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Abstract

Numerical simulation of evolution of nonlinear gravity waves is presented. Simulation is done using two-dimensional code,
based on conformal mapping of the fluid to the lower half-plane. We have considered two problems: (i) modulation instability of
wave train and (ii) evolution of NLSE solitons with different steepness of carrier wave. In both cases we have observed formation
of freak waves.
© 2006 Elsevier SAS. All rights reserved.
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1. Introduction

Waves of extremely large size, alternatively called freak, rogue or giant waves are a well-documented hazards for
mariners (see, for instance Smith [1], Dean [2], Chase [3]). These waves are responsible for loss of many ships and
many human lives. Freak waves could appear in any place of the world ocean (see Earle [4], Mori et al. [5], Divinski
et al. [6]); however, in some regions they are more probable than in the others. One of the regions where freak waves
are especially frequent is the Agulhas current of the South-East coast of South Africa (see Gerber [7], Gutshabash
et al. [8], Irvine and Tilley [9], Lavrenov [10], Mallory [11]). In the paper by Peregrine [12] it was suggested that
in areas of strong current such as the Agulhas, giant waves could be produced when wave action is concentrated by
reflection into a caustic region. According to this theory, a variable current acts analogously to an optic lens to focus
wave action. The caustic theory of freak waves was supported since that time by works of many authors. Among them
Smith [1], Gutshabash et al. [8], Irvine and Tilley [9], Sand et al. [13], Gerber [14,15], Kharif and Pelinovsky [16].
The statistics of caustics with application to calculation of the freak wave formation probability was studied in the
paper of Fornberg [17].
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On our opinion, a connection between freak wave generation and caustics for swell or wind-driven sea is the
indisputable fact. However, this is not the end of the story. Focusing of ocean waves by an inhomogeneous current is
a pure linear effect. Meanwhile, no doubts that freak waves are essentially nonlinear objects. They are very steep. In
the last stage of their evolution, the steepness becomes infinite, forming a “wall of water”. Before this moment, the
steepness is higher than one for the limiting Stokes wave. Moreover, a typical freak wave is a single event (see, for
instance Divinsky et al. [6]. Before breaking it has a crest, three-four (or even more) times higher than the crests of
neighbor waves. The freak wave is preceded by a deep trough or “hole in the sea”. A characteristic life time of a freak
wave is short – ten of wave periods or so. If the wave period is fifteen seconds, this is just few minutes. Freak wave
appears almost instantly from a relatively calm sea. Sure, these peculiar features of freak waves cannot be explained by
a linear theory. Focusing of ocean waves creates only preconditions for formation of freak waves, which is a strongly
nonlinear effect.

It is natural to associate appearance of freak waves with the modulation instability of Stokes waves. This instability
is usually called after Benjamin and Feir, however, it was first discovered by Lighthill [18]. The theory of instability
was developed independently by Benjamin and Feir [19] and by Zakharov [20]. Feir [21] was the first who observed
the instability experimentally in 1967.

Slowly modulated weakly nonlinear Stokes wave is described by nonlinear Shrödinger equation (NLSE), derived
by Zakharov [22]. This equation is integrable (see Zakharov and Shabat [23]) and is just the first term in the hierarchy
of envelope equations describing packets of surface gravity waves. The second term in this hierarchy was calculated
by Dysthe [24], the next one was found a few years ago by Trulsen and Dysthe [25]. The Dysthe equation was solved
numerically by Ablovitz and his collaborates (see Ablovitz et al. [26]).

Since the first work of Smith [1], many authors tried to explain the freak wave formation in terms of NLSE and
its generalizations, like Dysthe equation. A vast scientific literature is devoted to this subject. The list presented
below is long but incomplete: Peregrine [27], Peregrine et al. [28], Tanaka [29], Trulsen and Dysthe [25], Trulsen and
Dysthe [30], Trulsen [31], Trulsen et al. [32], Ablovitz et al. [26], Onorato et al. [33–36].

One cannot deny some advantages achieved by the use of the envelope equations. Results of many authors agree
in one important point: nonlinear development of modulation instability leads to concentration of wave energy in a
small spatial region. This is a “hint” regarding possible formation of freak wave. On the other hand, it is clear that the
freak wave phenomenon cannot be explained in terms of envelope equations. Indeed, NLSE and its generalizations
are derived by expansion in series on powers of parameter λ � 1/(Lk), where k is a wave number, L is a length
of modulation. For real freak wave λ ∼ 1 and any “slow modulation expansion” fails. However, the analysis in the
framework of the NLS-type equations gives some valuable information about formation of freak waves.

