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For the first time weak turbulent theory was demonstrated for surface gravity waves. Direct numerical simula-
tion of the dynamical equations shows Kolmogorov turbulent spectra as predicted by analytical analysis [1]
from kinetic equation. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.35.+i; 92.10.Hm
In this letter we numerically study the steady Kol-
mogorov spectra for spatially homogeneous gravity
waves. According to the theory of weak turbulence, the
main physical process here is the stationary energy flow
to the small scales, where the energy dissipates [1, 2].
This flow is described by a kinetic equation which has
power-like solutions—Kolmogorov spectra. This
straightforward picture takes place experimentally and
numerically for different physical situations. For capil-
lary waves, it was observed on the surface of liquid
hydrogen [3, 4]. The numerical simulation of this pro-
cess was performed in [5]. In nonlinear fiber optics,
these spectra were demonstrated in numerical simula-
tion [6]. There are many other results [7–11]. One of the
most interesting applications of weak turbulence theory
is surface gravity waves. From the pioneering article by
Toba [12] to the most recent observations [13], many
experimentalists get the spectra predicted by weak tur-
bulence theory. But these experiments cannot be treated
as a complete confirmation, because the Zakharov–
Filonenko spectrum is isotropic, while the observed
spectra are essentially anisotropic. It is worth noting
that the wave kinetic equation, which is the keystone of
this theory, was derived under several assumptions.
Namely, it was assumed that the phases of all interact-
ing waves are random and are in a state of chaotic
motion. The validity of this proposition is not clear
a priori. The direct numerical simulation of nonlinear
dynamical equations can confirm whether this assump-
tion is valid or not. But for the particular case of gravity
surface waves, the numerical confirmation was absent
in spite of the significant efforts applied. The only suc-
cessful attempt in this direction was the simulation of
freely decaying waves [14]. The reason for that, in our
opinion, was concerned with the choice of numerical
scheme parameters. Namely, the numerical simulation
is very sensitive to the width of resonance of four-wave
interaction. It must be wide enough to provide reso-
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nance on the discrete grid, as was studied in [15] for
decay of the monochromatic capillary wave. On the
other hand, it has to be not too wide (due to nonlinear
frequency shift) when the weak turbulent conditions
fail. We have spent significant efforts to secure the right
choice of numerical parameters. As a result, we have
obtained the first evidence of the weak turbulent Kol-
mogorov spectrum for energy flow for surface gravity
waves. The numerical simulation was surprisingly time
consuming (in comparison to capillary waves turbu-
lence), but we finally got a clear spectrum for surface
elevation,

(1)

which is in agreement with real experiments [12, 13].

Theoretical background. Let us consider the
potential flow of an ideal incompressible fluid of infi-
nite depth and with a free surface. We use standard
notations for velocity potential φ(r, z, t), r = (x, y); v =
∇φ  and surface elevation η(r, t). Fluid flow is irrota-
tional ∆φ = 0. The total energy of the system can be rep-
resented in the form

(2)

(3)

where g is the acceleration of gravity. It was shown [16]
that under these assumptions the fluid is a Hamiltonian
system
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where ψ = φ(r, η(r, t), t) is a velocity potential on the
surface of the fluid. In order to calculate the value of ψ
we have to solve the Laplace equation in the domain
with varying surface η. This problem is difficult. One
can simplify the situation using the expansion of the
Hamiltonian in powers of “steepness”

(5)

For gravity wave, it is enough to take into account terms

up to the fourth order. Here,  is the linear operator cor-
responding to multiplying of Fourier harmonics by
modulus of the wavenumber k. In this case, dynamical
equations (4) acquire the form

(6)

Here, Dr is some artificial damping term used to pro-
vide dissipation at small scales; Fr is a pumping term
corresponding to external force (having in mind wind
blow, for example). Let us introduce the Fourier trans-
form

With these variables, Hamiltonian (5) acquires the form
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Here,

(8)

It is convenient to introduce the canonical variables ak
as shown below:

(9)

where

(10)

This is the dispersion relation for the case of infinite
depth. Similar formulas can be derived in the case of
finite depth [17]. With these variables, equations (4)
take the form

(11)

The dispersion relation (10) is of the “nondecay type”
and the equations

(12)

have no real solution. This means that, in the limit of
small nonlinearity, the cubic terms in the Hamiltonian
can be excluded by a proper canonical transformation
a(k, t)  b(k, t) [18]. The formula of this transforma-
tion is rather bulky and well known [17, 18], so let us
omit the details here.

