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Abstract

Several theories for weakly damped free-surface flows have been formulated. In this Letter we use the linear approximation to the Navier–
Stokes equations to derive a new set of equations for potential flow which include dissipation due to viscosity. A viscous correction is added not
only to the irrotational pressure (Bernoulli’s equation), but also to the kinematic boundary condition. The nonlinear Schrödinger (NLS) equation
that one can derive from the new set of equations to describe the modulations of weakly nonlinear, weakly damped deep-water gravity waves turns
out to be the classical damped version of the NLS equation that has been used by many authors without rigorous justification.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Even though the irrotational theory of free-surface flows can
predict successfully many observed wave phenomena, viscous
effects cannot be neglected under certain circumstances. Indeed
the question of dissipation in potential flows of fluid with a
free surface is a very important one. As stated by Longuet-
Higgins [1], it would be convenient to have equations and
boundary conditions of comparable simplicity as for undamped
free-surface flows. The peculiarity here lies in the fact that the
viscous term in the Navier–Stokes (NS) equations is identically
equal to zero for a velocity deriving from a potential.
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The effect of viscosity on free oscillatory waves on deep wa-
ter was studied by Boussinesq [2] and Lamb [3], among others.
Basset [4] also worked on viscous damping of water waves. It
should be pointed out that the famous treatise on hydrodynam-
ics by Lamb has six editions. The paragraphs on wave damping
are not present in the first edition (1879) while they are present
in the third edition (1906). The authors did not have access to
the second edition (1895), so it is possible that Boussinesq and
Lamb published similar results at the same time. Lamb derived
the decay rate of the linear wave amplitude in two different
ways: in §348 of the sixth edition by a dissipation calculation
(this is also what Boussinesq did) and in §349 by a direct cal-
culation based on the linearized NS equations. Let α denote the
wave amplitude, ν the kinematic viscosity of the fluid and k the
wave number of the decaying wave. Lamb showed that

(1)
dα

dt
= −2νk2α.

Eq. (1) leads to the classical law for viscous decay of waves of
amplitude α, namely α ∼ exp(−2νk2t).
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In order to include dissipation accurately into potential flow
solutions, one must somehow take into account vorticity. In the
papers by Joseph and Wang [5], Wang and Joseph [6], vortic-
ity was taken into account only in Bernoulli’s equation, while
only the potential component of the velocity was used in the
kinematic condition. Tuck [7], as is commonly done in the ship
research community, derived a single linearized free-surface
condition with a dissipative term, that combines the kinematic
and dynamic boundary conditions. Ruvinsky et al. [8] added the
vortical component in the kinematic boundary condition but did
not simplify it. Longuet-Higgins [1] simplified the equations
of Ruvinsky et al. [8] by introducing a new free surface dif-
fering from the classical free surface by the integral over time
of the vortical component of the velocity. Below we proceed
differently and show that the small vortical component of the
velocity plays a role in the kinematic condition as a dissipa-
tive term. The new resulting set of equations, which describes
potential flow with dissipation, leads to a dispersion relation
which corresponds exactly to that of Lamb [3] in the limit of
small viscosity.

It should be mentioned that there are several papers where
the same artificial dissipation is used in both Bernoulli’s equa-
tion and in the kinematic boundary condition. By “same” we
mean that the authors of these papers all use damping of the
type ∂γ /∂t → ∂γ /∂t + ν̃γ , where γ denotes the quantity to be
followed in time and ν̃ the artificial damping. Such a choice is
justified when one is interested in the numerical integration of
potential flow equations. One can refer for example to Baker
et al. [9], Dyachenko et al. [10,11], Zakharov et al. [12]. This
type of dissipation was used not only for the simulation of grav-
ity waves but also for the study of capillary wave turbulence
by Pushkarev and Zakharov [13]. The addition of dissipation is
sometimes used to satisfy the radiation condition.

2. Derivation of the new set of equations in the linear
approximation

In order to study water waves, one can use for example the ir-
rotational Euler’s equations or the full Navier–Stokes equations.
Since the main goal of the Letter is to narrow the gap between
these two sets of equations by providing a new system of dissi-
pative equations stated purely in terms of the velocity potential
for the irrotational part of the flow, it is natural to state first the
water-wave problem in the context of the irrotational Euler’s
equations and of the full NS equations. Below time is denoted
by t , the horizontal coordinates are denoted by x and y, and z

denotes the vertical coordinate.

