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Abstract
In this paper, we offer the answers to certain questions extremely important for the
development of a self-consistent analytical theory for the wind-driven sea. (i) We discuss the
separation into ‘resonant’ and ‘slave’ harmonics in an ensemble of weakly nonlinear gravity
waves on the surface of deep water, and we construct an explicit form of the generation
function for canonical transformation that eliminates the slave harmonics. (ii) When two
waves compiling a quadruple are short in comparison with two others, we find an asymptotic
form for the four-wave coupling coefficient. This result makes it possible to reduce the
Hasselmann equation to the nonlinear diffusion equation, whose solution describes the
well-known effect of angular spreading of wave spectra on its rear face. (iii) Studying the
isotropic Kolmogorov–Zakharov solution of the Hasselmann equation, we find numerically
the values of Kolmogorov constants. (iv) We calculate the nonlinear damping of surface waves
appearing due to four-wave interaction and compare the damping with the growth rate of the
instability of the wave surface induced by the wind. It is found that for all known models of
wind input, the nonlinear damping surpasses the instability at least in order of magnitude. This
result, supported by numerical simulation of the Hasselmann equation, leads to the
conclusion: in a real sea, except for the case of very young waves, four-wave interaction is the
dominant process. This statement opens the way for the development of a well-justified
analytical theory for the wind-driven sea.

PACS numbers: 92.10.Hm, 47.35.Bb

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

In our opinion, some important theoretical aspects of the
physics of the wind-driven sea have not been clarified enough
and need to be elucidated. The clarification is necessary for
providing an adequate comparison of theory and experiment;
without the clarification, the costly and laborious field and
laboratory measurements cannot be properly interpreted and
understood.

The first question is about the correct definition of wave
action Nk(t), which obeys the Hasselmann kinetic equation

dN

dt
= Snl + Sin + Sdis, (1.1)

augmented by the source and the dissipation terms. How to
find the current action spectrum Nk(t) from experimental
data? What is measured in the best experiments is the

space–time spectrum

Qkω = 〈|ηkω|
2
〉. (1.2)

Here ηkω is the Fourier transform of the surface elevation.
The most advanced definition of wave action, used in many
research papers (see, for example, [1, 2]), is the following:

Nk =
2

ωk

∫
∞

0
Qkω dω. (1.3)

Equation (1.3) is certainly correct for waves of very small
amplitude in the limit µ → 0, where µ is the characteristic
average steepness of the surface. At a finite steepness, it can
be treated as the first term in the expansion

Nk = N0(k) + µ2 N1(k) + · · · . (1.4)
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Now N0(k) is given by equation (1.3), whereas N1(k) is to
be determined. One may assume that this question is not very
important because even for the steepest young waves, µ2

'

0.01, and the accuracy of equation (1.3) is good. However, our
preliminary estimates show that the ratio N1(k)/N0(k) is a fast
growing function of k; thus for spectral tails, the difference
between Nk and N0(k) might be essential.

Now we formulate the inverse problem. Suppose we
know Nk . How to find Qkω?

In the linear approximation, at µ → 0, the answer is
known:

Qkω =
ωk

2
(Nk δ(ω − ωk) + N−k δ(ω + ω−k)) . (1.5)

What happens if µ is finite? In the neighborhood of ω = ωk ,
we should perform the replacement

δ(ω − ωk) →
1

π

0k

(ω − ω̃k)2 + 02
k

, (1.6)

where ω̃k = ωk + µ2ω1k + · · · is the renormalized frequency
and 0k ' µ4 0̃k + · · · is the effective dissipation due to
four-wave processes. As long as µ2 is small, one may
assume that both the shifting of ωk and the blurring of
δ-function are weak effects. However, the quotients ω1k/ωk

and 0̃k/ωk are growing functions of k; thus for k � kp

(kp is the wave number of a spectral peak), derivation from the
simple equation (1.5) could be essential. There is one more
important effect. In a real sea, all waves can be separated
into two classes: ‘resonant waves’ with ω ∼ ωk and ‘slave
harmonics’ caused by quadratic nonlinearity of primitive
dynamic equations. The slave waves do not obey dispersion
relations; as a result, their frequency spectrum for the given k
is a broad function, not concentrated at ω ' ωk .

Accurate determination of N1(k) at given Qkω and Qkω

at given N (k) is possible but is technically a cumbersome
problem. In sections 2 and 3 we are taking the first but
important steps to obtain their solution. In section 4 we study
the axial asymmetric solutions of the equation

Snl = 0, (1.7)

which has been known since 1966 ([3]; see also [4, 5]). This
equation has exactly two powerlike solutions:

N1(k) = cp

(
P

g2

)1/3 1

k4
, (1.8)

N2(k) = cq

(
Q

g3/2

)1/2 1

k23/6
. (1.9)

Equation (1.8) is known as the Zakharov–Filonenko
spectrum [4]. Here P is the flux of energy from small wave
numbers and Q is the flux of wave action from high wave
numbers. The Kolmogorov constants cp and cq were not
known, but have now been calculated:

cp = 0.219, cq = 0.227. (1.10)

General isotropic solutions of equation (1.7) depend
on two constants P and Q. In section 5, we discuss the
general anisotropic solution of this equation. We show that the

solution is defined by an arbitrary constant, the flux of wave
action from high wave numbers, and an arbitrary function of
angle. In the axially symmetric case this function degenerates
to the constant P . The general anisotropic solution of equation
(1.7) describes the angular spreading of a spectrum growing
with frequency. Section 6 is most important from the practical
viewpoint. We discuss the balance equation in the universal
domain ω � ωp,

Snl + Sin + Sdis = 0. (1.11)

Apparently, in some domain on the k-plane, Sin + Sdis > 0.
Suppose that Sin = γ (k) Nk . We note that Snl can be presented
in the form

Snl = Fk − 0k Nk, (1.12)

and the nonlinear wave interaction process is predominant if
0k � γk . We show that this condition is satisfied in a majority
of realistic cases if the waves are not very young. This means
that, as we claimed before, nonlinear wave interaction is the
dominant process in the wind-driven sea.

2. What is wave action?

Consider the widely used Hasselmann equation:

∂ N

∂t
+

∂ω̃

∂Ek

∂ N

∂Er
= Snl , (2.1)

Snl = πg2
∫

|Tkk1,k2k3 |
2 δ(k + k1 − k2 − k3)

× δ(ωk + ωk1 − ωk2 − ωk3)

× (Nk1 Nk2 Nk3 + Nk Nk2 Nk3

− Nk Nk1 Nk2 − Nk Nk1 Nk3) dk1 dk2 dk3. (2.2)

Here ωk =
√

g k tanh k H , H is the depth, Tkk1k2k3 = Tk1kk2k3 =

Tk2k3kk1 = Tkk1k3k2 are the coupling coefficients, and

ω̃(k) = ω(k) + 2g
∫

Tkk1,kk1 Nk1 dk1 (2.3)

is the renormalized frequency.
As mentioned earlier, the nonlinear interaction term Snl

can be presented in the form

Snl = Fk − 0k Nk, (2.4)

where

Fk = πg2
∫

|Tkk1k2k3 |
2 δ(k + k1 − k2 − k3)

× δ(ωk + ωk1 − ωk2 − ωk3)Nk1 Nk2 Nk3 dk1 dk2 dk3. (2.5)

and 0k , the dissipation rate due to the presence of four-wave
processes, is the following:

0k = πg2
∫

|Tkk1,k2k3 |
2 δ(k + k1 − k2 − k3)

× δ(ωk + ωk1 − ωk2 − ωk3)

× (Nk1 Nk2 + Nk1 Nk3 − Nk2 Nk3) dk1 dk2 dk3. (2.6)
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One can say that in a real nonlinear sea, the dispersion relation
ω = ωk is renormalized and becomes a complex function

ωk → ω̃k + 1
2 i0k . (2.7)

Equations (2.1) and (2.2) are written for the wave action
spectrum Nk(Er , t). What is the exact definition for the wave
action? How can Nk(Er , t) be expressed using the observable
measurable quantities? These are not very simple questions.

