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1. INTRODUCTION

Among field studies of wind-generated surface gravity waves on deep water, the case of a fetch limited
wave growth is of special importance. This case is characterized by a constant (in space and time)
offshore wind at a normal angle to the straight coastline. Under these idealized conditions, the wave
field depends only on the fetch x which is defined as a distance from the shoreline. Highly interesting
data sets of field observations are available, for example, from the following studies.

1. Measurements in Nakata Bay by Mitsuyasu et al (1971).
2. The JONSWAP studies by Hasselmann et al (1973).
3. Measurements in the Bothnian sea by Kahma (1981).
4. Measurements in Lake Ontario by Donelan et al (1985).
5. Measurements off the Nova Scotia coast by Dobson et al (1989).
6. Measurements in Lake St. Clair, Canada, by Donelan et al (1992).

The results of these experiments were analyzed by many authors and summarized by I. Young
(1999).

In the present article we suggest a theoretical explanation of key results obtained in these observa-
tions. We show that most observations under limited fetch conditions find a satisfactory explanation
within a rather simple theoretical framework based on Hasselmann’s non-uniform stationary kinetic
equation for spectral density of wave action in the absence of external forcing and dissipation. In
particular, the spatial evolution of a spectral peak - at least for moderate values of the fetch - is in a
good quantitative agreement with a similarity solution to this equation.

This statement may appear counter to physical intuition because surface waves are caused by wind
and accompanied with a substantial energy dissipation due to wave breaking. This apparent contro-
versy is resolved by noticing that the similarity solution mentioned above depends on two arbitrary
constants. Their values are determined by the spectrum behavior at high frequencies. This spectrum
tail is controlled by a complicated interplay of three major factors of wave dynamics in the short-fetch
regime: the energy input from wind, energy dissipation due to white capping, and spectral energy
transfer due to four–wave interaction. Determination of these unknown fundamental constants is a
difficult problem, which is well outside the scope of this short article.

At larger values of the wind fetch, appropriate for open ocean conditions when the advection of
the wave action due to wave group velocity becomes an important factor and the spectral transfer is
controlled to a large extent by the inverse cascade of wave action, similarity solutions also exist. This
case was treated by Zakharov and Zaslvaskii (1983) and Glazman (1994) yielding relationships that
complement our present results.

Let us emphasize that the present theoretical model is based on the ”first principles” and does
not include any adjustable parameters. Nevertheless, the model yields results which are not only
qualitative correct but are in a good quantitative agreement with field observations.



2. BASIC EQUATIONS

Let η(~r, t), ~r = (x, y) be the surface elevation field, η(k, t) its Fourier transform, and Ik = I−k =<
|ηk|2 > the spectral density as a function of wave number. The wave field is described by the wave
action spectral density Nk:

Ik =
ωk

2
(Nk + N−k). (1)

Here ωk =
√

gk is the dispersion relation, where g is the vertical acceleration due to gravity.
The action density Nk(~r, t) satisfies the Hasselmann kinetic equation,

∂N

∂t
+

∂ω

∂~k

∂N

∂~r
= Snl + SF , (2)

where

Snl = π g2

∫
|Tkk1k2k3 |2 δ(k + k1 − k2 − k3) δ(ωk + ωk1 − ωk2 − ωk3)×

(Nk1Nk2Nk3 + NkNk2Nk3 −NkNk1Nk2 −NkNk1Nk3) dk1 dk2 dk3 (3)

is a nonlinear interaction term and Tkk1k2k3 is a coupling coefficient. The exact expression for T can be
found in (Webb 1973, Zakharov 1999). Of great importance is the fact that Tkk1k2k3 is a homogenous
function of the third order:

Tζk,ζk1,ζk2,ζk3 = ζ3 Tkk1k2k3 . (4)

The term SF = Sin + Sds represents a source function which includes the wind input Sin and the
breaking wave induced dissipation Sds.

