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Abstract

We performed numerical simulation of the kinetic equation describing behavior of an ensemble of random-phase, spatially
homogeneous gravity waves on the surface of the infinitely deep ocean. Results of simulation support the theory of weak
turbulence not only in its basic points, but also in many details. The weak turbulent theory predicts that the main physical
processes taking place in the wave ensemble are down-shift of spectral peak and “leakage” of energy and momentum to the
region of very small scales where they are lost due to local dissipative processes. Also, the spectrum of energy right behind
the spectral peak should be close to the weak turbulent Kolmogorov spectrum which is the exact solution of the stationary
kinetic (Hasselmann) equation. In a general case, this solution is anisotropic and is defined by two parameters—fluxes of
energy and momentum to high wave numbers. Even in the anisotropic case the solution in the high wave number region is
almost proportional to the universal fornT*. This result should be robust with respect to change of the parameters of forcing
and damping. In all our numerical experiments, &1&" Kolmogorov spectrum appears in very early stages and persists in
both stationary and non-stationary stages of spectral development. A very important aspect of the simulations conducted here
was the development of a quasi-stationary wave spectrum under wind forcing, in absence of any dissipation mechanism in
the spectral peak region. This equilibrium is achieved in the spectral range behind the spectral peak due to compensation of
wind forcing and leakage of energy and momentum to high wave numbers due to nonlinear four-wave interaction. Numerical
simulation demonstrates slowing down of the shift of the spectral peak and formation of the bimodal angular distribution of
energy in the agreement with field and laboratory experimental data. A more detailed comparison with the experiment can be
done after developing of an upgraded code making possible to model a spatially inhomogeneous ocean.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The phenomenon of wind-generated gravity waves on the sea surface is a very interesting object not only for
oceanographers, naval architects and coastal engineers. Itis also a subject of fundamental interest for physicists. The
ocean waves are the most conspicuous natural example of weakly nonlinear waves in a strongly dispersing media.
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Indeed, on a deep water the dispersion relatiom is- ./gk, thus the dispersion is very strong. The level of
nonlinearity could be measured by the characteristic steeppesska (k is an average wave humber amds
a wave amplitude). Numerous observational data show that typigally,0.1 (see for instancfgl]). Even in the
condition of a strong stormy rarely exceeds this limit. Meanwhile, the critical steepness of the Stokes waves is
u =~ 0.45. Thus, the level of nonlinearity of the ocean waves is small or at least moderate. This statement is very
much enhanced by the predictions of the weakly nonlinear statistical theory. According to this theory a characteristic
time of evolution of the wave spectrum is

1
T= w—’u4
Even foru ~ 0.1 this time is equal to TOwave periods.

The weakly nonlinear statistical ensemble of surface gravity waves can be described by the theory of weak
turbulence. This theory is quite universal and is applicable to a very broad scope of physical phenomena, including
waves in plasmas, waves in liquid super-fluid helium, Rossby waves, and acoustic waves. The references can b
found in the monograpf2]. And this list is far from being complete.

The theory of weak turbulence is far advanced analytically. In this theory the evolution of basic correlation
functions is described in terms of kinetic equations for the wave action. These kinetic equations are nothing but
standard kinetic equations for bosons, traditionally used in statistical physics since 1920s. The new point is the
following: we deal now not with thermodynamically equilibrium solutions, which are not relevant for description of
a real wave turbulence, but focus our interest on Kolmogorov-type solutions. These solutions carry a finite amount
of constants of motion (energy, momentum, wave numbers) from the regtespace, where they are generated, to
the region where they are accumulated or absorbed by some kind of dissipation mechanism. In the theory of weak
turbulence we study these equations in the limit of very high occupation numbers, where the equations become
homogeneous with respect to the distribution function (quadratic, cubic, etc). As a result, in most physical situations
the Kolmogorov-type solutions are power-like functions.

The analytical theory of weak turbulent Kolmogorov solutions has been studied in detail, but the experimental
and the numerical justifications of this theory cannot be considered as being sufficient. There is only one physical
situation, the capillary wave turbulence, where the weak turbulent theory is strongly supported by the experiment
and the numerical simulatid8-5].

Itis extremely challenging and attractive to apply the theory of weak turbulence to such a great natural laboratory
as the world ocean. In this paper we make a step in this direction. We present here our numerical experiments or
the solution of the Hasselmann's kinetic equation for gravity waves on a deep sea. We show that these experiment:
completely confirm the prediction of the wave turbulent theory. First of all, they confirm the fundamental role of
the universal Kolmogorov spectrum, ~ »~*, which was found by Zakharov and Filonenko in 1466 They
make it possible to explain in a natural way a lot of experimental data accumulated in the physical oceanography
for decades.

2. General consideration

Letn(7, 1) be a surface elevatiogi;(7, r) be a potential on the surface. We assume that density of theofhgid..
The complex amplitude of propagating waves is given by the formula:

oo G0 () ] s
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In the pair of correlation functions,
(axay,) = NSk,

where N, is a spectral density of the wave action. This definition of wave action is common in oceanography. It
has dimensionV, ~ L*T. The Hamiltonian describing the motion of fluid is a functional that includes terms of
all orders in expansion a#, a;. One can perform the canonical transformation to new variahlesxcluding the

cubic terms in the Hamiltonian. For new variablesve have

(biby) = OB (2.2)

The complex amplitudey is expressed throudh as the power series, as wellEgsthroughny. Their cumbersome
coefficients are presented Appendix A(see alsd33]). The difference betweeN; andn; on a deep water is of
the ordernx?, and can be neglected. In shallow water this difference is much more important.

If the nonlinearity is weak, the fluid is described by the Hamiltonian

1
H= / obiby dk + 7 / TudcykoksDi D, Do DSk + kg —ky—ks Ok ok dkp dks. (2.3)
HereT is a homogeneous function of third order,
T(ek, k1, eko, ek3) = €*T(k, k1, k2, k3).

The explicit formula forTjg, i, is in Appendix B
The kinetic equation for; reads

ony
== Sat 4 vibon. (2.4)
This equation was derived by Hasselmann in 1p8&], and broadly applied in oceanography. Hasselmann erro-
neously considered th&q. (2.4)is written for Ny, and this view is shared until now by most oceanographers. While
the difference betweery, and Ny, is relatively small for deep water, it becomes significant for shallow water.