Taking a snapshot of the surface from two points, one can
get its stereoscopic image and restore the shape of elevation
η(Er). If we perform nonsymmetric Fourier transform and
define

ηk =
1

(2π)2

∫
η(Er) e−ikr dEr , (2.8)

we can introduce the spatial spectrum

Qk = 〈|ηk |
2
〉. (2.9)

Taking a series of snapshots at consecutive moments of time,
one can restore the full space–time spectrum

Qkω = 〈|ηkω|
2
〉. (2.10)

Apparently,

Qk =

∫
∞

−∞

Qkω dω. (2.11)

What is wave action Nk? In some papers and monographs, we
can find the following definition:

Nk =
Qk

ωk
. (2.12)

This is just carelessness. Spectrum Qk is an even function,
Q−k = Qk , while Nk certainly does not obey this restriction.
One can present the spatial spectrum in the form

Qk =
ωk

2
(nk + n−k), (2.13)

where nk is the wave action. We have deliberately denoted it
by a lower case letter, because nk and Nk are different wave
actions.

The wave field consists of ‘resonant’ and ‘slave’
harmonics. The resonant harmonic with wave vector Ek has
a frequency close to the renormalized frequency ω̃k . The
strongest slave harmonics appear as a result of the interaction
of two resonant harmonics. Suppose that they have wave
vectors Ek1, Ek2. In the first order of nonlinearity, they generate
four slave harmonics with wave vectors Ep1, Ep2, −Ep1, −Ep2

and frequencies �1, �2, −�1, −�2. Here Ep1 = Ek1 − Ek2, Ep2 =

Ek1 + Ek2, and �1 = ω1 − ω2, �2 = ω1 + ω2. There is no definite
relationship between the wave vector and frequency for slave
harmonics.

Returning to the wave action, let us now explain the
difference between nk and Nk . Nk is the ‘refined’ wave
action that includes resonant harmonics and slave harmonics
of higher order only, and nk is the ‘total’ wave action
that includes both the resonant and the slave harmonics.
Apparently, nk > Nk and is directly connected with the
experimentally measurable spatial spectrum by equation
(2.13). But nk does not obey the Hasselmann equation. On the
contrary, the ‘purified’ wave action Nk in principle cannot be

measured in any kind of experiment. But exactly this sort of
wave action satisfies the Hasselmann equation. As a result, all
operational models solve the Hasselmann equation augmented
with additional terms: Sin, the input from the wind, and Sdis,
the dissipation due to wave breaking. Hence, the operational
models do predict Nk . At the same time, experimentalists can
measure nk only.

At first glance, we see a serious discrepancy; however,
nobody pays any attention to it. Why does this happen?

To give an answer, we should estimate the relative
difference between nk and Nk . Let us denote

α(k) =
nk − Nk

nk
. (2.14)

In a typical observed spectrum of the wind-driven sea, we
should separate the spectral area near the peak frequency
ω ∼ ωp and the tail ω � ωp. In the energy capacitive spectral
band close to ωp, α is small:

α ∼ µ2.

The characteristic steepness µ is defined as

µ2
'

ω4
p

g2
σ 2,

where σ is the total energy of waves. Even for young waves,
µ2 6 0.01; thus the relative difference between n and N for
deep water is not more than 1% and can easily be neglected.
However, α(k) is a fast growing function of k. An accurate
estimate of the dependence of α on frequency at ω > ωp is
not the subject of this paper. An article on this topic will
be submitted for publication soon; however, our preliminary
results show that this dependence is fast growing:

α ' µ2

(
ω

ωp

)3

. (2.15)

As mentioned above, in the area ω ∼ ωp one can neglect
the difference between nk and Nk . In this area, we can replace
equation (2.9) by

Qk =
ωk

2
(Nk + N−k). (2.16)

There is an essential difference between equations (2.13)
and (2.16). Because nk > 0 for any k, wave vectors of slave
harmonics cover all of the k-plane; thus the determination of
nk from Qk is impossible in principle. In contrast, in many
practical cases, Nk is nonzero only inside the bounded domain
G on the k-plane. At the same time, N−k 6= 0 inside the
domain G̃ only, which is radially symmetric to G. In other
words, if the vector Ek belongs to G, the vector −Ek belongs to
G̃. Suppose that G and G̃ have no intersection. In this case,
in the domain G we have Nk = 2Qk/ωk . Despite the presence
of factor 2 in (2.13), the integral identity

∫
Qk dk =

∫
ωk Nk dk

remains the same as if we had used the naive and blatantly
incorrect equation (2.12).

In some important cases, domains G and G̃ have
intersection. In this case, we face an ambiguity in the
determination of Nk from equation (2.16). To overcome this

3
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ambiguity, one should use the space–time spectrum Qk,ω and
define

nk =
2

ωk

∫
∞

0
Q(k, ω) dω. (2.17)

An equivalent formula is presented in the monograph by
Monin and Krasitsky [1] published in Russia in 1985. It was
also used by Rosental et al [2] at approximately the same time.
In this case again∫

ωk nk dk =

∫
∞

−∞

Q(k, ω) dω dk. (2.18)

Let us note that equations (2.13) and (2.17) account for slave
harmonics and can be used in the comparison of spectral
tails obtained from the experiment and those obtained from
the solution of the Hasselmann equation, both numerical and
analytical, with caution. They work out to an accuracy of µ2 in
the neighborhood of the spectral peak, but can lead to essential
errors in the area of spectral tails. A preliminary estimation
for the accuracy of expression (2.17) will be made in the next
section.

3. How to separate resonant and slave harmonics?

To perform an accurate separation into resonant and slave
harmonics and find an explicit formula that connects
Q(k, ω) and Nk , one should use Hamiltonian formalism
and implement the canonical transformation, excluding cubic
terms in the Hamiltonian. This is a cumbersome mathematical
procedure. In this section, we will demonstrate how it could
be done in the most economical way.

