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By performing two parallel numerical experiments—solving the dynamical Hamiltonian equations and
solving the Hasselmann kinetic equation—we examined the applicability of the theory of weak
turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on
deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we
augmented the kinetic equation by an empirical dissipation term modeling the strongly nonlinear process
of white capping. Fitting the two experiments, we determined the dissipation function due to wave
breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness).
The onset of white capping can be compared to a second-order phase transition. The results corroborate
the experimental observations of Banner, Babanin, and Young [J. Phys. Oceanogr. 30, 3145 (2000)].
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Wave turbulence is realized in plasmas, liquid helium,
magnetohydrodynamics, nonlinear optics, etc. A perfect
example of wave turbulence is a wind-driven sea. The
major conceptual difference between wave turbulence
and ‘‘classical’’ turbulence in an incompressible fluid is
the presence of a characteristic dimensionless parameter
�, characterizing the level of nonlinearity. Turbulence is
considered to be ‘‘weak’’ if �� 1; otherwise it is
‘‘strong.’’ In classical hydrodynamic turbulence, �! 1.

A more rigorous definition of weak turbulence is the
following: this is the turbulence which is well described by
the kinetic equation for waves. These equations are the
quantum kinetic equations for bosons in the limit of very
high occupation numbers. They were derived in statistical
physics in the late 1920s by Nordheim and Peierls and
rediscovered in nonlinear wave dynamics in the 1960s. The
kinetic equation, describing four-wave resonant interaction
of gravity waves, was named after K. Hasselmann, who
derived it in 1962–1963 [1].

The theory of weak turbulence is well developed [2].
The kinetic equation has rich families of Kolmogorov-
Zakharov (KZ) and self-similar solutions, which can be
efficiently used for explaining a wide range of experimen-
tal data [3,4]. However, today we have a clear understand-
ing of the following fact: even for small values of �, the
theory of weak turbulence may be incomplete. In many
important physical situations weak and strong turbulences
coexist.

Even if the weak turbulent resonant interaction effects
dominate in the greater part of space, strongly nonlinear
effects could appear as rare localized coherent events. If
they are smooth and regular, they are solitons, quasisoli-
tons, or vortices. However, they could be catastrophic, in

which case they are wave collapses, similar to self-
focusing in nonlinear optics or Lagmuir collapses in
plasma. Even rare sporadic collapse events can essentially
affect the physical picture of wave turbulence.

There are two main types of wave collapse events in a
wind-driven sea. The first is the formation of freak waves;
this is not a subject of our study. The second, which is
much more common, is wave breaking or white capping,
which is an essential mechanism of wave energy dissi-
pation. It would be hopeless to develop an efficient op-
erational model of wave forecasting without an under-
standing and a proper parametrization of this fundamental
effect. Meanwhile, a reliable analytical theory of this phe-
nomenon is still not developed, while field and laboratory
experimental data are scarce. The most promising ap-
proach to resolving this problem is a massive numerical
experiment.

The most informative experiment would be one that
could provide a direct numerical solution of the primitive
dynamic equations describing the wave ensemble. In 1992,
Dyachenko, Pushkarev, Newell, and Zakharov numerically
solved 2D focusing NLSE and observed the coexistence of
self-focusing collapses with weak turbulence [5]. Simula-
tion of the surface gravity waves turbulence for the first
time was done simultaneously by Tanaka [6] and Onorato
et al. [7]. Because of limitations of calculation perform-
ance of that time computers simulations were limited to
dynamical equations and quite short simulation times.
Later on, the 1D MMT (Maida, McLaughlin, and Tabak)
model and its generalizations were solved numerically by
different authors. Again, the coexistence of wave collapses
and weak turbulence was verified. In our Letter, we present
the results of a far more detailed experiment. We per-
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formed the numerical simulation of the evolution of an
ocean swell using two different approaches.