In (2.4)

Spi = 2”82/ |Tkk1k2k3|2(nk1nk2nk3 + NNy — MM Nky — Ml Ty )8 (g + gy — Wk, — W)
[k2|<|k3|
x 8(k + k1 — kp — k) dkq dkp dks. (2.5)

The functiony, describes the active forcing by the wind and the damping due to the wave breaking. Due to
complexity of these processes, this function should be found from the experiments. For large and moderate scales
¥« is dominated by the interaction with the wind. Due to the large difference between air and water densgies,

small and is of order
Yk Pair

Wi Pwater

(2.6)

From(2.4)one obtaing: ~~ /4, in accordance with experimental data. For the rate of the spectrum evolution one
has

1
ot~ =~ 10°. (2.7)
€

Applicability of the weak turbulent theory in a final degree comes from the small valele of
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Hereafter the polar coordinates= ./gk, 6 in k-plane are used. The wind veloci% defines the characteristic
frequencywg = g/ V. Even for weak windV =~ 1-2 m/s, characteristic frequency is by the order of magnitude
less than the frequeney. >~ 30 Hz, where the effects of capillarity become important. &6t wo, y is hegative,
small and unknown. It is defined by friction between sea surface and turbulent air boundary layet- kayg, y
is positive due to Cherenkov-type excitation of waves by the wind. According to Donelarj%t alhe can put

2
0.2¢ (2 — l) wcoshd, cosh > 0, w > wo,
Y(w, 0) =

wo

(2.8)
0 otherwise

This expression can be trusted uptequal to 5—@g. For higher frequencies experimental data are scarce, and the
expression foyp(w, 6) is not clearly known.

If the wind is weak enoughy < 5m/s, a wave breaking is absent, the sea surface is smooth saficat least up
t0 w >~ weap FOr stronger winds, the effects of micro-scale and macro-scale (white capping) wave breaking make
y < 0in the high enough frequency region (4&6]). In both cases there is an effective sink of wave energy in
small scales. In the absence of wind velocity, this sink is realized either by excitation of capillary waves and their
viscous dissipation, or by the wave breaking.

Existence of this sink leads to a conjecture that real physics of wind-driven waves on the sea surface can be
compared with the physics of turbulence in the incompressible fluid at high Reynolds numbers.

Itis well known that kinetieequation (2.4)if y = 0, has constants of motion. In the isotropic case they are

E= /a)knk dk, (2.9)
and a wave action

N = /nk dk. (2.10)
In the general case it also preserves momentum

R= / kny dk. (2.11)

In reality neither energy nor momentum are the constants of motion. They “leak” to the region of high wave numbers
(similar situation takes place in turbulence of incompressible fluid). Only wave action is the true constant of motion.
Other conservation laws (of energy and momentum) are just formal. The problem of non-conservation of formal
motion constants is discussed in detail in the paper of Pushkarev and Zaktf{rov

The effect of the “leakage” of energy to high wave numbers is clearly demonstrated practically by all numerical
experiments of the Hasselmann equation, since pioneering works of Hasselmari@t &h. a typical case the
angle-averagefy,

1 2
flo) = 5~ / S d6
T Jo

is a “two-lobe” function. It has only one zero at= », and f(w) > 0 for 0 < w < w,, while f(w) < O for
w > w,. Preservation of both wave action and energy meansftagtsatisfies simultaneously two conditions:

/00 @° f(w) dw = 0, (2.12)
0

/00 o f(w) dw = 0. (2.13)
0
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Apparently, it is impossible iff(w) is a “two-lobe” function. Integraf2.13)must be negative. We denote

/000 o* f(w) dw = —gzg. (2.14)

Here P is the flux of energy to high wave numbers. The inevitable presence of the flux lead us to a theory of
Kolmogorov style.

In the Kolmogorov theory of turbulence the spectra are governed by fluxes of the constants of motion. Due to
the presence of two constants of motion, even in the isotropic case, the turbulence of gravity waves is qualitatively
similar to turbulence of two-dimensional incompressible fluid, which is governed by fluxes of energy and enstrophy.

We should stress here the fundamental difference between weak (wave) and strong (hydrodynamic) turbulence.
In the theory of turbulence Kolmogorov spectra are just a plausible hypothesis, which is not supported properly by
rigorous arguments. In the theory of weak turbulence, Kolmogorov spectra appear as exact solution of the equation

Spi = 0. (2.15)

For gravity waves on the surface of a fluid the most important Kolmogorov spectrum, describing the direct cascade
of energy to high frequencies has a form

o ~ P04, (2.16)

In 1966 Zakharov and Filonenko found that specti@16) satisfiesEq. (2.15) In 1972 spectra with this form
were experimentally observed by TofHl], who was not aware of the work of Zakharov and Filonenko. The
interpretation of spectruif2.16)as a Kolmogorov spectrum was published firstin 1982 by Zakharov and Zaslavskii
[12] and then propagated by KitaigorodsKiB].

3. Weak turbulent Kolmogorov spectra

In this section we summarize the basic facts on weakly turbulent Kolmogorov spectra. We discuss solutions of
Eqg. (2.15)and present these facts without detailed analytical justification. This justification is refefppdadix C
in a brief form.

Naively, one can think that this equation has thermodynamic solutions of the form

T

: 1
S (CHY

ng =

In fact, in the considered case of gravity waves these solutions do not exist because of divergence of the integral
(2.5)at large wave numbers. Let us call a functigriallowed” if the integrals in the operatd,[n,] are converged
for bothk — oo andk — 0.

To determine the class of allowed functions onefaut> oo, k3 — oco. From the conditions

k+ /;1 = /;2 + /;3, (3.2)
Wk + Wk = Wky + W3, 3.3)

one can see that &f — oo, k3 — 00, k remains finite (k2| ~ |k|).
The contributionS‘r(ﬂl) to the integra(2.5)comes from integration over large, and can be written approximately
as follows:

> - 0On S
S;:ll') ~ 27Tg2nk/ |Tkkl|2nk25(a)k — Wky) (k — ko, 8_7(1) dkq dko, (3.4)
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Tiy = Ty khep s (3.5)

where(-, -) means scalar product.
As far as (seé\ppendix B |Tig |? ~ k2k* atky > k, integral(3.4) converges if

C
< 3 (3.6)

atk — oo. Thermodynamic solutions do not satisfy the condif{8r6).
Letks — 0. Due to(3.2)k2 — 0 as well. The contributioSrﬂlz) provided by integration over smali, k, reads

2
S ~ 2mg? / Mg i (| T kg kpok kg k|2 (kg —kp — NS (@k + @1y — Oktky—kp — ©ky)
A | Ty ey kg —ky | Pk —kg iy — 1)@k + Ohy — Dh—g +kp — @ky)) Ak k2. (3.7)

The integrand should be expanded in Taylor series byvgr,. The first term of the expansion vanishes due to the
symmetry. In the second approximation kinetic equation transforms to the diffusion equation

?TIZ — div D(k)Vn, (3.8)

T
D(k) = Egz / | Tidey | 21y (k1 — k2)28(wpy — wiy) diy dia. (3.9)

Suppose that; >~ k~5. Integral(3.9) converges iff < 19/4. Thusn; must satisfy the condition

C

nk
Conditions(3.6) and (3.10¥efine the class of allowed functions. In particular, the power-like funetjog k= is
allowed if:

3<x< %’. (3.11)

Let us formulate the central results of the theory of weak turbulence. Suppose that an ensemble of weakly nonlinea
waves in the space of dimensidris described by kinetiequation (2.4)Suppose that the following conditions are
satisfied:

1. Eq. (2.4)is invariant with respect to rotationsdhdimensionak-space. This condition implies that the dispersion
law depends only on the modulus/ofo = w(|k|).

