
Communication through plasma sheaths
A. O. Korotkevicha�

Landau Institute for Theoretical Physics RAS, 2, Kosygin Str., Moscow, 119334, Russian Federation

A. C. Newellb�

Department of Mathematics, The University of Arizona, 617 N. Santa Rita Ave., Tucson,
Arizona 85721, USA

V. E. Zakharovc�

Department of Mathematics, The University of Arizona, 617 N. Santa Rita Ave., Tucson, Arizona 85721,
USA, Lebedev Physical Institute RAS, 53, Leninsky Prosp., GSP-1 Moscow, 119991, Russian
Federation, Landau Institute for Theoretical Physics RAS, 2, Kosygin Str., Moscow, 119334, Russian
Federation, and Waves and Solitons LLC, 918 W. Windsong Dr., Phoenix, Arizona 85045, USA

�Received 30 April 2007; accepted 18 August 2007; published online 23 October 2007�

We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has
formed. For long distance transmission, the signal carrying these messages must be necessarily low
frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma
properties to make the plasma sheath appear transparent. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2794856�

I. INTRODUCTION

A. General discussion

A vehicle moving through the stratosphere �altitudes
40–50 km� at hypersonic velocities �8–15 Mach� is covered
by a plasma sheath. Typically, the plasma density n can be as
high as 1018 m−3 with corresponding plasma frequency

2�fL = �L = � e2n

M�0
�1/2

�1�

of about 9 GHz. In Eq. �1�, e is the electron charge −1.6
�10−19 C, �0=8.85�10−12 C V−1 m−1, and M is the elec-
tron mass 9�10−31 kg. Therefore the plasma is opaque to
frequencies lower than 9 GHz. Direct communication
through such a plasma to and from the vehicle is impossible
because frequencies f suitable for long distance propagation
through the atmosphere are usually much less. For example,
the standard frequency used for navigational satellite sys-
tems, including the global positioning system �GPS�, are less
than 2 GHz. For the GPS, f =1.575 42 GHz.

The challenge is to devise means to maintain continuous
contact with the hypersonic vehicle. When such vehicles
were principally spacecrafts, a blackout period of up to 2 min
was acceptable albeit undesirable. But when the vehicles are
of military origin, it is clear that continuous contact is essen-
tial for both targeting and rapid abort reasons.

It is a challenge that has drawn many responses. They
fall into several categories. The first ignores the presence of
the plasma by using signals with frequencies well above the
plasma frequency. The difficulty with this method is that
such signals are heavily attenuated in and scattered by the
atmosphere. A second means, which also ignores the plasma,
is to use low frequency signals in the 100 MHz range where

wavelengths are large compared to the plasma sheath thick-
ness �typically of the order of a meter�. But such solutions
have high cost and low bit rates and are not well supported
by existing infrastructure. A third category of solutions vio-
lates the plasma. One approach is to remove, by vehicle re-
shaping, for example, the plasma from certain points on the
vehicle at which one might place an antenna. Another is to
destroy it by electrophilic injection or by injecting water
drops. A third approach is to use powerful magnets to re-
shape the plasma. Such solutions involve a heavy cost in that
design features necessary for their implementation must be
built into the vehicle a priori. Nevertheless, some are fea-
sible and worthy of consideration. For example, it is possible
to build an antenna into a sharp leading edge that would
protrude beyond the plasma and survive for sufficiently long
�it would be eventually destroyed by ablation� to cover the
flight time.

The fourth category of solutions, and the one to which
we are attracted, uses the properties of the plasma itself to
affect transmission in the same way a judo expert uses the
strength and motion of an opponent to defeat him. One idea
is to create new modes of oscillation and propagation by the
introduction of magnetic fields. Indeed, for strong enough
fields, the Larmor frequency fLarmor is sufficiently large that
the window �fLarmor ,max�fL�� for which the plasma is opaque
is small, and transmission can be achieved for frequencies
below fLarmor. But the introduction of magnetic fields in-
volves large additional weight and new design features. The
second idea is much more simple. Its aim is to take advan-
tage of nonlinear properties of plasma to render it effectively
transparent to the signal. Communications both to and from
the vehicle are feasible using basically the same ideas. We
shall first describe the “to the vehicle” case. Consider Fig. 1
in which we show schematically the response of the plasma
to an incoming signal with low frequency � from a direction
that makes an angle � with the normal to the vehicle. There
are two principal features to the response. First, there is a
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reflection from the layer at a point z=zr where the plasma
frequency at the point �L�zr� is � cos �. However, the influ-
ence of the signal is felt beyond that point, namely at the
resonant layer z=0 where �L�0�=�. Langmuir oscillations
are excited there, which produces large transversal and lon-
gitudinal components of the electric field. The resonant layer
acts as an antenna. The task is to find a way to connect the
antenna at the resonant layer at z=0 to a receiver on board
the vehicle at z=R. There are several possibilities, which we
have outlined before.1–3

The most practical one, however, is also the most simple
and was first suggested without a detailed numerical simula-
tion in Ref. 1. We use an onboard source, which we call the
pump, to generate electromagnetic signals of sufficiently
high frequency �p ��p�maxz�L�z�+�� that they can propa-
gate through the plasma. There are several candidates for
such a source. For example, available on the open market is
a klystron amplifier, which can generate 3 kW of power at
frequencies of 12–14 GHz. These high frequency waves
have only to travel distances of a meter or less. They interact
nonlinearly with and scatter off the signal wave. Not surpris-
ingly, the largest contribution to the scattered wave comes
from the nonlinear interaction of the pump wave with the
plasma density distortion induced by the incoming signal
wave at the resonant layer. We call the scattered wave a
Stokes wave because the scattering process is a three wave
interaction analogous to Raman scattering. The Stokes wave
with frequency �S=�p−� carries the information encoded
on the signal wave back to the vehicle. We will show that,
whereas much of the scattered Stokes wave propagates away
from the vehicle, a significant fraction is returned to the ve-
hicle.

What is remarkable is this. The ratio of the power flux of
the Stokes wave received at the vehicle to the power flux
contained in the signal wave at the plasma edge can be be-
tween 0.7% and 2%. This means that reception of GPS sig-
nals may be possible because one simply needs an onboard
receiver approximately 100 times more sensitive than com-
mercially available hand-held receivers or to use sufficiently
larger antenna. We shall discuss in the conclusion the sensi-
tivity required for a variety of sources.

