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Summary. The purpose of this article is numerical verification of the thory of weak
turbulence. We performed numerical simulation of an ensemble of nonlinearly inter-
acting free gravity waves (swell) by two different methods: solution of primordial
dynamical equations describing potential flow of the ideal fluid with a free surface
and, solution of the kinetic Hasselmann equation, describing the wave ensemble in
the framework of the theory of weak turbulence. Comparison of the results demon-
strates pretty good applicability of the weak turbulent approach. In both cases we
observed effects predicted by this theory: frequency downshift, angular spreading as
well as formation of Zakharov-Filonenko spectrum Iω ∼ ω−4. To achieve quantita-
tive coincidence of the results obtained by different methods one has to accomplish
the Hasselmann kinetic equation by an empirical dissipation term Sdiss modeling the
coherent effects of white-capping. Adding of the standard dissipation terms used in
the industrial wave predicting model (WAM) leads to significant improvement but
not resolve the discrepancy completely, leaving the question about optimal choice
of Sdiss open.

Numerical modeling of swell evolution in the framework of the dynamical equa-
tions is affected by the side effect of resonances sparsity taking place due to finite
size of the modeling domain. We mostly overcame this effect using fine integration
grid of 512 × 4096 modes. The initial spectrum peak was located at the wave num-
ber k = 300. Similar conditions can be hardly realized in the laboratory wave tanks.
One of the results of our article consists in the fact that physical processes in finite
size laboratory wave tanks and in the ocean are quite different, and the results of
such laboratory experiments can be applied to modeling of the ocean phenomena
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with extra care. We also present the estimate on the minimum size of the laboratory
installation, allowing to model open ocean surface wave dynamics.

1 Introduction.

The theory of weak turbulence is designed for statistical description of weakly-
nonlinear wave ensembles in dispersive media. The main tool of weak turbu-
lence is kinetic equation for squared wave amplitudes, or a system of such
equations. Since the discovery of the kinetic equation for bosons by Nord-
heim [1] (see also paper by Peierls [2]) in the context of solid state physics,
this quantum-mechanical tool was applied to wide variety of classical prob-
lems, including wave turbulence in hydrodynamics, plasmas, liquid helium,
nonlinear optics, etc. (see monograph by Zakharov, Falkovich and L’vov [3]).
Such kinetic equations have rich families of exact solutions describing weak-
turbulent Kolmogorov spectra. Also, kinetic equations for waves have self-
similar solutions describing temporal or spatial evolution of weak – turbulent
spectra.

However, the most remarkable example of weak turbulence is wind-driven
sea. The kinetic equation describing statistically the gravity waves on the
surface of ideal liquid was derived by Hasselmann [4]. Since this time the Has-
selmann equation is widely used in physical oceanography as foundation for
development of wave-prediction models: WAM, SWAN and WAVEWATCH

– it is quite special case between other applications of the theory of weak
turbulence due to the strength of industrial impact.

In spite of tremendous popularity of the Hasselmann equation, its valid-
ity and applicability for description of real wind-driven sea has never been
completely proven. It was criticized by many respected authors, not only in
the context of oceanography. There are at least two reasons why the weak–
turbulent theory could fail, or at least be incomplete.

The first reason is presence of the coherent structures. The weak-turbulent
theory describes only weakly-nonlinear resonant processes. Such processes are
spatially extended, they provide weak phase and amplitude correlation on the
distances significantly exceeding the wave length. However, nonlinearity also
causes another phenomena, much stronger localized in space. Such phenom-
ena – solitons, quasi-solitons and wave collapses are strongly nonlinear and
cannot be described by the kinetic equations. Meanwhile, they could com-
pete with weakly-nonlinear resonant processes and make comparable or even
dominating contribution in the energy, momentum and wave-action balance.
For gravity waves on the fluid surface the most important coherent structures
are white-cappings (or wave-breakings), responsible for essential dissipation
of wave energy.

The second reason limiting the applicability of the weak-turbulent theory
is finite size of any real physical system. The kinetic equations are derived
only for infinite media, where the wave vector runs continuous D-dimensional
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Fourier space. Situation is different for the wave systems with boundaries, e.g.
boxes with periodical or reflective boundary conditions. The Fourier space of
such systems is infinite lattice of discrete eigen-modes. If the spacing of the
lattice is not small enough, or the level of Fourier modes is not big enough,
the whole physics of nonlinear interaction becomes completely different from
the continuous case.

For these two reasons verification of the weak turbulent theory is an urgent
problem, important for the whole physics of nonlinear waves. The verification
can be done by direct numerical simulation of the primitive dynamical equa-
tions describing wave turbulence in nonlinear medium.

So far,the numerical experimentalists tried to check some predictions of
the weak-turbulent theory, such as weak-turbulent Kolmogorov spectra. For
the gravity wave turbulence the most important is Zakharov-Filonenko spec-
trum Fω ∼ ω−4 [5]. At the moment, this spectrum was observed in numerous
numerical experiments [6]- [19].

The attempts of verification of weak turbulent theory through numerical
simulation of primordial dynamical equations has been started with numerical
simulation of 2D optical turbulence [20], which demonstrated, in particular,
co–existence of weak – turbulent and coherent events.

