
Physica D 238 (2009) 540–548
Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Modulation instability: The beginning
V.E. Zakharov a,b, L.A. Ostrovsky c,d,∗
a Department of Mathematics, University of Arizona, Tucson, AZ, USA
b Lebedev Institute of Physics, Russian Acad. Sci., Russia
c Zel Technologies/NOAA Earth Science Research Laboratory, USA
d Institute of Applied Physics, Russian Acad. Sci., Russia

a r t i c l e i n f o

Article history:
Received 20 March 2008
Received in revised form
26 November 2008
Accepted 4 December 2008
Available online 24 December 2008
Communicated by A.C. Newell

PACS:
41.20.Jb
42.65.SF
42.65.TG
47.10.Df
47.35.Bb

Keywords:
Instability
BFL criterion
Nonlinear Schrodinger equation
Envelope waves
Active systems

a b s t r a c t

We discuss the early history of an important field of ‘‘sturm and drang’’ in modern theory of nonlinear
waves. It is demonstrated how scientific demand resulted in independent and almost simultaneous
publications by many different authors on modulation instability, a phenomenon resulting in a variety
of nonlinear processes such as envelope solitons, envelope shocks, freak waves, etc. Examples fromwater
wave hydrodynamics, electrodynamics, nonlinear optics, and convection theory are given.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

To give the reader an idea of how widespread is the notion of
modulation instability (MI), we can recommend to do a simple
Internet search. There are between one and two million entries on
‘‘Modulation instability’’ and even more for ‘‘Self-modulation’’ in,
e.g., Yahoo. Even if these references are not all equally relevant,
the numbers are still impressive. We believe that most of the
researchers in the area of nonlinear waves would agree that theMI
is one of the most ubiquitous types of instabilities in nature. Thus,
it seems useful to briefly outline the beginnings of the research
in this area: it is remarkable that different groups of physicists
in different countries have started research in this area almost
simultaneously, albeit independently, an indicator that the idea
was emerging when the time was indeed ripe.

∗ Corresponding author at: Zel Technologies/NOAA Earth Science Research
Laboratory, USA.
E-mail address: Lev.A.Ostrovsky@noaa.gov (L.A. Ostrovsky).
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In its simplistic version, the effect of modulation instability is
the result of interaction between a strong carrier harmonic wave
at a frequencyω, and small sidebandsω±Ω . This is the particular
case of four-wave interaction (two quanta at ω create the quantas
at ω + Ω and ω − Ω). Growth of the sidebands can be treated in
terms of amplification of weakmodulation imposed on a harmonic
wave (Fig. 1).
At the same time, in modern nonlinear physics, MI (or self-

modulation) is considered as a basic process that classifies the
qualitative behavior of modulated waves (‘‘envelope waves’’) and
may initialize the formation of stable entities such as envelope
solitons. It was observed in numerous physical situations including
water waves, plasma waves, laser beams, and electromagnetic
transmission lines. In theoretical models, the phenomenon was
considered for even broader range of phenomena, from biological
moleculae to galactics.
As mentioned, the development of the theory of MI started

almost simultaneously and occurred in parallel in hydrodynamics
and electrodynamics/nonlinear optics. Thus, it should be stressed
from the very beginning that our goal is not to set priorities, but
on the contrary, to show how the same or similar ideas may arise
independently when they are in demand.

http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:Lev.A.Ostrovsky@noaa.gov
http://dx.doi.org/10.1016/j.physd.2008.12.002
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Fig. 1. Top: evolution of a nonlinear wave train in the course of MI. Bottom: the corresponding evolution of wave spectrum.
The mathematical models used in all works considered below
are largely similar and universal. Most of the authors understood
well this universality and often explicitly stated it or even used
the universal approach from the very beginning. Still, our narrative
herewill follow,whenever possible, this parallel development that
seems instructive and characteristic of the early progress. We limit
ourselves by relatively fewworks, mostly from the 1960s and early
1970s, and only briefly mention the later, intensive development.
Whenever possible we preserve notation and logics of the original
papers.
It might be interesting to note that the research in this

area had been started by the Western and Soviet scientists in
the 1960s almost independently, and often implied different
physical applications. Most of the early Western work has been
related to classical hydrodynamics: water waves, convection
etc. On the other hand, Soviet works on MI of about the
same period were largely based on the then recent progress in
electromagnetics, including nonlinear optics (lasers, self-focusing,
nonlinear radiowaves etc.), and plasma physics (there were
exceptions, however, even at that time; e.g., the Russian paper [1]
cited below is concerned with water waves). Both authors of
this paper began their scientific careers in the Soviet Union, with
rather limited international contacts.We subsequently acquired an
access to the papers byWhitham, then by Lighthill, and somewhat
later by Benjamin and Feir. A publication in Russian of thematerials
of a discussion on nonlinear dispersive waves organized by
Lighthill and published in English in 1967 (see Ref. [2]), especially
enhanced our knowledge of theWestern contributions to the area.
Naturally, here we have cited only published works and may