2.1. Water waves in the framework of the Navier–Stokes
equations

The two-dimensional (2D) flow of a viscous, incompressible
fluid is governed by the conservation of mass

(2)∇ · �v = 0,
and by the conservation of momentum

(3)
∂ �v
∂t

+ (�v · ∇)�v = − 1

ρ
∇p + ν��v + �g.

The vector �v(x, z, t) = (u,w) is the velocity field, ρ the fluid
density, �g = (0,−g) the acceleration due to gravity, ν the kine-
matic viscosity and p(x, z, t) the pressure. The free surface
z = η(x, t) must be found as part of the solution. Two boundary
conditions are required. The first one is the kinematic condition,
which can be stated as

(4)
∂η

∂t
+ u(x,η, t)

∂η

∂x
= w(x,η, t).

The second boundary condition is the dynamic condition which
states that the forces must be equal on both sides of the free
surface:

(5)−(p − p0)�n + τ · �n = 0 at z = η(x, t),

where �n is the normal to the free surface and τ the viscous part
of the stress tensor. The explicit expressions of τ and �n are

τ = ρν

(
2 ∂u

∂x
∂u
∂z

+ ∂w
∂x

∂u
∂z

+ ∂w
∂x

2 ∂w
∂z

)
,

�n = 1√
1 + (

∂η
∂x

)2

(− ∂η
∂x
1

)
.

The continuity of tangential stresses obtained by projecting (5)
along the tangent to the free surface yields

ρν

(
∂u

∂z
+ ∂w

∂x

)
+ ρν × nonlinear terms = 0

(6)at z = η(x, t),

while the continuity of normal stresses reads

p − p0 = 2ρν
∂w

∂z
+ ρν × nonlinear terms

(7)at z = η(x, t).

Here surface tension effects have been neglected. Finally, in wa-
ter of infinite depth, there is no kinematic boundary condition
on the bottom. Instead it is replaced by

(8)|�v| → 0 as z → −∞.

To summarize, the water-wave problem in the framework of the
NS equations is given by Eqs. (2), (3), (4), (5) and (8).

2.2. Water waves in the framework of potential flow theory

In the framework of potential flow theory, the viscous terms
are neglected and the flow is assumed to be irrotational. A ve-
locity potential is introduced: �v = ∇φ. Therefore the equation
for the conservation of mass (2) becomes

(9)�φ = 0.

The kinematic boundary condition (4) remains the same but can
be expressed in terms of the velocity potential φ:

(10)
∂η + ∂φ ∂η = ∂φ

at z = η(x, t).

∂t ∂x ∂x ∂z
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The dynamic boundary condition (7) on the free surface reduces
to the continuity of pressure p(x,η, t) = p0. Eq. (6) is no longer
relevant. The equation for the conservation of momentum (3)
can be integrated. It then leads to Bernoulli’s equation, which
takes the form

(11)
∂φ

∂t
+ 1

2
|∇φ|2 + gz + p − p0

ρ
= 0

everywhere in the fluid.
Therefore one can replace the dynamic boundary condition

p(x,η, t) = p0 by

(12)
∂φ

∂t
+ 1

2
|∇φ|2 + gη = 0 at z = η(x, t).

The bottom boundary condition (8) remains the same but can
be expressed in terms of the velocity potential φ:

(13)|∇φ| → 0 as z → −∞.

To summarize, the water-wave problem in the framework of
potential flow theory is given by Eqs. (9), (10), (12) and (13).
Eq. (11) can be used a posteriori to compute the pressure every-
where in the fluid.