By definition, the variance of the surface elevation is given by

σ2 =
∫

ωk Nk dk, (5)

and the mean frequency is

ω̄ =
1
σ2

∫
ω2

k Nk dk. (6)

The overall wave steepness is characterized by an integral quantity

α̂ =
σ2 ω̄4

g2
. (7)

Let Ua be the wind speed at a reference height a. We can now introduce the characteristic angular
frequency and wave number related to the given wind speed Ua by

ω0 = g/Ua, k0 = g/U2
a

Most authors agree that Sin can be presented in the form

Sin = µF (ξ)ω N(k), (8)

where ξ = ω cos θ/ω0 and
µ = 0.1 ∼ 0.3

ρa

ρω
' 10−4. (9)

There is no agreement about the exact form of the function F (ξ). According to Snyder et al (1983),

F (ξ) =
{

ξ − 1 ξ > 1
0 ξ < 1.

(10)



According to Hsiao and Shemdin (1983), also Donelan et al (1984),

F (ξ) =
{

(ξ − 1)2 ξ > 1
0 ξ < 1.

(11)

Tolman and Chalikov (1996) proposed a more complicated form of F (ξ). In any case, all such models
have F (ξ) ' 1 for ξ ∼ 1.

An analytic expression for Sds is much less certain. Komen et al (1984) proposed the following
form:

Sds = −3.33× 10−5
( α̂

αpm

)4 (ω

ω̄

)2

ω N, (12)

where αpm = 4.57× 10−3.
This relationship is presently used in WAM and SWAN wave prediction models. In our opinion,

expression (12) overestimates Sds in the spectral range ω0 < ω < 3 ∼ 4 ω0. The wave breaking is
insignificant in the spectral peak range. It becomes important only at high frequencies and wavenum-
bers. Therefore, it is reasonable to assume that Sds is small near the peak and rapidly grows with an
increasing frequency at ω À ω0. In the vicinity of the spectral peak - which is of our main interest -
one can write:

Sf ' Sin ' µF (ξ)ω N(k). (13)

3. SELF–SIMILAR SOLUTION

Let us introduce dimensionless variables :

x = χ/k0, ~k = k0 ~κ, ω = ω0 Ω, Ω =
√

κ,

yielding

N(k) =
1

ω0 k4
0

n(~κ). (14)

The non–dimensional surface height variance and the non–dimensional average frequency are:

ε = k2
0 σ2 =

g2

U4
0

σ2, (15)

ν =
1
2π

ω̄

ω0
. (16)

Both ε and ν can be expressed in terms of n(~κ). Apparently,

ε =
∫ √

κn(~κ) d~κ, (17)

ν =
1
2π

∫ |κ|n(κ) d~κ∫ √
|κ|n(κ) dκ

. (18)

Under limited-fetch conditions, n(~κ, χ) is governed by the kinetic equation

cos θ

2Ω
∂n

∂χ
= S̃nl + S̃F , (19)

where

S̃nl = π

∫
|Tκκ1κ2κ3 |2 δ(~κ + ~κ1 − ~κ2 − ~κ3) δ(Ω + Ω1 − Ω2 − Ω3)×

(nκ1nκ2nκ3 + nκnκ2nκ3 − nκnκ1nκ2 − nκnκ1nκ3) dκ1 dκ2 dκ3 ∼ |κ|19/2 n3,

S̃F ' µ ΩF (Ω) n(κ, χ). (20)



In (19), µ ' 10−4 is a small parameter. In a first approximation, we can set µ = 0, and obtain the
”conservative” kinetic equation:

cos θ

2Ω
∂n

∂χ
= S̃nl. (21)

This governing equation is the main focus of our analytical effort. It contains a family of self–similar
solutions. In polar coordinates κ, θ on ~κ plane these solutions can be presented as:

n(κ, θ, χ) = aχα Pβ(b χβ κ, θ). (22)

Here, a, b, α, β are constants.
Substituting (22) into (21) one finds

α = 5 β − 1/2, a = b5. (23)