Modulation instability leads to decomposition of initially homogeneous Stokes wave into a system of envelope
solitons (more accurately speaking – quasi-solitons [37,38]. This state can be called “solitonic turbulence”, or, more
exactly “quasisolitonic turbulence”. In the framework of pure NLSE, solitonic turbulence is “integrable”. Solitons
are stable, they scatter on each other elastically. However, even in this simplest scenario, spatial distribution of wave
energy displays essential intermittency. More exact Dysthe equation is not integrable. In this model solitons can merge,
this effect increases spatial intermittency and leads to establishing of chaotic intense modulations of energy density.
So far this model cannot explain formation of freak waves with λ ∼ 1.

This effect can be explained if the envelope solutions of a certain critical amplitude are unstable, and can collapse.
In the framework of 1-D focusing NLSE solitons are stable, thus solitons instability and the collapse must have
a certain threshold in amplitude. Instability of a soliton of large amplitude and further collapse could be a proper
theoretical explanation of the freak wave origin.

This scenario was observed in numerical experiment on the heuristic one-dimensional Maida–McLaughlin–Tabak
(MMT) model (see Majda et al. [39]) of one-dimensional wave turbulence Zakharov et al. [38]. At a proper choice of
parameters this model mimics gravity waves on the surface of deep water. In the experiments described in the cited
paper instability of a moderate amplitude monochromatic wave leads first to creation of a chain of solitons, which
merge due to inelastic interaction into one soliton of a large amplitude. This soliton sucks energy from neighbor
waves, becomes unstable and collapse up to λ ∼ 1, producing the freak wave. We believe that this mechanism of freak
wave formation is universal.

The most direct way to prove validity of the outlined above scenario for freak wave formation is a direct numerical
solution of Euler equation, describing potential oscillations of ideal fluid with a free surface in a gravitational field.
This solution can be made by the methods published in several well-known articles, Dommermuth et al. [40], West
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et al. [41], Dold [57], Clamond and Grue [42]. Here we use another method, based on conformal mapping. It should
be mention that idea to exploit comformal mapping for unsteady flows was presented in Ovsyannikov [43], and later
in Meison et al. [44], Chalikov and Sheinin [45]. Method used in this article has origin in Dyachenko et al. [46],
has been using in Zakharov et al. [47], and was finally formulated in Dyachenko [48]. This method is applicable in
1 + 1 geometry, it includes conformal mapping of fluid bounded by the surface to the lower half-plane together with
“optimal” choice of variables, which guarantees well-posedness of the equations (Dyachenko [49]) and existence of
smooth, unique solution of the equations for a finite time (Shamin [50]). Here we would like to stress that one of the
main goal of this paper is to demonstrate effectiveness of the conformal variables to simulate exact 2D potential flow
with a free boundary. Earlier, fully nonlinear numerical experiments regarding wave breaking, freak wave formation,
comparison with weakly nonlinear model (such as Nonlinear Shrödinger equation) were done in the papers Dold
and Peregrine [51], Tanaka [29], Banner and Tian [52], Henderson et al. [53], Clamond and Grue [54]. From the
other hand, using conformal approach we have studied in the papers Zakharov et al. [47,58] the nonlinear stage of
modulation instability for Stokes waves of steepness μ = ka � 0.3 and μ � 0.1.

In the present article we perform similar experiment for waves of steepness μ � 0.15. This experiment could be
considered as a simulation of a realistic situation. If a typical steepness of the swell is 0.06–0.07, in caustic area it
could easily be two-three times more. In the new experiment, we start with the Stokes waver train, perturbed by a long
wave with twenty time less amplitude. We observe development of modulation instability and finally, the explosive
formation of the freak wave that is pretty similar to waves observed in natural experiments.

