
illustrated in Fig. 3, where the experimental data are taken
from Ref. 26.

As a result, we can conclude that Snl is the leading term
in the balance equation �1.11� and that the spectrum is de-
scribed by solving Eq. �4.1�, which has a rich family of so-
lutions. In particular, this equation describes angular spread-
ing.

In Fig. 4 we illustrate the fact that, for the nonlinear
interaction term Snl=Fk−�kNk, the magnitudes of the con-
stituents, Fk and �kNk, essentially exceed their difference.
Each is an order greater than Snl!

The dominance of Snl has not been apparent until now
for two reasons. First, it is not correct to compare Snl and Sin;
instead one should compare �k and �k. Second, the widely
accepted models for Sdis essentially overestimate the dissipa-
tion due to white capping. As a result, the dominance of S is
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FIG. 3. Comparison of experimental data for the wind-induced growth rate
2��in��� /� taken from Ref. 26 and the damping due to four-wave interac-
tions 2����� /�, calculated for a narrow-angle spectrum with �
0.05 us-
ing Eq. �6.11� �dashed line�.
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masked. We offer an alternative model for Sdis which will be
published in a forthcoming article.27 Preliminary results ob-
tained in this direction were reported on ICNAAM-2009,
Crete, Rethimno, September 2009.28

The author thanks Vladimir Geogjaev and Sergei Badu-
lin for permission to include the numerical results presented
in Figs. 1 and 4 of this talk. Details of these simulations will
be published soon.

a�Email: zakharov@math.arizona.edu
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