In the first, we solved the Euler equations for the 3D
potential flow of an ideal incompressible fluid with a free
surface in the presence of gravity. We used the Hamiltonian
form of these equations [8,9]. For gravity waves, the
parameter of nonlinearity is the average steepness �. We
expanded the Hamiltonian in powers of � up to order �4.
In the second experiment, we solved the Hasselman kinetic
equation.

The comparison of the results demonstrates qualitative
accordance. Both experiments describe expected effects,
such as the downshift of the spectrum peak, the angular
spreading of the spectrum, and the formation of Zakharov-
Filonenko spectral tails F! �!�4 [2,10]. To obtain quan-
titative coincidence of the results, we have to augment the
Hasselmann equation by an empirical dissipation term
Sdiss, modeling white capping effects. We tried several
versions of this term. The versions of Sdiss used in the
operational wave-predicting models WAM3 and WAM4
essentially overestimate the dissipation for a moderate
steepness. The comparison with dynamical computations
shows that white capping dissipation decreases dramati-
cally with decreasing steepness and that it is probably a
threshold phenomenon, similar to a second-order phase
transition. Similar results were earlier obtained in the field
experiment by Banner, Babanin, and Young [11].

Dynamical model.—In this part of our experiment, the
surface of the liquid is described by two functions of the
horizontal variables x, y, and the time t: the surface eleva-
tion ��x; y; t� and the velocity potential on the surface
 �x; y; t�. In our approximation, they satisfy the following
equations [8,12,13]:
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Here k̂ is the linear integral operator k̂ �
�����������
�r2
p

; F̂�1

corresponds to the inverse Fourier transform.
Equations (1) are nowadays widely used in numerical

experiments and are solved by different versions of the
spectral code [6,7,12–16]. In the present experiment, we
solved the equations in the real space domain 2�
 2�
using the finest currently possible rectangular grid 512

4096, putting g � 1. The dissipative terms F̂�1��k�k� and
F̂�1��k k� are taken in the form of pseudoviscous high
frequency damping. We put
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2; k� kd; �� 5:65
 10�3:
(2)

In accordance with recent results [17], the dissipation term
should be included in both equations.

The distribution of the wave action is described by the
function n�k; t� � ja ~k�t�j

2, where

 a ~k �
������
!k

2k

r
�~k 	 i

���������
k

2!k

s
 ~k (3)

are complex normal variables. Here !k �
������
gk
p

.
As the initial condition, we used a Gaussian-shaped

distribution in the Fourier space:
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(4)

The initial phases of all harmonics were random. The

average steepness of this initial condition, defined as � ��������������������
2hjr�j2i

p
, was � ’ 0:176.

The period of the most intensive wave was T0 �

2�=
��������
300
p

� 0:362. Calculations continued until t �
3378T0. We observed an angular spreading of the initial
spectral distribution together with a downshift of the spec-
tral peak. Level lines of the initial and the final spectra are
presented on Figs. 1 and 2. We observed the following
indications of wave-turbulent behavior. (1) The statistics of
energy-capacity spectral modes is close to the Rayleigh
distribution (see Fig. 3). We observed the presence of a few
very intensive harmonics (so-called oligarchs [15] ), which
did not obey the Rayleigh statistics, but their contribution
to the total balance of the wave action is small (no more
than 5%). This means that we almost overcame negative
effects caused by the finite size of our system (see [15,16] )
and that our grid is fine enough. (2) As in many other
papers [7,13–16], we observed the formation of the
Zakharov-Filonenko spectral tail in the wave numbers
spectrum j�~kj

2. Although anisotropy of wave number
grid gives us no opportunity to determine the exact expo-
nent due to short effective inertial range after angle aver-
aging, the qualitative correspondence is quite good.