Communications from the vehicle requires two power
sources on the vehicle. One, which we term the Stokes wave
generator, will also carry the signal. The other is the pump

wave. Both have carrier frequencies above that of the maxi-
mum of the plasma frequency. Their nonlinear interaction in
the plasma produces an oscillation of frequency �=�p−�S.
Consider Fig. 2. For zr�z�R, where zr is determined by
�L�zr�=� cos � and � is calculated from the differences in
propagation directions of the pump and Stokes waves, the
oscillation does not propagate and its strength decays away
from the vehicle. Nevertheless, this oscillation is sufficiently
strong to act as a power source for a propagating wave in the
region z�zr where � cos ���L�z�. In the conclusion we
analyze what power is required in order for the signal to be
detected by distant receivers. It appears that, even if we use
usually available on the market generators, communication
can be put into practice.

B. Plan of the article

The plan of the article is as follows. We begin in Sec. II
with a detailed analysis of the two-dimensional propagation
and interaction of a signal wave of frequency �, a pump
wave of frequency �p, and a Stokes wave of frequency �S

through a plasma with a given density profile n0�z�, where z
is the direction normal to the vehicle. The key equation is a
modification of the well known Ginzburg equation,4

�

�z
�� �0

��z,��� �H

�z
� +

�0

��z,��
�2H

�y2 +
�2

c2 H

= − �� � � �0

��z,��
jNL�� , �2�

for the magnetic field amplitude �H�y ,z� ,0 ,0�e−i�t of an os-
cillation of frequency �. In Eq. �2�, the effective electric
susceptibility is

��z,�� = �0�1 −
�L

2�z�
�2 � 1

1 + i	/�
�� �3�

��L�z� is the local plasma frequency and 	 the collision fre-
quency�. The susceptibility is due to the linear response of
the plasma to the electric fields of whichever waves are in-
volved. The nonlinear current jNL will be determined both by
the product of the plasma density distortion with the linear

FIG. 1. �L�zr�=� cos �, �L�0�=�. If the thickness of the plasma sheath is
equal to L+R=l m, the signal frequency f =2 GHz, and the plasma fre-
quency fL	9 GHz, then L	5 cm and R	95 cm. FIG. 2. The concept for communication from the vehicle. Although drawn

in such a way that the angles of pumping, Stokes, and signal waves are
different, the optimal configuration is when all angles are the same, i.e.,
Stokes and pump waves are generated in the same direction as the target of
the desired low frequency signal.
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current and the nonlinear response of the electric velocity
field due principally to dynamic pressure forces. We observe
that, for ��maxz�L�z�, the electric susceptibility is ap-
proximately �0 and the left hand side of the nonlinear Gin-
zburg equation �2� is the usual wave operator.

How do we use Eq. �2�? For the case of communication
to the vehicle, we use it in two ways. First, with jNL=0, we
determine for �=� and H�y ,z�=H�z�ei��/c�y sin � the field
H�z� from which the distortion to the plasma produced by the
incoming wave is calculated. In this instance, H�z� satisfies

d2H

dz2 −
1

��z,��
d��z,��

dz

dH

dz
+

�2

c2 ���z,��
�0

− sin2 ��H = 0.

�4�

A glance at the third term shows that propagation is impos-
sible for � /�0�sin2 � or, from Eq. �3�, for � cos ���L�z�.
The importance of the resonance layer where ��z ,��	0 is
seen from the denominator in the second term. Having
solved for H�z� from Eq. �4� we can then calculate the
plasma distortion field 
n�z�. Its interaction with the pump-
ing wave then produces a nonlinear current jNL, which gives
rise to the Stokes wave. The Stokes wave HS�y ,z� and its
propagation is calculated by solving Eq. �2� with this jNL and
appropriate boundary conditions at the plasma edge and at
the vehicle. Our goal is to determine HS�y ,z=R�. We give
the results of both the numerical simulation and an analytic
estimation. The latter takes advantage of the fact that, for the
Stokes wave, �S�maxz �L�z� and that the principal plasma
distortion occurs at the resonance layer.

For communicating from the vehicle, we solve Eq. �4�
with the right hand side given by −�� ��0 /��jNL with jNL

calculated from the nonlinear interaction of the pump and
Stokes waves. Here the goal is to calculate the flux of power
of the signal wave with frequency �=�p−�S as it leaves the
plasma edge in the direction of some distant receiver.

In Sec. III, we describe the numerical procedure and
give detailed results of our calculations.

Finally, in the Conclusion, we use our results to calculate
the powers of both the incoming and outgoing signals at their
respective receivers. We discuss in addition several impor-
tant considerations:

• The advantages, particularly in terms of available
power, of using pulsed signals.

• The possibility of using GPS sources for incoming sig-
nals.

• The challenges involved in making ideas practicable.

II. ANALYTICS

A. Basic theory

We shall study a very idealized situation when the
plasma sheath is a flat slab. The plasma density is a linear
function of the horizontal coordinate z:

n0�z� = n0
z + L

R + L
. �5�

In this geometry the vehicle is the vertical wall placed at z
=R. The plasma density near the vehicle is n0. The plasma
contacts the vacuum at z=−L, where n=0. We shall study
two situations: communication to the vehicle and communi-
cation from the vehicle. In both cases, three almost mono-
chromatic electromagnetic waves exist in the plasma. Two of
them have high frequencies �p �pumping wave� and �S

�Stokes wave�. The third one has low frequency �, satisfying
the condition

� = �p − �S. �6�

In the “to the vehicle” case � is the circular frequency of the
incoming signal. In the “from the vehicle” case, � is the
circular frequency of the outgoing signal. In both these cases,
the low frequency signal plays a key role. Because the local
plasma frequency at z=0 is �,

�2 =
e2n0

M�0

L

R + L
. �7�

Let us denote also the Langmuir frequency at the vehicle as

�L
2 =

e2n0

M�0
.

Thus

L

R + L
=

�2

�L
2 =

f2

fL
2 .

In a realistic situation fL	9 GHz �it corresponds to n0

=1018 m−3�, f 	2 GHz, R+L=1 m, and L	0.05 m. The
wavelength of the incoming signal in the vacuum is �=c / f
=0.15 m, so that ��L. We point out that in the case of low
frequency wave reflection from the ionosphere, the situation
is the opposite: ��L.