Numerical simulation of 2D turbulence of capillary waves was done in [6],
[7], and [8]. The main results of the simulation consisted in observation of
classical regime of weak turbulence with spectrum Fω ∼ ω−19/4, and discov-
ery of non-classical regime of “frozen turbulence”, characterized by absence
of energy transfer from low to high wave-numbers. The classical regime of
turbulence was observed on the grid of 256 × 256 points at relatively high
levels of excitation, while the “frozen” regime was realized at lower levels of
excitation, or more coarse grids. The effect of “frozen” turbulence is explained
by sparsity of 3-wave resonance, both exact and approximate. The classical
regime of turbulence becomes possible due to nonlinear shift of the linear fre-
quencies caused by enhanced level of excitation. Conclusion has been made
that in the reality the turbulence of waves in limited systems is practically
always the mixture of classical and “frozen” regimes.

In fact, the “frozen” turbulence is close to KAM regime, when the dy-
namics of turbulence is close to the behavior of integrable system [8].

The first attempt to perform modeling of the system of nonlinear waves
(swell on the surface of deep ocean), solving simultaneously kinetic equa-
tion and primordial dynamic equations, has been done in the article [15].
The results of this simulation again confirmed ubiquity of the weak-turbulent
Zakharov-Filonenko asymptotic ω−4 and shown existence of the inverse cas-
cade, but presented essentially different scenario of the spectral peak evolu-
tion. Detailed analysis shown, that even on the grids as fine as 256 × 2048
modes, the energy transport is realized mostly by the network of few se-
lected modes – “oligarchs” – posed in the optimal resonant condition. This
regime, transitional between weak turbulence and ”frozen” turbulence, should
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be typical for wave turbulence in the systems of medium size. It was called
”mesoscopic turbulence”. Similar type of turbulence was observed in [17], [18].

In this article we present the results of new numerical experiments on
modeling of swell propagation in the framework of both dynamical and kinetic
equations, using fine grid containing, corresponding to 512 × 4096 Fourier
modes. We think that our results can be considered as first in the world
literature direct verification of wave kinetic equation.

One important point should be mentioned. In our experiments we observed
not only weak turbulence, but also additional nonlinear dissipation of the wave
energy, which could be identified as the dissipation due to white-capping. To
reach agreement with dynamic experiments, we had to accomplish the ki-
netic equation by a phenomenological dissipation term Sdiss. In this article
we examined dissipation terms used in the industrial wave-prediction models
WAM Cycle 3 and WAM cycle 4. Dissipation term used in WAM Cycle 3

works fairly, while Sdiss used in WAM Cycle 4 certainly overestimate nonlin-
ear dissipation. This fact means that for getting better agreement between
dynamic and kinetic computations, we need to take into consideration more
sophisticated dissipation term.

2 Deterministic and statistic models.

In the ”dynamical” part of our experiment the fluid was described by two
functions of horizontal variables x, y and time t: surface elevation η(x, y, t)
and velocity potential on the surface ψ(x, y, t). They satisfy the canonical
equations [23]

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −δH

δη
, (1)

Hamiltonian H is presented by the first three terms in expansion on powers
of nonlinearity ∇η

H = H0 +H1 +H2 + ...,

H0 =
1

2

∫

(

gη2 + ψk̂ψ
)

dxdy,

H1 =
1

2

∫

η
[

|∇ψ|2 − (k̂ψ)2
]

dxdy,

H2 =
1

2

∫

η(k̂ψ)
[

k̂(η(k̂ψ)) + η∇2ψ
]

dxdy.

(2)

Here k̂ is the linear integral operator k̂ =
√
−∇2, defined in Fourier space as

k̂ψr =
1

2π

∫

|k|ψke
−ikrdk, |k| =

√

k2
x + k2

y. (3)

Using Hamiltonian (2) and equations (1) one can get the dynamical equations
[6]:
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η̇ = k̂ψ − (∇(η∇ψ)) − k̂[ηk̂ψ]+

+k̂(ηk̂[ηk̂ψ]) + 1
2∇2[η2k̂ψ]+

1
2 k̂[η

2∇2ψ] + F̂−1[γkηk],

ψ̇ = −gη − 1
2

[

(∇ψ)2 − (k̂ψ)2
]

−
−[k̂ψ]k̂[ηk̂ψ] − [ηk̂ψ]∇2ψ + F̂−1[γkψk].

(4)

Here F̂−1 corresponds to inverse Fourier transform. We introduced artificial
dissipative terms F̂−1[γkψk], corresponding to pseudo-viscous high frequency
damping.

It is important to stress that we added dissipation terms in both equations.
In fact, equation for η̇ is just kinematic boundary condition, and adding a
smoothing term to this equation has no any physical sense. Nevertheless,
adding of this term is necessary for stability of the numerical scheme.

The model (1)-(4) was used in the numerical experiments [6] – [8], [12],
[13], [15], [17], [18].

Introduction of the complex normal variables ak

ak =

√

ωk

2k
ηk + i

√

k

2ωk
ψk, (5)

where ωk =
√
gk, transforms equations (1) into

∂ak
∂t

= −i
δH

δa∗
k

. (6)

To proceed with statistical description of the wave ensemble, first, one
should perform the canonical transformation ak → bk, which excludes the
cubical terms in the Hamiltonian. The details of this transformation can be
found in the paper by Zakharov (1999) [24]. After the transformation the
Hamiltonian takes the forms

H =

∫

ωkbkb
∗
k

+
1

4

∫

Tkk1k2k3
b∗
k
b∗
k1
bk2

bk3
×

×δk+k1−k2−k3
dk1dk2dk3.