We study the weakly nonlinear waves on the surface of
an ideal fluid of infinite depth in an infinite basin. The vertical
coordinate is

− H < z < η(r, t), r = (x, y), (3.1)

the fluid is incompressible, H is the depth of the fluid,

div V = 0 (3.2)

and velocity V is a potential field

V = ∇8, (3.3)

where potential 8 satisfies the Laplace equation

18 = 0 (3.4)

under the boundary conditions

8|z=η = 9(r, t), 8z|z=−∞ = 0. (3.5)

The total energy of the fluid, H = T + U , has the following
terms:

T =
1

2

∫
dEr
∫ η

−∞

(∇8)2 dz =
1

2

∫
9 8n dS, (3.6)

U =
1

2
g
∫

η2 dEr . (3.7)

The Dirichlet–Neumann boundary problem (3.4) and
(3.5) is uniquely resolved; thus the flow is defined by fixing η

and 9. This pair of variables is canonical; thus the evolution
equations for η and 9 take the form [6]

∂η

∂t
=

δH

δ9
,

∂9

∂t
= −

δH

δη
. (3.8)

After non-symmetric Fourier transform,

9(r) =

∫
9(k) eikr dk, 9(k) =

1

(2π)2

∫
9(r) e−ikr dr,

(3.9)
equation (3.8) reads

∂η

∂t
=

δ H̃

δ9∗

k

,
∂9

∂t
= −

δ H̃

δη∗

k

, (3.10)

H̃ =
1

4π2
H = H0 + H1 + H2 + · · · . (3.11)

In [7–9], it was shown that the Hamiltonian H̃ can be
expanded in Taylor series in powers of kηk :

H0 =
1

2

∫ {
Ak |9k |

2 + g |ηk |
2
}

dk, Ak = k tan k H,

H1 =
1

2

∫
L(1)(k1, k2)9k19k2ηk3 δ( Ek1 + Ek2 + Ek3) dk1 dk2 dk3,

H2 =
1

2

∫
L(2)(k1, k2, k3, k4)9k19k2ηk3ηk4

× δ(k1 + k2 + k3 + k4) dk1 dk2 ηk3ηk4 . (3.12)

Here

L(1)(k1, k2) = − (k1, k2) − Ak1 Ak2

L(2)(k1, k2, k3, k4) =
1
2 (k2

1 A2 + k2
2 A1) + 1

4 A1 A2(A1+3 + A2+4

+ A1+4 + A2+3). (3.13)

Now we can introduce normal variables ak :

ηk =
1

√
2

(
Ak

g

)1/4

(ak + a∗

−k),

(3.14)

9k =
i

√
2

(
g

Ak

)1/4

(ak − a∗

−k).

Normal variables obey the following Hamiltonian equations:

∂ak

∂t
+ i

δH

δa∗

k

= 0. (3.15)

All terms in the expansion of Hamiltonian (3.11) must be
expressed in terms of ak :

H0 =

∫
ωk |ak |

2 dk,

(3.16)

H1 =
1

2

∫
V (1,2)

kkak2
(aka∗

k1
a∗

k2
+ a∗

k ak1 ak2)

× δ(k − k1 − k2) dk dk1 dk2

+
1

6

∫
V (0,3)

kkak2
(akak1 ak2 + a∗

k a∗

k1
a∗

k2
)

× δ(k + k1 + k2) dk dk1 dk2.

4
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V (1,2)
kk1k2

=
g1/4

2
√

2

{(
Ak

Ak1 Ak2

)1/4

L(1)(k1, k2) −

(
Ak1

Ak Ak2

)1/4

×L(1)(−k, k1) −

(
Ak2

Ak Ak1

)1/4

L(1)(−k, k2)

}
,

(3.17)

V (0,3)
kk1k2

=
g1/4

2
√

2

{(
Ak

Ak1 Ak2

)1/4

L(1)(k1, k2) +

(
Ak1

Ak Ak2

)1/4

×L(1)(k, k1) +

(
Ak2

Ak Ak1

)1/4

L(1)(k, k2)

}
. (3.18)

Now we can define the ‘total’ or rough action:

nk δ(k − k ′) = g〈ak a∗

k ′〉. (3.19)

It is clear that the fundamental relation (2.13) is satisfied.
Then, we perform the Fourier transform in time

akω =
1

2π

∫
a(k, t)e−iωt dt (3.20)

and introduce

nkω δ(k − k ′) δ(ω − ω′) = g〈akω a∗

k ′,ω′〉. (3.21)

The space–time spectrum of elevation is simply

Qk,ω =
ωk

2
(nk,ω + n−k,−ω). (3.22)

To separate resonant and slave harmonics, we must perform
a canonical transformation to new variables, excluding cubic
terms in the Hamiltonian. This is a standard procedure
known in celestial dynamics down to the nineteenth century.
However, in our case, this procedure is rather cumbersome.
It was first performed by Krasitski [9]. He found that initial
canonical variables ak transform to new canonical variables
bk , which contain first-order slave harmonics only. Variables
ak are presented by an infinite series as new variables bk :

ak = bk + a(1)
k + a(2)

k + a(3)
k . (3.23)

He calculated the first two terms in this expansion and found
the following expressions:

a(1)
k =

∫
0(1)(Ek, Ek1, Ek2) bk1 bk2 δ(Ek − Ek1 − Ek2) dk1 dk2

− 2
∫

0(1)(Ek2, Ek, Ek1) b∗

k1
bk2 δ(Ek + Ek1 − Ek2) dk1 dk2

+
∫

0(2)(Ek, Ek1, Ek2) b∗

k1
b∗

k2
δ(Ek + Ek1 + Ek2) dk1 dk2,

a(2)
k =

∫
B(Ek, Ek1, Ek2, Ek3) b∗

k1
bk2 bk3

× δ(Ek + Ek1 − Ek2 − Ek3) dk1 dk2 dk3 + · · · , (3.24)

where

0(1)(Ek, Ek1, Ek2) = −
1

2

V (1,2)(Ek, Ek1, Ek2)

(ωk − ωk1 − ωk2)
,

0(2)(Ek, Ek1, Ek2) = −
1

2

V (0,3)(Ek, Ek1, Ek2)

(ωk + ωk1 + ωk2)
,

(3.25)

and

B(Ek, Ek1, Ek2, Ek3) = 0(1)(Ek1, Ek2, Ek1 − Ek2) 0(1)(Ek3, Ek, Ek3 − Ek)

+ 0(1)(Ek1, Ek3, Ek1 − Ek3) 0(1)(Ek2, Ek, Ek2 − Ek)

− 0(1)(Ek, Ek2, Ek − Ek2) 0(1)(Ek3, Ek1, Ek3 − Ek1)

− 0(1)(Ek1, Ek3, Ek1 − Ek3) 0(1)(Ek2, Ek1, Ek2 − Ek1)

− 0(1)(Ek + Ek1, Ek, Ek1) 0(1)(Ek2 + Ek3, Ek2, Ek3)

+ 0(2)(−Ek − Ek1, Ek, Ek1) 0(2)(−Ek2 − Ek3, Ek2, Ek3). (3.26)

In our opinion, Krasitski used a rather long method for the
calculation of terms in expansion (3.23). He directly checked
the validity of the canonicity condition

{ak, ak ′} =

∫ {
δak

δbk ′′

δak ′

δb∗

k ′′

−
δak

δb∗

k ′′

δak ′

δbk ′′

}
dk ′′

= 0,

{ak, a∗

k ′} =

∫ {
δak

δbk ′′

δa∗

k ′

δb∗

k ′′

−
δak

δb∗

k ′′

δa∗

k ′

δbk ′′

}
dk ′′

= δ(k − k ′).