We shall assume that the ions’ positions are fixed and the
plasma is cold �Te	0�. The magnetic field has only one
component Hx. The electric field has two components Ey, Ez.
Neither the electric nor magnetic fields depend on the
x-coordinate. Maxwell’s equations read

E�0,Ey�y,z�,Ez�y,z��, H�H�y,z�,0,0� ,

� � E = − 
0
�H

�t
, �8�

� � H = �0
�E

�t
+ j , �9�

� · H = 0, �10�

� · �0E = e�n − n0�z��, j = en� . �11�

��

�t
+ � · j = 0,
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�n

�t
+ � · n� = 0, �12�

��

�t
+ v� =

eE

M
+ � � ��� � �� +


0e

M
H� −

1

2
� �2, �13�

c =
1


�0
0

	 3 � 108 m s−1,

n0 	 1018 m−3, �L
2�R� =

e2n0

M�0
,

�L�R�
2�

= fL�R� = 9 GHz.

The power flux in vacuum is

S = 2�0c�E�2 = 2c
0�H�2 W m−2;

1 W m−2 → 13.7 V m−1.

In Eq. �13� 	 is the effective friction of the electron fluid with
the neutral gas, sometimes called the ion collision frequency.
We take 	=108 Hz.

The current j= jL+ jNL. jL is the linear response of the
plasma on the electric field and jNL is the current due to
nonlinear effects. For a monochromatic wave of frequency
�, Maxwell’s equations can be rewritten in the following
form:

� � H = − i��E + jNL, �0 � � E = i�0
0�H ,

i
�

c2H =
i

�
� � ��0

�
� � H� −

i

�
� � ��0

�
jNL� ,

�2

c2 H = � � ��0

�
� � H� − � � ��0

�
jNL� . �14�

In our geometry, Eq. �14� is one scalar equation. We should
stress that this is an exact equation. The only challenge is the
calculation of jNL.

Finally, for the magnetic field, one obtains the Ginzburg
equation:

�2H

�z2 −
��

�

�H

�z
+

�

�0

�2

c2 H +
�2H

�y2

= − �� � jNL�x −
��

�
�jNL�y, �� =

��

�z
. �15�

For the high frequency pump and Stokes waves �	�0. Some
exact solutions of simplified versions of the homogeneous
Ginzburg equation for several important cases can be found
in Appendix A.

What we are going to do is the following: In Sec. II B
we shall calculate linear responses of the plasma to an elec-
tromagnetic wave, such as the electron velocity, linear cur-
rent, and the electron density profile perturbation; the calcu-
lation of the first nonlinear correction to the linear current is

done in Sec. II C; analytic estimations for “to the vehicle”
and “from the vehicle” cases are given in Secs. II D and II E,
respectively.

B. Linear responses

In order to calculate the nonlinear current we need to
consider the linear responses of the plasma to the presence of
an electromagnetic wave. For a field with frequency �,

H � e−i�t,

from Eq. �13� the linear term in the velocity

�L =
ie

M�

1

1 + i	/�
E , �16�

and

jL =
ie2n0

M�

1

1 + i	/�
E .

From Eq. �9�

� � H = − i��0E +
ie2n0

M�

1

1 + i	/�
E = − i��E .

Using Maxwell equations one can express all responses in
terms of magnetic field:

E =
i

������0,
�

�z
H,−

�

�y
H� , �17�

�L = −
e

M�2����
1

1 + i	/�
�0,

�

�z
H,−

�

�y
H� , �18�

jL = − �1 −
�0

����
��0,

�

�z
H,−

�

�y
H� . �19�

The expression for a distortion 
n of the electron density in
the plasma n�z�=n0�z�+
n�y ,z , t� can be derived from Eqs.
�12� and �18�,


n = −
ie

M�3

1

1 + i	/�

�

�z
�n0�z�

�
� �

�y
H . �20�

C. Nonlinear current

The nonlinear current is due to the first nonlinear correc-
tion to the linear response velocities of electrons and a scat-
tering of an electromagnetic wave on the distortion of the
charge density profile produced by another wave:

jNL = en0�z��NL + e
n�L. �21�

We introduce the nonlinear velocity �NL, which can be found
from the following equation:

��NL

�t
= �L � �� � �L� +


0e

M
�L � H −

1

2
� vL

2

= −
1

2
� �L

2 .

Here we used a corollary of the Maxwell equations and Eq.
�16� where, to within O�	 /��,
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�� � �L� = −

0e

M
H .

This means that only the dynamic pressure induced by the
fields affects the plasma.

Finally, we have everything for the calculation of the
first term on the right hand side of Ginzburg equation �15�:

�� � jNL�x =
ie

2�

dn0�z�
dz

�

�y
�L

2 + e�zL
�

�y

n

− e�yL
�

�z

n −


0e2

M

nH . �22�

The detailed expression on the right hand side of Eq. �15�
can be found in Appendix B.

D. Analytic estimation. “To the vehicle”

We would like to estimate the ratio


S =
SS�z = R�

S0

of the fluxes of the squared scattered field to the squared
incoming signal field and express it as a function of pump
power flux Sp measured in watts per square meter.

We can make an analytic estimation of the three-wave
process efficiency. The main contribution comes from the
vicinity of z=0. The reason comes from the fact that the real
part of dielectric susceptibility Eq. �3� for the low frequency
signal wave has a zero at this point. It means that the non-
linear current on the right hand side of the Ginzburg equation
has a very sharp peak near z=0. A typical plot of the right
hand side is given in Fig. 3. This issue is discussed in more
detail in Appendix B 2.

If we consider a high frequency pumping wave, we can
use the plane wave approximation

Hp�y,z,t� = Hpei�−�pt+kpy−�pz�.

The low frequency signal wave can be written

H0�y,t� = �H�y,z,t��z=0 = �H�z��z=0ei�−�t+ky�.

For the Stokes wave, whose frequency is higher than the
plasma frequency, one can use the following approximate
Ginzburg equation,

�2HS

�z2 + �2HS = fS, �23�

where fS is calculated from the curl of the nonlinear current
given in Eq. �21�. To solve, we use the method of variation of
constants. We find

HS = C1ei�Sz + C2e−i�Sz,

C1�e
i�Sz + C2�e

−i�Sz = 0,

C1�z� =
1

2i�S



−L

z

e−i�SyfS�y� dy ,

C2�z� = −
1

2i�S



z

R

ei�SyfS�y� dy .