(7)

where T is a homogeneous function of the third order:

T (εk, εk1, εk2, εk3) = ε3T (k,k1,k2,k3). (8)

Connection between ak and bk together with explicit expression for Tkk1k2k3

can be found, for example, in [24].
Let us introduce the pair correlation function

< aka
∗
k′ >= gNkδ(k − k′), (9)

where Nk is the spectral density of the wave function. This definition of the
wave action is common in oceanography.
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We also introduce the correlation function for transformed normal vari-
ables

< bkb
∗
k′ >= gnkδ(k − k′) (10)

Functions nk and Nk can be expressed through each other in terms of cumber-
some power series [24]. On deep water their relative difference is of the order
of µ2 (µ is the characteristic steepness) and can be neglected (in most cases
of swell evolution (or wave evolution) experimental results shows µ ≃ 0.1).

Spectrum nk satisfies Hasselmann (kinetic) equation [4]

∂nk

∂t
= Snl[n] + Sdiss + 2γknk,

Snl[n] = 2πg2

∫

|Tk,k1,k2,k3
|2 (nk1

nk2
nk3

+

+nknk2
nk3

− nknk1
nk2

− nknk1
nk3

)×
×δ (ωk + ωk1

− ωk2
− ωk3

)×
×δ (k + k1 − k2 − k3) dk1dk2dk3.

(11)

Here Sdiss is an empiric dissipative term, corresponding to white-capping.
Stationary conservative kinetic equation

Snl = 0 (12)

has the rich family of Kolmogorov-type [25] exact solutions. Among them is
Zakharov-Filonenko spectrum [5] for the direct cascade of energy

nk ∼ 1

k4
, (13)

and Zakharov-Zaslavsky [26], [27] spectra for the inverse cascade of wave ac-
tion

nk ∼ 1

k23/6
, (14)

3 Deterministic Numerical Experiment.

3.1 Problem Setup

The dynamical equations (4) have been solved in the real-space domain 2π×2π
on the grid 512×4096 with the gravity acceleration set to g = 1. The solution
has been performed by the spectral code, developed in [21] and previously
used in [22], [12], [13], [15]. We have to stress that in the current computations
the resolution in Y -direction (long axis) is better than the resolution in X-
direction by the factor of 8.

This approach is reasonable if the swell is essentially anisotropic, almost
one-dimensional. This assumption will be validated by the proper choice of the
initial data for computation. As the initial condition, we used the Gaussian-
shaped distribution in Fourier space (see Fig. 1):
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|ak| = Ai exp

(

−1

2

|k − k0|2
D2

i

)

, |k − k0| ≤ 2Di,

|ak| = 10−12, |k − k0| > 2Di,

Ai = 0.92 × 10−6, Di = 60,k0 = (0; 300), ω0 =
√

gk0.

(15)

The initial phases of all harmonics were random. The average steepness of
this initial condition was µ ≃ 0.167.

To realize similar experiment in the laboratory wave tank, one has to to
generate the waves with wave-length 300 times less than the length of the
tank. The width of the tank would not be less than 1/8 of its length. The
minimal wave length of the gravitational wave in absence of capillary effects
can be estimated as λmin ≃ 3cm. The leading wavelength should be higher
by the order of magnitude λ ≃ 30cm.

In such big tank of 200×25 meters experimentators can observe the evolu-
tion of the swell until approximately 700T0 – still less than in our experiments.
In the tanks of smaller size, the effects of discreetness the Fourier space will
be dominating, and experimentalists will observe either “frozen”, or “meso-
scopic” wave turbulence, qualitatively different from the wave turbulence in
the ocean.

To stabilize high-frequency numerical instability, the damping function has
been chosen as

γk =

{

0, k < kd,
−γ(k − kd)

2, k ≥ kd,
kd = 1024, γ = 5.65 × 10−3.

(16)

The simulation was performed until t = 336, which is equivalent to 926T0,
where T0 is the period of the wave, corresponding to the maximum of the
initial spectral distribution.

3.2 Zakharov-Filonenko spectra

Like in the previous papers [10], [12], [13] and [15], we observed fast formation
of the spectral tail, described by Zakharov-Filonenko law for the direct cascade
nk ∼ k−4 [5] (see Fig.2). In the agreement with [15], the spectral maximum
slowly down-shifts to the large scales region, which corresponds to the inverse
cascade [26], [27].

Also, the direct measurement of energy spectrum has been performed dur-
ing the final stage of the simulation, when the spectral down shift was slow
enough. This experiment can be interpreted as the ocean buoy record – the
time series of the surface elevations has been recorded at one point of the
surface during Tbuoy ≃ 300T0. The Fourier transform of the autocorrelation
function

E(ω) =
1

2π

Tbuoy/2
∫

−Tbuoy/2

< η(t+ τ)η(τ) > eiωtdτdt. (17)
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Fig. 1. Initial distribution of |ak|
2 on k-plane.