2. Thereisno characteristic length in the system. Itimpliesdlisia power-like function, whilg is ahomogeneous
function of its arguments = |k|*:

T(ek, ek1, ek, ek3) = PT(k, k1, ka, k3). (3.12)

In this caseequation (2.15has no more than four power-like solutions:
ne=k%, i=1...4, (3.13)
x1=3+d,  x=328-aw)+d,  xz=a,  x4=0. (3.14)
The solutions are

ny ~ k|~ (3.15)
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no ~ |k|_((2ﬂ_“)/3)_d, (3.16)
T
n3 ~ k—a, (317)
. T
ng~ A=const, A= lim —. (3.18)
T—oo |
=0

To find a real amount of power-like solutions, one should determine the class of functions, allowedShy the
this class does not include power-like functions, neither of solut{dri)—(3.18)s relevant for description of a
real physical simulation. Suppose that power-like functions- k= are allowed if

S1 <X < 2. (3.19)
The power-like solutiom; ~ kK~ is physically relevant if; belongs to this interval
1 < Xj < §2. (3.20)

In the case of gravity waves on deep water the condit{8) and (3.10are obviously satisfied and = 1/2,
B = 3. Hence

x1 =4, =2, X3 =

Nl

. x4=0. (3.21)

According to(3.6) and (3.10y1 = 3,52 = 19/4. One can see that < x1 < s2 andsy < x2 < s2, While xz < s1,

x4 < s1. Hence, the only solutions which can be used for description of real physical situations are the solutions
corresponding ta1 andxp. These solutions are weak turbulent Kolmogorov spectra. We define spectral density of
energy by relation

. 20
s do = w(n(k) dk = S (w, 6) de . (3.22)
8
In terms of energy density Kolmogorov spectra read:
eD = Cog?P P304, (3.23)
6@ — og*3 013,113, (3.24)

In (3.23) and (3.24)P is the energy flux to high wave numbegg,is the wave action flux to small wave numbers.
Co andgo are dimensionless Kolmogorov constants.
According to(3.22)

O _ Co 1/3;—4
ng = 2g2/3P k™, (3.25)
@ 490  1/3,-23/6
From(2.1) one obtains
1 ( >1/4( +a*,) (3.27)
k= —1|- ag a_yp). '
=2 \e g

Hence

I = (Imel?) = 20 Y2(Nk + N_p). (3.28)
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Herel, = I_; is the spatial spectrum. For deep water one can neglect the difference be¥waadn,; and put
according tq3.25), (3.26) and (3.28)

3/2Pl/3

@ _Cog

=5z (3.29)
3/211/3

;@ _ 208770 (3.30)

k= o 103
Power-like isotropic Kolmogorov spectra are not unigue solutioip{2.15) One has to expect that this equation
has also an anisotropic power-like Kolmogorov spectrum

85’) — Ml/3f(9)afl3/3g5/3. (3.31)

HereM is the flux of momentum along theaxis to high-frequency region. (8.31) £(6) is an unknown function
of the angle with respect to the real axis which cannot be found analytically in a general case. It can be done for a
special “diffusion” model (sefl4]).

Moreover, from the symmetry consideration one has

f(=0) = —f(0) (3.32)

hence his function is not positively defined and cannot be a model of any real spectrum.
More general Kolmogorov-type solutions are governed by more than one flux of motion constants. Even in the
isotropic case a general solution(@15)must have a form

4/3 p1/3
g w0
==—F(—), 3.33
Sw (1)4 < P ) ( )

whereF(§) is some unknown positive function, satisfying the conditiors wQ/ P. Here P is the flux of energy

originated by sources concentrated at- oo, Q is the flux of wave action, coming from infinity.
Then

F(0) = Co, (3.34)
F(&) — qog™3, & — oo. (3.35)

Spectrum(3.33) describes the situation when there is the source of enBrigysmall frequencies and source of
wave actionQ in high frequencies.
The most general Kolmogorov solution of the equatign= 0 has the form

¢3P3 w0 gM
ew_TG (T’w_P’e)' (3.36)
HereG is some function of three variables to be found numerically by solution of the system of nonlinear integral
equations imposed on the Fourier component of angular-frequency spectrupeealix Q. We plan to undertake
a full-scale numerical experiment for definition of this function. Some particular properties of this function, however,
can be found analytically.

General Kolmogorov spectru(B.36)appears in the case when one has sources of energy and monfenkim
at small wave numbers together with the source of wave ag@i@t high wave numbers. In the situation we are
discussing (direct cascade) there is no flux of wave action from infinityar€do0. In this case one has

4/3p1/3 M
(=5 g (g_, 9) . (3.37)
w wP
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Let us introduce dimensionless paramétet gM/wP. For completely isotropic spectruM = 0, hencet = 0.
One can say that the value fcharacterizes the degree of anisotropy. For small valuésfufiction H can be
expanded in a Taylor series

H = Ho() + Hi(O)E+ - - - . (3.38)

Apparently,Hp(6) = Co does not depend ah This is just the Kolmogorov constant, introduced3i23) One can
prove thatH,(6) = C1cosé [2].
The constant€p, C1 can be called the first and and the second Kolmogorov constants. We established that for
smallg
4/3 p1/3
ew=#<co+clﬂcose+--->. (3.39)
w wP
This case is realized at any valuesMf P if « — oo. Hence the spectruii3.36)becomes completely isotropic at
large values obv.

One can determinH(§, 6) at very large values &f. In this “extremely” anisotropic case the spectrum is governed
by a single parametevl and its dependence on the flux of enem@ghould drop out. It means that in this limit
H(t, 0) — £Y3£(0) até — oo and formula(3.37)goes to the formulé3.31)

In reality the simple formulg3.39)gives a reasonable approximation to observed spectra. BHrjrfeund, by
analysis of the experimental data, that the averaged by angles spectrum behavé likile the one-dimensional
slice atd = 0 goes to zero faster. Banner assumes that its behavior obeys the Phillips Yavnother words,
according to Banner

£, (0) 1

o (3.40)

According to our formuld3.39)

() 1M

20O | gy M (3.41)

(€w) Pow
This is the decreasing function aefas well and our results coincide with Banner’s results at least on a qualitative
level. However, the difference due to presence of congfagrin our formula(3.41)is very essentialCy is the

Kolmogorov constant, which certainly cannot be zero.

4. Matching with sources and non-stationary behavior

Now we discuss under what conditions weak turbulent Kolmogorov spectra can be realized in a physical situation.
We will discuss only the “direct cascade”, which is described in a general anisotropic case by the sf@&rym
First and foremost condition for realization of this spectrum is an efficient sink in the high-frequency domain. For
surface waves this sink is provided by generation of capillary waves or wave breaking. In the framework of the
model(2.4)the sink is described by(k) < 0 at|k| > k4, y(k) > —ocif |k| — o0.