One can say that C1 is the amplitude of the Stokes wave
propagating to the vehicle and C2 is the amplitude of the
anti-Stokes wave propagating from the vehicle. The main
contribution to C1�R� arises from the vicinity of z=0, where
fS�z� is almost singular:

C1�R� =
1

2i�S



−L

R

fS�y�e−i�Sy dy

	
1

2i�S



−�

+�

fS�y�e−i�Sy dy .

After some simple but tedious calculations �see Appendix B
2� one finds

C1�R� 	 2�i
eL

Mc2

1

�0c
cos �2�� sin ���HpH*�0� , �24�

where � is the pumping incident angle.
Details of these calculations are given in Appendix B 2.

The angular dependence of H�0�, which we call ����, can be
calculated numerically by solving the homogeneous Gin-
zburg equation. In Fig. 4, we plot the product � sin � against
�. At the optimal value �	0.5, ���� sin �	1/4,

C1�R� 	
�

2
i

eL

Mc2

1

�0c
cos 2�HpH*�− L� . �25�

Using the expression Sp= �Hp�2 / ��0c�, one gets


S = �C1

H
�2

c�0
Sp

1 W m−2

	
�2

4
� eL

Mc2�2 1

�0c
cos2 �2��

Sp

1 W m−2 . �26�

For the optimal values of incidence angles ��=0, �	0.5�,
the given plasma parameters, and L	0.05 m, one gets the
following maximum value of the efficiency coefficient:

FIG. 3. The typical right hand side �absolute value� of the Ginzburg equa-
tion in the “to the vehicle” case. Logarithmic scale. One can see that the
main contribution comes from the region of the point z=0.
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S 	 0.9 � 10−11 Sp

1 W m−2 . �27�

This is consistent with what we obtain by direct numerical
simulation.

E. Analytic estimation. “From the vehicle”

Equation �2� can be rewritten in the following form:

d

dz

1

�

dH

dz
+ � 1

�0

�2

c2 −
k0

2

�0
�H =

�

�z
� �jNL�y

�
� −

1

�

�

�y
�jNL�z.

�28�

It is not too surprising that that the dominant contribution to
the rhs of Eq. �28� is the first term and arises from the neigh-
borhood of z=0. Again, just as in the “to the vehicle” case,
the resonant layer acts as a transmitting antenna, which will
beam the message contained on the Stokes wave to a distant
receiver at frequency �=�p−�S. In Fig. 5 we verify that

indeed the dominant contribution comes from the first term
on the rhs of Eq. �28� and from the neighborhood of z=0.
Hence we can get simple equation for a very good approxi-
mation to the approximate particular solution of Eq. �28�,
namely,

dH

dz
= �jNL�y . �29�

The general solution is the following:

H = C1�1�z� + C2�2�z� + 

0

z

�jNL�y dz , �30�

where �1�z� and �2�z� are solutions of the homogeneous part
of Eq. �28�, �1�z� is bounded as z→R�1, and�2�z� is un-
bounded �exponentially� at the vehicle. Thus C2	0. See Ap-
pendix A for a discussion of solutions to the homogeneous
Ginzburg equation.

Using the boundary condition on the edge of the plasma
�z=−L�,

dH

dz
�− L� = − i�0H�− L� ,

where �0= ��0 /c� cos � is the z-component of the wave vec-
tor of the outgoing low frequency signal wave, and jNL�−L�
=0, one finds

C1 =
− i�0

�1��− L� + i�0�1�− L�
0

−L

�jNL�y dz . �31�

Finally, for the magnetic field at z=−L we find

H�− L� 	
�1��− L�

�1��− L� + i�0�1�− L�
0

−L

�jNL�y dz . �32�

The function �jNL�y oscillates with z with wave number �p

−�S. The lower the wave number the larger the contribution
in the integral will be. This gives us a very simple optimal
strategy for the choice of pump and Stokes wave directions.
We should radiate both the Stokes and pumping waves in the
desired direction of the signal wave propagation. In this case
we also have an exact compatibility with the boundary con-
ditions at z=−L.

If we consider the expression for �jNL�y given in Appen-
dix B, we can see that in the case �0��S ,�p the first term
in Eq. �B5� is the major one in the vicinity of the resonant
layer. The resonant layer works like a radiating antenna.

Using the simplified nonlinear current expression and
considering the pumping and Stokes waves as plane waves,
one finds

H�− L� 	 − i
e�0

2L sin �

2M�0c3�S�p

1

A
HpHS

*

�
�1��− L�

�1��− L� + i�0�1�− L�
�1 −

eiA cos � − 1

A cos �
� ,

�33�

where A=L�0 /c.

FIG. 4. Dependence of C1�R� on the signal incidence angle �.

FIG. 5. The full right hand side �absolute value� of the Ginzburg equation in
the “from the vehicle” case �solid line� together with the expression used in
the approximation �dashed line�. Logarithmic scale. Before the vicinity of
point z=0 almost no forcing is present. Almost all contributions in the
vicinity of the resonant point come from the term used in the approximation.
In the propagation region �z�0�, the approximation slightly underestimates
the right hand side.
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Using the solutions of the approximate homogeneous
equations �A8�, we can estimate ��1��z� /�1�z��z=−L	1/L.
Thus for �0L=A cos ��1, one finds

H�− L� 	
e�0

2L sin �

4M�0c3�S�p

1

A
HpHS

*.

For the power density, we have

S =
1

32
� eL

Mc2�2 1

�0c
� �0

2

�S�p
�2

sin2 �SSSp. �34�

This result is quite clear from a physical point of view. The
larger � is, the longer is the distance over which the signal
wave is generated in the plasma.