10-26
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10-14

10-12

10-10

 100  1000

<
|a

k|
2 >

K

t=583T0 , <|∇η |>=0.62x10-1

k-4

Fig. 2. Angle-averaged spectrum nk =< |ak|
2 > in a double logarithmic scale. The

tail of distribution fits to Zakharov-Filonenko spectrum.

allows to detect the direct cascade spectrum tail proportional to ω−4 (see
Fig.3), well known from experimental observations [28], [29], [30].
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ω
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Fig. 3. Energy spectrum in a double logarithmic scale. The tail of distribution fits
to asymptotics ω−4.

3.3 Is the weak-turbulent scenario realized?

Presence of Kolmogorov asymptotics in spectral tails, however, is not enough
to validate applicability of the weak-turbulent scenario for description of wave
ensemble. We have also to be sure that statistical properties of this ensemble
correspond to weak-turbulent theory assumptions.

We should stress that in our experiments at thebeginning |ak|2 is a smooth
function of k. Only phases of individual waves are random. As shows nu-
merical simulation, the initial condition (15) (see Fig.1) does not preserve its
smoothness – it becomes rough almost immediately (see Fig.4). The picture of
this roughness is remarkably preserved in many details, even as the spectrum
down-shifts as a whole. This roughness does not contradict the weak-turbulent
theory. According to this theory, the wave ensemble is almost Gaussian, and
both real and imaginary parts of each separate harmonics are not-correlated.
However, according to the weak-turbulent theory, the spectra must become
smooth after averaging over long enough time of more than 1/µ2 periods. Ear-
lier we observed such restoring of smoothness in the numerical experiments of
the MMT model (see [45], [46], [47] and [48]). However, in the experiments
discussed in the article, the roughness still persists and the averaging does not
suppresses it completely. It can be explained by sparsity of the resonances.

Resonant conditions are defined by the system of equations:

ωk + ωk1
= ωk2

+ ωk3
,

k + k1 = k2 + k3,
(18)

These resonant conditions define five-dimensional hyper-surface in six-dimensional
space k,k1,k2. In any finite system, (18) turns into Diophantine equation.
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Fig. 4. Surface |ak|
2 at the moment of time t ≃ 67T0.

Some solutions of this equation are known [31], [17]. In reality, however, the en-
ergy transport is realized not by exact, but ”approximate” resonances, posed
in a layer near the resonant surface and defined by

|ωk + ωk1
− ωk2

− ωk+k1−k2
| ≤ Γ, (19)

where Γ is a characteristic inverse time of nonlinear interaction.
In the finite systems k,k1,k2 take values on the nodes of the discrete grid.

The weak turbulent approach is valid, if the density of discrete approximate
resonances inside the layer (19) is high enough. In our case the lattice constant
is ∆k = 1, and typical relative deviation from the resonance surface

∆ω

ω
≃ ω′

k

ω
∆k =

ω′
k

ω
≃ 1

600
≃ 2 × 10−3. (20)

Inverse time of the interaction Γ can be estimated from our numerical exper-
iments: wave amplitudes change essentially during 30 periods, and one can
assume: Γ/ω ≃ 10−2 ≫ δω

ω . It means that the condition for the applicabil-
ity of weak turbulent theory is typically satisfied, but the ”reserve” for their
validity is rather modest. As a result, some particular harmonics, posed in
certain ”privileged” point of k-plane could form a ”network” of almost reso-
nant quadruplets and realize significant part of energy transport. Amplitudes
of these harmonics exceed the average level essentially. This effect was de-
scribed in the article [15], where such ”selected few” harmonics were called
”oligarchs”. If ”oligarchs” realize most part of the energy flux, the turbulence
is ”mesoscopic”, not weak.
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3.4 Statistics of the harmonics

According to the weak-turbulent scenario, statistics of the ak(t) in any given
k should be close to Gaussian. It presumes that the PDF for the squared
amplitudes is

P (|ak|2) ≃
1

D
e−|ak|

2/D, (21)

here D =< |ak|2 > — mean square amplitude. To check equation (21) we
need to find a way for calculation of D(k). If the ensemble is stationary in
time, D(k) could be found for any given k by averaging in time. In our case,
the process is non-stationary, and we have a problem with determination of
D(k).

To resolve this problem, we used low-pass filtering instead of time averag-
ing. The low-pass filter was chosen in the form

f(n) = e−(|n|/∆)3 , ∆ = 0.25Nx/2, Nx = 4096. (22)

This choice of the low-pass filter preserves the values of total energy, wave
action and the total momentum within three percent accuracy, see Fig.5. Then

Fig. 5. Low-pass filtered surface |ak|
2 at t ≃ 67T0.

it is possible to average the PDF over different areas in k-space. The results
for two different moments of time t ≃ 70T0 and t ≃ 933T0 are presented in
Fig.6 and Fig.7. The thin line gives PDF after averaging over dissipation
region harmonics, while bold line presents averaging over the non-dissipative
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Fig. 6. Probability distribution function (PDF) for relative squared amplitudes
|ak|

2/ < |ak|
2 >. t ≃ 67T0.

area |k| < kd = 1024. One can see that statistics in the last case is quite close
to the Gaussian, while in the dissipation region it deviates from Gaussian.
However, deviation from the Guassianity in the dissipation region doesn’t
create any problems, since the ”dissipative” harmonics do not contain any
essential amount of the total energy, wave action and momentum.