Like in the Kolmogorov theory of turbulence in incompressible fluid, a detailed shapg)ois not important.
Damping coefficieny(k) just must absorb fluxes of energy and momentum coming from the small frequency region.
In the conditions of full absorption

P=— f (K)o (n k) dk, (4.1)
k> kg
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M=— f y(okn(k) dk. (4.2)
k| >kq
The ideal conditions for realization of Kolmogorov spectr(Br87)takes place if the region of instability, where
y(k) > 0, is localized in the domain
ko < k < k1, (4.3)

andk; < k4. To provide absorption of the inverse cascade which is formirig-<atkg, one should have damping
atk < ko. Thusy(k) < 0 atk < ko.
In this situation one can expect formation of a stationary spectrum, obeying the equation

Sni + y()ny = 0. (4.4)

A shape of the spectrum in the region<0 k < k; cannot be predicted from the general principles. But in the
“window of transparency”

k1 <k <ky (4.5)

one expects the appearance of a Kolmogorov specd{Budi) defined by the fluxe®, M.
By integrating(4.4) one has

P = /: Wk VKK d/;, (4.6)
K| <ky
pP—_ f o Sor oK. (4.7)
[k|<kq
In a similar way
M= / vk cosony dk, (4.8)
[kl <ky
M=— / k cosHSp dk. (4.9)
k| <k1

Thus we have three different ways for calculation of the fluRess.

We want to point out that localization of instability in small wave number is the sufficient, but not the necessary
condition for forming of the Kolmogorov spectrum of the inverse cascade. The income of efiedgfined by the
formula

& = y(bokn (k) (4.10)

includes product of(k) andn (k). Even ify(k) grows at large, the product/(k)w (k)n (k) could be concentrated at
smallk.

Let us suppose that there is no damping in srkalh this case no stationary state can be established. In the
regionk < kg one will observe formation of the inverse cascade, propagating of a front téwar@®. Meanwhile,
in k > kg a stationary state will be reached in a finite time. Formag) and (4.2ps well ag4.7)—(4.9)remain
valid, while formulag(4.6) and (4.8are not correct anymore.

Propagation of the inverse cascade front is described by the self-similar solution of the equation

= =S (4.11)
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It has the following self-similar solution
n = 1*U(ktP), (4.12)
wherea andg are connected by the relation
20 +1= g (4.13)

To determiney, 8 one should use some additional information about the solution. In the case of inverse cascade this
information can be extracted from the fact that there is no flux of wave action to high frequengieg ik,. All

gained wave action is deposited to the wave ensemble. Assuming that in the instabilitykregiorithe stationary

state is reached, one has

N = /nk dk ~ 1. (4.14)
Hence
a—28=1 B=5, a=2 (4.15)

Solution(4.12)takes a form

n = ¥y wd/Y), (4.16)
and the front propagates to smalhccording to the law

ke ~ %1%, (4.17)

The regionk ~ 0 has “infinite capacity” and can absorb infinite amount of wave energy.
At k =~ k1 solution(4.12)should be matched with the Kolmogorov spectri#137)with some fluxes?, M which
are formed in the instability region.
Another important self-similar solution describes the evolution of “swell” or water waves in the absence of any
type of sources. In this case wave action is preserved, while energy and momentumieakdo. Preservation
of N implies

a=28 P=%4, a=1. (4.18)
The self-similar solution has the form

n = tYyw?/1h, (4.19)
It describes down-shift of wave maximum

km =~ =2/, (4.20)
Total energy and momentum of soluti¢h19)decreases as

e~V p 21 (4.21)

Finally we discuss a self-similar solution describing formation of direct cascade Kolmogorov spectrum. An additional
constrain ony, 8 can be found from the assumption that at srhddblmogorov spectrum is already established. In
this arean does not depend on time, abd~ £~4 ~ 1/k*. It might happen only if

a=4 p=3% a=4§ (4.22)

wIN
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The corresponding solution has a form
n = (to — ¥3Uk(to — %3). (4.23)

Formula(4.23)describes propagation of the “shock” wave to the high-frequency region. A trajectory of the shock

1

ky >~

This shock is self-accelerating. It reaches infinity in a finite time and Kolmogorov speatrdris established in
an explosive way.

Finally, let us perform an elementary derivation of the Kolmogorov spectstfh To do this, we return to the
stationaryequation (4.4)Letk; be some wave number inside the interval of transpargney ks < k4. Multiplying
(4.4)by wy, and integrating by the domajk| < kg, one find for the local value of energy flux

P(ky) = / i Sp dk. (4.25)
k| <ks
On the other handy, = 0 if k1 < k < k4. Hence,P is defined by the formulagl.6) and (4.7)

Let us assume that

ng = CoPY3k™*, 3<x< 1749. (4.26)

Plugging(4.26)into (4.25)and taking into account convergence of the oper&ian this class of allowed functions,
one finds from a dimension consideration

P(ky) = PCIAKLZ3, (4.27)
As far as the fluxP(ks) does not depend o, one find

x =4, (4.28)

Co=1"13 20, (4.29)

Comparing with(3.22)one can see that we obtained again Zakharov—Filonenko spectrun. Due to conver-
gence ofSy, A is finite andCq # 0.
Note that for the Phillips spectrum, ~ »~° givesx = 9/2. In this case

Plky) ~ ks %2, (4.30)
and
P(ks) — 0 at ky — oo. (4.31)

In other words, Phillips asymptotic means that energy is preserved and there is no leakage of energy to small scales
This point is in contradiction with the Kolmogorov picture of weak turbulence. We would like to make clear that
the Phillips asymptotie—° never can be obtained as the solution of the Hasselmann’s equation.

Anyway, experimentalists systematically obse#ve tails in spectra of gravity waves, both in laboratory and in
the oceari13,26] On our opinion, these tails appear in the conditions when local steepness is close to critical and
the kinetic Hasselmann’s equation in this case is not applicable, because the level of nonlinearity is very high.

Our slogan is

“Hasselmann equation ars™> spectrum are incompatible things”.
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5. Numerical simulation

Numerical integration of kinetic equation for gravity waves on deep water (Hasselmann equation) was the subject
of considerable efforts for last three decades. The “ultimate goal” of the effort—creation of the operational wave
model for wave forecast based on direct solution of the Hasselmann equation—happened to be an extremely
difficult computational problem due to mathematical complexity of Sheterm, which requires calculation of a
three-dimensional integral at every advance in time.

Historically, numerical methods of integration of kinetic equation for gravity waves exist in two “flavors”. The
first one is associated with works of Hasselmann dtl&l, Dungey and Huj17], Masudg18,19], Lavrenov{20],
Polnikov[21] and is based on transformation of 6-fold into 3-fold integrals uéifighctions . Such transformation
leads to the appearance of integrable singularities, which creates additional difficulties in calculationS,pf the
term.

All numerical experiments show that the angle-averagigds a “two-lobe” function and consequently support
the Kolmogorov scenario of wave turbulence. In some experini#8$9,21]the Kolmogorov asymptotie 4 was
observed.

The second type of models developed in works of Wig#) and Resio and Perri@3] uses direct calculation
of resonant quadruplet contribution infg integral based on the following property: given two fixed vectors,
another twdko, k3 are uniquely defined by the point “moving” along the resonant curve—locus.