In our simulations, A	2.1 and in this case we cannot
use the simplified expression given above. Instead we find

S =
1

8
� eL

Mc2�2 1

�0c
� �0

2

�S�p

1

A
�2

� tan2 ��1 − 2
sin �A cos ��

A cos �

+ 2
1 − cos �A cos ��

A2 cos2 �
� �

1

1 + Cder cos2 �
SSSp. �35�

Here we introduced the coefficient Cder= ��0�1 /�1��
2, the

value of which we obtain from our numerics.
Finally, we find

S12 GHz = 1.2 � 10−16 tan2 ��1 − 2
sin �A cos ��

A cos �

+ 2
1 − cos �A cos ��

A2 cos2 �
� 1

1 + Cder cos2 �
SSSp,

�36�

S18 GHz = 2.0 � 10−17 tan2 ��1 − 2
sin �A cos ��

A cos �

+ 2
1 − cos �A cos ��

A2 cos2�
� 1

1 + Cder cos2 �
SSSp.

�37�

The subscripts refer to the frequencies of the onboard pump
waves. Again, we find the magnitude and angular depen-
dence to be consistent with our numerical results.

III. NUMERICAL PROCEDURES AND SIMULATIONS

The equation we solve numerically in all cases is the
Ginzburg equation �15� including all terms on its right hand
side. The boundary conditions are given at z=L1=−L− �L
+R�, in the vacuum beyond the plasma edge, and at z=R, the
vehicle.

To solve this equation we use a “sweep” method de-
scribed in detail in Appendix C. The method was invented
simultaneously in several places for work on classified topics
in the middle of the last century. In the Soviet Union, it was
introduced by a group including Landau �information from

Khalatnikov� �the first publication5 appeared several years
later due to obvious reasons� and was developed to its mod-
ern form in Ref. 6.

As the first step in the “to the vehicle” case we have to
find the profile of the incoming magnetic field in the plasma.
We used an incident angle �=0.5. It will be shown later that
this angle is an optimal value, but it is good for an initial
evaluation of the possibility of communication. We consider
the incoming signal as a monochromatic plane wave of a
given frequency f0=2 GHz and amplitude H0. The current is
equal to zero. In this case, the boundary conditions are

z = − L1,
�H

�z
+ i�0H = 2i�0H0, �38�

z = R,
�H

�z
= 0. �39�

The resulting profile of the magnetic field is shown in Fig. 6.
The profile of Ez�z� is shown in Fig. 7. At the next stage, we
consider an incident low frequency magnetic field profile as
a source of distortion of the plasma density profile and take

FIG. 6. Incoming signal magnetic field profile.

FIG. 7. Incoming signal electric field �z-component� profile.
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into account currents due to the presence of a pump wave.
The pumping wave angle �=0.0. Our goal is to calculate the
scattered field HS with frequency �S=�p−�. In this case, the
boundary conditions are

z = − L1,
�HS

�z
+ i�SH = 0, �40�

z = R,
�HS

�z
= 0. �41�

The profiles of the magnetic fields HS for two different
pumping frequencies are shown in Figs. 8 and 9. We note
that the resonant layer z=0 acts as if it were a source.

In the “from the vehicle” case we calculate the magnetic
field of the low frequency wave generated by plane pump
and Stokes waves. Following the optimal strategy in this
case, described in the analytic section of the article, we take
all angles equal to each other: �=�=� /4. In this case, the
boundary conditions are

z = − L1, s
�H

�z
+ i�0H = 0, �42�

z = R, H = 0. �43�

Here H�z� is the magnetic field of the signal wave with fre-
quency �=�p−�S. The boundary condition at z=R, H=0
gives us the worst of all cases by definition.

The low frequency magnetic fields for two different
pumping frequencies are shown in Figs. 10 and 11.

We tested the robustness of the code by allowing for
both finite and zero conductivity of the vehicle surface in the
“to the vehicle” case. During the simulation in the “from the
vehicle” case we also redid the simulation with the derivative
of the magnetic field at the vehicle equal to zero. In all the
cases, the influences of the differing boundary conditions
were negligible.

In the “to the vehicle” case, it is convenient to introduce
the function 
S as the ratio

FIG. 8. Magnetic field profile of the Stokes wave. Pumping frequency 12
GHz.

FIG. 9. Magnetic field profile of the Stokes wave. Pumping frequency 18
GHz.

FIG. 10. Generated low frequency magnetic field. Pumping frequency 12
GHz.

FIG. 11. Generated low frequency magnetic field. Pumping frequency 18
GHz.
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S =
SS�z = R�

S0

of the scattered field flux to the incoming signal flux and
express it as a function of pump flux Sp measured in watts
per square meter. We found

�p = 2� * 12 GHz, max�
S� 	 2.2 � 10−12 Sp

1 W m−2 ,

�p = 2� * 18 GHz,

max�
S� 	 0.63 � 10−11 Sp

1 W m−2 .

These results are in good agreement with the analytic esti-
mation Eq. �27�. Any difference is due to the fact that the
pumping frequency is not sufficiently high to neglect the
plasma frequency. The reason we used these frequencies and
not much higher ones was that they are available on standard
microwave equipment and devices.

In the “from the vehicle” case, we calculate the ratio


 =
Sout�z = − L�

SSSp

of the output signal flux to the product of the pump and
Stokes fluxes and express it as a function of the optimal
angle.

We found

�P = 2� * 12 GHz, max�
� 	 1.8 � 10−16 1

1 W m−2 ,

�P = 2� * 18 GHz, max�
� 	 3.0 � 10−17 1

1 W m−2 .

In order to investigate the dependence of the result on the
angles � ,�p ,�S, we calculated 
 for various different
choices. The results are shown in Figs. 12–17.

As one can see, in the “to the vehicle” case we have very
good agreement between the analytically estimated angular
dependence Eq. �26� and the numerical results. Namely, we
have a maximum at pumping angles close to �=0 and the
efficiency coefficient 
S goes to zero in the vicinity of �
=� /4 in agreement with the cos �2�� dependence. So, we
can formulate a simple rule: In order to get the best possible
performance, send the pump wave in a direction perpendicu-
lar to the plasma edge surface.

FIG. 12. Dependence of power conversion efficiency coefficient 
S on
angles, in the “to the vehicle” case. Pumping frequency 12 GHz.

FIG. 13. Dependence of power conversion efficiency coefficient 
S on
angles, in the “to the vehicle” case. Pumping frequency 18 GHz.

FIG. 14. Dependence of the power conversion efficiency coefficient 
S on
several pumping angles, in the “to the vehicle” case. Pumping frequency 12
GHz.