At the same time, we observed an indication of strong-
turbulent effects. They are manifested by the formation of
‘‘fat tails’’ on the probability distribution function (PDF)
for surface elevations and especially for its gradients (see
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FIG. 1. Initial spectrum ja ~kj
2. t � 0.
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Fig. 4). The presence of these tails indicates that the
surface has a tendency to become rough and to produce
white capping. In our model, wave breaking is arrested by
the strong pseudoviscosity.

Statistical experiments.—In the second experiment, we
solved the Hasselmann kinetic equation for n ~k � hja ~kj

2i

[1]
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(5)

Here �k is the pseudoviscosity and Sdiss is the phenome-
nological dissipation term modeling the white capping
process.

Equation (5) was solved on the grid 71
 36 in polar
coordinates on the frequency-angle plane by the Resio-
Tracy code [18], modified in [3,4]. We first performed the
experiment with Sdiss � 0. We observed good qualitative
coincidence with the dynamical experiment. We observed
a downshift of the spectral peak, angular spreading, and the
formation of !�4 spectral tails. But the quantitative agree-
ment of the experiments was not good: it was clear that the

inclusion of some phenomenological dissipation is
necessary.

We examined the standard form of Sdiss used in the
operational models of wave forecasting—wave action
model (WAM) Cycle 3 and WAM Cycle 4 (hereafter
WAM3 and WAM4) [19]:

 Sdiss � Cds ~!
k
~k

�
�1� �� 	 �

k
~k

�� ~S
~SPM

�
p
nk; (6)

where k and ! are the wave number and the frequency, the
tilde denotes the mean value; Cds, �, and p are tunable co-
efficients; ~S � ~k

�����
H
p

is the overall steepness; ~SPM �

�3:02
 10�3�1=2 is the value of ~S for the Pierson-
Moscowitz spectrum (note that the characteristic steepness
is � ’

���
2
p

~S). It is worth noting that according to [11], the
theoretical value of the steepness for the Pierson-
Moscovitz spectrum is ~SPM ’ �4:57
 10�3�1=2, which
gives us � ’ 0:095. The values of tunable coefficients in
the WAM3 case are

 Cds � 2:36
 10�5; � � 0; p � 4 (7)

and in the WAM4 case are

 Cds � 4:10
 10�5; � � 0:5; p � 4: (8)

The evolution of the total wave action is presented on
Fig. 5. One can see that in the long run, the models
WAM3 and WAM4 overestimate white capping dissipa-
tion. To achieve better agreement of both experiments, we
used the following form of the dissipative term:

 Cds � 1:00
 10�6; � � 0; p � 12: (9)

The total wave action curve corresponding to this new
dissipation term is shown on Fig. 5 by the thick solid line
and displays excellent correspondence with the dynamical
model. One can compare the final spectrum obtained in the
framework of dynamical equations (Fig. 2) with the result
of simulations using kinetic equation (Fig. 6). The similar-
ity of angle structures and shapes of spectra is obvious.

FIG. 3. Probability distribution function for relative squared
amplitudes jakj2=hjakj2i. t ’ 925T0.
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Conclusion.—Our experiments can be interpreted as a
confirmation of the theory of weak turbulence augmented
with additional dissipation term. We got qualitative corre-
spondence of kinetic and dynamic equations even without
any artificial dissipation. However, even at moderate values
of the parameter of the nonlinearity �, the strongly non-
linear effects of white capping are essential. They manifest
themselves as fat tails of the PDF and lead to additional
dissipation of wave energy. This dissipation demonstrates a
very strong dependence on the steepness. At steepness
� � 0:176 they dominate; at steepness � � 0:09 they
are negligibly small. The results of our experiments are
in good qualitative agreement with the field experiment of
Banner, Babanin, and Young [11]. We stress that the de-
pendence (9) is much sharper than it is usually stated. So

far, the sharpest dependence p � 5 was given by Donelan
[20]. We can guess that the real dependence of Sdiss on� is
even stronger, and that the onset of the wave breaking is a
threshold-type phenomenon like a second-order phase
transition.
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