have missed some interesting historical details, in particular relat-
ing to priorities. Indeed, A. Newell, in a private communication, has
told us that when his advisor, D. Benney, first asked him, in spring
of 1965, to look into the possibility of such an instability, it was
because Benney had heard from Benjamin that he had had trouble
reproducing the Stokes wave experimentally and believed it was
unstable. Moreover, Newell also recalls Whitham saying at a much
later date that he was initially puzzled by the fact that his modu-
lation equations could be both hyperbolic (expected) and elliptic
(unexpected) and it was only after he heard of Benjamin’s result
that ‘‘the penny dropped’’. It therefore may well have been that
Benjaminwas the first to derive, in the context of water waves, the
criterion for themodulational instability. However, because the ap-
proach is quite general, and because it was from the Lighthill pa-
per of 1965 [3] and from the volume [2] edited by Lighthill that
we first learned of the result, we have decided to tell the story us-
ing Lighthill’s version. In Section 3, we carry out the calculation for
water waves, the path that Benjamin and Feir and, later, one of us
followed.
2. Benjamin–Feir–Lighthill criterion

In 1965, Whitham [4] suggested the averaged variational
principle for quasi-periodic waves based on a period-averaged
Lagrangian, L (ω, k, a) which depends on the wave phase θ
(actually on its derivatives, local frequency ω = −∂θ/∂t and
wave number k = ∂θ/∂x), amplitude a, and possibly other slowly
varying parameters. Using θ and a as canonical variables, one
obtains equations describing slowly varying wave characteristics
having in a 1-D case the form

∂L

∂a
= 0,

∂Lω

∂t
−
∂Lk

∂x
= 0,

∂k
∂t
+
∂ω

∂x
= 0. (1)

Lighthill [3] further developedWhitham’s theory, considering a
specific case of small nonlinearity where the averaged Lagrangian
can be reduced to

L = G(ω, k)a2 + B(ω, k)a4. (2)

Variation of this over a gives

G(ω, k)+ 2B(ω, k)a2 = 0, (3)

or, after resolving with respect to ω,

ω = ω0(k)+ ω1(k)a2. (4)

The latter expression can be considered as a nonlinear dispersion
equation in which ω0(k) follows from G(ω, k) = 0 corresponding
to the linear approximation, and ω1 is due to nonlinearity. Note
that in the linear casewhenB = 0, fromEq. (3)wehaveL = 0. This
relation has a simple mechanical interpretation: average values
of the kinetic and potential energy densities are equal in a linear
traveling wave.
The rest of the two equations (1) gives

∂a2

∂t
+
∂

∂x
(vgra2) = 0, (5)

and
∂k
∂t
+ vgr

∂k
∂x
+
∂

∂x
(ω1a2) = 0, (6)

where vgr = −Gk/Gω = dω0/dk is the linear group velocity.
Characteristic velocities for this system are

C± = vgr(k)±
√
vgr ′ω1a2 + O(a2). (7)

Note that nonlinearity in Eq. (5) leading to the terms of order a2
in Eq. (7) is neglected; these terms become important if dispersion
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is small (see Section 3.3 below). Hence, the above equations are
hyperbolic (C is real) if

β = ω1dvgr/dk > 0 (8)

and elliptic (C± are complex) if β < 0. We shall refer to
this condition as Benjamin–Feir–Lighthill (BFL) criterion. As it is
easy to deduce from these expressions, if Eqs. (5) and (6) are
linearized around the harmonic wave with constant a, ω, and k,
and perturbations are sought in the form of exp i(Kx − Ωt), the
result is

Ω = C±K . (9)

Hence, in the hyperbolic case the harmonic wave is stable, and,
according to (7), can propagate with two slightly different ‘‘group
velocities’’, whereas in the elliptic case it is unstable with respect
to small modulation.
Lighthill then considered a weakly nonlinear Stokes wave on

deep water when the nonlinear dispersion equation (4) reads

ω = ω0(k)
(
1+

1
2
k2a2

)
, ω0 =

√
gk. (10)

In this case, from (8) it follows that

β = −
ω
′′2
0

8
< 0. (11)

Hence, this is an elliptic case. Although Lighthill did not
explicitly discuss wave stability in that paper, it is clear that,
according to (7) and (9), aweakly nonlinear Stokeswave is unstable
with an increment

γ = Im(C)K =
ω0(k)
2
avgr(k)Ω. (12)

In this approximation, the increment increasesmonotonicallywith
modulation frequency. As described below, a limitation of this
resultwas established shortly thereafter in bothwaterwave theory
and in electrodynamics.
Modulation instability can also be explained as follows. Suppose

that at some moment a local ‘‘bump’’ of intensity in a propagating
wave appears. If, for example, ω1 > 0 in (4), the derivative
ωx is positive before the bump and negative after it. According
to the wave phase conservation expressed in the last equation
(1), that means that kt < 0 before maximum and kt < 0 after
it. Suppose now that ωkk = ∂vgr/∂k < 0. Thus, the group
velocity (more exactly, its linear part) tends to increase behind
the peak and decrease in front of it. This means that the wave
groups neighboring the amplitudemaximum tend to compress the
bump; due to the energy conservation, the amplitude increases
cumulatively. The same reasoning shows that an initial trough in
a harmonic wave would deepen. This is the case of modulation
instability. In case of ωkk > 0, the effect is the opposite: the initial
bump tends to be smeared; this is the case of neutral stability.
From the spectral viewpoint, a simple interpretation of the BFL

criterion is as follows: small sidebands interact with the strong
carrier wave; for their effective interaction, the simultaneous
fulfillment of resonance (synchronism) conditions is needed:

ω1 + ω2 = 2ωc, k1 + k2 = 2kc, or
ω1,2 = ωc ±Ω, k1,2 = kc ± K (13)

(the latter equalities are for slow modulation when Ω and K are
small). Here subscripts c , 1, 2 correspond to the carrier wave
and the sideband waves, respectively. In the linear case these
conditions are notmet because of dispersion. In the nonlinear case,
the velocities of these waves differ due to two factors: dispersion
(due to their frequency differences) and nonlinearity (they
propagate on the background of the nonlinear carrier wave). In
cases when these detunings are of the same sign, no synchronism
occurs and the sidebands do not increase (hyperbolic case). If,
however, these detunings differ in signs, they can compensate
each other, and the waves interact in a synchronous, resonant
manner, which results in their amplification. It is reflected in the
BFL criterion; indeed,β is a product of the parameters of dispersion
and nonlinearity.

3. Higher-order dispersion. Nonlinear Schrödinger equation

3.1. Water waves. Benjamin–Feir instability

Whitham’s equations (1) canbe considerednon-dispersivewith
respect to the ‘‘complex envelope’’ a(x, t). As a result, the BFL
criterion (8) does not depend on modulation frequency (provided
it is small as compared to the carrier frequency). However, a more
detailed account of the effects of dispersion imposes an additional
limitation on modulation instability.
For water waves it was demonstrated by Benjamin and

Feir [5,6], who discovered modulation instability for nonlinear
Stokes waves on the water surface. Such a discovery came as a
surprise. Indeed, for decades the existence of stationary nonlinear
(Stokes) waves on deep water was the subject of an involved
mathematical proof (e.g., [7,8]). Suddenly it was determined
that although such solutions do exist mathematically, they are
unstable! Benjamin and Feir [5] experimentally demonstrated
and theoretically explained this fact. Feir’s experiments were
performed in awater channelwith awavemaker producing awave
with a length of 2.2m; some results are shown in Figs. 2 and3. Their
theoretical model for such instability used a spectral approach,
starting from the equations and boundary conditions for the one-
dimensional potential, ϕ(x, z, t), and the surface displacement,
z = η(x, z, t), in the form (for deep water)

ϕxx + ϕzz = 0, (14)
ηt + ηx[ϕx]z=η − [ϕz]z=η = 0,

gη +
[
ϕt +

1
2

(
ϕ2x + ϕ

2
z

)]
z=η
= 0,

where g is gravity acceleration; z = 0 corresponds to a non-
perturbed surface. A known solution of these equations is a
progressive (Stokes) waterwave, inwhich only the basic (first) and
the second harmonics are retained:

η = H ≈ a
(
cos ζ +

1
2
ka cos 2ζ

)
, (15)

ϕ = Φ ≈ ωk−1aekz sin ζ ,
ω2 ≈ gk(1+ k2a2).

Here ζ = kx−ωt , and a is its amplitude. Then small perturbations
are added to this solution, each being represented as a sum
of spectral components at frequencies ω ± Ω , where Ω is a
modulation frequency and Ω � ω. In other words, the wave is
now represented in the form η = H + η1 + η2, ϕ = Φ + θ1 + θ2.
The sideband waves η1 and η2 are supposed to have amplitudes
ε1,2 and phases

ζ1,2 = k(1± κ)x− ω(1± δ)t − γ1,2, (16)

where κ and δ = Ω/ω are small fractions satisfying the relation
δω = cgκk, and cg = g/ (2ω) is the linear group velocity at the
main frequency. The parameters γ1,2 are corrections that arise due
to dispersion (a difference of group velocities at the main wave
and the side components) and to nonlinearity. If θ = γ1 + γ2, the
four-wave resonance mentioned in the Introduction occurs when
2ζ = ζ1 + ζ2 + const . As a result, the perturbations can increase,
which is equivalent to the MI.



V.E. Zakharov, L.A. Ostrovsky / Physica D 238 (2009) 540–548 543
Fig. 2. Evolution of awave trainwith themain frequency of 0.85Hz in awater tank.
Upper record is taken at a distance of 60 m from the wave maker; lower record is
for 120 m. Time marks are at each 0.1 s. Vertical bar is in inches. From [6].

Fig. 3. Photographs of progressive wave trains illustrating the wave breaking due
to the instability. Upper photograph is made near the wave maker; lower at 60 m
from it. The main wave length is 2.2 m. From [6].

After substitution of the perturbed η and ϕ with slowly varying
ε1,2(t) and θ(t) into Eq. (14) and keeping only resonance terms, the
following equations follow after some transformations:

dε±
dt
=
1
2

(
ωk2a2 sin θ

)
ε∓, (17)

dθ
dt
= ωk2a2

(
1+

ε21 + ε
2
2

2ε1ε2
cos θ

)
−Ω2/ω.