2.3. New set of equations

In order to clearly show how the new set of equations is
derived, we first introduce the correction due to viscosity in
the linearized equations for the potential flow of an incom-
pressible fluid with a free surface (the linearization applies to
the dynamic boundary condition expressed through Bernoulli’s
equation and the kinematic boundary condition on the free sur-
face). As in §349 of Lamb [3], we resolve the velocity field into
irrotational (curl-free) and solenoidal (divergence-free) compo-
nent vector fields (Helmholtz decomposition). In other words,
the velocity field is considered to be generated by a pair of po-
tentials: a scalar potential and a vector potential. One writes

(14)�v = ∇φ + ∇ × �A,

where �A is a vector stream function.
The linearized NS equations (3) read

∂u

∂t
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂z2

)
,

(15)
∂w

∂t
= −g − 1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+ ∂2w

∂z2

)
,

with the condition of flow incompressibility (2)

(16)
∂u

∂x
+ ∂w

∂z
= 0.

Using the Helmholtz decomposition (14) for the velocity yields

u(x, z, t) = ∂φ

∂x
− ∂Ay

∂z
,

(17)w(x, z, t) = ∂φ

∂z
+ ∂Ay

∂x
,

since in 2D there is a single component to the vector stream
function, which we denote by Ay . After substitution of the de-
composition (17) into Eqs. (15) and (16), one notices that the
equations are verified provided that the potentials φ and �A sat-
isfy the following equations:

(18)
∂Ay

∂t
= ν

(
∂2Ay

∂x2
+ ∂2Ay

∂z2

)
,

(19)
∂φ

∂t
= −p(x, z, t)

ρ
− gz + p0

ρ
,

(20)�φ = 0.

To determine the ‘normal modes’ which are periodic in re-
spect of x with a prescribed wavelength 2π/k, we assume a
time-factor e−iωt and a space-factor eikx . The solutions for the
potential φ and the single component of the vector potential Ay

are then

φ(x, z, t) = φ0e
i(kx−ωt)e|k|z,

(21)Ay(x, z, t) = A0e
i(kx−ωt)emz,

where

(22)m2 = k2 − i
ω

ν
.

Let us now write down the boundary conditions along the
free surface. The linearized kinematic boundary condition (4)
reads

(23)
∂η

∂t
= w(x,0, t),

since the velocity is evaluated at z = 0 in the linear approxima-
tion. It yields

(24)η(x, t) = 1

ω

(
i|k|φ0 − kA0

)
ei(kx−ωt).

The linearized dynamic boundary conditions (6) and (7) read

ρν

(
∂u

∂z
+ ∂w

∂x

)
= 0 at z = 0,

(25)p − 2ρν
∂w

∂z
= p0 at z = 0.

The boundary conditions (25) together with (24) provide two
pieces of information:

(1) the relationship between the potential φ0 and the vector
stream function A0,

A0 = 2i|k|k
m2 + k2

φ0

(26)= −2

(
ν|k|k

ω

)(
1

1 + 2i(νk2/ω)

)
φ0,

(2) the dispersion relation ω(k)

(27)

(
2 − iω

νk2

)2

+ g

ν2|k|3 = 4

(
1 − iω

νk2

) 1
2

.

Let us now consider the limit of small viscosity. Lamb [3]
introduces the dimensionless number θ = νk2/|ω|. For small θ

(in other words when νk2 � |ω|), we expand (27) in powers
of θ . Neglecting terms that are o(θ), one derives the following
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approximation for ω:

(28)ω = ±√
g|k| − 2iνk2.

In this limit, it is clear that the vortical component of the ve-
locity is much less than the potential component of the velocity
since Eq. (26) leads to

|A0|
|φ0| ≈ 2

νk2

|ω| � 1.

So far in this section, every line of our calculation can be found
in §349 of Lamb [3] and we refer to Lamb for a closer look
at the character of the motion affected by viscosity. In particu-
lar he calculates the vorticity and the penetration depth of the
vortical component of the liquid velocity. Eq. (28) leads to the
classical law (1) for viscous decay of free waves. Under the
same limit (νk2 � |ω|), Eq. (26) can be written as follows:

(29)
∂2Ay

∂x∂t
= 2ν

∂3φ

∂x2∂z
on the free surface at z = 0.

This equation was derived by Ruvinsky et al. [8].
So far, we have only described the viscous solution to the

linear NS equations with small viscosity and, as just said, it is a
well-known solution. But at this point a natural question arises:
Can we describe this flow by using only the potential part of the
velocity?

First, let us look at the kinematic condition (23) and ex-
plicitly separate the potential and vortical components of the
velocities in it:

(30)
∂η

∂t
= ∂φ

∂z
+ ∂Ay

∂x
at z = 0.