Ultimately,
n(κ, θ, χ) = b5 χ5β−1/2 Pβ(b χβ κ, θ). (24)

In (24), β and b are yet unknown constants, and Pβ(z, θ) is a function of two variables with z = bχβκ.
Let us emphasize that this function is independent of b and it satisfies the following integro–differential
equation:

cos θ

2
√

z
[(5β − 1/2)Pβ + βzPz] = π

∫
|Tz,z1,z2,z3,θ,θ1,θ2,θ3 |2 ×

δ(z cos θ + z1 cos θ1 − z2 cos θ2 − z3 cos θ3) δ(z sin θ + z1 sin θ1 − z2 sin θ2 − z3 sin θ3)×
δ(
√

z +
√

z1 −
√

z2 −
√

z3)
[
Pβ(z1, θ1) Pβ(z2, θ2)Pβ(z3, θ3) +

Pβ(z, θ)Pβ(z2, θ2)Pβ(z3, θ3)− Pβ(z, θ)Pβ(z1, θ1) Pβ(z2, θ2)−
Pβ(z, θ)Pβ(z1, θ1)Pβ(z3, θ3)

]
z1 z2 z3 dz1 dz2, dz3 dθ1 dθ2 dθ3. (25)

This equation has to be solved numerically. Let us denote:

Aβ =
∫ √

z Pβ(z, θ) z dz dθ, (26)

Bβ =
∫

z Pβ(z, θ) z dz dθ. (27)

From (17), (18) one finds

ε = b5/2 χ
5β−1

2 Aβ ,

ν =
1
2π

b−1/2 χ−β/2 Bβ

Aβ
. (28)

These equations can be written as:

ε = uχp,

ν = v χ−q , (29)

where

q =
2p + 1

10
, β =

2p + 1
5

, (30)

v =
1
2π

ū1/5 Cβ , Cβ =
Bβ

A
1/5
β

. (31)



Integrating equation (19) over ~κ one obtains the balance equation

1
2

∫
cos θ

Ω
∂n

∂χ
d~κ =

∫
S̃F dκ = Q(χ). (32)

Here Q is the total input of wave action - a net result of wind forcing and breaking wave dissipation.
Substituting the self–similar solution (24) into (25), one finds

Q ' χ
7β−3

2 . (33)

Therefore, the solution to (24) implies the presence of a wave action source Q at high wave numbers.
For β = βcrit = 3/7, the net input Q = const, and the intensity of the source does not depend on
the fetch. For β > βcrit, the input Q grows with an increasing fetch. In the presence of S̃F , the
self–similar solution is valid only for χ which are not too large. For Ω ∼ 1, the left hand side of (19)
can be estimated as n/χ, while S̃F ' µn. Thus, the self–similar solution remains valid for

χ <
1
µ

< 104. (34)

Note, that a special self–similar solution

ncrit(k, θ, χ) = b χ23/14 P3/7 (b χ3/7 κ, θ), (35)

p =
n

7
= 0.57,

q =
3
14

= 0.21,

corresponding to constant net input Q = const, was studied in papers of Zakharov and Zaslavskii
(1982, 1983) and Glazman (1994).

4. COMPARISON WITH EXPERIMENT

We shall now compare the similarity solution (24) with the field observations under limited-fetch
conditions. Let us first notice that an elementary analysis of observed spectra shows their self–similar
behavior. The similarity is implicit in the fact that the spectra can be expressed by a universal form
that involves a finite number of parameters.