(3.27)

Calculation of a(3)
k by this method is just an impossibly

complicated task. The canonical transformation can be found
using more sophisticated methods; the first one was offered
in [7] in 1998. Let us consider that ak is a solution of the
Hamiltonian system

∂ak

∂τ
+ i

δR

δa∗

k

= 0, (3.28)

where τ is ‘artificial time’ and R is an efficient Hamiltonian:

R = i
∫

0
(1)
kk2k2

(a∗

k ak1 ak2 − aka∗

k1
a∗

k2
)

× δ(k − k1 − k2) dk dk1 dk2

+
i

3

∫
0

(2)
kk1k2

(a∗

k a∗

k1
a∗

k2
− akak1 ak2)

× δ(k + k1 + k2) dk dk1 dk2. (3.29)

Equations (3.28) and (3.29) must be augmented with the initial
condition

ak |τ=0 = bk . (3.30)

The needed canonical transformation will be obtained if we
put τ = 1. Expanding the solution in Taylor series of τ and
putting τ = 1 at the end, we reproduce the result of Krasitski
(3.24)–(3.26) in a much more economical way.

Now we demonstrate another, more traditional method
for constructing canonical transformation, which is based on
finding the generating function. We present ak in the form

ak =
1

√
2
(qk + ipk), q−k = q∗

k , p−k = p∗

k .

The functions qk , pk obey the equations

∂qk

∂t
=

δH

δp∗

k

,
∂pk

∂t
= −

δH

δq∗

k

, (3.31)

5
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where H is the same Hamiltonian expressed through qk , pk .
Now

H0 =
1

2

∫
ωk(|qk |

2 + |pk |
2) dk, (3.32)

H1 =
1

2

∫
Lkk1k2 qk pk1 pk2 δ(k + k1 + k2) dk dk1 dk2, (3.33)

Lkk1k2 =
g1/4 A1/4

k

A1/4
k1

A1/2
k2

L(1)
k1k2

. (3.34)

We will perform transformation to new variables Rk , ξk using
the following generation function (see also [10]):

S =

∫
Rk qk dk +

1

2

∫
Akk1k2 qk qk1 Rk2

× δ(k + k1 + k2) dk dk1 dk2

+
1

3

∫
Bkk1k2 Rk Rk1 Rk2 δ(k + k1 + k2) dk dk1 dk2.

(3.35)

The ‘old momentum’ pk and the ‘new coordinates’ ξk are
expressed as follows:

pk =
δS

δq−k
= Rk +

∫
A−k,k1,k2 qk1 Rk2 δ(k − k1 − k2) dk1 dk2,

(3.36)

ξk =
δS

δR−k
= qk +

1

2

∫
Ak1,k2,−k qk1 qk2 δ(k − k1 − k∗

2) dk1 dk2

+
∫

B−k,k1,k2 Rk1 Rk2 δ(k − k1 − k − 2) dk1 dk2. (3.37)

Apparently Bkk1k2 is symmetric with respect to all
permutations and Akk1k2 = Akk2k1 . To find A, B, we note that
in the first approximation

qk = ξk −
1

2

∫
Ak1,k2,−k ξk1 ξk2 δ(k − k1 − k2) dk1 dk2

−

∫
B−k,k1,k2 Rk1 Rk2 δ(k − k1 − k2) dk1 dk2

(3.38)

and in equation (3.36) we can replace qk → ξk . Now we
plug qk , pk into equaton (3.32). In equation (3.33), we can
just replace qk → ξk and pk → Rk . From the condition for
eliminating cubic terms that are proportional to ξkξk1ξk2 and
ξk pk1 pk2 , and the symmetry conditions, we find, after some
calculations, the following nice and elegant expressions for
A, B:

Akk1k2 = −
1

4

(
L0 + L1 + L2

ω0 + ω1 + ω2
+

L0 + L1 − L2

ω0 + ω1 − ω2

)

+
1

4

(
L0 − L1 − L2

ω0 − ω1 − ω2
+

L1 − L0 − L2

ω1 − ω0 − ω2

)
, (3.39)

Bkk1k2 = −
1

4

(
L0 + L1 + L2

ω0 + ω1 + ω2
+

L0 − L1 − L2

ω0 − ω1 − ω2

)

−
1

4

(
L1 − L0 − L2

ω1 − ω0 − ω2
+

L2 − L0 − L1

ω2 − ω0 − ω1

)
. (3.40)

Here

L0 = Lkk1k2 , L1 = Lk1kk2 , L2 = Lk2kk1 ,

ω0 = ωk, ω1 = ωk1 , ω2 = ωk2 .
(3.41)

To reproduce the results of Krasitski one has to expand old
variables qk , pk in powers of new variables ξk , Rk , and then
bk will be as follows:

bk =
1

√
2

((
g

Ak

)1/4

ξk − i

(
Ak

g

)1/4

Rk

)
. (3.42)

New normal variables bk satisfy Zakharov’s equation [6]

∂bk

∂t
+ iωk bk+

i

2

∫
Tkk1k2k3 b∗

k1
bk2 bk3 δk+k1−k2−k3 dk1 dk2 dk3= 0.

(3.43)

Here Tkk1k2k3 is the same as in equation (2.2). An explicit
expression for Tkk1k2k3 is too complicated to be presented
here. Note that now we can calculate nk = |ak |

2 by the use
of expansion (3.23). We will assume that triple correlations of
new variables are zero

〈bkbk1 bk2〉 = 0, 〈b∗

k bk1 bk2〉 = 0. (3.44)

We also use the Gaussian closure for quartic variables

〈b∗

k b∗

k1
bk2 bk3〉 = Nk Nk1(δk−k2 δk1−k3 + δk−k3 δk1−k2). (3.45)

Here Nk is the ‘refined’ action. After some calculations, we
find that nk and Nk are connected by the following relation (it
can be found in [8]):

nk = Nk +
1

2

∫
|V (1,2)(Ek, Ek1, Ek2)|

2

(ωk − ωk1 − ωk2)
2

× (Nk1 Nk2 − Nk Nk1 − Nk Nk2) δ(Ek − Ek1 − Ek2) dk1 dk2

+
1

2

∫
|V (1,2)(Ek, Ek1, Ek2)|

2

(ωk1 − ωk − ωk2)
2

× (Nk1 Nk2 + Nk Nk1 − Nk Nk2) δ(Ek1 − Ek − Ek2) dk1 dk2

+
1

2

∫
|V (1,2)(Ek2, Ek, Ek1)|

2

(ωk2 − ωk − ωk1)
2

× (Nk1 Nk2 + Nk Nk2 − Nk Nk1) δ(Ek2 − Ek − Ek1) dk1 dk2

+
1

2

∫
|V (0,3)(Ek, Ek1, Ek2)|

2

(ωk + ωk1 + ωk2)
2

× (Nk1 Nk2 + Nk Nk1 + Nk Nk2) δ(Ek + Ek1 + Ek2) dk1 dk2.

(3.46)

The difference between nk and Nk ,

1k =
nk − Nk

Nk
,

is essential on the surface of shallow water. However, even on
the surface of deep water 1k is a fast growing function of k.