2. Basic equations

Suppose that incompressible fluid covers the domain

−∞ < y < η(x, t). (2.1)

The flow is potential, hence

V = ∇φ, ∇V = 0, ∇2φ = 0. (2.2)

Let ψ = φ|y=η be the potential at the surface and H = T + U be the total energy. The terms

T = −1

2

∞∫
−∞

ψφn dx, (2.3)

U = g

2

∞∫
−∞

η2(x, t)dx, (2.4)

are correspondingly kinetic and potential parts of the energy, g is a gravity acceleration and φn is a normal velocity
at the surface. The variables ψ and η are canonically conjugated; in these variables Euler equation of hydrodynamics
reads

∂η

∂t
= δH

δψ
,

∂ψ

∂t
= −δH

δη
. (2.5)

One can perform the conformal transformation to map the domain that is filled with fluid,

−∞ < x < ∞, −∞ < y < η(x, t), z = x + iy

in z-plane to the lower half-plane

−∞ < u < −∞, −∞ < v < 0, w = u + iv

in w-plane. Now, the shape of surface η(x, t) is presented by parametric equations

y = y(u, t), x = x(u, t),

where x(u, t) and y(u, t) are related through Hilbert transformation

y = Ĥ
(
x(u, t) − u

)
, x(u, t) = u − Ĥy(u, t). (2.6)
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Here

Ĥ
(
f (u)

) = P.V .
1

π

∞∫
−∞

f (u′)du′

u′ − u
.

Eqs. (2.5) minimize the action,

S =
∫

Ldt, (2.7)

L =
∫

ψ
∂η

∂t
dx − H. (2.8)

Lagrangian L can be expressed as follows,

L =
∞∫

−∞
ψ(ytxu − xtyu)du + 1

2

∞∫
−∞

ψĤψu du − g

2

∞∫
−∞

y2xu du +
∞∫

−∞
f

(
y − Ĥ (x − u)

)
du. (2.9)

Here f is the Lagrange multiplier which imposes the relation (2.6). Minimization of action in conformal variables
leads to implicit equations (see Dyachenko et al. [46])

ytxu − xtyu = −Ĥψu,

ψtyu − ψuyt + gyyu + Ĥ (ψtxu − ψuxt + gyxu) = 0.
(2.10)

System (2.10) can be resolved with respect to the time derivatives. Omitting the details, we present only the final result

Zt = iUZu,

Φt = iUΦu − B + ig(Z − u).
(2.11)

Here

Φ = 2P̂ψ (2.12)

is a complex velocity potential, U is a complex transport velocity:

U = 2P̂

(−Ĥψu

|zu|2
)

(2.13)

and

B = P̂

( |Φu|2
|zu|2

)
= P̂

(|Φz|2
)
. (2.14)

In (2.12), (2.13) and (2.14) P̂ is the projector operator generating a function that is analytical in a lower half-plane

P̂ (f ) = 1

2

(
1 + iĤ

)
f.

In Eqs. (2.11)

z(w) → w, Φ(w) → 0, at v → −∞.

All functions z, Φ , U and B are analytic ones in the lower half-plane v < 0.
Recently we found that Eqs. (2.11) were derived in Ovsyannikov [43], and we call them here Ovsyannikov’s

equations, OE. Implicit equations (2.10) were not known until 1994, so we call them DKSZ-equations.
Note, that Eq. (2.10) can be used to obtain the Lagrangian description of surface dynamics. Indeed, from (2.10)

one can get

Ψ = ∂−1Ĥ (ytxu − xtyu). (2.15)
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Plugging (2.15) into (2.8) one can express Lagrangian L only in terms of surface elevation. This result was indepen-
dently obtained by Balk [55]. In Dyachenko [48] Eqs. (2.11) were transformed to a simple form, which is convenient
both for numerical simulation and analytical study. By introducing of new variables

R = 1

Zw

, and V = iΦz = i
Φw

Zw

(2.16)

one can transform system (2.11) into the following one

Rt = i(URw − RUw),

Vt = i(UVw − RBw) + g(R − 1).
(2.17)

Now complex transport velocity U and B

U = P̂
(
V R̂ + V̂ R

)
,

B = P̂
(
V V̂

)
.