Numerical simulation in the current work was performed with the help of modified version of the second type
algorithm. Calculations were made on grid X136 points in the frequency-angle domain, p] with exponential
distribution of points in the frequency domain and uniform distribution of points in the angle direction.

We performed two series of experiments. In the first one we plEtin2.4)an “artificial” driving and damping,
which provide relatively broad “window of transparency”. We assumed that damping is isotropic while instability
can be either isotropic or anisotropic. These experiments are purely “academic”. Their results cannot be applied
to physical oceanography directly. They are designed to examine applicability of the weak turbulent theory and to
validate a fundamental importance of weak turbulent Kolmogorov spectra. In these experiments we measure the
approximate value of the first and the second Kolmogorov constants. Second series of experiments is modeling of
the realistic case wheigg. (2.4)is supplied with wind-driven instability.

All cases of simulation started from uniformly distributed low level noise. Having in mind an application to
real wind-driven sea waves we calibrate time of evolution in hours. The criterion for stop of the calculations
was reaching of stationary or asymptotic regimes. Simulation was performed on Compagq Presario 1700 notebook
computer featuring 850 Pentium Il CPU with 256 MB of RAM. Typical time of calculations varied between several
dozen hours and several days.

5.1. Isotropic case
In the isotropic case

_ 4
Dlexp<— (‘”O 1;)0) ) if 0.63<w< 126

—Do(w — 0.63)2 if o< 0.63,
—D3(w — 5.65)2 if w > 5.65,

Y, 0) = (5.1)

whereD;, i = 1, 2, 3 are positive constants. Coefficiabt at(5.1)is defined from the condition of the smallness of
the growth rate with respect to the corresponding local frequency. Negative compongnts afe high and low
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Fig. 1. Total wave actiotv (m?s) as the function of time(h).

frequency damping terms, the only purpose of which is to absorb direct (energy) and inverse (wave action) cascades
Constantd, and D3 as well as the frequencies= 0.63 and 5.65 are defined experimentally from the conditions
of the effectiveness of the fluxes absorption and maximization of the inertial (forcing/damping rates free) interval
with respect tav.

Fig. 1 shows evolution of wave action as a functions of time. The picture indicates that there are three main
stages associated with system evolution: instability development, saturatiea at7 h, and final evolution into
the stationary state. Energy demonstrates similar behavior.

Fig. 2 shows logarithm of energy distribution against logarithm of frequency at different moments of time. One
can see formation @5 —* asymptotic at finite moment of time. We interpret this fact as a vigorous support of the weak
turbulent theory. We should stress that* asymptotic is very robust. Actually it appears in all our experiments.

Time=2.986h

Time=3.192h
Time=3.700h 7
Time=5.676h

log,o<€(w,0)>,

Ll

0.1 1.0 0.0
l0g o

Fig. 2. logg(e(w, 8))g versus logyg for different moments of time. Dotted line: function proportionalto®, dashed line: function proportional
tow 4.
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Fig. 3. Dynamics of the “shock” propagation for different equidistant moments of timgsd@g, 6 = 0) versus loggw. Dotted line: function
proportional taw—2, dashed line: function proportional io*.

According to the predictions ddection 4 the w—* asymptotics develops in the explosive way. Energy spectra
taken in four moments of time, close to the moment of explosion are shokig.ii3.

Next two figures display Kolmogorov flux of energy as a function of time measured in two different ways, by
formula(4.1) (seeFig. 4) and(4.6) (seeFig. 5.

On the first stage energy grows exponentially until the “shock wavg“space reaches the Kolmogorov asymp-
totic. Then dissipation in high wave numbers explodes and the level of energy falls and reaches its stationary
asymptotic value.

Fig. 6 presents the function

w? 27
2np1/3g4/3/(; e(w, 6) o, (5.2)

0.004 [
0.003F}
0.002 f

0.001 F

0.000t

Fig. 4. Energy absorption (f/s) as a function of time (h).
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Fig. 5. Energy flux (ri/s) as a function of time (h).

which gives for the first Kolmogorov constant
0.35< Cp < 0.45. (5.3)

Fig. 6shows that in the stationary state the spectrum has two different components—the Kolmogesot saiti

the sharp peak concentrated near the frequency0.6, corresponding to the lower edge of the instability region.
Similar coexistence of “peak” and “tail” components is typical for wind-driven wave spectra, observed in the real
ocean. In the standard JONSWAP spectrum a special parameter determining peakedness is providefd{3ee also

1.5 — T T Thmomtesh

0.0 Jl . . A |

logqow

Fig. 6. Dimensionless functio@®* /27 P/3g%/3) foz’T &(w, 0) dd as a function of logyw.
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Fig. 7. Linear growth ratg (s~1) as the function of frequenay (rad/s) and anglé (rad).
5.2. Anisotropic case

In the anisotropic case

4 8
— 6
D1 exp(— <”0'1‘;’°> — (ﬂ) ) if 0.63<w< 126

—Dy(w — 0.63)2 if o< 0.63,
—D3(w — 5.65)2 if w > 5.65,

Y, 0) = (5.4)

whereD;, i = 1, 2, 3 are positive constants, selected similarly to isotropic ddge7shows distribution of damping
and instability defined by5.4).
This numerical simulation was motivated by the following reasons:

1. We want to be assured that weak turbulent Kolmogorov spectra are realized not only in the isotropic case. We
would like to be completely sure that they play the same key role for essentially anisotropic spectra as well.

2. We planned to check once more the value of the first Kolmogorov corggaand be sure that it is the same as
in the isotropic case.

3. We want to trace the difference between the angle-averaged spectrum and it¥stc@.at/e want also to find
the value of the second Kolmogorov constéhnt

The experiment shows that the stationary state is established similarly to the isotropic case. Typical saturation
time for given forcing and damping is~ 0.68 h.

Figs. 8—1isplay line-levels of energy distribution at different moments of time. One can see that the stationary
picture is bimodal and has double spike. A similar double spike picture is typical for experimental |26 25

Fig. 11demonstrates a set of angle-averaged energy distribution taken in different moments of time. They are
very close to a»—* law. Fig. 12 presents one-dimensional slice®at 0 for the energy distribution at the same
times. Fig. 13 presents ratio of one-dimensional slices of spectra to angle-averaged spectra. One can see that
one-dimensional spectra decayat> oo faster than the averaged energy spectrum, in accordance with Banner’s
observation§l]. We cannot identify, however, one-dimensional spectra with Phillips speetritriTheir decay is
more slow and not uniform in.
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Fig. 8. Levels of constant energy densiiy, 6) (m?s) versusw (rad/s) and anglé (rad). Levels positioned as Ma®'~1, where Max is the
maximum of the distribution and = 1, .. ., 10 are contour number starting from the highest contour.

In the anisotropic case we also saw explosive formation of spectra tails, similar to the isotropiEigagéd.
shows the energy spectrum development at four close equidistant time moments. As in the isotropic case one cal
notice that Kolmogorov spectrum establishment is strongly non-uniformly in space and time and looks like the
“shock” propagation, in accordance with.16)

Fig. 15shows the functioriw®/ P1/3) fOZ” £ cosd db. If the formula(3.39)is correct, this plot should be propor-
tional tow 1. One can see that the correspondence is quite good.

