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Cascade generation of zonal flows by the drift wave turbulence
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The purpose of this research is to investigate the formation of zonal flows that can lead to the enhanced
confinement of plasma in tokamaks. We show that zonal flows can be effectively formed by resonance
triad interactions in the process of the inverse cascade. We discuss what energy sources are more
effective for the formation of zonal flows.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Zonal flows can serve as the internal transport barriers in toka-
maks [1–3]. It has been suggested (see [4–12] and references cited
therein) that zonal flows appear due to the interaction of drift
waves. The nonlinear dynamics of these waves is often modeled
by the Hasegawa–Mima equation [13]
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Here ψ(x, y, t) is the electrostatic potential; x is the radial and
y is the poloidal (or zonal) coordinates (the slab geometry is as-
sumed); β is a parameter.1

The Hasegawa–Mima equation (1.1) describes the nonlinear dy-
namics of plasma drift waves with the dispersion law

Ω(k) = βp

1 + k2

[
k = (p,q), k2 = p2 + q2], (1.2)

* Corresponding author.
E-mail addresses: balk@math.utah.edu (A.M. Balk), zakharov@math.arizona.edu

(V.E. Zakharov).
1 The parameter β characterizes various gradients of physical quantities, e.g. of
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listed in [14]. The units are chosen so that the effective ion giroradius ρ is 1.
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p and q are zonal (poloidal) and radial wave numbers.2 The forma-
tion of zonal flows corresponds in the Fourier space to the energy
accumulation near the q-axis. The main interactions of the drift
waves (1.2) are the triad resonances

k1 = k2 + k3, Ωk1 = Ωk2 + Ωk3 . (1.3)

However, the triad interaction coefficient vanishes if one of the
waves in the triad (1.3) is a purely zonal mode (say, p3 = 0).
This circumstance lead researchers to account for slightly non-
resonance interactions [12]. It was also suggested [4,7,8,10,15] that
zonal flows appear as a result of the modulational instability. It
corresponds to the 4-wave process, involving two almost resonance
triad interactions connected through a virtual wave (k,ω) whose
frequency ω slightly differs from Ω(k). In a broader context zonal
flows can be viewed as large scale convective cells [7,16].

The goal of the present Letter is to analytically describe the pro-
cess of formation of zonal jets due to the triad interactions that
are exactly in resonance. Herewith the fact that the triad interac-
tion coefficient vanishes (when one of the waves in the triad is
a purely zonal mode) is overcome in the following way. As en-
ergy is transferred towards the origin via the inverse cascade [5],

2 Note that p and q are the Fourier variables for y and x respectively.
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the maximum of the energy spectrum increases, and this increase
can compensate the smallness of the triad interaction coefficient.
By considering scaling solutions, we show that this compensation
does happen.

We assume the magnitude of the field ψ to be sufficiently
small, so that the nonlinear evolution can be viewed as the wave
dynamics. The turbulence of the drift waves is described by the
wave kinetic equation

∂ F1

∂t
= 2π

∫
W23(W23 F2 F3 + W31 F3 F1 + W12 F1 F2)

(1 + k2
1) (1 + k2

2) (1 + k2
3)

× δ(k1 + k2 + k3)δ(Ω1 + Ω2 + Ω3)dk2 dk3 (1.4)

for the energy spectrum F (k, t) of the drift wave turbulence.3 Here
and throughout the Letter, when considering functions depending
on different wave vectors k j ( j = 1,2,3), we keep only their la-
bels j. The functions W result from the triad interaction and are
given by the formula

W12 = (
k2

1 − k2
2

)
(p2q3 − p3q2); (1.5)

similar expressions hold for W23 and W31. The wave kinetic equa-
tion (1.4) was derived in [17–19]; a different (but equivalent) form
was considered in [20] on the basis of the canonical Hamilto-
nian variables [21]; the latter form makes it evident that (1.4) is
a particular case of the kinetic equation for bosons in the high
concentration limit.

To have an analytically tractable problem, we assume the zonal
wave number to be much smaller than the radial wave number
(i.e. |p| � |q|); and the waves are either short (k � 1) or long
(k � 1). Then we can consider similarity solutions

F (p,q, t) = tmG
(
ta p, tbq

)
(1.6)

of the wave kinetic equation (1.4). The similarity solution (1.6) is
determined by the exponents a, b, m and by the “shape func-
tion” G , which is a function of two scalar variables.

The formation of zonal flow at t → ∞ would mean that a >

b,m > 0. And this is what we find.

2. Short waves

When |p| � |q| and k � 1, the wave kinetic equation (1.4) takes
the form
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with Ω = βp
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This equation admits scaling in both p and q, and we look for the
similarity solution (1.6). The function (1.6) indeed satisfies (2.1) if

m − 2a − 3b = −1, (2.3)

while the “shape” function G(p,q) should satisfy the following
integral-differential equation

mG1 + a p1
∂G1

∂ p1
+ bq1

∂G1

∂q1

= 2π

∫
W23

q2
1 q2

2 q2
3

(W23G2G3 + W31G3G1 + W12G1G2)

× δ(k1 + k2 + k3)δ(Ω1 + Ω2 + Ω3)dk2 dk3. (2.4)

3 We assume that the energy spectrum is broad enough so that the drift waves
can be viewed as incoherent, and the kinetic equation (1.4) is applicable.
(In accordance with our notations, G j = G(p j,q j), j = 1,2,3.) The
“shape” equation (2.4) by itself does not determine the similarity
solution: We need to specify the exponents a,b,m.