For a Stokes wave this yields instability with growth rate

γ =
1
2
δ
(
2k2a2 − δ2

)1/2
. (18)

From here it is evident that the instability exists in a limited range
of modulation frequencies,

Ω < Ωs = ωka
√
2. (19)

The maximum of growth rate (increment) is achieved at Ω =

Ωs/
√
2 = ωka (Fig. 4).

At small Ω formula (18) reduces to (12) following from
Lighthill’s consideration, but in general it represents a more
specific condition for instability.
Theworks byWhitham, Lighthill, Benjamin, and Feir stimulated

a lively discussion organized by M. J. Lighthill [2]. Within that
event, the contributions by the above authors have expanded their
previous studies. For example, Benjamin and Feir have shown
that for water of finite depth h, the instability takes place at
kh > 1.363, i.e., as expected, waves on shallow water are
Fig. 4. Dependence of the growth rate of the side-band amplitudes on frequency.
From [5].

modulationally stable. Lighthill suggested a phenomenological
averaged Lagrangian for Stokes waves. Whitham showed an
equivalence between the spectral method used by Benjamin and
Feir and his own modulational approach as regards to the MI. The
range of relevant problems has been broadened by other authors.
In particular, Phillips, Hasselmann, and Longuet-Higgins and Gill
have studied resonance interactions of waves beyond the limits of
the MI.

3.2. Hamiltonian approach for water waves

Zakharov [1] has shown that the equations of type (14) for
weakly nonlinearwaves on the surface of deep fluid can be reduced
to a Hamiltonian form

∂η

∂t
=
δE
δϕs

,
∂ϕs

∂t
= −

δE
δη
, (20)

where ϕs is the potential at the surface, z = η, and E is energy
(Hamiltonian). Then the dynamic equations are expressed in terms
of Fourier components a(k) that can be considered as new complex
canonical variables:

η(k) =

√
|k|
2ω(k)

[
a(k)+ a∗(−k)

]
, (21)

ϕs(k) = −i

√
ω(k)
2|k|

[
a(k)− a∗(−k)

]
.

The resulting Hamiltonian equation is

∂a(k)
∂t
= −i

δE
δa∗(k)

. (22)

The energy E is then represented as a series in powers of a(k)
and a∗(k)up to the quartic terms, integrated over all ranges ofwave
vectors. For weakly nonlinear waves, the complex amplitudes can
be presented in the form a(k) ≈ A(k, t) exp [−iω(k)t], where A is
a slowly varying function.
For a wave packet with a narrow spectrum, the nonlinear

Schrödinger equation (NSE) follows from here for the wave
envelope; in one-dimensional case it has the form

∂ϕs

∂t
−
iλ
2
∂2ϕs

∂ξ 2
= −w|ϕs|

2ϕs, (23)

where ξ = x−vgr t, vgr = dω/dk, λ = d2ω/dk2. This equation has
an obvious solution in the form of a constant-amplitude harmonic
wave, the phase velocity of which depends on amplitude. Namely,
at a given k = k0, the frequency is ω = w0b20, where b0 is
proportional to the wave amplitude. Adding a perturbation so that
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ϕs = e−iw|b0|
2t
(
b0 + αe−iΩt+iκξ + α∗eiΩt−iκξ

)
and linearizing Eq.

(23), one obtains

Ω2 = wλκ2|b0|2 + λ2κ2/4. (24)

It is seen from here that the instability is possible if wλ < 0,
which corresponds exactly to the BFL criterion (8). Besides, it exists
at relatively long modulation spatial scales when κ2 < 4w|b0|2/λ.
For water waves, this is equivalent to the above condition (19).
It should be noted that in all cases considered above, at slow
modulation the increment, Im(Ω), is proportional to the wave
amplitude rather that its square.
Later, Zakharov and Kharitonov [9] generalized this result to a

finite-depth fluid and two-dimensional case and obtained results
similar to those of Benjaminmentioned above, but have also shown
that this type of instability exists only in a narrow range of angles
between the direction of the main wave and perturbation.

3.3. Modulation instability of electromagnetic waves

Analogous research in electromagnetics was occurring simulta-
neously with the hydrodynamic ones and was stimulated, in par-
ticular, by the rapid progress in studies of lasers and the related
problems of nonlinear optics.
A study of self-modulation of nonlinear electromagnetic waves

was performed by Ostrovsky [10] in application to waves in
a nonlinear dielectric described by one-dimensional coupled
equations for an electric field E and polarization P:

c2Exx = Ett + 4πPtt , (25)
Ptt + ω20P − αP

3
= (ω2p/4π)E,

where ω0, ωp, and α are constant parameters (resonance fre-
quency of a dipole, plasma frequency, and nonlinearity parameter,
respectively), and c is light speed in a vacuum. Seeking a solution
with slowly varying amplitude and phase,

E = A(x, t) cos [(ωt − kz + ϕ(x, t))] (26)

and similarly for P , one obtains the equations for ‘‘envelope
waves’’:

At + vgr(1+ κδ + q1A2)Ax =
κ

2
Aδt , (27)

δt + vgr(1+ κδ − q2A2)δx + g(A2)t = −
κ

2ω2

(
Att
A

)
t
.