For statistical description of a stochastic wave field,
one can use a pair correlation function

(13)

The nk is a measurable quantity, connected directly
with observable correlation functions. For instance,
from (9) one can get

(14)

In the case of gravity waves, it is convenient to use
another correlation function,

(15)

The function Nk cannot be measured directly. The rela-
tion connecting nk and Nk is rather complex in the case
of a fluid of finite depth. But in the case of deep water,
it becomes very simple [17]:
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where µ = (ka)2. Here, a is a characteristic elevation of
the free surface. In the case of the weak turbulence µ ! 1.
The correlation function Nk obeys the kinetic equation
[1]

(17)

Here,

(18)

The complete form of matrix element  can be
found in many sources [1, 2, 17]. Function fp(k) in (17)
corresponds to wave pumping due to wind blowing, for
example. Usually it is located on long scales. Function
fd(k) represents the absorption of waves due to viscosity
and wave-breaking. None of these functions are known
to a sufficient degree.

Let us consider stationary solutions of Eq. (17)
assuming that

—the medium is isotropic with respect to rotations;
—dispersion relation is a power-like function: ω =

akα;

—  is a homogeneous function:

 = eβ .

Under these assumptions, one can get Kolmogorov
solutions [18]

(19)

Here, d is a spatial dimension (d = 2 in our case). The
first one is a Kolmogorov spectrum, corresponding to a
constant flux of energy P to the region of small scales
(direct cascade of energy). The second one is the Kol-
mogorov spectrum, describing inverse cascade of wave
action to large scales, and Q is a flux of action. In both
cases, C1 and C2 are dimensionless “Kolmogorov con-
stants.”

In the case of deep water, ω =  and, apparently,
β = 3. It has been known since [1] that for deep water

(20)

In the same way [19], for the second spectrum,
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In this letter, we will explore the first spectrum
(energy cascade). Using (14), one can get

(22)

Numerical Simulation. Dynamical Eqs. (6) are
very hard for analytical analysis. One of the main

obstacles is the  operator, which is nonlocal. How-
ever, using the Fourier technique makes practically no

difference between the derivative and . The numerical
simulation of the system is based on consequent appli-
cation of the fast Fourier transform algorithm. The
details of this numerical scheme will be published sep-
arately.

For numerical integration of (6), we used the func-
tions F and D defined in the Fourier space

(23)

Here, Rk(t) is the uniformly distributed random number
in the interval (0, 2π). We solved the system of Eqs. (6)
in the periodic domain 2π × 2π (the wave numbers kx

and ky are integers in this case). The size of the grid was
chosen as 256 x 256 points. Acceleration of gravity
g = 1. Parameters of the damping and pumping were
the following: kp1 = 5, kp2 = 10, kd = 64. Thus, the iner-
tial interval is about half a decade.

During the simulations, we paid special attention to
problems that could “damage” the calculations, first of
all, the bottleneck phenomenon at the boundary
between inertial interval and dissipation region. This
effect is very fast but can be effectively suppressed by
proper choice of damping value γ2 in the case of mod-
erate pumping values F0. The second problem is the
accumulation of “condensate” in low wave numbers.
This mechanism for the case of capillary waves was
examined in detail in [15]. This obstacle can be over-
come by a simple adaptive damping scheme in small
wave numbers. After some time, the system reaches the
stationary state, where equilibrium between pumping
and damping takes place. An important parameter in
this state is the ratio of nonlinear to linear energy (H1 +
H2)/H0.

For example, in the case of F0 = 2 × 10–4, γ1 = 1 ×
10–3, γ2 = 400, the level of nonlinearity was equal to
(H1 + H2)/H0 . 2 × 10–3. The Hamiltonian as a function
of time is shown in Fig. 1.
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Fig. 1. Hamiltonian as a function of time.

Fig. 2. The logarithm of the correlator function of surface
elevation as a function of logarithm of the wave number.

Fig. 3. Compensated correlators in inertial interval for dif-
ferent values of the compensation power: z = 3.5 solid line
(weak turbulence theory), z = 4.0 dashed one (Phillips the-
ory). 
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The surface elevation correlator function appears to
be power-like in the essential part of inertial interval,
where the influence of pumping and damping was
small. The correlator is shown in Fig. 2.

One can try to estimate the exponent of the spec-
trum. It is worth noting that an alternative spectrum was
proposed earlier by Phillips [20]. That power-like spec-
trum is due to the wave-breaking mechanism and gives
us a surface elevation correlator as Ik ~ k–4. Compen-
sated spectra are shown in Fig. 3. This seems to be evi-
dence that the Kolmogorov spectrum predicted by
weak turbulence theory better fits the results of the
numerical experiment.

The inertial interval was rather narrow (half a
decade). But the obtained results allow us to conclude
that the accuracy of experiment was good enough under
the time constraints of simulation (we get the steady
state after 20–30 h using available hardware, and we
need several days to average the |ηk|2 function). Simu-
lation on a larger grid (512 × 512, for example) can
make the accuracy better. But even these results give us
a clear qualitative picture.
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