One equation comes from the energy conservation∫
F (p,q, t)dp dq = Const ⇒ m − a − b = 0. (2.5)

We cannot use the enstrophy conservation to find one more equa-
tion for the exponents a,b,m, since the enstrophy follows the di-
rect cascade and is dissipated at small scales.

However, the kinetic equation additionally conserves the inte-
gral [22]
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The conservation of this quantity gives
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From (2.3), (2.5), and (2.7), we find
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It is also possible to consider a case when there is the energy
source of constant intensity and conservation of the extra invariant
(2.6):∫

F (p,q, t)dp dq ∝ t ⇒ m − a − b = 1, (2.9)

∫
p2

q6
F (p,q, t)dp dq = Const ⇒ m − 3a + 5b = 0. (2.10)
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In a general scaling case, when there are sources of the energy
and the extra invariant (2.6) that pump these conserved quantities
with arbitrary power-law intensities

the energy source
∫

F (p,q, t)dp dq ∝ tμ, (2.12)

the extra invariant source
∫

p2

q6
F (p,q, t)dp dq ∝ tν, (2.13)

we have

m − a − b = μ, m − 3a + 5b = ν. (2.14)

From (2.3) and (2.14)

a = 3 + 4μ − ν

5
, b = 2 + μ + ν

10
,

m = 8 + 19μ − ν

10
. (2.15)

The case (2.8) with the conservation of the energy and the extra
invariant corresponds to μ = ν = 0.

The case (2.11) with the energy source of constant intensity and
the conservation of the extra invariant corresponds to μ = 1, ν = 0.

In both cases (2.8) and (2.11) — since a > b — the inverse cas-
cade leads to the formation of zonal flow. But in the second case,
the zonal flow formation is more pronounced. From the consider-
ation of similarity solutions for the sea wave turbulence [23], we
have learned that the exponents μ, ν can take real values in some
intervals; in particular, μ can even exceed 1.
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We believe that similar consideration would work for the gen-
eral kinetic equation (1.4) with arbitrary p,q (not necessarily,
|p| � |q|). In general, Eq. (1.4) additionally conserves the integral
[24]

I = 1

2

∫
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Ωk
Fk(t)dk, where

ηk = arctan
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3
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√

3
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− 2

√
3Ω(k). (2.16)

However, in the general situation, instead of considering the simi-
larity solutions, we would need to resort to numerical simulations.

3. Long waves

In the long wave limit, when |p| � |q| � 1,

Ω(k) = βp
(
1 − q2), ηk = p3

q2
, (3.1)

and the wave kinetic equation (1.4) takes the form
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When we substitute dispersion law Ω(k) from (3.1) into (3.2), the
linear part drops out, and the frequency delta function takes the
form

δ(Ω1 + Ω2 + Ω3) = δ
(
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3

)
.

Eq. (3.2) has similarity solution (1.6) if

m − 2a − 5b = −1, (3.3)

while the “shape” function G(p,q) should satisfy the integral-
differential equation
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Assuming again the presence of pumping

the energy source
∫

F (p,q, t)dp dq ∝ tμ, (3.5)

the extra invariant source
∫

p2

q2
F (p,q, t)dp dq ∝ tν (3.6)

(cf. (2.12)–(2.13)), we have

m − a − b = μ, m − 3a + b = ν. (3.7)

From (3.3) and (3.7)
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5
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Again, the following two particular cases are of special interest.

1. No sources, i.e. conservation of the energy and the extra in-
variant: μ = ν = 0 (cf. (2.8))

a = b = 1
,m = 2 ⇒ F (p,q, t) = t
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)
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5 5
In this case — since a = b — the similarity solution does not
show any tendency towards zonal flow. From the extra conser-
vation of the integral (2.16) we know [25] that the energy con-
centrates in the 30◦ angle around zonal flow: |p/q| < 1/

√
3.

In other words, the polar angle θ = arctan(q/p) (in absolute
value) exceeds 60◦ .4

2. The energy source of constant intensity and conservation of
the extra invariant: μ = 1, ν = 0 (cf. (2.11))
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In this case, we do have generation of zonal flows — since
a > b. This zonal flow generation is not implied by the balance
argument [25], but it follows from the consideration of the
similarity solution because the latter takes into account the
nonlinear coefficient of the triad interaction.

4. Conclusion

We have seen that the inverse cascade can lead to the forma-
tion of zonal jets (at least in the model cases considered in this
Letter). To see how this cascade generation works in general (with-
out similarity), it is necessary to use numerical simulations.

It is hard to compare the presented cascade generation with the
modulational instability: It is not clear what regime this instability
will saturate to. Furthermore, which mechanism is the most effec-
tive in generation of zonal flows can depend on the initial field of
small scale drift waves [15,27].

We have seen that the zonal jets can be generated more ef-
fectively if there is the energy source, and moreover, it becomes
stronger over time (μ > 1 in the similarity situations). Herewith,
there should be no source of the extra invariant (2.16). It is possi-
ble to achieve such situation if the growth rate is positive in some
domain of the k-space and negative in some other domain (in
other words, we should have instability in one place and decre-
ment in another place of the k-plane).
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