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We propose a new mechanism for turbulent transport in systems which support radiating nonlinear

solitary wave packets or pulses. The direct energy cascade is provided by adiabatically evolving pulses,

whose widths and carrier wavelengths decrease. The inverse cascade is due to the excitation of radiation.

The spectrum is steeper than the Kolmogorov-Zakharov spectrum of wave turbulence.

DOI: 10.1103/PhysRevLett.103.074502 PACS numbers: 47.27.E�, 47.27.De, 52.35.�g, 92.10.�c

Wave turbulence is a highly successful theory for turbu-
lent nonequilibrium processes in plasmas, fluids, and non-
linear optics. It provides an analytic connection of the
deterministic nonlinear dynamics to statistical properties
of a turbulent energy flow [1]. Its description of weakly
interacting waves with almost random phases culminates
in a kinetic equation for the wave action density. The
Kolmogorov-Zakharov (KZ) solutions to this kinetic equa-
tion describe the transfer of energy (wave action) from
long (short) scales to short (long) scales. The results of Cai
and co-workers [2], designed to check wave turbulence
theory, threw down the gauntlet for advocates of its uni-
versal applicability. They studied a one-dimensional model

i _c ðx; tÞ ¼ Lc ðx; tÞ þ �c ðx; tÞjc ðx; tÞj2; (1)

where c ðx; tÞ is a complex wave amplitude and the linear
operator L is defined by L expðikxÞ ¼ !k expðikxÞ with a

square-root dispersion !k ¼
ffiffiffiffiffiffijkjp

designed to mimic deep
water waves. The Majda, McLaughlin, and Tabak (MMT)
equation (1) derives from the Hamiltonian E ¼ E2 þ E4,
E2 ¼

R
!kjakj2dk and E4 ¼ �

R jc j4=2dx, with Fourier

modes ak ¼
R
c ðx; tÞ expð�ikxÞdx= ffiffiffiffiffiffiffi

2�
p

. Conservation

of wave action N ¼ R jc j2dx and momentum P ¼
i
Rðc c �

x � c xc
�Þdx are related to the phase and transla-

tional symmetries of (1). A statistically stationary nonequi-
librium state is achieved when external damping is applied
at very long scales and at short scales, and driving is
applied at long scales. This causes two conserved density
cascades, a direct cascade of energy and an inverse cascade
of wave action. In wave turbulence both cascades are
driven by the same four wave resonances producing long
and short waves. The KZ spectrum of the wave action
density for the direct cascade is hjakj2i � k�1 in wave
turbulence, which is independent of the sign � of the
nonlinearity. Repeated trials of careful experiments [2–5]
showed that the KZ spectrum is recovered for the MMT
equation with � ¼ �1. For � ¼ 1, one finds a steeper
spectrum of roughly k�1:25 (Fig. 1). This leads to the
following intriguing questions: What new mechanisms

are responsible for energy and wave action transfer?
What causes the failure of wave turbulence theory?
In this Letter, we propose a new mechanism of turbulent

transfer that is radically different from that of wave turbu-
lence. In repeated simulations of (1), the most striking
feature is a spatiotemporal pattern of left- and right-
moving localized structures (Fig. 2). Their speeds decrease
during their lifetime so that the traces are curved (Fig. 3).
We suggest that these evolving coherent wave packets
(pulses) cause the cascades of wave action and energy.
Their spectral width is initially of the same order as their
central wave number so that they have few oscillations and
a large central peak (Fig. 4). They resemble giant (freak)
waves encountered in the ocean [6] and in optical fibers
[7]. These pulses are initiated by a Benjamin-Feir insta-
bility, and they arise only in theMMTequation with � ¼ 1.
They emit Cherenkov-like radiation as the solitary ‘‘head’’
resonantly drives long oscillatory ‘‘tails’’ [4,8,9]. The pulse
heads change adiabatically, because they lose wave action
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FIG. 1 (color online). Time-averaged power spectra Nk ¼
hjakj2i for the MMT equation (1). The equation with � ¼ �1
yields a Kolmogorov-Zakharov spectrum hjakj2i � k�1, and � ¼
1 yields a steeper spectrum hjakj2i � k�1:25. The system contains
L ¼ 4096 nodes, and the wave number space is ��< k � �.
Damping is applied to the modes jkj � 10�=L and jkj � �=2,
and the modes 20�=L < jkj � 30�=L are driven externally.
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and energy to their resonant radiation tails. We will show
that the direct energy cascade is carried by gradually
deforming pulse heads. The inverse cascade is carried by
radiation to the tails. Our simulations make it clear that
pulses interact very little with each other and change
adiabatically. Therefore the field c is dominated by an
ensemble of noninteracting and evolving pulses whose
statistical properties can be computed as a weighted time
average over the history of a single pulse. We can predict
the spectrum by computing the adiabatic change of the
wave packet which agrees very closely with what we
observe. This dynamics supercedes four wave resonances
of weak turbulence.