The vortical part of the velocity ∂Ay/∂x can be written in dif-
ferent ways, but here we want to express it in terms of η. (Note
that we consider linear equations and can therefore freely ex-
press one function through another.) To do this, one can use
the solution for η (24) with the relation (26) between the con-
stants φ0 and A0. Thus, the following relation can be easily
derived:

∂Ay

∂x

∣∣∣∣
z=0

= −2i|k|3
(

ν

ω

)
φ0

1 + 2i(νk2/ω)
ei(kx−ωt)

= −2k2νη(x, t),

that is

(31)
∂Ay

∂x

∣∣∣∣
z=0

= 2ν
∂2η

∂x2
on the free surface.

Eq. (31) is one of the main results of our Letter. The kinematic
boundary condition can now be written without the vortical
component of the velocity:

(32)
∂η

∂t
= ∂φ

∂z
+ 2ν

∂2η

∂x2
at z = 0.

Let us now turn to the equation for the potential component
of the velocity. The dissipative correction to this equation is
simply Bernoulli’s equation, except that the pressure must be
replaced by

p = 2ρν
∂w

∂z

∣∣∣∣
z=0

+ p0

(33)= p0 + 2ρν

(
∂2φ

∂z2
+ ∂2Ay

∂x∂z

)∣∣∣∣
z=0

.

Note that the vortical component in the pressure (33) is o(ν)

and can be neglected. So, we can write down the linearized
Bernoulli equation (11) with dissipation

(34)
∂φ

∂t
+ gη = −2ν

∂2φ

∂z2
at z = 0.

Note that equations very close to (34) can be found in other
papers: see Eq. (1b) in Ruvinsky et al. [8], Eq. (4.1) in Longuet-
Higgins [1] and Eq. (6.26) in Joseph and Wang [5]. It is easy to
check that the two boundary conditions (32) and (34) lead to
the same dispersion relation as (28).

To summarize, the linearized water-wave problem in the
framework of our new viscous potential theory is given by
Eqs. (9), (32), (34) and (13).

3. Fully nonlinear equations with dissipation

In the previous section, we added viscous terms in the lin-
ear equations of the 2D potential flow of a fluid with a free
surface. At this point a second natural question arises: Can we
generalize the analysis of the linear case to the fully nonlinear
equations, or at least to weakly nonlinear equations?

The situation is more complicated. As said above, the set
of equations which is the closest to ours is that of Ruvin-
sky et al. [8]. The only difference is that they did not express
the vertical component of the vortical part of fluid velocity
∂Ay/∂x|z=0 through η. However they provided the extension of
their results to the fully nonlinear equations. Details are given in
the appendix of Ruvinsky et al. [8]. Their linearized Bernoulli
equation is the same as ours and their nonlinear Bernoulli equa-
tion (1b) reads, after adapting it to our notation,

(35)
∂φ

∂t
+ 1

2
|∇φ|2 + gη = −2ν

∂2φ

∂z2
at z = η.

The only question that remains is whether one can still ex-
press ∂Ay/∂x|z=η through the second derivative of η. The fully
nonlinear kinematic boundary condition of Ruvinsky et al. [8]
reads

(36)
∂η

∂t
+ ∂η

∂x

∂φ

∂x
= ∂φ

∂z
+ ∂Ay

∂x
at z = η,

together with

∂2Ay

∂x∂t
= 2ν

∂3φ

∂2x∂z
on the free surface z = η.

At this stage, we conjecture that at low viscosity one can still
express ∂Ay/∂x by 2ν∂2η/∂x2 and we provide what we be-
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lieve to be the physically correct generalization of the kinematic
boundary condition:

(37)
∂η

∂t
+ ∇η · ∇φ = ∂φ

∂z
+ 2ν�η at z = η(x, y, t).

Note that we have also extended it to three-dimensional flows:
in other words, φ = φ(x, y, z, t) and η = η(x, y, t). It is inter-
esting to point out that Fuhrman et al. [14] in a paper devoted
to Boussinesq models provide in their appendix a set of dif-
fusive Boussinesq equations (A.1) and (A.2) which include a
dissipative term �η in the equation for ∂η/∂t and a dissipative
term �u in the equation for ∂u/∂t . (In (35), the term −∂2φ/∂z2

can be replaced by �φ if by analogy we express the horizontal
Laplacian by �.)