(2.18)

Thereafter, we will call Eqs. (2.17), (2.18) Dyachenko equations, DE.
Both DKSZ-equations (2.10) and OE (2.11) have the same constants of motion

H = −
∞∫

−∞
Ψ ĤΨu du + g

2

∞∫
−∞

y2xu dy, (2.19)

the same total mass of fluid

M =
∞∫

−∞
yxu du, (2.20)

and the same horizontal momentum

Px =
∞∫

−∞
Ψyu du. (2.21)

The Dyachenko equations (2.17), (2.18) have the same integrals. To express them in terms of R and V , one has to
perform the integration

Z = u +
u∫

−∞

du

R
, Φ = −i

u∫
−∞

V

R
du. (2.22)

3. Freak waves as a result of modulation instability

The Stokes wave is unstable with respect to long-scale modulation. This remarkable fact was first established in
Lighthill [18], who calculated a growth-rate of instability in the limit of long-wave perturbation. As far as Lighthill’s
growth-rate coefficient was proportional to the wave number of perturbation length, the result was in principle incom-
plete: somewhere at short scales the instability must be arrested. The complete form of the growth-rate coefficient was
found independently in Zakharov [20,22] and in Benjamin anf Feir [19].

The presented technique based on the conformal mapping makes possible to study modulation instability in a very
compact way. It is convenient to use the Dyachenko equations (2.17), (2.18). Let g = 1, k = 1. To study instability of
the Stokes wave, propagating with the velocity c > 1, one has to go to the moving reference frame by the following
change of variables:

u → u − ct, τ = t, R = 1 − iV

c
+ r. (3.1)

Then the Dyachenko equations take the form:
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∂

∂t

(
r − iV

c

)
+ cr ′ = i

(
Ũr ′ − rŨ ′),

∂V

∂t
= i

(
V V ′ − B ′) − V

c
B ′ − ig

c
V + gr + iŨV ′,

Ũ = p̄
(
r̄V + rV̂

)
.

(3.2)

For the stationary progressive wave (with subscript 0) the following relation is valid:

R0 = 1 − iV0

c0
. (3.3)

For the perturbation δV and δr one can derive linear system against the stationary solution

∂

∂t

(
r − i

δV

c

)
+ cru = 0,

(
∂

∂t
+ c

∂

∂u

)
δV = i

∂

∂u
(V0δV − δB) − V0

c
δBu − ig

c
δV + gr.

(3.4)

System (3.4) contains all information about stability of the Stokes wave.
The modulation instability is described by a perturbation presented as a sum of following harmonics:

δV, r � e−iκu, e(1±κ)u−inκ, n = 1, . . . , κ < 1.

In the leading order of nonlinearity one can put

r = p1 e−i(1+κ)u + p2 e−i(1−κ)u,

V = q1 e−i(1+κ)u + q2 e−i(1−κ)u.
(3.5)

Plugging (3.5) to (3.4) one obtains closed equations to p1,p2, q1, q2:

ṗ1 − i

c
q̇1 = ic(1 + κ)p1,

˙̄p2 + i

c
˙̄q2 = −ic(1 − κ)p2,

q̇1 − i

(
1

c
− c(1 + κ)

)
q1 − p1 = V2(1 + κ)q̄2,

˙̄q2 − i

(
1

c
− c(1 − κ)

)
q̄2 − p̄2 = V2(1 − κ)q1.

(3.6)

Here V2 is the amplitude of second harmonics. Assuming p1, q1, p̄2, q̄2 � ei(Ω+κc)t , one gets the following equation
for Ω :

[
(Ω − c)2 − 1 − κ

][
(Ω + c)2 − 1 + κ

] = (
c2 − Ω2)(1

c
− c

)2(
1 − κ2). (3.7)

To obtain this equation we put

|V2|2 =
(

1

c
− c

)2

. (3.8)

This condition appears from the natural physical requirement: if κ = 0, then Ω = 0 is a solution of (3.7).
After simple calculations one can obtain dispersion relation for Ω :

Ω2 = 1

8

(
−A2κ2 + 1

8
κ4

)
. (3.9)

Here A is the amplitude of the first Fourier harmonic of the Stokes wave train:

r = A e−iu + · · · .
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The result that was obtained by Zakharov [20,22], and by Feir [19]. Lighthill in 1965 found long-wave asymptotic of
the instability growth-rate,

Ω2 = −1

8
A2κ2, (3.10)

with the maximum value of the growth-rate,

Ω2 = −1

4
A2κ2, (3.11)

achieved at

κ2 = 4A2. (3.12)

The technique developed above makes possible to study the modulation and other instabilities with any arbitrary
accuracy.

Here we study modulation instability of uniform wave train of Stokes wave. Question of great interest is the
nonlinear stage of the instability. Here and everywhere below we do simulation in periodic domain L = 2π and

g = 1.