Figure 3 shows the formation of a pulse from an initial
long wave. Such pulses arise from a Benjamin-Feir–type
instability of a monochromatic wave solution c ¼
c 0 expðikmxÞ of (1). Setting c ¼ ðc 0 þ �aÞ expðikmxÞ
with �a ¼ �aþ expðiqxÞ þ �a� expð�iqxÞ the frequency

� of �a� is � ¼ �
ffiffiffiffiffiffiffi
M2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dð2jc 0j2 þDÞp
with D¼

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkmþqjp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkm�qjp �2
ffiffiffiffiffiffiffiffiffijkmj

p Þ=2, M ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkm þ qjp �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkm � qjp Þ=2. For � ¼ 1, � can have an imaginary part
corresponding to an instability. The most unstable sideband
q is at km.

This nonlinear pulse corresponds to an extremum EðfÞ of
the energy for given values of the momentum PðfÞ and the

wave action NðfÞ. It can be computed with Lagrange multi-
pliers from dðE��N � vPÞ ¼ 0. A special case is the

quasisoliton solution c ðsolÞðx; tÞ ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffi�!00

m

p
sech½qðx�

!0
mtÞ� exp½iðkmx�!mtþ!00

mq
2t=2Þ�, which is valid for

almost monochromatic wave packets with q � km and
!m ¼ !ðkmÞ [4]. Here !0

m ¼ d!=dkjkm is the group ve-

locity. In contrast to the Benjamin-Feir instability of the
nonlinear Schrödinger equation, the wave packet emerging
from the instability of (1) has q and km of the same order.
The pulse contains essentially only one loop, and it can be

written approximately as c ðfÞðx; tÞ ¼ q
ffiffiffiffiffiffiffi
!m

p
k�1
m fð�Þ	

expði�Þ expði�tÞ where f, �, and � are real functions
with @�=@x ¼ q, @�=@t ¼ �qv, @�=@x ¼ km, @�=@t ¼
�kmv. The phase frequency in the frame that moves with

the speed v ¼ @EðfÞðNðfÞ; PðfÞÞ=@PðfÞ is � ¼
@EðfÞðNðfÞ; PðfÞÞ=@NðfÞ. In Fourier space, (1) is

i _ak �!kak ¼ Tk; (2)

where the nonlinearity Tk for a pulse solution is given by

Tk ¼
Z 1

�1
c ðfÞjc ðfÞj2 expð�ikxÞdx= ffiffiffiffiffiffiffi

2�
p

� q2k�9=4
m Fk expð�i�ktÞ; (3)

and Fk is the Fourier transform of f3 expði�Þ. The
Doppler-shifted frequency in (3) is �k ¼ �þ kv. Modes
ak in (2) are driven by the time-dependent force Tk. A
mode with a k value outside the pulse will respond strongly
if it is in resonance!k ¼ �k with the oscillatory frequency
of Tk. The pulse excites the linear wave at k ¼ kres < 0 for
km > 0 (Fig. 4). This causes the radiation of wave action,
energy, and negative momentum from the pulse to a long
wave. We assume that a pulse emits an amount of wave

action dNðradÞ > 0. Wave action, momentum, and energy of
the pulse and the radiation are balanced by the conserva-t= 400 1000t=
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FIG. 3 (color online). Time evolution for the initial condition
of c ðx; t ¼ 0Þ ¼ 0:25 expði2�x=LÞ plus weak noise for the
MMT equation (� ¼ 1) with no damping and driving. The figure
shows traces of regions with high momentum density. A pulse
appears by the Benjamin-Feir instability of the initial wave. Its
speed decays in time as it emits counterpropagating radiation.
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FIG. 4 (color online). (a) Pulse and low-amplitude long wave
radiation in space. (b) In Fourier space, the pulse has the
maximum power at km. The radiation is a narrow peak at kres 
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FIG. 2 (color online). Pattern of left- and right-moving pulses
in time and space with periodic boundary conditions for the
MMT equation with � ¼ 1. The system is damped and driven as
in Fig. 1. Pulses appear spontaneously and cross each other
without significant loss of power. The speed of the pulses decays
in time.
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tion equations dNðfÞ þ dNðradÞ ¼ 0, dEðfÞ þ dEðradÞ ¼ 0,