Next we provide an additional argument in favor of our new
set of nonlinear equations. It is well known that the modulations
of weakly nonlinear (undamped) gravity waves in deep water,
with basic wave number k0 and frequency ω0(k0) = √

g|k0|,
can be described by the non-dissipative nonlinear Schrödinger
(NLS) equation for the envelope A of a Stokes wavetrain (writ-
ten here in the 2D case)

(38)i
∂A

∂t
− ω0

8k2
0

∂2A

∂x2
− 1

2
ω0k

2
0 |A|2A = 0.

Recall that A is the envelope of the normal canonical variable a.
The Fourier harmonics a satisfy the following relation:

(39)a =
√

ω

2|k|ηk + i

√ |k|
2ω

ψk,

where ηk is the Fourier transform of the free-surface elevation
and ψk the Fourier transform of the velocity potential evaluated
on the free surface, see Zakharov et al. [15]. What happens if
one tries to derive a similar equation from the boundary con-
ditions (35) and (37)? Dissipation then appears naturally in the
NLS equation in the following way:

(40)i
∂A

∂t
− ω0

8k2
0

∂2A

∂x2
− 1

2
ω0k

2
0 |A|2A = −2iνk2

0A.

It is important to recognize that Eq. (40) has often been used
successfully by many authors but its physical origin was not re-
ally explained. Authors either simply refer to previous papers
or argue that it is the simplest way to include dissipation. Here
we made an attempt to provide a clear derivation of the damped
NLS equation (40). It is also important to point out that if vortic-
ity effects are not included in the kinematic boundary condition,
then the resulting NLS equation is much more complicated.

4. Discussion

Let us first summarize the new set of equations we provide
for the study of weakly damped three-dimensional free-surface
flows:

�φ = 0,

∂η + ∇η · ∇φ = ∂φ + 2ν�η at z = η(x, y, t),

∂t ∂z
∂φ

∂t
+ 1

2
|∇φ|2 + gη = −2ν

∂2φ

∂z2
at z = η(x, y, t),

|∇φ| → 0 at z → −∞.

While the set of equations is fully justified for the linearized
problem, it is still at the stage of a conjecture for the nonlinear
problem.

In addition to Laplace’s equation and the equation for the
decay at infinity, Ruvinsky et al. [8] derived a system of three
equations in the limit of small viscosity: one for the velocity
potential, one for the surface elevation and one for the vorti-
cal component of the velocity. Longuet-Higgins [1] simplified
these equations. Debnath [16] and Spivak et al. [17] applied
these equations to particular problems.

Here we have shown that the vortical component of veloc-
ity can be excluded from the equations, thus leaving only two
equations for a quasi-potential flow. A small amount of vorticity
has been incorporated into the kinematic boundary condition.
At this stage the generalization to nonlinear equations remains
a conjecture but we provided at least two heuristic arguments
in favor of the new formulation: the extension to nonlinear
equations that Ruvinsky et al. [8] gave and the derivation of
a damped NLS equation which is physically correct. However
it is clear that these two arguments are valid only if |∇η| re-
mains small. If it is not the case, the additional mechanism of
dissipation due to wave breaking plays a much more important
role.

The set of dissipative equations we derived can be extended
in several directions. First of all, as in Longuet-Higgins [1,18]
and Ruvinsky et al. [8], one can include surface tension in the
study of weakly damped waves. Surface tension is important for
example to explain the generation of short capillary waves by
long gravity waves of large amplitude. These capillary waves
remove energy from the gravity waves. Energy is then dissi-
pated faster since νk2 is much larger for the capillary waves
than it is for the gravity waves. Incidentally the above analy-
sis applies to non-breaking and non-turbulent motions in which
the kinematic viscosity ν represents the molecular viscosity.
The set of dissipative equations can also be extended to inter-
facial waves and more generally to multi-layer configurations.
Another extension is the generalization to finite depth. It was
recently provided by Dutykh and Dias [19]. The zero velocity
requirement at the bottom leads to a nonlocal viscous term in
the bottom kinematic boundary condition.
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