Wavetrain of the amplitude a with wavenumber k0 is unstable with respect to large scale modulation δk. Growth rate
of the instability γ is

γ = ω0

2

((
δk

k0

)2

(ak0)
2 − 1

4

(
δk

k0

)4)1/2

. (3.13)

Here ω0 is the linear dispersion relation for gravity wave

ω0 = √
gk0.

• The shape of Stokes progressive wave is given by:

y = c2

2g

(
1 − 1

|Zu|2
)

,

while Φ is related to the surface as

Φ = −c(Z − u), V = ic(R − 1).

The amplitude of the wave h/L is the parameter for initial condition. (For the sharp peaked limiting wave
h/L � 0.141.)

• Put 100 such waves with small perturbation in the periodic domain of 2π .

In such a way we prepared initial wave train with the steepness μ � 0.095 Main Fourier harmonic of this wave train is
k = 100. Similar problem was studied in Song and Banner [56]. But instead of long wavetrain they studied evolution
of small group of waves.

For perturbation small value for Fourier harmonic with kp = 1 was set. So, that

Rk = R
unperturbed
k + 0.05R100 e−ikpu.

Surface profile of this initial condition is shown in Fig. 1
Fourier spectrum of the initial condition is shown in Figs. 2 and 3.
After sufficient large time, which is more than 1300 wave periods one can observe freak wave formation, as it is

shown in Fig. 4. Freak wave grows from mean level of waves to its maximal value for several wave periods, than
vanishes or breaks.

Detailed view at the freak wave at the moment of maximal amplitude is shown in Fig. 5. This set of experiments is
similar to that of Dold and Peregrine [51], Tanaka [29]. The difference is that we were able to increase the accuracy
of the simulation, and consider much longer wavetrains. Also (due to using conformal mapping) we can simulate
breaking with multivalued surface profile. Accuracy in the simulation is very important because of the freak wave
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Fig. 1. Initial profile of the wave train. Fig. 2. Fourier coefficients |Rk | for initial condition (μ � 0.095).

Fig. 3. Fourier coefficients |Vk | for initial condition (μ � 0.095). Fig. 4. Freak wave on the surface profile. T = 802.07.

Fig. 5. Zoom in surface profile at T = 802.07. Fig. 6. Fourier coefficients |Rk | at T = 802.07.

appears in a very subtle manner on the phase relations between Fourier harmonics of the surface. Moreover, for shorter
wavetrains threshold of modulation instability increases, and breaking does not happen even for large steepness. In
our experiments we have observed threshold of steepness for wave breaking a little less than in Tanaka [29], but above
μ = 0.1. Still, surface profile from Tanaka [29] (Fig. 5) is very similar to the picture in Fig. 5 with μ = 0.095.
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Fig. 7. Profile of breaking wave.

During numerical simulation of the final stage of freak wave formation, resolution must be increased to resolve high
curvature of the surface profile. To do this we have been increasing number of Fourier harmonics, which reached 220

at the end (T = 802.07). Fourier coefficients of Rk are shown in Fig. 6.
If amplitude of the wave train is large, than freak wave may eventually break. Such a picture is presented in Fig. 7,

which corresponds to the other numerical simulation with the initial steepness μ � 0.14.

4. Exact equations and nonlinear Shrödinger approximation

Evolution of weakly nonlinear Stokes wavetrain can be described by nonlinear Shrödinger equation (NLSE), de-
rived by Zakharov [22]. This equation is integrable (see Zakharov and Shabat [23]) and is just the first term in the
hierarchy of envelope equations describing packets of surface gravity waves. The second term in this hierarchy was
calculated by Dysthe [24], the next one was found a few years ago by Trulsen and Dysthe [25]. The Dysthe equation
was solved numerically by Ablovitz and his collaborates (see Ablovitz et al. [26]).

Since the first work of Smith [1], many authors tried to explain the freak wave formation in terms of NLSE and its
generalizations, like Dysthe equation. A vast scientific literature is devoted to this subject. The list presented below
is long but incomplete: Ablovitz et al. [26], Onorato et al. [33–36] Peregrine [27], Peregrine et al. [28], Trulsen and
Dysthe [25,30], Trulsen [31], Trulsen et al. [32], Clamond and Grue [54].