FIG. 15. Dependence of power conversion efficiency coefficient 
S on sev-
eral pumping angles, in the “to the vehicle” case. Pumping frequency 18
GHz.
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In the “from the vehicle” case, the situation is even sim-
pler. As it was shown in Sec. II E, the power conversion is
optimal if we radiate both the pump and Stokes waves in the
direction of the desired signal wave propagation. The esti-
mated angular dependence Eq. �35� can be fitted with good
accuracy to the numerical results using only one tuning co-
efficient Cder. It is shown that this coefficient weakly de-
pends on the pumping frequency.

IV. CONCLUSION AND DISCUSSION

Let us now discuss the practical usage of this approach
for receiving at and transmitting from the vehicle. For the “to
the vehicle” case we consider the problem of receiving even
GPS signals. Let us estimate the resulting attenuation coeffi-
cient. Given a pump waveguide aperture of 3�3 cm2 and a
pump power of 3 kW, this gives Sp=3.3�106 W m−2. One
can use the pulse regime. In this case, even for pulses 10−3 s
long, every pulse still contains more than 106 periods of the

low frequency signal and we can get much higher power
flux: Sp

pulse=3.3�109 W m−2. It gives us the attenuation co-
efficients 
SSp

pulse:


SSp
pulse 	 0.73 � 10−2, �p = 2� * 12 GHz,


SSp
pulse 	 2.1 � 10−2, �p = 2� * 18 GHz.

The usual level of a GPS signal at the Earth’s surface is
about −127.5 dBm �1 decibel per milliwatt is equal to
1 dBm=10 log10�P /1 mW��. Indoors, one must use high
sensitivity GPS receivers. Many general purpose chipsets
have been available for several years. Presently, the market
offers sensitivities of −157.5 dBm �for example, Ref. 7�. Us-
ing the definition of dBm, one can see that it is possible to
receive a signal with an attenuation about 10−3. Also, it is
possible to use a much bigger antenna on the vehicle than in
the case of a handheld device. In this case, it is even possible
to receive a signal using the continuous rather than pulsed
regime for a klystron pump. So, even at angles far from
optimal, one can receive GPS signals. Further, we used the
maximum value of the plasma thickness. If the plasma
sheath is thinner, the angular dependence is broader.

Some characteristics of klystron amplifiers available on
the open market are given in Table I.8

In the “from the vehicle” case, because of sensitive land
based receivers, all we need is to have a reasonable signal.
Let us estimate an incoming power on some land based an-
tenna. First of all, for any real antenna we have to take into
account the decrease of a signal due to diffraction broaden-
ing. If the diameter of the land based antenna �Fig. 18� is D0,
the diameter of the signal flux after some long distance l will
be

D�l� 	
l�

2D0
. �44�

It means that if we have power flux at an antenna SA, the
power flux at the edge of the plasma after a distance l will be

FIG. 16. Dependence of the power conversion efficiency coefficient 
 on
optimal angle, in the “from the vehicle” case. Pumping frequency 12 GHz.

FIG. 17. Dependence of power conversion efficiency coefficient 
 on opti-
mal angle, in the “from the vehicle” case. Pumping frequency 18 GHz.

TABLE I. Characteristics of some klystrons available on the open market.

Model Frequency �GHz� Power �kW� Mass �kg�

LD4595 14.0–14.5 3 40
LD7126 17.3–18.4 2 27

FIG. 18. Schematic plot of beam diffraction.
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S0 	 SA�2D0
2

l�
�2

. �45�

For example, for an antenna of diameter equal to 5 m, after
100 km

S0 	 1.1 � 10−5SA.

Now one can calculate the sensitivity of the receiver needed.
Let us suppose that the signal beam outgoing from the ve-
hicle has diameter D0=1 m, signal frequency f =2 GHz,
and corresponding wavelength �=1.5�10−1 m. The land
based antenna has a diameter DLB=5 m and is situated at a
distance l=100 km. Using the previous results for diffrac-
tion, the pumping klystrons’ powers from the table above,
and the expression Sout=
SpSS, one can get for the power on
the land based receiver

SLB 	 Sout�2D0
2

l�
�2

= 1.8 � 10−8Sout. �46�

We now list, for two different frequencies, the corresponding
powers in watts at the receiving antenna:

�P = 2� * 12 GHz,

PA 	 1.8 � 10−8 * 1.8 � 10−16 * 9

� 106 W m−2 * 25 m2 	 0.73 � 10−15 W;

�P = 2� * 18 GHz,

PA 	 1.8 � 10−8 * 3.0 � 10−17 * 4

� 1012 W m−2 * 25 m2 	 0.54 � 10−17 W.

The GPS receiver mentioned above has a sensitivity about
−160 dBm	10−19 W. Even with such a modest size of the
antenna and ordinary klystrons one can receive the signal at
almost any angle.

As a final remark one can conclude that the proposed
method for communication with and from the supersonic ve-
hicle is realistic even using standard devices available on the
open market.

In a future work, there are several additional points we
would like to consider further. First, it might be worthwhile
to discuss the effect of the plasma density profile at z�0 on
the wave interaction. One may expect that the transition will
be much narrower than 5 cm, because of the shock forma-
tion. But shock waves take place not in the plasma but in air.
The air and plasma densities are not connected directly. The
plasma density is defined by the level of ionization, which is
governed by a density distribution in accordance with the
Saha equation. In a real plasma sheath the characteristic tem-
perature is much less than the ionization potential, and a
typical level of ionization is low �10−6−10−5�. Under this
condition the plasma density depends on the temperature
dramatically. The temperature jumps inside the shock, then
grows gradually toward the vehicle. Still, just after the shock
it is too low to provide a strong ionization, and the most
essential increase in ionization takes place far behind the
shock. For this reason we can neglect the jump of plasma
density inside the shock wave and treat it as smooth. In this

case an approximation by a linear function seems to be rea-
sonable. Let us note that there is no blackout if the plasma
sheath is as thick as 5 cm and the plasma density is as low as
1018 m−3. In this case, the incident wave can reach the ve-
hicle due to the skin effect. Anyway, our numerical code can
be used for an arbitrary density profile.

Another question is the following: Will the shock and
the flow behind it suffer from hydrodynamic instabilities?
Actually, hydrodynamic-type instabilities as well as hydro-
dynamic turbulence are slow processes in our time scale. We
can treat the plasma sheath as “frozen.” The distortion of the
density profile, although frozen, can slightly change the re-
sults.