The frequency spectrum can be introduced as follows:

F (f) = k ωk
dk

df

∫ 2π

0

N(k, θ) dθ, k = (2π f)2/g. (36)

For example, the results of the JONSWAP experiment are summarized by the spectral form (Hassel-
mann et al, 1973):

F (f) = α g2 (2π)−4 f−5 exp

[
−3/4

(
f

fp

)−4
]

γ
exp

[
− (f−fp)2

2σ2 f2
p

]
(37)

At moderate values of the non–dimensional fetch χ < 105, parameters γ and σ are approximately
constant

γ ' 3.3, σ ' 0.08,

while α and fp are powers of χ. Form (33) is explicitly self–similar. Actually, the f−5 asymptotic
of (37) represents the regime described by the Phillip spectrum (1958). A more accurate analysis of



the JONSWAP spectra (J. Battjes, 1985) shows that a f−4 behavior is more relevant. Donelan et al
(1984) also found the f−4 asymptotic for their spectra. This is exactly what the theory predicts, but
a discussion of this issue is outside the scope of this article.

In accordance with the main assumption of self-similarity, the fetch dependence of ε and ν is
described by powerlike functions of χ. To assure that the spectra are described by the similar solution
(24), one has to compare these functions with the theoretically predicted forms (29). The results of
the major fetch limited experiments can be summarized in two tables:

Table 1

Study ε(χ) ν(χ)

Nakata Bay, Mitsuyasu et al (1971) ε = 2.89× 10−7 χ ν = 3.12 χ−0.33

JONSWAP, Hasselman et al (1973) ε = 1.6× 10−7 χ ν = 3.5 χ−0.33

Bothnian Sea, Kahma (1981) ε = 2.6× 10−7 χ ν = 3.18 χ−0.33

Lake St. Clair, Donelan et al (1992) ε = 1.7× 10−7 χ ν = 3.6 χ−0.33

Table 2

Study ε(χ) ν(χ)

Lake Ontario, Donelan et al (1985) ε = 8.415× 10−7 χ0.76 ν = 1.85 χ−0.23

North Atlantic, Dobson et al (1989) ε = 12.7× 10−7 χ0.75 ν = 1.7 χ−0.24

Expression (30) makes it possible to find q if p is give. For the first group of experiments p = 1,
and one obtains:

q = 0.3, β = 0.6

For the Lake Ontario experiment:

p = 0.76, q = 0.25, β = 0.5

For the North Atlantic study:
p = 0.75, q = 0.25, β = 0.5

In (31), coefficients Cβ are unknown constants defined by the shapes of the solutions to equation
(25). Let us denote:

C|β=0.6 = C1, C|β=0.5 = C2

Now we can compare experimental and theoretical results for ν(χ). These results are summarized in
Table 3.

Table 3

Study Experiment Theory Optimized theory

Nakata Bay 3.12 χ−0.33 3.23 C1 χ−0.30 3.20 χ−0.30

JONSWAP 3.5 χ−0.33 3.64 C1 χ−0.30 3.6 χ−0.30

Bothnian Sea 3.18 χ−0.33 3.1 C1 χ−0.30 3.06 χ−0.30

Lake St. Clair 3.6 χ−0.33 3.6 C1 χ−0.30 3.56 χ−0.30

Lake Ontario 1.85 χ−0.23 2.6 C2 χ−0.25 1.84 χ−0.25

North Atlantic 1.7 χ−0.24 2.4 C2 χ−0.25 1.7 χ−0.25



Coefficients C1 and C2 in the second column of Table 3 are not adjustable parameters. They have
definite values to be found by numerical solution of equation (25). We plan to determine these values
in a later study. At the present time we propose a hypothesis that their values are ”optimal”, so that
the third column in Table 3 is sufficiently close to the first column. Optimization by the least square
method gives:

C1 = 0.99, C2 = 0.71

Table 3 demonstrates a good agreement between theory and experiment.

5. DISCUSSION

1. The close agreement between the theoretical and experimental results indicates that the Hasselmann
kinetic equation is an adequate model describing the evolution of wind–driven surface gravity waves.
Moreover, the evolution of the spectral peak at moderate fetches can be faithfully described by the
”conservative” kinetic equation where the forcing and dissipation terms are dropped.