One cannot deny some advantages achieved by the use of the envelope equations. Results of many authors agree
in one important point: nonlinear development of modulation instability leads to concentration of wave energy in a
small spatial region. This is a “hint” regarding possible formation of freak wave. On the other hand, it is clear that the
freak wave phenomenon cannot be explained in terms of envelope equations. Indeed, NLSE and its generalizations
are derived by expansion in series on powers of parameter λ � 1/(Lk), where k is a wave number, L is a length of
modulation. For real freak wave λ ∼ 1 and any “slow modulation expansion” fails. At this point interesting question
rises: what happens to NLSE approximation when increasing the steepness of the carrier wave? In particular, we study
“exact” soliton solutions for NLSE placed in the exact equations (2.17).

Such type of problem was considered in Henderson et al. [53], but with low resolution, and small length of periodic
carrier. Also in Clamond and Grue [54] numerical solutions for envelope equation was compared with “almost” exact
equations.

For Eqs. (2.17) NLSE model can be derived for the envelope of R.

R = 1 + R1 e−ik0u−ω0t + · · · ,
iR1t + 1

8

ω0

k2
0

R1uu + 1

2
ω0k

2
0 |R1|2R1 = 0.

Initial conditions consist of “linear wave carrier” e−ik0u, modulated in accordance with soliton solution for NLSE:
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Fig. 8. Initial surface profile like for NLSE soliton with μ � 0.07. Fig. 9. Surface profile like for NLSE soliton with μ � 0.07 at
T = 1500.

Fig. 10. Fourier harmonics of the initial soliton with μ � 0.07. Fig. 11. Fourier harmonics of the soliton with μ � 0.07 at T = 1500.

R(u) = 1 + s0
e−ik0u

cosh(λk0u)
,

V (u) = −ic0s0
e−ik0u

cosh(λk0u)
.

(4.1)

Here s0 is the steepness of the carrier wavetrain, c0-phase velocity of the carrier.
First comparison of fully nonlinear model for water wave with NLSE was done in Clamond and Grue [54] for the

wave carrier with the steepness μ � 0.091. For such steepness there was a good agreement between two models, but
only for the short time. After finite time weakly nonlinear model (NLSE) ceases to be valid.

In our work we want to study the situation with larger and smaller steepness, to find out how NLSE approximation
breaks.

4.1. Small steepness

First experiment was intended to observe how NLSE works. In the initial conditions (4.1) we used

s0 � 0.07, λ = 0.1, k0 = 100.

Initial surface of fluid is shown in Fig. 8.
After couple of thousands wave periods soliton changes a little, as it is seen in Fig. 9. Also in Figs. 10 and 11

Fourier spectra of the soliton at both moments of time are presented. So, one can see that for the steepness μ � 0.07
NLSE model is quite reasonable.
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Fig. 12. Initial surface profile of two NLSE solitons with μ � 0.085. Fig. 13. Two NLSE solitons with μ � 0.085. collide at T = 30.8.

Fig. 14. Detailed view of two colliding NLSE solitons with μ � 0.085
at T = 30.8.

Fig. 15. Two NLSE solitons with μ � 0.085 after two collisions at
T = 250.0.

Another numerical experiment showing effective simulation with Eqs. (2.17) along with applicability NLSE model
for moderate steepness, μ � 0.085, is the collision of two solitons.

In Fig. 12 initial condition is shown. Moment of collision is shown in Fig. 13 and detailed view showing carrier
wavetrain under the envelope is in Fig. 14.

After second collision (recall that boundary conditions are periodic) solitons are plotted in Fig. 15. Fourier spectra
of these two solitons at the moments of time T = 0.05,30.8,250.0 are shown in Figs. 16–18.

4.2. Large steepness

Now let us turn to the higher steepness of the carrier,

μ = 0.1.

In Fig. 19 there is initial condition. Again, after couple of thousands wave periods soliton changes a little, as it is
seen in Fig 20. In Figs. 21 and 22 Fourier spectra of the soliton at both moments of time are presented. From this
pictures one can see that for steepness μ � 0.10 some corrections to the NLSE model are desirable. Dysthe equations
are exactly intended for that situation.

But what happens when further increasing the steepness? Below we consider the case of the steepness of the carrier

μ = 0.14.
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Fig. 16. Fourier spectrum of the initial surface profile of two NLSE
solitons with μ � 0.085.

Fig. 17. Fourier spectrum of two colliding NLSE solitons with
μ � 0.085 at T = 30.8.

Fig. 18. Fourier spectrum of two NLSE solitons with μ � 0.085 at
T = 250.0.