One should remember, that the bold lines in the Fig.6 and Fig.7 are the
results of averaging over a million of harmonics. Among them there is a pop-
ulation of ”selected few”, or ”oligarchs”, with the amplitudes exceeding the
average value by the factor of more than ten times. The ”oligarchs” exist
because our grid is still not fine enough.

In our case ”oligarchs” do exist, but their contribution in the total wave
action is not more 4%. Ten leading ”oligarchs” at the end of the experiment
are presented in the Appendix A.

3.5 Two-stage evolution of the swell

Fig. 8-11 demonstrate time evolution of main characteristics of the wave field:
wave action, energy, characteristic slope and mean frequency.

Fig.10 should be specially commented. Here and further we define the
characteristic slope as follows



Numerical Verification of the Hasselmann equation. 13

Fig. 7. Probability distribution function (PDF) for relative squared amplitudes
|ak|

2/ < |ak|
2 >. t ≃ 925T0.

µ =
√

2
[

< (∇η)2 >
]1/2

. (23)

Following this definition for the Stokes wave of small amplitude

η = a cos(kx),

µ = ak.

According to this definition of steepness for the classical Pierson-Moscowitz
spectrum µ = 0.095. Our initial steepness µ ≃ 0.167 exceeds this value essen-
tially.

Evolution of the spectrum can be conventionally separated in two phases.
On the first stage we observe fast drop of wave action, slope and especially
energy. Then the drop is stabilized, and we observe slow down-shift of mean
frequency together with angular spreading. Level lines of smoothed spectra in
the first and in the last moments of time are shown in Fig.12-13

Presence of two stages can be explained by study of the PDFs for eleva-
tion of the surface. In the initial moment of time PDF is Gaussian (Fig.14).
However, very soon intensive super-Gaussian tails appear (Fig.15). Then they
decrease slowly, and in the last moment of simulation, when characteristics
of the sea are close to Peirson-Moscowitz, statistic is close to Gaussian again
(Fig.16). Moderate tails do exist and, what is interesting, the PDF is not
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Fig. 8. Total wave action as a function of time for the artificial viscosity case.

Dashed line - Hasselmann, solid line - dynamical equations

0 10 20 30 40 50
Time (min)

0.00

0.02

0.04

0.06

0.08

0.10

W
av

e 
E

ne
rg

y

0 200 400 600 800 1000
Initial Wave Periods

Fig. 9. Total wave energy as a function of time for the artificial viscosity case

symmetric — elevations are more probable troughs. PDF for ηy — longitu-
dinal gradients in the first moments of time is Gaussian (Fig.17). Then in a
very short period of time strong non-Gaussian tails appear and reach their
maximum at t ≃ 14T0 (Fig.18). Here T0 = 2π/

√
k0 — period of initial leading

wave. Since this moment the non-Gaussian tails decrease. In the last moment
of simulation they are essentially reduced(Fig.19).

Fast growing of non-Gaussian tails can be explained by fast formation of
coherent harmonics. Indeed, 14T0 ≃ 2π/(ω0µ) is a characteristic time of non-
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Dashed line - Hasselmann, solid line - dynamical equations
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Fig. 10. Average wave slope as a function of time for the artificial viscosity case.
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Fig. 11. Mean wave frequency as a function of time for the artificial viscosity case.

linear processes due to quadratic nonlinearity. Note that the fourth harmonic
in our system is fast decaying, Hence we cannot see ”real” white caps.

Figures 20-22 present PDFs for gradients in the orthogonal direction.
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Fig. 12. Initial spectrum |ak|
2. t = 0.

Fig. 13. Final spectrum |ak|
2. t ≃ 933T0.
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Fig. 14. PDF for the surface elevation η at the initial moment of time. t = 0.
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Fig. 15. PDF for the surface elevation η at some middle moment of time. t ≃ 70T0.
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Fig. 16. PDF for the surface elevation η at the final moment of time. t ≃ 933T0.
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Fig. 17. PDF for (∇η)y at the initial moment of time. t = 0.
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Fig. 18. PDF for (∇η)y at some middle moment of time. t ≃ 14T0.
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Fig. 19. PDF for (∇η)y at the final moment of time. t ≃ 933T0.
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Fig. 20. PDF for (∇η)x at the initial moment of time. t = 0.
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Fig. 21. PDF for (∇η)x at some middle moment of time. t ≃ 14T0.

10-4

10-3

10-2

10-1

100

101

102

103

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

Lo
g(

P
ro

ba
bi

lit
y)

∇ x η

PDF at t=933T0
Gauss distribution.

Fig. 22. PDF for (∇η)x at the final moment of time. t ≃ 933T0.
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Figures 23,24 present snapshots of the surface in the initial and final mo-
ments of simulation. Fig.25 is a snapshot of the surface in the moment of
maximal roughness T = 4.94 ≃ 14T0.

Fig. 23. Surface elevation at the initial moment of time. t = 0.

Fig. 24. Surface elevation at the final moment of time. t ≃ 933T0.