Here vgr(ω) is linear group velocity, κ is proportional to d2k/dω2,
and q1.2 and g are constant parameters given in the cited paper.
The variable δ = ϕt/ω � 1 is a relative frequency perturbation. If
the terms with q1,2 are neglected as in Lighthill’s equation (5), the
system (27) is completely equivalent to the nonlinear Schrödinger
equation (23) after representing the complex amplitude in terms
of real amplitude and phase. After also neglecting the term in the
r.h.s. of the second equation, one would obtain a hydrodynamic-
type system similar to that considered by Lighthill; this system can
be either hyperbolic (stable) or elliptic (unstable). The terms with
q1,2 are responsible for asymmetric distortion of the envelope at
symmetric initial conditions; later, similar terms were included by
Dysthe in water wave equations; these terms are important in the
case of relativelyweak dispersionwhen κ is small, i.e., vgr isweakly
dependent on ω.
System (27) has a straightforward particular solution in the

form of a harmonic wave with A = A0 = const, δ = δ0 = const;
here one can let δ = 0 without losing generality. After perturbing
it by A′ = A − A0 ∼ exp i(κx − Ωt), δ ∼ exp i(κx − Ωt), one
obtains a dispersion equation similar to (18) and (24):

κ = Ω
{
1± |s|

[
−g ′A20 + (Ω/ω)

2]1/2} , g ′ ∼ g/s. (28)
Fig. 5. Modulation instability in a nonlinear electric line. The oscillograms from top
to bottom correspond to increasing distance along the line. From [14].

Modulation instability is possible at g ′ > 0, which corresponds to
the BFL criterion, and again at a relatively slow modulation, when
Ω2 < ω2g ′A2.
In the same paper, stationary envelope waves in which A

depends on x − Vt , were first considered, including the localized
pulse-envelope soliton existing in an unstable case, as well as
simple waves of envelopes corresponding to the stable case,
resulting in the possible formation of shock envelope waves;
note that such processes in the stable case were considered by
Ostrovsky earlier in [11]. In the subsequent paper [12] the author
considered the structure of shock envelope waves in a medium
with relaxation; a solitary depression in the intensity, later called
a ‘‘dark soliton’’, has also been mentioned.

3.4. Electromagnetic experiments

Although in the above papers some estimates for nonlinear op-
tics were made, the first experimental observation of modulation
instability (i.e., amplification of small initial modulation) for elec-
tromagnetic waves was made in a radiowave range by Zagryad-
skaya and Ostrovsky [13] in a line, with ferrites as nonlinear
elements. They used an exciting signal at frequency f which ranged
from 200 to 500 kHz; modulation frequency varied between 0.02f
and 0.15f ; and initial modulation depth from 7% to 10.5%. In the
course of propagation, the modulation depth increased by 25% to
48%, depending on the wave amplitude. Note that in these exper-
iments, initial amplitude modulation produced phase (frequency)
modulation, as follows from the above theory. Later, Ostrovsky and
Soustov [14] observed a stronger effect in a semi-conductor line
(Fig. 5).
Numerous later experiments in nonlinear optics typically

involved media with possible modulation instability, but in
most cases the observations dealt with nonlinear stages such as
envelope solitons (‘‘bright solitons’’) which, as mentioned, can
exist only in unstable situations and can be a result of evolving
modulation instability, and with ‘‘dark solitons’’ corresponding to
the stable case. In their paper of 1973, Hasegawa and Tappert [15]
suggested to use bright solitons for transmission of light in fibers,
(with reference to [10]); later this idea has turned to be practically
important.

4. Three-dimensional, space-time instabilities

4.1. Electromagnetic waves

The relevant (and very important) topic was self-focusing
of laser beams predicted as a general idea by Askaryan in
1962 [16] and elaborated in many works beginning in 1964–65
(e. g., [17,18]); a review of early results in this area can be
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found in [19]. Actually, self-focusing can be understood as
‘‘spatial self-modulation’’: a small initial ‘‘ripple’’ on the front
of a plane wave can increase in the course of propagation.
In the 1960s, self-focusing was one of the ‘‘hottest’’ topics in
nonlinear optics. Note also that propagation of an intensive optical
pulse in a medium with cubic nonlinearity causes the ‘‘phase
self-modulation’’ (frequency modulation due to the amplitude
variation) which can result in a significant frequency shift and
broadening of the wave spectrum. This effect was discussed by
Ostrovsky [20] and observed by Brewer [21]). This is, however, not
an instability yet.
Modulation instability and spatial instability have many com-

mon features. These two effects were combined by Litvak and Ta-
lanov [22], who considered electromagnetic waves in a disper-
sive medium with cubic nonlinearity. They first obtained a lin-
ear parabolic equation for complex amplitude that combines a
stationary linear parabolic equation for a small-angle diffracting
beam (obtained earlier by Leontovich and Fock for electromag-
netic, and then by Maluyzhinets for acoustic, waves), and the lin-
earized Schrödinger equation for one-dimensional electric field in
the formof E = A(x, t) exp i(ωt−k0x). Then the derivationwas ex-
tended to the nonlinear case to yield the nonlinear parabolic equa-
tion