Fig. 16presents the function

a)4 27

o L B B B
; Time=0.20h ]

E Max=42.48
2F e
1E ( 3
= OoF 3
b E
Py E
—3;““1.‘.”....|H.‘1‘H.|....é
0.0 0.5 1.0 1.5 2.0 2.5 3.0

w

Fig. 9. Same aFbig. 8for different times.
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Fig. 10. Same aBig. 8for different times.

which gives the value of the first Kolmogorov constant in the anisotropic case

0.33< Cpg < 0.37. (5.6)
Fig. 17presents the function

p2/3,5 2r

W /O E(Cl), 9) cosd d9, (57)

which gives the value of the second Kolmogorov constant

0.18 < C1 < 0.27. (5.8)
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Fig. 11. log(e(w, 6))¢ versus logyd for different moments of time. Dotted line: function proportionabio®, dashed line: function proportional
tow ™.
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Fig. 12.log se(w, 6 = 0) versus logy for different moments of time. Dotted line: function proportionabte®, dashed line: function proportional
tow™4.

Figs. 16 and 1&how that in the anisotropic case we have again a combination of the spectral peak and the
Kolmogorov-type tail.

5.3. Wind forcing case

In this section we present the results of modeling of the situation which is close to reality in maximum degree. We
studied the surface waves excited by the wind in the angle-frequency domath 0 27 andwmin < ©® < ©Wmax
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Fig. 13. Dimensionless ratio of one-dimensional stige, ¢ = 0) to angle-averaged wave energy density, 0))y versusw (rad/s) for different
moments of time.
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Fig. 14. Dynamics of the “shock” propagation for different equidistant moments of timgysl@g 6 = 0) versus logyw. Dotted line: function
proportional taw—>, dashed line: function proportional o 4.

wherewmin = 0.06 andwmax = 12.56. Initial conditions is the noise in energy spage= 4 x 10~°. Wind forcing
and sink of energy at large are defined in accordance wifh.8) as

2
2x10—4<£—1> wcosd if coshd >0 and wy < @ < w1,
o

if w1 <o < omax

0 otherwise

wherewg = 0.94 (corresponds to wind velocityy ~ 10.4m/s) andw; = 8.48. High-frequency damping is
used to simulate infinite-capacity phase volume at high wave numbers. Cobssauat frequency; are defined

10.00 E o Time=0.68h ]
L . |
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Fig. 15. Function logy((w*/ PY/3) fOZ” cosf db) versus loggw (crosses).

Solid line: function, proportionaldo®.
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Fig. 16. Dimensionless functio@?/2r PY/3g*/3) foz” &(w, 0) do versus loggo.

experimentally from the condition of the effectiveness of the energy flux absorption at high frequencies. As in reality,
we did not provide any damping at small wave numbeig. 18shows distribution of damping and instability defined
by (5.9).

We started our calculation from low-level noise and stopped them, when sea was close to its “mature state”. As
far as we know, nobody has performed similar experiments before.

The main purpose of our experiments is to prove that the weak turbulent four-wave interaction of gravity waves
is a powerful enough mechanism to stabilize the wind-driven instability at relatively lowKkavel0.1-0.2 and to
provide fast enough down-shift of the peak of spectral density. This viewpoint is far from being widely accepted.
Some authors consider that the random phase four-wave interaction is too weak a process to explain the rate o

O~4: T ' ' "Time=0.68h |
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Fig. 17. Dimensionless functioiP?3w®/7Mg’/3) fOZ” &(w, 6) cosd do versus loggw.
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Fig. 18. Linear growth ratg (s~1) as the function of frequeney (rad/s) and anglé (rad).

spectral evolution observed in the real ocean. Many authors traditionally believe that stationary spectra could appear
only as a result of saturation of the instability by wave-breaking.

To argue with these points, we deliberately did not include the effects of wave-breaking in our consideration. We
will show that the income of energy and momentum from wind is mostly compensated by Kolmogorov fluxes of
these constants of motion. Income of wave action cannot be stabilized, thus the whole process is non-stationary.
But at large times all spectral growth is concentrated in very small wave numbers, while at finite wave numbers
it reaches a quasi-stationary state, which slowly changes in time. We should stress that at the current stage of our
work we cannot perform detailed comparison of our theory with experiments, because in the most real cases spectra
are non-uniform in space. They depend essentially on “fetch” (distance from the shore) and are “fetch-limited”.
Experimental data, pertaining to the spatially uniform ocean (“duration limited fetch”) are scarce and not quite
accurate. Some of this data are reviewed in the recent monograph of pijng

We performed comparison of our results with this data and found quite good coincidence. Anyway, we plan to
perform the full-scale comparison of our numerical results with field and laboratory experiments as soon as we will
have in our possession a numerical algorithm for modeling of non-stationary limiting fetch situation. Then we will
consider more carefully the possible role of wave-breaking in balance of energy in the wind-driven sea.

In our experiments the wind velocity was 10.4 m/s. The total duration of simulation was about 4 h of physical
time. We discuss below the results of these experiments.

First of all, one can see that four-wave interaction is a very powerful and fast mechanism of the instability
saturation.Fig. 19 presents total wave action as a function of time. After few minutes of exponential growth,
described by linear theory, wave action stabilizes and turns into a linear function of time.

Total energyH and significant wave heiglg defined by the standard formula

as=4vVH (5.10)
grow more slowly Figs. 20 and 2t

H(t) ~ %79, (5.11)
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Fig. 19. Total wave actiotv (m?s) as the function of time(h).

as() ~ 1939, (5.12)
At the end of the experiment significant wave height reaches the wale3m.
Four-wave interaction provides an efficient down-shift. Average frequéncgdecays approximately as
(@) ~ 17927, (5.13)
and reaches the valye) ~ 1.2 rad/s, se€&ig. 22

Dependence of the average slope on time- (ka) is presented ifrig. 23 Herea = +/2H is a characteristic
amplitude of the wave. One can see that in the initial stage of evoluti@aches its maximum valye = 0.27
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Fig. 20. Total wave energi (m?) as the function of time (h).
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Fig. 21. Significant wave heighis) (m) as the function of time (h).

and decreases slowly 1o = 0.15. Figs. 24 and 28lemonstrate comparison of our calculations with experimental
results presented in the book of Youdd].

One should stress that 4 h of physical time of numerical experiment is a moderate time-frame, and even at
the end of our calculations the waves are relatively young. Recently we performed longer calculations and can
pre-announce some new results. After 10 h of physical time, the average frequerdywn-shifts to 0.6 rad/s,
while slope decreases downio~ 0.1, in accordance with estimates obtained from analysis of experimental data.

