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Abstract

The continuous spectrum and soliton solutions for the Boussinesq equation are investigated using the∂̄-dressing method.
Solitons demonstrate quite extraordinary behavior; they may decay or form a singularity in a finite time. Formation of
singularity (collapse of solitons) for the Boussinesq equation was discovered several years ago. Systematic study of the
solitonic sector is presented. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Our renewed interest in the Boussinesq equation is explained mostly by the unusual behavior of the soliton
solutions of this equation. A common consideration regarding solitons in integrable systems is that they are stable
objects interacting trivially, changing only phase as a result of interaction. However, the behavior of solitons of the
Boussinesq equation destroys this stereotype. Solitons of the Boussinesq equation may decay under the action of
perturbation or form a singularity in a finite time. One would probably think that the Boussinesq equation is itself
rather unusual. Not at all, it is a typical example of dimensional reduction in the framework of the KP hierarchy (the
KdV equation being the simplest), and it is also a physically relevant equation, representing a nonlinear integrable
generalization of the wave equation [1]. Formation of singularity (collapse) for Boussinesq equation solitons was
first observed several years ago [2] (see also [3]). In this work we perform a systematic study of the solitonic sector of
the Boussinesq equation and also sum up the results concerning the continuous spectrum obtained in the framework
of the ∂̄-dressing method [4–6].

The plan of the paper is the following. First, we sum up basic facts concerning the Boussinesq equation.
Then, we briefly review the technique of the∂̄-dressing method [7–10], restricting ourselves to the scalar case

as the simplest. We would like to emphasize that most of the contents of this part is not original and is in the main
described in the papers mentioned above. We concentrate on the generally less known features of the method, namely
on the technique of dimensional reduction and on the characterization of the continuous spectrum [4–6]. We will
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discuss different types of problems in the complex plane that arise in this context. We also derive the determinant
formula for soliton solutions.

Using the developed technique, we investigate the continuous spectrum for all four versions of the Boussinesq
equation and obtain Carleman type problems in the complex plane and integral equations describing them.

Finally, we study the behavior of solutions defined by the determinant formula, which gives a solitonic sector for
the Boussinesq equation. To illustrate behavior of soliton solutions, we will use the pictures obtained from analytical
formulae by Mathematica.

2. Boussinesq equation

The Boussinesq equation describes propagation of waves in weakly nonlinear and weakly dispersive media [1].
To derive the Boussinesq equation for some physical model, one should start from a Lagrangian

L =
∫

dx

(
3

4
α2(ut )

2 − β(ux)
2 + 1

4
(uxx)

2 + 3(ux)
3
)
, (1)

whereα2, β ∈ R. The equation of motion corresponding to Lagrangian (1) is the Boussinesq equation for the
functionv = ux

(3
4α

2vtt − βvxx) = −(1
4vxx + 3

2v
2)xx. (2)

This equation describes waves moving in both directions. One-wave approximation reduces the Boussinesq equation
to the Korteweg–de Vries equation.

In fact there are four different cases of Boussinesq equation (2). The coefficients can be rescaled to getβ = ±1,
α2 = ±1, therefore the only choice is the choice of the two signs. The properties of the Boussinesq equation
depend essentially on this choice. The primary choice for us will be the choice of the sign ofβ. According to this
choice, we will distinguish between the ‘plus’ Boussinesq equation and the ‘minus’ Boussinesq equation. The ‘plus’
Boussinesq equation reads

±3
4vtt − vxx + 1

4vxxxx + (3
2v

2)xx = 0. (3)

In a linear approximation the monochromatic solution of this equation is

v � ei(ωy+kx), ω2 = ±4
3(k

2 + 1
4k

4),

where the sign (plus or minus) corresponds to the sign before the first term in (3). In the case of sign plus it is a
nonlinear wave equation, in the minus case it is a nonlinear elliptic equation.

The ‘minus’ Boussinesq equation is

±3
4vtt + vxx + 1

4vxxxx + (3
2v

2)xx = 0. (4)

Dispersion law for this equation is given by the expression

ω2 = ±4
3(−k2 + 1

4k
4).

For the sign plus this dispersion law is unstable for short waves and stable for long waves, for the sign minus it is
stable for short waves and unstable for long waves.

So, four cases of the Boussinesq equation can be characterized in the following way: wave case, elliptic case,
Boussinesq equation with long-wave instability and Boussinesq equation with short-wave instability.
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The Boussinesq equation is integrable by the inverse problem method (see, e.g. [11]), the Lax pair for this equation
was constructed in [12]. Our interest in this equation is explained by nontrivial properties of both the continuous
and discrete spectrum for this equation.