∆⊥A+ k0(dvgr/dω)Aξξ − 2ik0Ax + k20ε
′
|A|2A = 0, (29)

where again ξ = x − vgr t , and ε′ is proportional to the nonlinear
permeability of the medium at the carrier frequency.
Then the authors considered modulation instability by impos-

ing small perturbations on a plane harmonic wave. After some
transformations, seeking a perturbation proportional to exp(iκξ −
iκ⊥r⊥ − ihx), a dispersion equation follows:

4h2 =
(
κ2
⊥
+ sκ2

) (
κ2
⊥
+ sκ2 − 2ε′|A|2

)
, (30)

where s = k0(dvgr/dω). This equation includes the particular cases
of κ = 0 that is spatial growth for κ2

⊥
< 2ε′|A|2, and the 1-D

case when κ⊥ = 0. This case is similar to those considered above,
except instead of perturbation increasing in time, it increases along
x (at ε′s > 0 and κ < 2ε′|A|2/s); the spatial and temporal
increments differ only by a factor of vgr . In a general case, the
region of instability in the (κ2

⊥
, κ2) plane lies between the straight

lines κ2
⊥
= −sκ2 and κ2

⊥
= −sκ2 + 2ε′|A|2 with the maximum

increment lying on the line κ2
⊥
= −sκ2 + ε′|A|2.

Note that the consideration in [22] was based on a general
form of electric dispersion, when the relation between electric
induction D and electric field E is given in an integral form. In
general, the frequency dependence of nonlinear permeability was
also considered (the latter is absent in Eq. (30)).
The authors calculated a nonlinear stage of evolution of a 1-

D wave initially modulated sinusoidally, and also of a Gaussian
pulse. In addition to the evolution of the wave amplitude, they
calculated its phase and have shown that at the point of maximal
self-compression, the phase is close to constant along a pulse (a
known fact for the focal area of a steady linear beam). Also, the form
of a steady envelope solitonwas explicitly presented via hyperbolic
cosine.
A space-time equation similar to (29) for an optical beam has

also been written by Zakharov [23] who used it to analyze stability
of nonlinear beams and pulses.
The effects combining self-focusing and self-modulation have

also been analyzed for plasma. In particular, Litvak [24] haswritten
a parabolic equation similar to (29), for amagnetoactive plasma. In
general, plasma is subject to various types of instabilities including
the modulation instability according to [25] (where, however, the
three-wave interactions were considered).
4.2. Hamiltonian approach

Zakharov [26] has considered the general case of vector four-
wave interactions,

2ω(k) = ω(k1)+ ω(k2), 2k = k1 + k2, (31)

corresponding to the decay of two quanta at frequency ω into two
others. Such a decay is possible if

ω

(
k1 + k2
2

)
>
ω(k1)+ ω(k2)

2
. (32)

Further, in that paper, a general form of a Hamiltonian
has been written taking into account both three- and four-
wave interactions; indeed, the former can lead to the four-wave
processes as well (due to the interaction of waves at sum- and
difference frequencies with those at primary frequencies). As a
result, an equation for the slowly varying complex amplitude A(k)
of a selected wave at a frequency ω(k) is derived in the form

∂A(k)
∂t
= −i

∫
T (k, k1, k2,k3) exp [it (ω(k)

+ω(k1)− ω(k2)− ω(k3))]
× δ (k+ k1 − k2 − k3)
× A∗ (k1) A (k2) A (k3) dk1dk2dk3. (33)

The interaction coefficient T satisfies the symmetry conditions

T (k, k1, k2,k3) = T (k, k1, k3,k2)

= T (k1, k, k2,k3) = T ∗(k2,k3, k, k1). (34)

A natural particular solution of these equations is a monochro-
matic wave:

A = a exp[−iΩ(k0)t]δ(k − k0), (35)

whereΩ(k0) = T (k0, k0, k0,k0) |a|2 is the frequency shift due
to nonlinearity. By virtue of (34),Ω(k0) is real.
The next step is to consider the stability of the solution (35)

with respect to excitation of a wave pair with wave vectors k1 and
k2 almost satisfying (31).
Let

A(k, t) = ae−iΩ(k0)t [aδ(k − k0)+ αδ(k − k1)e−i∆ω1t

+βδ(2k0 − k1)e−i∆ω2t ], (36)

where

∆ω1 =
[
2T (k0, k1, k0,k1)−∆Ω(k0)

]
|a|2 , (37)

∆ω2 =
[
2T (k0, k2, k0,k2)−∆Ω(k0)

]
|a|2 , k2 = 2k0 − k1.