Fig. 26 presents level-lines of the spectral density at the end of calculations. The spectral peak is narrow in
angle and is concentrated inside the rami$e < 30°. The spectral tail is broaddFig. 27 presents evolution of
averaged spectra in logarithmic scale. It is clear that spectral tail is clesg'tdn Fig. 28“compensated” spectra
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Fig. 22. Average frequendyw) (rad/s) as the function of time(h).
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Fig. 23. Dimensionless average wave sldks as the function of time (h).

w’e,, are plotted in natural scal€ig. 29presents one-dimensional slices of wave energy in different moments of
time. Fig. 30presents the ratio of one-dimensional spectra to averaged spectrum in natural scale. One can see tha
one-dimensional spectra decay faster than average in accordance with Banner’s observation.
Figs. 31-33emonstrate different terms in the equation
on

— =S 5.14
o nl+ Yenk (5.14)

for three time moments. One can see that in the area of spectral maximanis almost equal t&y and forcing
terms are small even in the initial stage of the process. On the contrary, in the area of specugbtad very
small, and the instability termny is compensated by the nonlinear interaction t&pmin this case the spectrum
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Fig. 24. Data compiled by Wiegel (1961) showing duration limited growth of dimensionless Qq?e:r@yUfo versus dimensionless duration
gt/ U1o. The solid line is data fit by CERC. Data taken fr¢#i]. Dotted line is data from current numerical experiment.
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Fig. 25. Data compiled by Wiegel (1961) showing duration limited growth of non-dimensional freqygdigy/¢ versus non-dimensional
durationgt/ U1o. The solid line is data fit by CERC. Data taken fr¢fi]. Dotted line is data from current numerical experiment.

is quasi-stationary. These figures clearly demonstrateSthatone arrests the growth of instability on the very low
level. To make this fact more conspicuous, we present the same picture in natural scales in Figs. 34-36, performing
a zoom on the vertical axis.

Figs. 37—39 present integrated action, energy and momentum inputs

2 2 pr2n
Q(fz):? fo A ynw® do db, (5.15)
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Fig. 26. Levels of constant energy densitw, ) (m? s) versusw (rad/s) and anglé (rad). Levels positioned as Ma®'~1, where Max is the
maximum of the distribution and = 1, .. ., 10 are contour number starting from the highest contour.
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Fig. 27. logg(e(w, 8))¢ versus logy for different moments of time. Dotted line: function proportionakto®, dashed line: function proportional
to w2,

2 2 p2n
P(2) == / / yno® dow do, (5.16)
8 0 0
2 2 p2r
M(2) = = / f ynw® cost dw do (5.17)
8 0 0

as the functions of frequency.
Allthese three functions reach their maximum values at the end of the range of instability? i Pmax, Mmax
are total income of motion constants from the wind per unit of time. Apparedtly, Poo, M~ taken at the end of
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Fig. 28. “Compensated” specttds,, (m?/s) as a function of» (rad/s) for different times.
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Fig. 29. log o¢(w, 6 = 0) versus loggd for different moments of time. Dotted line: function proportionabte, dashed line: function proportional
tow ™.

damping region can be identified with time derivatives of total action, energy and momentum. One can see that at
the end of calculation

Qoo

~ 0.80, (5.18)
Qmax
P
© ~0.45, (5.19)
max
M,
2 ~0.29. (5.20)
max
SE T T T T T T T g T
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Fig. 30. Dimensionless ratio of one-dimensional stige, 6 = 0) to angle-averaged wave energy density, 0))y versusw (rad/s) for different
moments of time.
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Weak turbulent theory predicts thatrat> oo ratios Poo/ Pmax — 0, Moo/ Mmax — 0, while Q oo/ Omax — A < 1,
wherea is some constant.

In other words, for very developed sea waves almost all energy and momentum are transferred from air to sea

and carried by Kolmogorov fluxes to high frequency region. Our calculation clearly demonstrates this tendency.

6.

Conclusions

The method presented here for numerical solution of Hasselmann’s kinetic equation for gravity waves makes it

possible to solve this equation in a broad domain that covers more than two decades in frequency. This algorithm
makes it possible to perform 4010 time steps without accumulating significant error or developing any insta-
bilities. Results based on the numerical simulations conducted here support the theory of Kolmogorov spectra for
weak turbulence not only in its basic points but also in many details. Some key conclusions from our investigation
are as follows:

1.

In accordance with weak turbulence theory, we found that energy and momentum of the wave ensemble are no
preserved. Both of these quantities are “leaked” to the region of very small scales where it is assumed that they
are lost due to local dissipative processes (wave breaking, generation of capillary waves, etc.). This leakage is
an important part of the formation of the universal Kolmogorov spectrum.

. Directional energy spectra in the equilibrium range are proportionalfo This result is very persistent and

in all numerical experiments, the—* Kolmogorov spectrum appears in very early stages of the simulation and
persists in both stationary and non-stationary stages of spectral development.

. A very important aspect of the simulations conducted here was the development of a quasi-stationary wave

spectrum under wind forcing, without the need for a dissipation mechanism in the spectral peak region. Previous
investigations (for examplg5,36)) have been unable to achieve this result and consequently concluded that
wave breaking in the spectral peak region must be an important component in developing fully developed seas.
Our results suggest that primary wave dissipation region is most likely located only in the high-frequency tail of
the spectrum.
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4. Fluxes of momentum and energy through the equilibrium range (Kolmogorov region) of the wave spectrum
are observed to produce a bimodal angular distribution of energy at high frequencies. This is consistent with
observations of sea waves in nat{2é4].

It should be recognized here that our results are consistent with several previous empirical investigations. First
of all, behavior of integral characteristics of wave ensemble (average energy and mean frequency) is in accordance
with experimental data on limited duration observations. Laboratory data from the classic study @fTatbearly
showed that wave spectra at laboratory scales contain characteriétiequilibrium ranges, rather than the>
form initially hypothesized by Phillip37] and adopted in many early spectral parameterizations of ocean spectra
[38,39] More recent studies, including Mitsuyasu ef2a8], Forristall[26], Donelan et al[9] and Battjes et a[31]

(see als¢27,28,30,32), have all shown that the equilibrium range in deep-water ocean waves follaws'garm.
Resio et al[40] have shown that the infinite-depth form for the equilibrium forrai§/2, which is also consistent
with the Kolmogorov spectrum and asymptotically approaehiesform in deep water.