Fig. 25. Surface elevation at the moment of maximum roughness. t ≃ 14T0. Gra-
dients are more conspicuous.
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4 Statistical numerical experiment

4.1 Numerical model for Hasselmann Equation

Numerical integration of kinetic equation for gravity waves on deep water
(Hasselmann equation) was the subject of considerable efforts for last three
decades. The “ultimate goal” of the effort – creation of the operational wave
model for wave forecast based on direct solution of the Hasselmann equa-
tion – happened to be an extremely difficult computational problem due to
mathematical complexity of the Snl term, which requires calculation of a
three-dimensional integral at every advance in time.

Historically, numerical methods of integration of kinetic equation for grav-
ity waves exist in two “flavors”.

The first one is associated with works of [32], [33], [34], [35], [36] and [37],
and is based on transformation of 6-fold into 3-fold integrals using δ-functions.
Such transformation leads to appearance of integrable singularities, which
creates additional difficulties in calculations of the Snl term.

The second type of models has been developed in works of [38] and [39], [40]
and is currently known as Resio-Tracy model. It uses direct calculation of res-
onant quadruplet contribution into Snl integral, based on the following prop-
erty: given two fixed vectors k,k1, another two k2,k3 are uniquely defined
by the point “moving” along the resonant curve – locus.

Numerical simulation in the current work was performed with the help
of modified version of the second type algorithm. Calculations were made on
the grid 71× 36 points in the frequency-angle domain [ω, θ] with exponential
distribution of points in the frequency domain and uniform distribution of
points in the angle direction.

To date, Resio-Tracy model suffered rigorous testing and is currently used
with high degree of trustworthiness: it was tested with respect to motion
integrals conservation in the “clean” tests, wave action conservation in wave
spectrum down-shift, realization of self – similar solution in “pure swell” and
“wind forced” regimes (see [42], [41], [43]).

Description of scaling procedure from dynamical equations to Hasselman
kinetic equation variables is presented in Appedix B.

4.2 Statistical model setup

The numerical model used for solution of the Hasselmann equation has been
supplied with the damping term in three different forms:

1. Pseudo-viscous high frequency damping (16) used in dynamical equations;
2. WAM1 viscous term;
3. WAM2 viscous term;

Two last viscous terms referred as WAM1 and WAM2 are the “white-
capping” terms, describing energy dissipation by surface waves due to white-
capping, as used in SWAN and WAM wave forecasting models, see [44]:
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γk = Cdsω̃
k

k̃

(

(1 − δ) + delta
k

k̃

)

(

S̃

S̃pm

)p

(24)

where k and ω are wave number and frequency, tilde denotes mean value;
Cds, δ and p are tunable coefficients; S = k̃

√
H is the overall steepness;

S̃PM = (3.02×10−3)1/2 is the value of S̃ for the Pierson-Moscowitz spectrum
(note that the characteristic steepness µ =

√
2S).

Values of tunable coefficients for WAM1 case (corresponding to WAM

cycle 3 dissipation) are:

Cds = 2.36 × 10−5, δ = 0, p = 4 (25)

and for WAM2 case (corresponding to WAM cycle 4 dissipation) are:

Cds = 4.10 × 10−5, δ = 0.5, p = 4 (26)

In all three cases we used as initial data smoothed (filtered) spectra (Fig.5)
obtained in the dynamical run at the time T∗ = 3.65min = 24.3 ≃ 70T0, which
can be considered as a moment of the end of the fist ”fast” stage of spectral
evolution.

The natural question stemming in this point, is why calculation of the dy-
namical and Hasselmann model cannot be started from the initial conditions
(15) simultaneously?

There are good reasons for that:
As it was mentioned before, the time evolution of the initial conditions (15)

in presence of the damping term can be separated in two stages: relatively fast
total energy drop in the beginning of the evolution and succeeding relatively
slow total energy decrease as a function of time, see Fig.9. We explain this
phenomenon by existence of the effective channel of the energy dissipation due
to strong nonlinear effects, which can be associated with the white-capping.

We have started with relatively steep waves µ ≃ 0.167. As we see, at that
steepness white-capping is the leading effect. This fact is confirmed by nu-
merous field and laboratory experiments. From the mathematical view-point
the white-capping is formation of coherent structures – strongly correlated
multiple harmonics. The spectral peak is posed in our experiments initially
at k ≃ 300, while the edge of the damping area kd ≃ 1024. Hence, only the
second and the third harmonic can be developed, while hire harmonics are
suppressed by the strong dissipation. Anyway, even formation of the second
and the third harmonic is enough to create intensive non-Gaussian tail of the
PDF for longitudinal gradients. This process is very fast. In the moment of
time T = 14T0 we see fully developed tails. Relatively sharp gradients mimic
formation of white caps. Certainly, the “pure” Hasselmann equation is not
applicable on this early stage of spectral evolution, when energy intensively
dissipates.

As steepness decreases and spectral maximum of the swell down-shifts,
an efficiency of such mechanism of energy absorption becomes less important
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when the steepness value drops down to µ ≃ 0.1the white-capping becomes
a negligibly small effect. It happens at T ≃ 280T0. We decided to start com-
parison between deterministic and statistical modeling in some intermediate
moment of time T ≃ 70T0.

5 Comparison of deterministic and statistical

experiments.

5.1 Statistical experiment with pseudo-viscous damping term.

First simulation has been performed with pseudo-viscous damping term,
equivalent to (16).