The relationship between space–time spectra of the ‘total’
nkω and ‘purified’ Nkω versions of wave action is not known

6
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so far. This is a subject for future research. However, Nkω can
be presented in the form

Nkω =
1

π

0k Nk

(ω − ω̃k)2 + 02
k

(3.47)

and we can put approximately

Qkω =
1

2
ωk(Nkω + N−k,−ω)

=
1

2π

{
0k Nk

(ω − ω̃k)2 + 02
k

+
0−k N−k

(ω − ω̃k)2 + 02
k

}
. (3.48)

After integration by ω and assuming that arctan 0k/ωk ∼

0k/ωk , one gets the following relationship:

Nk =

∫
∞

0
N (k, ω) dω +

1

π

(
Nk 0k

ωk
−

N−k 0−k

ω−k

)
. (3.49)

From (3.48), we see that the identity

Nk =

∫
∞

0
N (k, ω) dω (3.50)

is valid up to a relative accuracy 0k/ωk . The value of this
accuracy will be discussed in section 6. Near the spectral peak
it is of the order of 4πµ4. Identity (2.17) is satisfied with much
less accuracy. Even near the spectral peak, the accuracy is of
the order of µ2 and becomes worse at k � kp. An explicit
expression for Q(k, ω) through Nk will be the subject of a
separate forthcoming paper.

4. Stationary solutions: the isotropic case

In this section, we address the following question: How to
solve the stationery kinetic equation

Snl ≡ 0 ? (4.1)

Formally speaking, this equation has thermodynamically
equilibrium solutions

Nk =
T

ωk + µ
, (4.2)

where temperature T and µ are constants. It might sound like
a paradox, but in fact spectrum (4.2) is not a real solution of
equation (4.1). From this moment we discuss only the case
of deep water and consider ω =

√
gk. Also we denote that

k = |Ek|.
To justify this statement, we note that in two particular

cases, µ = 0 and T = cµ, µ → ∞, solution (4.2) takes the
form

N =
T

ωk
=

T
√

g
k−1/2,

N = c. (4.3)

Both these solutions are isotropic powerlike functions

Nk = k−x (4.4)

with particular values x = 1/2 and 0. Let us study the general
powerlike solution of equation (4.1). By plugging equation
(4.4) into equation (4.1) we find that each particular term
in Snl is diverging, but in different terms the divergence can

be cancelled; thus there is a ‘window of opportunity’ for the
exponent x . As a result,

Snl = g3/2 k−3x+19/2 F(x). (4.5)

Here F(x) is a dimensionless function, defined inside the
interval x1 < x < x2. The edges of the window, x1 and x2,
are to be determined. Outside the ‘window of opportunity’,
at x < x1 and x > x2, F(x) = ∞. Thus all admitted values of
x must be posed between x1 and x2.

Let the quadruplet of waves be formed of wave vectors
satisfying resonant conditions

Ek1 + Ek2 = Ek3 + Ek4,

ωk1 + ωk2 = ωk3 + ωk4 .
(4.6)

Suppose that |k1| � |k|. The three-wave resonant condition,

Ek = Ek2 + Ek3, ωk = ωk2 + ωk3 , (4.7)

cannot be satisfied; thus one of the vectors Ek2, Ek3 must be
small. If |k3| � |k2|, then

Ek2 = Ek + Ek1 − Ek3,
(4.8)

ω(k2) =
√

gk

(
1 +

1

2

(k, Ek1 − Ek3)

k2
+ · · ·

)
.

In the first approximation by a small parameter |k1|/|k|, one
can put ω(k2) = ω(k), ω(k1) = ω(k3) and |k3| ' |k1|. In other
words, vectors Ek1, Ek3 are small and have approximately the
same length k1. If vector k is directed along the axis x ,
the coupling coefficient Tkk1k2k3 depends on four parameters
k, k1, θ1, θ3. Here θ1, θ3 are angles between Ek1, Ek3 and Ek.
Recalling that k1 � k, we calculate the coupling coefficient
in this asymptotic domain. A tedious calculation presented
in [11] leads to the following compact result:

Tkk1k2k3 '
1
2 k k2

1 Tθ1,θ3 ,

Tθ1,θ2 = 2(cos θ1 + cos θ3) − sin(θ1 − θ3)(sin θ1 − sin θ3).

(4.9)

On the diagonal k3 = k1, θ3 = θ1, we get the following very
simple expression, published in 2003 in [29]:

Tkk1 ' 2k2
1k cos θ1. (4.10)

Suppose that the spectrum is separated into the low-frequency
component N0(k) and the high-frequency component N1(k).
We assume that N1 � N0 and take into account the interaction
between N0 and N1 only. One can see that N1 satisfies the
linear diffusion equation

∂

∂t
N1 =

∂

∂ki
Di j k2 ∂

∂k j
N1, (4.11)

where Di j is the tensor of diffusion coefficients,

Di j = 2πg3/2
∫

∞

0
dq q17/2

∫ 2π

0
dθ1

×

∫ 2π

0
dθ3|T (θ1, θ3)|

2 pi p j N (θ, q)N (θ3, q), (4.12)

p1 = cos θ1 − cos θ3, p2 = sin θ1 − sin θ3.
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If the spectrum is isotropic and does not depend on angle θ ,
we get the further simplification:

Di j = D δi j , D =
5

8
π3 g3/2

∫
∞

0
q17/2 N 2(q) dq. (4.13)

The diffusion coefficient D diverges at k → 0 if x > 19/4.
Thus, x2 = 19/4.

Let us find the behavior of the function F(x) near x = x2.
In the isotopic case, equation (3.9) reads as

∂ N1

∂t
=

D

k

∂

∂k
k3 ∂

∂k
N1. (4.14)

If k → 19/4, we get the following estimate:

F(x) =
19

4
·

11

4
·

5π3

16

1

19/4 − x
'

126.4

19/4 − x
. (4.15)

To find x1, the lower end of the window, we should study
the influence of short waves on the long ones. Let us suppose
that |k1|, |k2| � k. In the first approximation, |k3| = |k|, and
the resonant interaction Snl can be separated into two groups
of terms: Snl = S(1)

nl + S(2)
nl . For S(1)

nl the integrand includes
the product Nk1 Nk2 . If we put k1 = k2, we get the following
expression for the low-frequency tail of the spectrum:

S(1)
nl = 2πg2

∫
|Tkk1,k1,k3 |

2 δ(ω − ωk3) (Nk3 − Nk) N 2
k1

dk1.

(4.16)

Note that if |k1| � |k|, then |Tkk1,k1,k3 |
2
' k2

1 , and the
integrand in (4.16) is proportional to k2

1 N 2
k1

. If x < 2, the
integral diverges.

The group of terms linear with respect to the
high-frequency tail of the spectrum is more complicated:

S(2)
nl = 2πg2 Nk

∫
|Tkk1k2k3 |

2 Nk3(Nk1 − Nk2)

× δ(ωk + ωk1 − ωk2 − ωk3)

× δ(k + k1 − k2 − k3)dk1 dk2 dk3. (4.17)

We can perform the expansion

Nk1 − Nk3 = pi
∂ N

∂k1i
, pi = (k − k3)i . (4.18)

In the general anisotropic case, the integrand is proportional to
k2

1(p∇Nk1) and the divergence occurs if x = x1 = 3. However,
in the isotropic case, this term, the most divergent one, is
canceled after integration by angles. In this case, we should
study quadratic terms in the expansion of the integrand in
powers of parameter (P, k1)/k2

1 . The most aggressive term
appears from the expansion of δ-function on frequencies
δ(ωk1 − ωk1+p + ωk − ωk3). Performing integration by angles,
we end up with the equation

∂ Nk

∂t
= q k7 Nk

∂ N

∂k
,

q =
25

16
π3 g3/2 E =

25

8
π3 g3/2

∫
∞

0
k3/2 Nk dk.