dPðfÞ þ dPðradÞ ¼ 0. Multiplying the resonance condition

with the pulse’s decrement of wave action yields ð!res �
�� vkresÞdNðfÞ ¼ 0, which is equivalent to the extremum
condition of the pulse dðE��N � vPÞ ¼ 0. In other
words, the radiating pulse remains an extremum of the
energy with respect to wave action and momentum. We

can obtain a general equation for the relation between PðfÞ

and NðfÞ as follows. Since dEðradÞ ¼ ffiffiffiffiffiffiffiffiffiffijkresj
p

dNðradÞ,
dPðradÞ ¼ kresdN

ðradÞ, we find ðdEðradÞ=dNðradÞÞ2 ¼
�ðdPðradÞ=dNðradÞÞ. From the conservation laws, this trans-
lates to

ðdEðfÞðNðfÞ; PðfÞðNðfÞÞÞ=dNðfÞÞ2 ¼ �dPðfÞ=dNðfÞ: (4)

The exact expression EðfÞðNðfÞ; PðfÞÞ is unknown, but the
numerical evidence (Fig. 5) shows that E2 is very much

larger than E4, and that the ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðfÞNðfÞp

=EðfÞ is close
to 1. Solving Eq. (4) with the approximated energy func-

tion EðfÞ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðfÞNðfÞp

yields PðfÞ � NðfÞ ffiffi
8

p �3 and EðfÞ �
NðfÞ ffiffi

2
p �1, which is verified by simulations of Fig. 5(b).

This means that the pulse frequency �m ¼ �þ kmv
may be approximated by !m ¼ ffiffiffiffiffiffi

km
p

, and its wave action

NðfÞ by bqk�3=2
m with b ¼ R1

�1 f2dx. Its momentum PðfÞ is
approximately kmN

ðfÞ and its energy EðfÞ is approximatelyffiffiffiffiffiffi
km

p
NðfÞ. The decrements of the share of these quantities

are connected to changes of q > 0 and km > 0 by

dNðfÞ ¼ bk�3=2
m ðdq� 3

2qk
�1
m dkmÞ;

dEðfÞ ¼ bk�1
m ðdq� qk�1

m dkmÞ;
dPðfÞ ¼ bk�1=2

m ðdq� 1
2qk

�1
m dkmÞ:

(5)

The energy of the radiation at kres is dEðradÞ ¼
�

ffiffiffiffiffiffi
km

p
dNðradÞ, and its momentum is dPðradÞ ¼

��2kmdN
ðradÞ with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkres=kmj

p
. The pulse loses wave

action and energy, but gains momentum in this evolution.

Expressing dNðradÞ with dNðfÞ of (5) yields

dEðradÞ ¼ ��bk�1
m ðdq� 3

2qk
�1
m dkmÞ;

dPðradÞ ¼ �2bk�1=2
m ðdq� 3

2qk
�1
m dkmÞ:

(6)

Energy conservation with (5) and with (6) yields ½ð3��
2Þ=ð2�� 2Þ�dkm=km ¼ dq=q, while momentum conser-
vation gives ½ð1þ 3�2Þ=ð2þ 2�2Þ�dkm=km ¼ dq=q.

These expressions match for � ¼ ffiffiffi
2

p � 1, or kres ¼
�ð ffiffiffi

2
p � 1Þ2km. As a result, the width and the carrier

wave number of a radiating pulse are related by

qðtÞ ¼ qðt0Þ½kmðtÞ=kmðt0Þ��; (7)

with� ¼ ð3�� 2Þ=ð2�� 2Þ 
 0:646. Both kmðtÞ and qðtÞ
increase as time evolves, and the ratio q=km decays. The
speed of a pulse decays in time (Figs. 2 and 3). The

expression (7) is equivalent to the solution PðfÞ �
NðfÞ ffiffi

8
p �3 of (4).