Fig.8 – 11 show total wave action, total energy, mean wave slope and mean
wave frequency as the functions of time.

Fig.32 shows the time evolution of angle-averaged wave action spectra as
the functions of frequency for dynamical and Hasselmann equations.

Temporal behavior of angle-averaged spectrum is presented on Fig.32. We
see the down-shift of the spectral maximum both in dynamic and Hasselmann
equations. The correspondence of the spectral maxima is not good at all.

It is obvious that the influence of the artificial viscosity is not strong
enough to reach the correspondence of two models.

5.2 Statistical experiments with WAM1 damping term

Fig.33 – 36 show total wave action, total energy, mean wave slope and mean
wave frequency as the functions of time.

The temporal behavior of total wave action, energy and average wave slope
is much better than in the artificial viscosity term, and for 50min duration
of the experiment we observe decent correspondence between dynamical and
Hasselmann equations. However for longer time the WAM1 model deviates
from the exact calculations significantly.

It is important to note that the curves of temporal behavior of the total
wave action, energy and average wave slope diverge at the end of simulation
time with different derivatives, and the correspondence cannot be expected to
be that good outside of the simulation time interval.

Fig.37 shows the time evolution of the angle-averaged wave action spectra
as the functions of frequency for dynamical and Hasselmann equations. As in
the artificial viscosity case, we observe distinct down-shift of the spectral max-
ima. Correspondence of the time evolution of the amplitudes of the spectral
maxima is much better then in artificial viscosity case.
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5.3 Statistical experiments with WAM2 damping term

Fig.38 – 41 shows the temporal evolution of the total wave action, total energy,
mean wave slope and mean wave frequency, which are divergent in time.

Fig.42 show time evolution of angle-averaged wave action spectra as the
functions of frequency for dynamical and Hasselmann equations. While as
in the artificial viscosity and WAM1 cases we also observe distinct down-
shift of the spectral maxima, the correspondence of the time evolution of the
amplitudes of the spectral maxima is worse than in WAM1 case.

Despite the fact that historically WAM2 appeared as an improvement of
WAM1 damping term, it does not improve the correspondence of two models,
observed in WAM1 case, and is presumably too strong for description of the
reality.

6 Down-shift and angular spreading

The major process of time-evolution of the swell is frequency down-shift. Dur-
ing T = 933T0 the mean frequency has been decreased from ω0 = 2 to ω1 = .6.
On the last stage of the process, the mean frequency slowly decays as

< ω >≃ t−0.067 ≃ t−1/15 (27)

The Hasselmann equation has self-similar solution, describing the evolu-
tion of the swell n(k, t) ≃ t4/11F

(

k

t2/11

)

(see [41], [43]). For this solution

< ω >≃ t−1/11 (28)

The difference between (27) and (28) can be explained as follows. What
we observed, is not a self-similar behavior. Indeed, a self-silmilarity presumes
that the angular structure of the solution is constant in time. Meanwhile, we
observed intensive angular spreading of the initially narrow in angle, almost
one-dimensional wave spectrum. Level lines of the spectra after low-pass fil-
tering, obtained in dynamical equations simulation, for two moments of time
are presented on Fig. 26-27. Level lines of the spectra in the same moments of
time, obtained by solution of the Hasselmann equation are presented on Fig.
28-29. One can see good correspondance between results of both experiments.
Comparison of time-evolution of the mean angular spreading calculated from
action and energy spectra are presented on Fig. 30-31.
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Fig. 26. Level lines of the spectra at t = 67T0. Dynamical equations.
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Fig. 27. Level lines of the spectra at t = 674T0. Dynamical equations.
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Fig. 28. Level lines of the spectra at t = 67T0. Hasselmann equation.
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Fig. 29. Level lines of the spectra at t = 674T0. Hasselmann equation.
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Fig. 30. Comparison of time-evolution of the mean angular spreading
(∫

|θ|n(k)dk
)

/
(∫

n(k)dk
)

calculated through wave action spectra.

Fig. 31. Comparison of time-evolution of the mean angular spreading
(∫

|θ|ωn(k)dk
)

/
(∫

ωn(k)dk
)

calculated through wave energy spectra.
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One has to expect that the angular spreading will be arrested at later
times, and the spectra will take a universal self-similar shape.
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Fig. 32. Angle-averaged spectrum as a function of time for dynamical and Hassel-
mann equations for artificial viscosity case.
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Fig. 33. Total wave action as a function of time for WAM1 case.

7 Conclusion

1. We started our experiment with characteristic steepness µ ≃ 0.167. This
is three times less than steepness of the Stokes wave of limiting amplitude,
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Dashed line - Hasselmann, solid line - dynamical equations
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Fig. 34. Total wave energy as a function of time for WAM1 case

Dashed line - Hasselmann, solid line - dynamical equations
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Fig. 35. Average wave slope as a function of time for WAM1 case.

but still it is a large steepness typical for young waves. For waves of such
steepness white-capping effect could be essential. However, in our experiments
we cannot observe such effects due to the strong pseudo-viscosity. Indeed, third
harmonics of our initial leading wave is situated near the edge of damping
area, while fourth and higher harmonics are far in the damping area. This
circumstanse provides an intensive energy dissipation, which is not described
by the Hasselmann equation.