Fig. 19. Initial surface profile like for NLSE soliton with μ � 0.10.

Fig. 20. Surface profile like for NLSE soliton with μ � 0.10 at
T = 2345.

Fig. 21. Fourier harmonics of the initial soliton with μ � 0.10.

In Fig. 23 there is initial condition. Very fast, after couple of dozen wave periods soliton drastically changes, as it is
seen in Fig. 24. One can see freak wave at the surface (in Fig. 25). In Figs. 26 and 27 Fourier spectra of the soliton at

both moments of time are presented. They demonstrate the quality of the numerical simulation.



V.E. Zakharov et al. / European Journal of Mechanics B/Fluids 25 (2006) 677–692 689
Fig. 22. Fourier harmonics of the soliton with μ � 0.10 at T = 2345. Fig. 23. Initial surface profile like for NLSE soliton with μ � 0.14.

Fig. 24. Surface profile like for NLSE soliton with μ � 0.14 at
T = 38.4.

Fig. 25. Zoomed surface profile near freak wave μ � 0.14 at T = 38.4.

From the last case, with the steepness μ = 0.14, one can see that envelope approximation completely fails. Such
event as one single crest (freak wave) cannot be described in terms of wave envelope.

5. Do freak waves appear from quasisolitonic turbulence?

Let us summarize the results of our numerical experiments. Certainly, they reproduce the most apparent features of
freak waves: single wave crests of very high amplitude, exceeding the significant wave height more than three times,
appear from “nowhere” and reach full height in a very short time, less than ten periods of surrounding waves. The
singular freak wave is proceeded by the area of diminished wave amplitudes. Nevertheless, the central question about
the physical mechanism of freak waves origin is still open.

In our experiments, the freak wave appears as a result of development of modulation instability, and it takes a
long time for the onset of instability to create a freak wave. Indeed, the level of perturbation in our last experiment
is relatively high. The two-three inverse growth-rate is enough to reach the state of full-developed instability, when
the initial Stokes wave is completely decomposed. Meanwhile, the freak wave appears only after fifteenth inverse
growth-rates of instability. What happens after developing of instability but before formation of freak wave?

During this relatively long period of time, the state of fluid surface can be characterized as quasisolitonic turbu-
lence, that consists of randomly located quasi-solitons of different amplitudes moving with different group velocities.
Numerical study of interaction of envelope soliton was done in Clamond and Grue [54]. Such interaction leads to
formation of wave with large amplitude. Here we can think in term of quasisolitonic turbulence. Such turbulence
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Fig. 26. Fourier harmonics of the initial soliton with μ � 0.14. Fig. 27. Fourier harmonics of the soliton with μ � 0.14 at T = 38.4.

was studied in the recent work of Zakharov, Dias and Pushkarev (Zakharov et al. [38]) in a framework of so-called
defocussing MMT model.

i
∂Ψ

∂t
=

∣∣∣∣ ∂

∂x

∣∣∣∣1/2

Ψ +
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∣∣∣∣3/4

Ψ

∣∣∣∣2∣∣∣∣ ∂

∂x

∣∣∣∣3/4

Ψ

)
. (5.1)

This is a heuristic model description of gravity surface waves in deep water. In this model, quasi-solitons of small
amplitude are stable, interact inelastically and can merge. Above some critical level quasi-solitons of large amplitude
are unstable. They collapse in finite time forming very short wave pulses, which can be considered as models of freak
waves. Eq. (5.1) has the exact solution:

Ψ = A eikx−iωt ,

ω = k1/2
(
1 + k5/2A2

)
.

(5.2)

This solution can be constructed as a model of the Stokes wave and is unstable with respect to modulation instability.
Development of this instability was studied numerically. On the first stage, the unstable monochromatic wave decom-
poses to a system of almost equal quasi-solitons. Then, the quasisolitonic turbulence is formed: quasi-solitons move
chaotically, interact with each other, and merge. Finally they create one large quasi-soliton, which exceeds threshold
of instability and collapses, creating a freak wave.

One can think that a similar scenario of freak wave formation is realized in a real sea. We like to stress that the key
point in this scenario is the quasisolitonic turbulence and not the Stokes wave. The Stokes wave is just a “generator”
of this turbulence. The quasisolitonic turbulence can appear as a result of instability of narrow spectral distributions
of gravity waves.

The formulated above concept is so far a hypothesis, which has to be confirmed by future numerical experiments.
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