It could look quite surprising that collision frequency 	
drops out from the final results after integration over the
spatial variable. This is a common mathematical trick, work-
ing perfectly as long as 	 /�→0. In our case we have 	 /�
	10−1−10−2. In fact, the shape of the resonant layer can be
distorted by nonlinear effects. They are essential if the ongo-
ing signal is powerful enough. At very small 	, the resonant
peak would become very narrow. Could then the electron
thermal motion start affecting the structure of the resonance?
This question is very important. A resonant layer cannot be
thinner than the Debye length. In our case rd	10−4 cm
while the thickness of the resonant layer is l	L · �	 /��2

	10−1−10−2 cm. Thus the influence of the temperature can
be neglected. In the case of a much thinner resonant layer
this phenomenon should be taken into account and consid-
ered separately. Anyway, such influence could lead only to a
radiation of Langmuir waves from the resonant area. But this
effect is nothing but additional dissipation, dropping out
from the final formulas.

When the signals come from the external source, what
would be the role of the s-polarized component? One can
expect that, for some orientations of the vehicle, the
s-component will be dominant, and the resonance will disap-
pear. This could somewhat reduce the efficiency. In our ide-
alized model �the vehicle is an infinite wall� there is a differ-
ence between s and u polarizations. For a real vehicle such a
difference could be important. This is a subject for future
study.

As one can see there are still a lot of open questions. The
physics of the problem is very rich. Our present work may be
best described as a “proof of concept” research from which
we can make some orders of magnitude estimates and gain
some insights. The results can be made more accurate by
including some of the physical effects discussed above.
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APPENDIX A: ANALYTIC SOLUTIONS OF THE
GINZBURG EQUATION IN SOME SPECIAL CASES

By neglecting jNL, we obtain the linear Ginzburg equa-
tion. It takes an especially simple form if �=�, 	 /�=0, and
H�eiky. In this case � /�0=−z /L and Eq. �15� is

d2H

dz2 −
1

z

dH

dz
− � z

�3 + k2�H = 0. �A1�

Here

� = � c2

�L
2 �L + R��1/3

= � c2

�2L�1/3

�A2�

and � is another length. In our case �L	2��9 GHz, R
+L=1 m, and �=0.03 m	L.

One can introduce the dimensionless variable �=z /�.
Then Eq. �A1� simplifies to

d2H

d�2 −
1

�

dH

d�
− �� + �2�H = 0. �A3�

Here �2=�2k2 is a dimensionless constant.
Equation �A1� has two linearly independent solutions

�1, �2. We assume

�1 → 0, �2 → �, at z → � .

The Wronskian of these solutions is proportional to � /�0. We
can put

W = ��1,�2� = �1��2 − �2��1 = −
z

L
. �A4�

It means that

�W�z=−L = 1.

Equation �A3� cannot be solved in terms of any known spe-
cial functions. In the “outer” area �����2 it reduces to the
form

d2H

d�2 −
1

�

dH

d�
− �H = 0. �A5�

One can check that Eq. �A5� can be solved in terms of the
Airy functions Ai and Bi. Namely,

�1 = a1Ai���� �
a1

2
�
�1/4e−2/3�3/2

,

�2 = b1Bi���� �
b1


�
�1/4e2/3�3/2

, at � → � . �A6�

From Eq. �A4� one gets

a1b1 =
��2

L
. �A7�

In the “inner” area �����2, Eq. �A3� is reduced to the form

d2H

d�2 −
1

�

dH

d�
− �2H = 0. �A8�

Equation �A8� can be solved in terms of Bessel functions.4

Two linearly independent solutions of Eq. �A8� �1 and �2,
behave in neighborhood of �=0 as follows:

�1 = 1 +
�2

2
�2�log � −

1

2
� + ¯ ,

�2 = �2 +
�2

8
�4 + ¯ . �A9�

Both solutions, which are some linear combinations of �1

and �2, are bounded. Thus the magnetic field has no singu-
larity at z=0.

APPENDIX B: RIGHT HAND SIDE OF THE GINZBURG
EQUATION

1. General case

Consider the Ginzburg equation for a wave,

H3�y,z,t� = H3�z�e−i�3t+ik3y ,

and calculate the right hand side of Eq. �15� in terms of the
fields H1�y ,z , t�, H2�y ,z , t�. In the “to the vehicle” case, H1

will represent the pump wave, H2 the signal wave, and H3

the Stokes wave. In the “from the vehicle” case, H3 will be
the signal and H1 and H2 the pump and signal carrying
Stokes waves, respectively. In all cases �3=�2−�1 and k3

=k2−k1. We find

�� � jNL�H1,H2,k1,k2,k3,�1,�2,�3��x

= −
e3n0��z�k3

2M2�3�1 + i	/�3�

�� 1

�1
*�1 − i	/�1��1

2�2�1 + i	/�2��2
2

�H1
*

�z

�H2

�z

+
k1k2

�1
*�1 − i	/�1��1

2�2�1 + i	/�2��2
2H1

*H2�
+

e3

M2� k2k1
2

�1 − i	/�1��1
3�2�1 + i	/�2��2

2

�

�z
�n0�z�

�1
* ��

�B1�

�+
k2

2k1

�1 − i	/�1��2
3�1

*�1 + i	/�2��1
2

�

�z
�n0�z�

�2
��H1

*H2

+
e3

M2� 1

�2
2�2�1 + i	/�2�

�H2

�z

�
k1

�1
3�1 − i	/�1�

�

�z
�H1

* �

�z
�n0�z�

�1
* ��� �B2�

�
+

1

�1
2�1

*�1 − i	/�1�
�H1

*

�z

k2

�2
3�1 + i	/�2�

�

�z
�H2

�

�z
�n0�z�

�2
���

�B3�
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−

0e3

M2 � k2

�2
3�1 + i	/�2�

�

�z
�n0�z�

�2
�

+
k1

�1
3�1 − i	/�1�

�

�z
�n0�z�

�1
* ��H1

*H2. �B4�

Using formulas �21�,

�jNL�H1,H2,k1,k2,k3,�1,�2,�3��y

=
e3n0�z�k3

2M2�3�1 + i	/�3�

�� 1

�1
*�1 − i	/�1��1

2�2�1 + i	/�2��2
2

�H1
*

�z

�H2

�z

+
k1k2

�1
*�1 − i	/�1��1

2�2�1 + i	/�2��2
2H1

*H2� �B5�

−
e3

M2� 1

�2
2�2�1 + i	/�2�

�H2

�z

k1

�1
3�1 − i	/�1�

H1
* �

�z
�n0�z�

�1
* �

+
1

�1
2�1

*�1 − i	/�1�
�H1

*

�z

k2

�2
3�1 + i	/�2�

H2
�

�z
�n0�z�

�2
�� .