Self–similar solution (24) describes downshift of the peak frequency. This is a direct consequence
of the ”inverse cascade” of energy and wave action. The physical origin of the inverse cascade is the
existence of an additional integral of motion - the wave action. The wave action is preserved only
in four–wave interactions. One can say that the very fact of the downshifting of the spectral peak
indicates a dominant role of four–wave nonlinear interaction.

This qualitative analysis finds, as we just showed, a reasonable quantitative confirmation.
2. Different groups of experiments give two different values for β: β = 0.6 and β = 0.5. Both of

them are larger than the critical value β = 3/7 ' 0.43. This means that the input of wave action
increases with an increasing fetch. The explanation here is rather simple. According to (7), (29), the
characteristic steepness α̂ decreases as the fetch increases:

α̂ ' χ
β−1

2 . (38)

According to the Komen’s form (12) (and to many other models of the breaking wave dissipation), Sds

is very sensitive to α̂ and it rapidly decreases as α̂ decreases. As a result, the white capping is more
vigorous for ”young” seas. When χ grows, Sds becomes suppressed and the wave action input from
wind increases.

3. According to the theoretical prediction, the self–similar solution (24) is valid only for not
too large fetches. What happens after? It depends on the structure of SF for long waves. If, as
it was estimated in models (11, 12), SF = 0 for ω < ω0, the downshift continues infinitely long.
Asymptotically it is described by the self–similar solution with β = βcrit = 3/7. Behind the spectral
peak, the spectrum has an asymptotic form F (f) ' f−11/3.

In the experiments of Donelan et al (1992) performed on Lake St. Clair, as well as in the earlier
experiments of Pierson and Moskowitz (1964), and SMB CERC (1977), the downshift is arrested
approximately at χcrit ' 5 × 104. It corresponds to a very long fetch, χcrit ' 104 L, where L is a
characteristic wave length. In a typical case L ' 100 m, thus χcrit ' 103km.

According to J. Young, who summarized these results, stabilization of the downshift (inverse cas-
cade) is going up to the level:

ε = 4 ∼ 5× 10−3, ν ' 0.13

Thus, ω̄ ' 0.81 ω0. In other words, the maximal ”wave age”, observed in these experiments, does
not exceed unit. In this scenario, when χ → χcrit, the self–similarity is violated. γ is not a constant
any more. At χ → χcrit, γ → 1, and the spectrum loses its conspicuous peak. This process, ”sea
maturing”, was observed by Pierson and Moskovitz in 1964, and by Donelan et al in 1992.

Not all researchers agree with this concept. According to Glazman (1994), the inverse cascade
is not arrested at wave age of order of one, but continue to the spectral area of waves with mean



frequency ω < ω0. In his experiments near Hawaii island, he observed the wave of age ω0/ω ≥ 3.
Anyway, downshift in this area is more slow than predicts the critical self–similar solution (35), and
the spectrum tail becomes less steep: F (f) ' f−3. This question urgently needs more experimental
studies.

Nevertheless, it is clear that both the slowdown and the arrest of the inverse cascade (”maturing
of the sea”), occur due to dissipation of long waves with phase velocities close to the wind speed or
exceeding it. The decrement of this dissipation, β, is very small: β/ω ' µ ∼ 10−4. A mechanism of
this dissipation is still unclear. It could be a combination of wave breaking and friction over a turbulent
air. Meanwhile, a scenario of the inverse cascade, the slowdown and arrest is very sensitive to the exact
value and the details of this dissipation. It makes the problem of wave prediction extremely difficult
from a theoretical viewpoint.

4. The ideas presented in this article can be applied to wind–driven waves on a finite–depth fluid.
However, this problem is much more difficult. On a finite–depth the kinetic equation has now self–
similar solutions and the solutions for comparison with experiment can be obtained only by the use of
a massive numerical simulation. Anyway, the idea of predominance of four–wave nonlinear interaction
in the area of spectral peak is still applicable, at least as a first approximation. The next important
factor to be taken into consideration is a bottom friction.
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