Substituting this into (33) and linearizing, one obtains a system

∂a
∂t
= −iq1a2β∗eiγ t ,

∂β

∂t
= −iq2a2α∗eiγ t , (38)

where

q2 = q∗1 = T (k1, 2k0 − k1, k0, k0) ,
γ = 2ω(k0)− ω(k1)− ω(2k0 − k1)−∆ω1 −∆ω2.

Here the exponent γ and the coefficients q1.2 depend on the
medium dispersion and the interaction factor T .
These equations yield instability; i.e. exponential growth of α

and β , with a growth rate

ν =
[
|a|4 |T |2

(
k1, 2k0 − k1, k0,k0

)
− γ 2/4

]1/2
. (39)

If the equation ω(2k0) = ω(k1)+ ω(2k0 − k1) has real solutions,
one can slightlymodify k1 and k2 at |a|2 → 0 such that γ = 0. This
is the ‘‘second-order decay instability’’.
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Now suppose that T (k0, k0, k0,k0) is a continuous function if
all ki → k0. Then ∆Ω(k0) = T (k0, k0, k0,k0) = T . In the limit
ki → k0 the expression (39) for ν can be simplified. Denoting
k1 = k0+p, k2= k0−p, one has

ν =

(
1
4
Φ2 − ΦTa2

)1/2
; Φ =

∂2ω

∂kα∂kβ
pαpβ . (40)

In the 1-D case, this expression coincides with the above results,
cf. Eqs. (24) and (28).
When T is a continuous function, equations (38) for a narrow-

band wave can be reduced to the NSE. Note that for gravity waves
on water of a finite depth, T is not a continuous function, and NSE
is replaced by the Davey–Stewardson equation.

4.3. Modulation approach

Benney and Newell [27] started frommulti-wave equations for
complex Fourier amplitudes, in the form
dAl
dt
= iε

∑
m,n

αlmnA∗mA
∗

n

+ iε2
{∑

p

βlpAlApA∗p +
∑
q,r,s

γlqrsA∗qA
∗

r A
∗

s

}
. (41)

with ωl = ω(kl) = −ω−l and Al = A(kl, t) = −A∗l . One of
the particular cases considered, based on this system, excludes the
explicit resonance triads and quartets but allows slow modulation
of a given wave, Al = al(kl, X, T ) exp(−iωt) with large (slow)
scales T and X , so that the termswith ∂/∂T and ∂/∂X are of order ε.
As a result, the authors obtained a single-mode equation for wave
amplitude:

∂a
∂T ′
= i

[∑
r,s

δr,s
∂2a
∂X ′r∂X ′s

+ βa2a∗
]
, (42)

where δr,s = (1/2)∂2ω/∂kr∂ks is dispersion parameter; T ′ = εT ,
X ′ = X − cgT , and cg = ∇kω is the group velocity vector.
NSE immediately follows from here for the 1-D case. The authors
considered modulational stability of a harmonic wave and found a
dispersion equation for the harmonic perturbation at a frequency
Ω ′ (this notation is ours) and wave vector K ′:

Ω ′2 =
∑
r,s

δr,sK ′rK
′

s

(∑
r,s

δr,sK ′rK
′

s − 2β
∣∣a20∣∣

)
. (43)

Here again, modulation stability/instability depends on the sign of
the real quadratic form βδr,sKrKs.

4.4. Phenomenological approach

Yet another option is to use a semi-phenomenological approach
based on the nonlinear dispersion equation and energy conserva-
tion. This method was used by Karpman and Krushkal [28]. They
used the nonlinear dispersion equation

ω ≈ ω0(k2)+ (∂ω/∂a2)0a2, (44)

where a is the wave amplitude. Representing the wave in a form
similar to (26) and expanding (44) in powers of perturbation of the
wave number k = k0 + ∇ϕ(r, t), one obtains an equation for the
phase ϕ as

ϕt + vgrϕx +
1
2
dvgr
dk

ϕ2x +
vgr

2k0
(∇⊥ϕ)

2

+

(
∂ω

∂a2

)
0
(a2 − a20) = 0. (45)
Another equation follows from the energy conservation equation
with a linear group velocity:

(
a2
)
t + (∇ · vgra

2) = 0. From this and
the above form of the wave vector, it follows that(
a2
)
t + vgr

(
a2
)
x +

(
vgr
)
k

(
ϕxa2

)
x

+ (vgr/k0)∇⊥(∇⊥ϕa2) = 0. (46)

In the 1-D case, equations (45) and (46) are analogous to the system
(27) with q1,2 = 0. The same results regarding stability criterion
and limitation on modulation frequency of growing modulation
are applicable here. As in Litvak and Talanov [22], these equations
take into account transverse modulation and were represented in
a complex form of the parabolic equation similar to (29).