�B6�

2. Approximate right hand side. “To the vehicle”
case

In the “to the vehicle” case, the main contribution comes
from the terms containing poles

�� � jNL�H,Hp,k,kp,kS,�,�p,�S��x

	
e3

M2

kpk2

�1 − i	/�p��3�p�1 + i	/�p��p
2

�

�z
�n0�z�

�* �H*Hp

�B7�

+
e3

M2

1

�p
2�p�1 + i	/�p�

�Hp

�z

k

�3�1 − i	/��
�

�z

��H* �

�z
�n0�z�

�* ��
−


0e3

M2

k

�3�1 − i	/��
�

�z
�n0�z�

�* �H*Hp. �B8�

Assume that the high frequency pumping wave remains un-
disturbed. Then

Hp�y,z,t� = Hpei�kpy−�pz−�t�,

and we find

fS�z� = − �� � jNL�xe
−i�pz

and

C1�R� =
1

2i�S



−L

R

fS�y�e−i�Sy dy

	
1

2i�S



−�

+�

fS�y�e−i�Sy dy .

After several integrations by parts in the second term of ��
� jNL�x, taking into account kS=kp−k, one finds

C1�R� 	
− ik

2�S

e3HpH*

M2�0�p
2�3�kp�kp − kS� + ��p + �S��p

−
�p

2

c2 �

−�

+� �

�z
�n0�z�

�* �e−i��S+�p�z dz. �B9�

For most pumping angles, and using the fact that �p��,
one can substitute �S	�p and consider incidence angles of
pumping and Stokes waves to be close in absolute value.
Following Fig. 1 the pumping incidence angle is � and the
low frequency signal incidence angle is �:

C1�R� 	
− ik

2�S

e3Hp

M2�0�p
2�3

�p
2

c2

�cos �2��

−�

+� �

�z
�n0�z�

�* �H*e−i��S+�p�z dz .

�B10�

Using integration by parts once more one can get

C1�R� 	
��p + �S�

2�S

e3Hp

M2�0c3�2 cos �2�� sin ���

� 

−�

+� �n0�z�
�* �H*e−i��S+�p�z dz . �B11�

Calculating this integral by residues and taking into account

n0�z� 	 n0�z = 0� = n0
L

L + R
= n0

�2

�L
2 ,

�0

�
= −

L

z + i

, 
 = i

	

�
L ,

we finally get

C1�R� 	 2�i
e3n0L

M2�0
2c3�L

2 cos �2�� sin ���HpH*�0�

= 2�i
eL

Mc2

1

�0c
cos �2�� sin ���HpH*�0� .

APPENDIX C: NUMERICAL METHOD

Here we briefly present formulas for the “sweep”
method in a very general way following the approach given
in Ref. 9.
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1. Reformulation of a problem on a grid

Consider the ordinary differential equation

p�x�
d2y

dx2 + q�x�
dy

dx
+ r�x�y = f�x� �C1�

in the region 0�x�L with boundary conditions

�
dy

dx
+ ��y�x=0 = � ,

�1
dy

dx
+ ��1y�x=L = �1. �C2�

We use for Eq. �C1� a second order finite difference scheme
on a grid of �N+1� nodes �y0=y�0�, yN=y�L�� with constant
step h:

pn
yn+1 − 2yn + yn−1

h2 + qn
yn+1 − yn−1

2h
+ rnyn = fn. �C3�

This equation is only valid for inner nodes of the grid.
The boundary conditions take the form

�
y1 − y0

h
+ �y0 = � ,

�1
yN − yN−1

h
+ �1yN = �1. �C4�

We can rewrite Eq. �C3� as

anyn−1 − bnyn + cnyn+1 = dn,

cn =
pn

h2 +
qn

2h
, an =

pn

h2 −
qn

2h
,

bn =
2pn

h2 − rn = an + cn − rn,dn = fn. �C5�

In the same way for Eq. �C4�, one finds

− b0y0 + c0y1 = d0,

b0 =
�

h
− �, c0 =

�

h
, d0 = � , �C6�

aNyN−1 − bNyN = dN, �C7�

aN = −
�1

h
, bN = −

�1

h
− �1, dN = �1. �C8�

The result is a tridiagonal matrix ��N+1�� �N+1�� equation
for a ,b ,c.

2. “Sweep” method

The solution of the linear system of equations with tridi-
agonal matrix is well described in numerous sources �for
instance, Ref. 10�. It can be shown that one can find a solu-
tion in the following form:

yn−1 = Pnyn + Qn. �C9�

From the left boundary, we have from Eq. �C6� that

y0 =
c0

b0
y1 +

d0

b0
.

In this case

P1 =
c0

b0
, Q1 =

d0

b0
. �C10�

Next we derive a recurrence relation for Pn and Qn. After
substituting Eq. �C9� in Eq. �C5�, we find

yn =
cn

bn − anPn
yn+1 +

anQn − dn

bn − anPn
.

Then, comparing with Eq. �C9�, we see that

Pn+1 =
cn

bn − anPn
, Qn+1 =

anQn − dn

bn − anPn
. �C11�

Using the initial values Eq. �C10� and the recurring relations
Eq. �C11�, one can get all Pn , Qn coefficients up to n=N
�“direct sweep” from left to right�.

Then we use the second �right� boundary condition �Nth
equation�

aNyN−1 − bNyN = dN and yN−1 = PNyN + QN.

Immediately one finds

yN =
dN − aNQN

aNPN − bN
. �C12�

Finally, performing a recurrent “backward sweep” �from
right to left�, using the already known Pn , Qn, “sweep” re-
lations Eq. �C9� and the initial condition Eq. �C12�, we get
values for all yn.
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