(4.19)

Here E is the total energy. Thus, in the isotropic case, x1 =

5/2, and we get, for the function F(x), the following estimate:

F =
5

2

25

8
π3 1

(5/2) − x
=

241.86

(5/2) − x
. (4.20)

(a)

(b)

Figure 1. (a) A plot of the function F(x). (b) A zoom of the
function F(x) in the vertical coordinate.

In figure 1(a) is presented a plot of the function F(x)

for the isotropic case, which we calculated numerically. One
can see that in the interval x1 < x < x2, the function F(x) has
exactly two zeros at

x = y1 = 4, x = y2 =
23
6 . (4.21)

To prove this result, let us consider that the spectra are
isotropic, and present the conservation laws of energy and
wave action in the differential form:

∂ Ik

∂t
= 2πkωk

∂ Nk

∂t
= −

∂ P

∂k
, (4.22)

P = 2π

∫ k

0
kωk Snl dk, (4.23)

2πk
∂ Nk

∂t
=

∂ Q

b
, (4.24)

Q = 2π

∫ k

0
kSnl dk. (4.25)

Here, P is the flux of energy directed to high wave numbers,
while Q is the flux of wave action directed to small wave
numbers. The equations

P = P0 = const, Q = Q0 = const (4.26)
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apparently are solutions of the stationary equation Snl = 0. We
will look for the solution in the powerlike form N = λk−x ;
then equations (4.23) and (4.25) read as

P0 = 2πg2 λ3 F(x)

3(x − 4)
k−3(x−4), (4.27)

Q0 = −2πg3/2 λ3 F(x)

3(x − 26/3)
k−3(x−26/3). (4.28)

One can see that P0 and Q0 are finite only if F(4) = 0
and F(26/3) = 0 and if F ′(4) > 0 and F ′(26/3) < 0. We
conclude that equation Snl = 0 has the following solutions:

N (1)
k = cp

(
P0

g2

)1/3 1

k4
, (4.29)

N (2)
k = cq

(
Q0

g3/2

)1/3 1

k23/6
. (4.30)

Here, cp, cq are dimensionless Kolmogorov constants

cp =

(
3

2π F ′(4)

)1/3

, cq =

(
3

2π |F ′(23/6)|

)1/3

.

In figure 1(b) is presented a zoom of the function F(x)

in the vertical coordinate. The numerics gives F ′(4) = 45.2
and F ′(23/6) = −40.4. In the area of zeros, F(x) can be
approximated by a parabola,

F(x) ' 256.8(x − 23/6)(x − 4). (4.31)

Let us note that
F(9/2) = 85.6; (4.32)

thus, we obtain

cp = 0.219, cq = 0.227, (4.33)

and find that both the Kolmogorov constants are numerically
small.

In the isotropic case, the energy spectrum F(ω) can be
expressed through Nk ,

F(ω) dω = 2πωk Nk k dk, (4.34)

and the energy spectrum corresponding to solution (4.29) has
the following form, called the Zakharov–Filonenko spectrum:

F (1)(ω) = 4πcp

(
P

g2

)1/3 g2

ω4
. (4.35)

This spectrum was found to be a solution of the equation
Snl = 0 [3].

For the spatial spectrum

Ik dk = 2πωk N (k) k dk, (4.36)

solution (4.30) transforms to

I (1)
k = 2π cp

(
P

g2

)1/3 g1/2

k5/2
' k−2.5. (4.37)

Spectra (4.29), (4.35) and (4.37) are realized if we have a
source of energy that is concentrated at a small wave number

and generates the amount of energy P in one unit of time. For
spectrum (4.30), first reported by Zakharov in 1966 [3],

I (2)
k = 2π cq Q1/3 k−7/3

' 2π cq Q1/3 k2.33, (4.38)

F (2)(ω) = 4π cq Q1/3 g4/3

ω11/3
. (4.39)

Spectra (4.30) and (4.38) can be realized in the case of a
source of wave action in the high wave number area.

The described spectra exhaust all powerlike isotropic
solutions of the stationary kinetic equation Snl = 0. It is
important to stress that thermodynamical solutions N = const
and N = c/k1/2 are not the solutions of this equation, because
their exponents x = 0 and x = 1/2 are far below the lower end
of the ‘window of possibility’ x1 = 5/2. This fact means that
thermodynamics has nothing in common with the theory of
the wind-driven sea.

Solutions (4.29) and (4.30) are not unique stationary
solutions of Snl = 0. The general isotropic solution describes
the situation when both the energy source at small wave
numbers and the wave action source exist simultaneously and
have the following form:

N (3)
k = cp

(
P

g2

)1/3 1

k4
L

(
g1/2 Q k1/2

P

)
. (4.40)

Here L is an unknown function of one variable,

L → 1 at k → 0, L(ξ) →
cq

cp
ξ 1/3 at k → ∞. (4.41)

Let us note that if there is no flux of wave action from
infinity, we must set Q = 0. Under this constraint, the general
isotropic solution is the Zakharov–Filonenko spectrum (4.29),
parameterized by a single arbitrary constant P , which is a flux
of energy to k → ∞.

Frequency spectra with tails in the form F(ω) ' ω−4

were observed in numerous field experiments [11–16] and
were obtained in numerical experiments as well [17–19].
Spatial spectra with asymptotics Ik ' k5/2 were also observed
in many experiments [20–22]. A more careful study of the
experimental results shows that in a majority of cases, the
spectral area right behind the spectral peak can be better
approximated by the tail ω−11/3 in the frequency spectrum
and by the tail k−7/3 in the spatial spectrum.This is especially
clear from experiments of Huang et al [20]. Figure 2 taken
from [20] demonstrates the coexistence of both types of
Kolmogorov–Zakharov (KZ) spectra.

5. Stationary solutions: the anisotropic case

To study the anisotropic solutions of equation (4.1), we
introduce the polar coordinates on the k-plane and put k2

=

ω/g. Thereafter, we will use the notation

N (ω, φ) dω dφ = N (Ek) dEk,

N (ω, φ) =
2ω3

g2
N (Ek).

(5.1)

9
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Figure 2. Dimensionless wave number spectral coefficient βi

plotted on logarithmic scales (a) and linear scales (b), taken
from [20]. Here crosses represent the omnidirectional (averaged by
angles) spectrum and dots correspond to ξ(k) = 2βI u∗ g−0.5 k−2.5.
The solid line in (a) and solid curve in (b) correspond to
ξ(k) ' k−7/3.