5. Active systems

Finally, we briefly outline a more general case when the
basic system is active, i.e., it has some energy pumping. When
the pumping is balanced by some kind of nonlinear losses, an
equilibrium is possible. In case of a progressive wave, it is often
called an autowave. An important difference from the conservative
systems considered above is that the equilibrium wave amplitude
is not arbitrary but has only one or several discrete values
prescribed by the balance mentioned above. Such processes are
typical of convection, supercritical hydrodynamic flows, reaction-
diffusion systems in chemistry and biology, lasers, and electric
lines with active elements such as transistors. The entire problem
is far beyond the framework of the present consideration; here we
onlymention possiblemodulation instabilities, in which two small
side components satisfying the resonance conditions (13) can be
amplified, as above.
Early results in this area have been obtained by Eckhaus as early

as 1963 (published in English in [29]), then, in 1969, by Segel [30]
and (in a form which is closer to the approaches considered
above) by Newell and Whitehead [31], all in application to the
convection theory. The latter authors introduced the complex
Ginzburg–Landau (GL) equation which describes a complex
envelopeW of a quasi-harmonic, almost plane wave,

Wt = gW + (a+ ib)∇2W − (d+ ic)|W |2W . (47)

Evidently, at g = a = d = 0, in the 1-D case this equation
reduces to the NSE considered above, and in a 3-D case, to the
space-time parabolic equation of type (29). If b = c = 0 and real
g > 0, (the case ofGLwith real coefficients consideredbyEckhaus),
there exist harmonic envelope waves,W0 = A0 exp(iKx+ θ0)with
A0 =

√
g − K 2. In the case of convection (for which most of the

early results were obtained), these solutions describe a stationary
roll pattern with a wave number k = k0 + K . Eckhaus has shown
that a small modulation leads to instability if

g > 3K 2. (48)

In laterworks, various other perturbationmodes and their possible
growth in specific hydrodynamic structures have been studied;
still, the criterion (48) seems to remain most simple and universal.
The general, complex version of GL is rich in variants.

Newell and Whitehead performed a detailed analysis of space-
time instabilities of two-dimensional structures (patterns) in this
equation by applying the spectral (‘‘finite bandwith’’) approach. In
the later work [33], Newell has shown that the steady harmonic
solution of (47),

W =
√
g
d
exp

(
−
icg
d
t
)

(49)

is modulationally unstable when

ad+ bc < 0, (50)
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which is the direct analog of the modulational instability
considered above.
In the papers [31–34] the steady autowave solutions of (47)

with real coefficients (patterns) and their stability have also been
studied. At a small diffusion coefficient, these solutions can be of
a meandering type, i.e., they consist of (almost) constants, W =
±
√
g/d, connected by fronts (kinks), and have a solution in the

formof a periodic planewavewhich, for a relatively small diffusion
coefficient a, is of a meandering type (i.e., it consists of (almost)
constants, connected by fronts (kinks)).
Different variations and applications of this problem have been

thoroughly studied in many other papers, e.g., in the work by
Kogelman and DiPrima of 1970 [35]. It is really interesting that
many hydrodynamic structures and patterns can be interpreted
in terms of complex envelopes. For an outline of a similar (and
somewhat more general) approach to pattern formation, see the
later review paper by Newell et al. [36] and references therein.
Among the other earlyworks, we note that that Zakharov et al. [37]
derived the complex GL equation for traveling and standing spin
waves, and Ostrovsky [38] considered an example of modulation
instability in an electromagnetic wave with amplification and
losses (this effect is relevant to the active medium in laser
resonators). In a broader sense, auto-synchronization of modes in
lasers (leading to so-called giant pulses) is just amore complex case
of self-modulation when many sideband frequencies (resonator
modes) become phase correlated due to nonlinearity.

6. Conclusions

Here we mentioned only the very early works from which the
theory of nonlinear self-action leading to modulation instability
has begun. Our aim was to show a broader picture of how the
research was being unfolded at that time, both in the Western
countries and in the Soviet Union. As the reader can see, various
methods have been used for treating MI which may formally
differ but essentially leads to the same mathematical and physical
results. Such a variety of works that have appearedwithin the span
of a few years is an indicator of the importance of the phenomenon
inmany areas of physics.Many (albeit not all) of these studieswere
based on the nonlinear Schrödinger equation (NSE) which was
derived, either in real or in complex variables, in many papers of
the 1960s, includingmany of those cited above. Actually, however,
a similar equation had been first derived as early as 1961 for the
Bose–Einstein condensates; it is known as the Gross–Pitaevskii
equation (see, e.g., in the book [39]). The corresponding topic
is evidently very important at present but it was different from
the MI in nonlinear waves considered here. In 1971 Zakharov
and Shabat [40] showed that NSE belongs to a class of equations
that are completely integrable by the inverse scattering method.
This equation served as a basis for a broad spectrum of nonlinear
effects including envelope solitons which, as already mentioned,
can be formed at the nonlinear stage of modulation instability,
and envelope shocks and ‘‘dark solitons’’ existing in the stable
case. Also MI of water waves is a possible cause of the occurrence
of ‘‘freak waves’’, sporadic bursts on the water surface strongly
exceeding the average level. We already mentioned the role of
solitons in fiber optics. Finally, many effects of hydrodynamic
instability, convective patterns etc., have an origin in the same class
of processes. However, outlining, even briefly, all important effects
related to MI and the resulting ‘‘envelope waves’’ would draw us
into a boundless area. Thus, we limit ourselves to referring the
reader to the books [41–44] and encyclopedic articles [45,46] in
which different aspects of the problem are discussed.
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