Anyway, on the first stage of the process we observe intensive generation of
coherent higher harmonics which reveal itself in tails of PDF for longitudinal
gradients. If our damping region would be shifted further to higher wave
numbers, we could observe sharp crests formation.
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Dashed line - Hasselmann, solid line - dynamical equations
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Fig. 36. Mean wave frequency as a function of time for WAM1 case.
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Fig. 37. Angle-averaged spectrum as a function of time for dynamical and Hassel-
mann equations a function of time for WAM1 case.

2. We ended up with steepness µ ≃ 0.09. This is close to mature waves, typ-
ically observed in the ocean and described by Hasselmann equation pretty well.
We observed characteristic effects predicted by the weak-turbulent theory —
down-shift of mean frequency formation, Zakharov-Filonenko weak turbulent
spectrum ω−4 and strong angular spreading. Comparison of time-derivatives
of the average quantities shows that for this steepness wave-breaking (white-
capping) become not essential at µ ≃ 0.09.

In general, our experiments validate Hasselmann equation. However, it has
to be accomplished by a proper dissipation term.

3. The dissipative term used in the WAM1 model fairly describe damping
due to white capping on the initial stage of evolution. It overestimate damping,
however, for moderate steepness µ ≃ 0.09
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Dashed line - Hasselmann, solid line - dynamical equations
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Fig. 38. Total wave action as a function of time for WAM2 case.

Dashed line - Hasselmann, solid line - dynamical equations

0 10 20 30 40 50
Time (min)

0.00

0.02

0.04

0.06

0.08

0.10

W
av

e 
E

ne
rg

y

0 200 400 600 800 1000
Initial Wave Periods

Fig. 39. Total wave energy as a function of time for WAM2 case

The dissipative term, used in the WAM2 model is not good. It overesti-
mates damping essentially.

4. Presence of abnormally intensive harmonics, so called ”oligarchs” show
that, in spite of using a very fine grid, we did not eliminated effects of discrete-
ness completely. More accurate verification of the Hasselmann equation should
be made on the grid containing more than 107 modes. This is quite realistic
task for modern supercomputers, and we hope to realize such an experiment.

Another conclusion is more pessimistic. Our results show that it is very
difficult to reproduce real ocean conditions in any laboratory wave tank. Even
a tank of size 200× 200 meters is not large enough to model ocean due to the
presence of wave numbers grid discreteness.
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Fig. 40. Average wave slope as a function of time for WAM2 case.
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Fig. 41. Mean wave frequency as a function of time for WAM2 case.
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Fig. 42. Angle-averaged spectrum as a function of time for dynamical and Hassel-
mann equations a function of time for WAM2 case.
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9 Appendix A. ”Forbes list of 15 largest harmonics.

Here one can find 15 largest harmonics at the end of calculations in the frame-
work of dynamical equations. Average square of amplitudes in dissipation-less
region was taken from smoothed spectrum, while all these harmonics exceed
level |ak|2 = 1.4 × 10−12.
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Kx Ky |ak|2 < |ak|2 >filter |ak|2/ < |ak|2 >
-59 155 1.563e-12 0.746e-13 2.095e+1
-37 166 1.903e-12 1.201e-13 1.585e+1
-37 185 1.569e-12 2.288e-13 0.686e+1
-36 162 1.477e-12 0.992e-13 1.489e+1
-33 157 1.442e-12 0.713e-13 2.022e+1
-26 164 3.351e-12 0.847e-13 3.956e+1
-17 189 1.463e-12 2.789e-13 0.525e+1
-14 173 1.408e-12 1.459e-13 0.965e+1
-2 176 1.533e-12 1.697e-13 0.903e+1
0 177 2.066e-12 1.741e-13 1.187e+1
10 179 1.427e-12 1.893e-13 0.754e+1
27 163 1.483e-12 0.832e-13 1.782e+1
31 174 1.431e-12 1.342e-13 1.066e+1
37 173 1.578e-12 1.581e-13 0.998e+1
60 133 1.565e-12 0.345e-13 4.536e+1
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9.1 Appendix B. From Dynamical Equations to

Hasselmann Equation.

Standard setup for numerical simulation of the dynamical equations (4), im-
plies 2π × 2π domain in real space and gravity acceleration g = 1. Usage of
the domain size equal 2π is convenient because in this case wave numbers are
integers.

In the contrary to dynamical equations, the kinetic equation (11) is for-
mulated in terms of real physical variables and it is necessary to describe the
transformation from the “dynamical” variables into to the “physical” ones.

Eq.4 are invariant with respect to “stretching” transformation from “dy-
namical” to “real” variables:

ηr = αη′r′ , k =
1

α
k′, r = αr′, g = νg′, (29)

t =

√

α

ν
t′, Lx = αL′

x, Ly = αL′
y (30)

where prime denotes variables corresponding to dynamical equations.
In current simulation we used the stretching coefficient α = 800.00, which

allows to reformulate the statement of the problem in terms of real physics:
we considered 5026m× 5026m periodic boundary conditions domain of sta-
tistically uniform ocean with the same resolution in both directions and char-
acteristic wave length of the initial condition around 22m. In oceanographic
terms, this statement corresponds to the “duration-limited experiment”.
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