In the spatially homogeneous case, N (ω, φ) satisfies the
equation

δN (ω, φ)

∂t
= Snl(ω, φ). (5.2)

In new variables:

Snl(ω, φ) = 2πg2
∫

|Tω,ω1,ω2,ω3 |
2 δ(ω + ω1 − ω2 − ω3)

× δ(ω2 cos φ + ω2
1 cos φ1 − ω2

2 cos φ2 − ω2
3 cos φ3)

× δ(ω2 sin φ + ω2
1 sin φ1 − ω2

2 sin φ2 − ω2
3 sin φ2)

×
{
ω3 N (ω1, φ1) N (ω2, φ2) N (ω3, φ3)

+ ω3
1 N (ω, φ) N (ω2, φ2) N (ω3, φ3)

− ω2
2 N (ω, φ) N (ω1, φ1) N (ω3, φ3)

− ω2
3 N (ω, φ) N (ω1, φ1) N (ω2, φ2)

}
× dω1 dω2 dω3 dφ1 dφ2 dφ3. (5.3)

Exactly this form of Snl is used for numerical simulation
of the Hasselmann equation. Suppose that N (ω, φ) = ω−z is
the isotropic spectrum. Then,

Snl =
ω−3z+13

4g4
F

(
z + 3

2

)
=

G(z)

g4
ω−3z+13, (5.4)

where F(x) is defined by equation (4.5). Now the ‘window
of opportunity’ is 2 < z < 13/2. Zeros of G(z) are posed
at z1 = 5 and z2 = 14/3, and near these zeros, G(z) can be
presented as a parabola,

G(z) ' 16.05(z − 5)(z − 14/3). (5.5)

To make the motion constants more conspicuous, we
introduce the elliptic differential operator

L f (ω, φ) =

(
∂2

∂ω2
+

2

ω2

∂2

∂φ2

)
f (ω, φ) (5.6)

with the following parameters: 0 < ω < ∞, 0 < φ < 2π . The
equation

L G = δ(ω − ω′) δ(φ − φ′) (5.7)

with the boundary conditions

G|ω→0 = 0, Gω→∞ < ∞, G(2π) = G(0)

can be resolved as

G(ω, ω′, φ − φ′) =
1

4π

√
ωω′

∞∑
n=−∞

ein(φ−φ′)

×

[( ω

ω′

)1n

2(ω′
− ω) +

(
ω′

ω

)1n

2(ω − ω′)

]
, (5.8)

where 1n = 1/2
√

1 + 8n2. Now we present Snl in the form

A(ω, φ) =

∫
∞

0
dω′

∫ 2π

0
dφ′ G(ω, ω′, φ − φ′) Snl(ω

′, φ′).

(5.9)
Note that A(ω, φ) is a regular integral operator and

suppose that N (ω, φ) = ω−z . Then

A[ω−z] =
ω−3z+15

g4
H(z),

H(z) =
G(z)

9(z − 5)(z − 14/3)
.

(5.10)

The function H(z) is positive and has no zeros. If G(z) is
presented by a parabola (5.5), H(z) is just a constant:

H(z) = H0 = 16.05/9 = 1.83. (5.11)

This fact leads us to a bold idea. If we assume that

A =
H0

g4
ω15 N 3, (5.12)

the nonlinear term Snl turns into the elliptic operator:

Snl =
H0

g4

(
∂2

∂ω2
+

2

ω2

∂2

∂φ2

)
ω15 N 3. (5.13)

This is the so-called ‘diffusion approximation’, introduced
in [23]. Being very simple, it grasps the basic features of the
wind-driven sea theory. We will refer mostly to this model,
bearing in mind that the real case (5.9) does not differ much
from it, at least qualitatively.

Let us integrate equation (5.2) by angles. We get

∂ N (ω, t)

∂t
=

∂ Q

∂ω
. (5.14)

Here N (ω, t) =
∫ 2π

0 N (ω, φ) dφ. Then

B(ω, t) =
g

2ω

∫ 2π

0
cos φ N (ω, φ) dφ, (5.15)

and the flux of wave action is

Q =
∂K

∂ω
, K =

∫ 2π

0
A(ω, φ) dφ. (5.16)

10
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After multiplying equation (5.14) by ω, one obtains the
equation

∂ F(ω, t)

∂t
+

∂ P

∂ω
= 0, (5.17)

where P = K − ω∂K/∂ω is the flux of energy.
Let us introduce now the following definitions: the

integrated by angle spectral density of momentum

Mx (ω, t) =
ω2

g

∫ 2π

0
cos φ B(ω, φ) dφ, (5.18)

the quantity

Cx (ω, t) =
ω

2g

∫ 2π

0
cos2 φ N (ω, φ) dφ, (5.19)

and the flux of momentum

Rx =

∫ 2π

0
cos φ

(
ω A −

ω2

2

∂ A

∂ω

)
dφ. (5.20)

All these quantities are connected by the equation

∂ Mx

∂t
+

∂ Rx

∂ω
= 0. (5.21)

Equations (5.14), (5.17) and (5.21) are averaged by angle
balance equations for the basic conservative quantities.

Now we can return to the question formulated above.
How many solutions do the stationary kinetic equations (1.5)
and (4.1) have? Note that we simplified it to the linear
equation (

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)
A = 0. (5.22)

In particulary, the kinetic equation has the anisotropic KZ
solution

A =
1

2π

{
P + ω Q +

Rx

ω
cos φ

}
, (5.23)

where P and Rx are fluxes of energy and momentum at
ω → ∞ and Q is the flux of wave action directed to
small wave numbers. In the general case, equation (5.23)
is a nonlinear integral equation; however, in the diffusion
approximation the KZ solution can be found in the explicit
form

N (ω, φ) =
1

(2π H0)1/3

g4/3

ω5

(
P + ω Q +

Rx

ω
cos φ

)1/3

.

(5.24)
By comparing with equations (4.35) and (4.38), one can easily
find that, in this case,

cp = cq =
1

2(2π H0)1/3
= 0.223, H0 = 1.83.

This is exactly the arithmetic mean between the values of
Kolmogorov constants given by equation (3.31).

By multiplying equation (5.24) by 2πω, we get the
general KZ spectrum in the diffusion approximation:

F(ω) = 2.78
g4/3

ω4

(
P + ω Q +

Rx

ω
cos φ

)1/3

. (5.25)

We must be sure that in the isotropic case Rx = 0, the
expression

F(ω) = 2.78
g4/3

ω4
(P + ω Q)1/3 (5.26)

approximates the generic KZ spectrum with accuracy up to a
few per cent.

If we somehow know the value of A(ω, φ) on the circle
ω = ω0, we can solve the external and internal Dirichlet
boundary problems for equation (5.22) with the boundary
condition A(ω, φ) < ∞ at ω → ∞. Suppose that

A(ω, φ) = A0(φ)

= A0 +
A1

ω
cos φ

+
∞∑

n=2

An

(ω0

ω

)−1/2+
√

1/4+4n2

cos nφ. (5.27)

The first two terms in equation (5.27) present the KZ
spectrum with Q = 0, P = 2π An , Rx = 2πω0 A1. The next
terms describe the fast stabilization of any arbitrary solution
to the KZ spectrum at ω/ω0 → ∞. The first additional term
in (5.27) decays as (ω0/ω)3.53 cos 2φ.

This stabilization to the KZ spectrum is actually the
‘angular spreading’ of wind-driven wave spectra that is
usually observed in field experiments (see, for instance, [12]).
If Q = 0, the general KZ solution (5.25) at ω → 0 is the
following spectrum:

F(ω) →
2.78

ω4
g4/3 p1/3

(
1 +

1

3

Rx

Pω
cos φ + · · ·

)
. (5.28)

Similar results were predicted by Kontorovich and Kats [30]
and Balk [31].