The response of aðradÞk at a fixed k < 0 to the driving force
Tk can be computed from (2). A pulse at km drives this
mode if k is close to kres ¼ ��2km. The frequency�k has a
slow time dependence due to the evolution of the pulse.
When�k is close to !k, it can be approximated by a linear

chirp �kðtÞ 
 !k þ _�kt, where _�k � _km=
ffiffiffiffiffiffi
km

p
is small

and changes little near resonance. With aðradÞk ¼
bðradÞk expð�i!ktÞ, Eq. (2) is i _bðradÞk ¼ Tk expð�i _�kt

2Þ.
Using

R1
�1 cosðwt2Þdt ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð2wÞp
, the amplitude of the

mode at k will be jaðradÞk j2 � T2
k=

_�k or

jaðradÞk j2 � T2
k

ffiffiffiffiffiffi
km

p
= _km (8)

after the driving frequency �k has moved through reso-
nance at �k ¼ !k. The amplitude can also be computed
from conservation of wave action. The pulse that moves
from km to km þ dkm radiates an amount of wave action

dN � bqk�5=2
m dkm into the interval ½��2ðkm þ

dkmÞ;��2km�. Therefore the modes in this interval have
the amplitude

jaðradÞk j2 � qðkmÞk�5=2
m : (9)

For the evolution of the carrier wave number, Eqs. (8) and

(9) yield _km � q�1k3mT
2
k . For the quasisoliton, the feed Tk

to the radiation mode is exponentially small in km=q. For a
nonlinear pulse, km and q are of the same order, and the

leading order Tk � q2k�9=4
m (3) yields _km � q3k�3=2

m .
Averaging over the time history of a single pulse as its

wave number increases yields

hjaðfÞk j2i ¼
Z t1

t0

jaðfÞk ðkmðtÞ; qðkmðtÞÞÞj2dt

¼
Z kmðt1Þ

kmðt0Þ
jaðfÞk ðkm; qðkmÞÞj2= _kmdkm: (10)

aðfÞk ðkm; qÞ is the mode at k for a pulse that is centered at km.

The approximation jaðfÞk j2 
 �ðk� kmÞNðfÞ assumes that
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FIG. 5 (color online). (a) The ratios ðPðfÞNðfÞÞ1=2=EðfÞ and

EðfÞ
2 =EðfÞ of an evolving pulse as functions of time. (b) Energy

EðfÞ � NðfÞ ffiffi
2

p �1 and the momentum PðfÞ � NðfÞ ffiffi
8

p �3 of an evolv-
ing pulse as functions of the wave action NðfÞ. The wave action
and the energy decrease in time, while the momentum increases.
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the whole wave action is localized at km, which yields

hjaðfÞk¼km
j2i ¼ NðfÞ= _km. The peak of the pulse spends an

amount of time dt ¼ dkm= _km between km and km þ dkm.
This yields the spectrum

hjaðfÞk j2i � qk�3=2=ðq3k�3=2Þ � q�2 � k�1:29: (11)

Figure 6(a) shows snapshots of the spectrum of a pulse at
three different times and the time-averaged spectrum. It
shows that the central wave number km and the width of a
pulse increase, while its power decreases. The time-
averaged spectrum is in good agreement with the computed
power law k�1:29. This type of spectrum is obtained only
for a certain window in wave number space. The relative
width in wave number space decays, according to (7), as

qðtÞ=kmðtÞ � k
��1
m ðtÞ. As a consequence, the intensity of

radiation decays and the pulse behaves more like a quasi-
soliton, and moves very little in wave number space. The
time-averaged spectrum decays less rapidly as a function
of k for averages over a very long time.

The simulations also confirm the spectrum of the radia-
tion (9). Figure 6(b) shows the spectrum of the radiated
wave action at negative k. For this purpose, damping is
applied to negative k so that the radiation is quickly dis-
sipated. The time-averaged spectrum closely matches the

prediction hjaðradÞk j2i � qjkj�5=2 � jkj�1:854 from (9). The

radiation spectrum applies also for quasisolitons with small
q=km.

We have found a turbulent process where radiating
pulses dominate the spectral flow. An open question is,
How might one have known, a priori, that the transfer
mechanisms are dominated by evolving coherent objects
in the MMT equation with � ¼ 1, and by four wave

resonant interactions in the equation with � ¼ �1? From
experience to date, coherent objects such as pulses form at
all scales only in one-dimensional systems. In dimension
two and higher, there are corrections to the KZ spectrum at
very large and very small scales [10,11]. A forthcoming
study of the breakdown of the wave turbulence picture in
one-dimensional systems will investigate instabilities of
the KZ spectrum under perturbations with correlations.
But the challenge of finding a priori general criteria, given
low-amplitude initial conditions, which distinguish the
circumstances under which resonant waves or coherent
objects dominate the long time dynamics is still open.
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FIG. 6 (color online). (a) Time evolution of a radiating pulse.
In wave number space the peak of intensity of the pulse at km
moves towards higher k. The wave action of the pulse decays.
The time average of the evolving pulse yields a spectrum

hjaðfÞk j2i � k�1:29. (b) The radiation emitted by the pulse has a

spectrum hjaðradÞk j2i � k�1:854.
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