The findings here are quite robust and hopefully will be applied to the practical problems. Present wave prediction
models are based on fairly crude parameterizations of the nonlinear energy transfers. In large part due to inaccuracies
in these parameterizations, these models have had to include strong dissipation in the spectral peak region to inhibit
wave growth as full development is approached. Possibly because of the dominance of the dissipative term in
the energy balance near full development, these models consistently under-predict wave heights in larger storms.
Results from this study could be used to reformulate the complete energy balance equation for wave generation,
propagation and decay, which could lead to substantially improved predictions in the near future.
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Appendix A
Presented formulae are valid for any depth. They are taken from the [gjewariablesy,, » are canonical.
They obey the Hamiltonian equations

o SH v _SH

a s a o

whereH is the total energy of fluid. It is presented by the series in powers of characteristickalapéerms of
Fourier transforms:

1
H=Hy+Hy+Hy+---, Ho=Ef[Ak|wk|2+Bk|nk|2]dk, Ay = ktanh(kh), By =g,

1 bd d - - -
Hy = 250 f LD (kq, k) Wi, Wi, 8(k1 + ko + k3) dky dip dks,

1
T 2(27)2

Hp / L@ (ky, ko, k3, k)W, Wiy Mg (k1 + k2 + kg + kg) dky dkz ks dka,
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where
LD (ky, ko) = —(kiko) — |k1|lk2| tanhkqh tanhkah,

and

—2|k1| —2|kz|

k1 + ks|tanh|kq + k3|
tanhkih ~ tanhkoh k1t k| ke + s

|
L@ (kq, k, k3, ka) = Fallkl tanhk1h tanhkqh [

+ k2 + k3| tanhlka + k3l + k1 + ka| tanh|ky + kalh + |k + ka| tanh|kz + 1€4|h]

1 2k2 2k3
=-A1A2 | ——= — —= + A143+ A243 + A14a + Azya | .
4 A1 Ao

Cubical terms in Hamiltonian are excluded by canonical transformation. The Hamiltonian is given by the infinite
series

© @ @

akzak +ak +ak +7
where
a,(co)zbk,

a = / IOk, k1, k2)bi, b8 (k — k1 — ko) dky dkp — 2 / O (kz, k, k)b} b, d(k + k1 — ko) diy dkz
+ / Pk, ky, ko)b}, by, 8(k + k1 + ko) dky dkz,
a](CZ) = / B(7<, 7(1, ];2, ];3)bzlbk2bk35(/; — 7(1 — 7(2 — 7(3) dky dko dkg + - - -,

5 5 o 1‘/(1,2)7(’7(’]; I 1V(O,3)]_("7(’]_(’
FOG TR = SV 2Rk k) gy IVEPk ki ke)
2w — Wiy — Wi,y 2w — Wiy — Wiy
Bk, k1, k2, k3) = IT'D (ky, ko, k1 — ko) 'V (k3, k, k3 — k) + T'D(ka, k3, k — ka) D (k2, k, ko — k)
— IO &, ko, k — ko) D (g, k1, k3 — k1) — TV ke, k3, ky — ka) TV (kp, k1, k2 — k1)

— IOk + Ky, k, k1) TP (kg + k3, k, k1) + T'® (=k — ky, k, k1) '® (—kz — k3, k2, k3).

127 7. T2

ng = N — % VIR ki, k2)|2(Nk1Nk2 — NeNiy — NiNig)S(k — ky — ko) dky dko
(wr — Wiy — Wiy)

g [ IV, k1 kp)?
2 / (i — Wk — Wky)?
g [ V32K k ky)?
2

(Niy Niy + NNy — NpNiy)8(ky — k — ko) dky dko

(NiyNiy + NeNi, — Nkal)S(/_éz — k- 7{1) dky dk>

2 ) (o, — wp + oy,

g / VO3 (&, k1, ka)|?
2 ) (o + ok, + wiy)?

(NiyNiy + NiNiy + NiNip)S(k — k1 — ko) diy dk,
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where
I 1 AeBr, Ci, \ Y4 - - By Aw, B, \ /4 - -
VD& Ky, ko) = ( e "2> L<1><k1,kz>—(u) L® (k. k)
47+/2 | \ BxAk, Ak, ApAp A,
1/4
_ (M) / LOCE T
A Ay, By, ' '
e 1 AxBr B, \ Y4 - By A Bi, \ Y4 .-
VO &, ky, k) = ( L "2> L® (e, k2)+<—k - k"‘) LDk k)
4Ar/2 | \ BkAk, Ax, A Biy Ak,
By By, Ar, \ Y4 .-
+ (—" f "2> LYk k) |-
Ax Ay, B,
Appendix B

The coefficient of four-wave interaction for pure gravity waves on deep water was calculated by many authors
since Hasselmann (1962). We present here relatively compact expression for this coefficigg#]jsee

1. N
T1234= §(T1234+ T2134),
1 1

Tio34= —
12347 7 1602 (kykokaka) /4
S - 1
X 1 — 12kikokzks — 2(w1 + w2)[wswa((k1 - k2) — kaka) + w1wa((kska) — kzka)] e
2 - > - - 1
— 2(w1 — w3)[wowa((k1k3) + k1k3) + w1w3((k2ka) + koka)] pe
- .. 1
— 2(w1 — wa)*[wpws((kika) + kika) + wrwa((koks) + kok3)] 2
+[(ky - k2) + kakol[ (ks - ka) + kska] + [— (ke - ks) + kaks][ — (K2 - ka) + koka]
S .- k1 - ko) — kiko][ (k3 - ka) — kak
+ [~ (k1 - ka) + kaka][— (k2 - k3) + kok3] +4(w1+w2)2[( - 2)2 all s 4)2 2
Wiyo — (w1 + w2)
k1 - k3) + kika][ (k2 - ka) + kok
+4(601_603)2[( 1 3)2 1k3][ (k2 4)2 2ka]
w]_3— (w1 — w3)
k1 - ka) + kakal[ (ko - k3) + kok
+4(w1_w4)2[( 1 4)2—1- 1ka][ (k2 3)2+ 2ks] |
wi_ 4 — (01 — w4)
Herew; = /glki|.

For coinciding wave vectors s 12 = T12:

1 1
812 (k1ko)1/2

(w1 + w2)?[ky - ko — k1k2)?
w2, — (01 + w2)?

. - 1
Tio= {3kfk§ + (k1k2)? — dwrwa (k1 - k2) (k1 + kz)? +2

+

2(w1 — w2)2[7<17<2 + k1k2]? } . (B.1)

2
wf 5, — (w1 — w2)?
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In the one-dimensional case the form(al) becomes remarkably simple (J84]):

. 1 | K2ka, k1 < ko,
12= 55
22 | k3, k1 > ko.

In a general casé;» has the asymptotic
1 2

atky > ko.

Appendix C

To determine the equation, describing the general Kolmogorov soli&i86)one defines the following function:

o) w3 00 21 21 2
Flw, 6) = 47 / dort / do / dos / dos f dos / 0s5(e + w1 — w3 — w3)
0 0 1) 0 0 0

X 8(w COSH + w1 COSH1 — w2 COSHr — w3 COSH3)S(w SINH + w1 SiNB1 — w2 SiNBr—w3 SiNB3)
X [wBNwlegNa)g + wiNa)Nszws - ngwNwles - nga)Nwlez] |Tww1w2w3,9919293|za

(C.1)
2 3
N@.8) = Zn(w.9), (C.2)
8
N(w, 6) dw df = n; dk, (C.3)
and find its Fourier coefficients
2
Fp(w) = / Fy(w, 6) cosné do. (C.4)
0
A general Kolmogorov spectrum is defined by the following system of equations:
P00 = [ (-0 don, (€5)
0
1 @ 2
M= - wiF1(w1) dwy, (C.6)
8Jo
Filw)y=0 if n>2 (C.7)
Now &,(0) = wN,(6). One can presem¥ in a form of the Fourier series
1
N, ) = o > Nu(w) cosn, (C.8)

and turn(C.5)—(C.7)into an infinite system of nonlinear integral equations imposety,gi®).
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