From equation (5.27), one can see that A(ω, φ) is
parametrized by the function of one variable, A0(φ). In the
presence of flux of action Q from infinity, one should add to
equation (5.27) an additional term Qω. Thus, in the general
case, the uncertainty for the determination of A consists of a
function that has one variable and one constant. We implicitly
assume that the mapping N → A is uniquely inversible. This
fact has not been proven, but it is plausible.

6. Damping due to nonlinear interaction

How must we compare Snl and Sin?
In this section, we show that Snl is the leading term in the

balance equation (1.11). In fact, the forcing terms Sin and Sdis

are not sufficiently accurately known; thus it is reasonable to
accept the simplest models of both terms assuming that they
are proportional to the action spectrum:

Sin = γin(k) N (k), (6.1)

Sdis = −γdis(k) N (k). (6.2)

Hence

γ (k) = γin(k) − γdis(k). (6.3)

11
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In reality, γdis(k) depends strongly on the overall steepness µ.
So far, let us note that the balance kinetic equation (1.24) can
be written in the form

Snl + γ (k) Nk = 0 (6.4)

and present the Snl term as

Snl = Fk − 0k Nk . (6.5)

The definitions of 0k and Fk are given by equations (2.5) and
(2.6).

The solution of stationary equation (6.4) is the following:

Nk =
Fk

0k − γk
. (6.6)

A positive solution exists if 0k > γk . The term 0k can be
treated as the nonlinear damping that appears due to four-wave
interaction. This damping has a very powerful effect.
A ‘naive’ dimensional consideration gives

0k '
4πg2

ωk
k10 N 2

k ; (6.7)

however, this estimate works only if k ' kp, with kp being the
wave number of the spectral maximum.

Let k � kp. Now for 0k one gets

0k = 2πg2
∫

|Tkk1,kk3 |
2 δ(ωk1 − ωk3) Nk1 Nk3 dk1dk2. (6.8)

The main source of 0k is the interaction between long and
short waves. To estimate integral (2.6) more accurately, we
assume that the spectrum of long waves is narrow in angle,
N (k1, θ1) = Ñ (k1) δ(θ1). Long waves propagate along the
axis x and Ek is the wave vector of the short wave propagating
in the direction θ . For the coupling coefficient we must put
Tkk1,k2,k3 ' 2k2

1k cos θ . Then

0k = 8πg3/2 k2 cos2 θ

∫
∞

0
k13/2

1 Ñ 2(k1) dk1. (6.9)

Even for the most mildly decaying KZ spectrum, Nk ' k−23/6,
the integrand behaves like k−7/6

1 and the integral diverges. For
steeper KZ spectra, the divergence is stronger.

Let us estimate 0k for the case of a ‘mature sea’, when
the spectrum can be taken in the form

Nk '
3

2

E
√

g

k3/2
p

k4
θ(k − kp). (6.10)

Here E is the total energy. By plugging (6.10) into (6.9), one
gets the equation

0ω = 36 πω

(
ω

ωp

)3

µ4
p cos2 θ, (6.11)

which includes a huge enhancing factor: 36π ' 113.04. For a
very modest value of steepness, µp ' 0.05, we get

0ω ' 7.06 × 10−4ω

(
ω

ωp

)3

cos2 θ. (6.12)

In the isotropic case, to find 0k for ω/ωp � 1 we need to
perform a simple integration over angles that yields∫ 2π

0

∫ 2π

0
T 2

θ1,θ2
dθ1 dθ2 =

5

2
(2π)2

;

thus instead of equation (6.11) we get

0k = 5πg3/2k2
∫

∞

0
k13/2

1 Ñ (k1)
2 dk1 (6.13)

or

0ω =
45π

2
g3/2ω

(
ω

ωp

)3

µ4
p. (6.14)

Finally, assuming that

Nkp '
3

2

E
√

gk5/2
p

,

we get from equation (6.8) the following estimate for 0p =

0|k=kp:
0p ' 9πωpµ

4
p. (6.15)

Even in this case, we have a pretty high enhancing factor:
9π ' 28.26. In fact, in all known models, 0k surpasses γ̃k at
least in order of magnitude even for these very smooth waves.

In the presence of peakedness

0p ' 3 ωpµ
4
p. (6.16)

Here 3 ' 4πωp/δω is the enhancing factor due to
peakedness. If 3µ2

p ∼ 1, then 0p is associated with
the maximal growth of modulational instability for a
monochromatic wave: 0p ' γmod ∼ ωpµ

2
p. If 3 ∼ 1/µ2

p, the
nonlinearity becomes so strong that the weak-turbulent
statistical approach is not applicable. This is quite a realistic
possibility. Suppose that µp ' 0.11 and ωp/δω ' 5. Then
3µ2

p ∼ 0.76 and the weak-turbulent description is hardly
correct. In the case of strong nonlinearity the wind-driven sea
generates freak waves (see [24, 25]). The very fact of their
existence as a common phenomenon is implicit proof of Snl

domination in the energy balance.
Note that 0k diverges for KZ spectra. However, it does not

hurt the spectra existence, because in the full kinetic equation
the divergence of 0k is canceled by divergence of Fk . Indeed,
if we consider the contribution of small wave numbers in
integral (2.5), we end up with the following expression:

Fk = 2πg2 Nk

∫
|Tkk1,kk3 |

2 δ(ωk1 − ωk3) Nk1 Nk3 dk1dk3

' Nk 0k . (6.17)

Neglecting γk , equation (4.1) is satisfied automatically.
The results obtained in this section show that the

four-wave nonlinear interaction has a very strong effect.
The strong turbulence of the near-surface air boundary layer
makes the development of a reliable theory for air–water
interaction, including a well-justified analytical calculation of
γk , an extremely difficult task. Making field and laboratory
measurements of γk is also difficult, and the scatter in the
determination of γk is itself of the order of γk . Anyway,
a comparison of the above calculated 0k with experimental

12



Phys. Scr. T142 (2010) 014052 V E Zakharov

Figure 3. Comparison of the experimental data on the
wind-induced growth rate 2πγin(ω)/ω taken from [26] and the
damping due to four-wave interactions 2π0(ω)/ω, calculated for
the narrow in angle spectrum at µ ' 0.05 using equation (6.11)
(dashed line).
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Figure 4. Split of the nonlinear interaction term Snl (central curve)
into Fk (upper curve) and 0k Nk (lower curve).

data on γk shows that 0k surpasses γk at least by an order
of magnitude. This fact is demonstrated in figure 3, where
experimental data taken from [26] are presented.

As a result, we can conclude that Snl is the leading term
in the balance equation (1.11) and that the rear face of the
spectrum is described by the solution of equation (4.1), which
has a rich family of solutions. In particular, this equation
describes the angular spreading.

In figure 4, we demonstrate that for the nonlinear
interaction term Snl = Fk − 0k Nk , the magnitudes of

constituents Fk and 0k N k essentially exceed their difference.
They are one order higher than the magnitude of Snl

The dominance of Snl was not apparent until now for
two reasons. Firstly, it is not correct to compare Snl and
Sin; instead, one should compare 0k and γk . Secondly, the
widely accepted models for Sdis essentially overestimate the
dissipation due to white capping. As a result, the dominance
of Snl is masked. We offer an alternative model for Sdis, which
will be published in a forthcoming article [27]. Preliminary
results obtained in this direction are given in [28].
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