Technically, the Boussinesq equation is a result of dimensional reduction of the KP equation taken in the moving
frame. The initial KP equation in the moving frame reads

∂

∂x

(
(vt − βvx) + 1

4
vxxx + 3vxv

)
= −3

4
α2vyy, (5)

where the constantα defines the choice between KP1 (α = i) and KP2 (α = 1) equations, and the constantβ is the
velocity of the frame (we takeβ = ±1). Considering stationary solutions of(2 + 1)-dimensional equation (5), we
get(1 + 1)-dimensional Boussinesq equation (2),

(3
4α

2vyy − βvxx) = −(1
4vxx + 3

2v
2)xx, (6)

where the role of the time variablet is played by KP variabley.
To investigate the continuous spectrum, we use the∂̄-dressing method [7–10], in which very effective apparatus

to describe dimensional reductions and continuous spectrum was developed [4–6]. We get information about the
structure of the continuous spectrum and the problems in the complex plane corresponding to all four versions of the
Boussinesq equation. Geometry of the spectrum is rather interesting, the spectral data are localized on the hyperbola
in the complex plane and on the segment of the real axis and small decreasing solutions are given by the Riemann
problem with a shift on this curve (see another approach in [13,14]).

Behavior of solutions of the Boussinesq equation belonging to the solitonic sector is also rather unusual. The
formula for the multisoliton solution of the Boussinesq equation can be obtained from the formula for the plain
solitons of the KP equation [11]

v = ∂2

∂x2
log det(A), Aij = δij − Ri

µi − λj
, (7)

here

Rk = ick exp(i(µk − λk)(x − iα−1(µk + λk)y)), (λ
3
k ± λk − (µ3

k ± µk) = 0, (8)

λk 	= µj , whereλk, µk are two arbitrary sets of points of the complex plane satisfying the condition (8), which
characterizes stationary KP solutions in the moving reference frame (ck, λk, µk should also satisfy some reduction
conditions to get a real solution). Formula (7) can be obtained in many different ways, in our work we will derive
it using the∂̄-dressing method.

We will treat mostly the case of the ‘plus’ Boussinesq equation withα = 1. This equation has a stable ‘wave
sector’ (i.e., in the linear limit it is a wave equation). There are two soliton sectors for this equation: ‘usual’ solitons,
running with the velocity limited from above, and soliton configurations, forming a singularity in a finite time. The
latter may be considered as bounded states of several singular solitons.

But even ‘usual’ solitons demonstrate quite extraordinary behavior in this case. Slow solitons are unstable with
respect to small perturbations and may decay into two solitons or two singular solitons (that means formation of
a singularity in finite time). Interaction of slow solitons unavoidably leads to formation of the singularity. Rapid
solitons moving in the same direction behave as it is usually expected from the system of solitons; they do not decay
and their interaction does not lead to formation of singularities.

In this work we present a systematic study of the solitonic sector of the Boussinesq equation.
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3. ∂̄-dressing: the basic technique

The main technical tool of our work is the dressing method based on the nonlocal∂̄-problem [7–10]. This is
a powerful method of constructing(2 + 1)-dimensional integrable equations together with a broad class of their
solutions.

The Boussinesq equation may be considered as a dimensional reduction of the KP equation in the moving frame.
To apply∂̄-dressing method to the Boussinesq equation, we will use the scheme of dimensional reduction for the
∂̄-dressing method developed in [5]. It leads us to the problem with a special kind of nonlocality—the∂̄-problem
with a shift and to the Riemann problem with a shift. It appears that thesescalar nonlocal problems are a general
and natural technical tool in the(1 + 1)-dimensional case.

The construction developed in [4] gives a simple and straightforward description of solutions belonging to the
continuous spectrum (i.e., small decreasing solutions) in the framework of the∂̄-dressing method. Continuous
spectrum is characterized in terms of conditions which single out some special classes of the kernels of the general
nonlocal∂̄-problem.

Taking into account conditions of dimensional reduction, for small decreasing solutions of(1 + 1)-dimensional
equations we arrive at Carleman type problems in the complex plane.

The scheme of the dressing method uses the nonlocal∂̄-problem with a special dependence of the kernel on
additional (space and time) variables

∂̄(ψ(x, λ) − η(x, λ)) = R̂ψ(x, λ), (9)

R̂ψ(x, λ) =
∫∫

ψ(x, λ)R(λ, µ)exp

(∑
i

φixi

)
dµ ∧ dµ̄, φi = Ki(µ) − Ki(λ), (10)

whereλ ∈ C, ∂̄ = ∂/∂λ̄, η(x, λ) is a rational function ofλ (normalization),Ki(λ) are rational functions, the choice
of which determines the equations that can be solved using the problem (9). We suppose that the kernelR(λ,µ)

is equal to zero in a neighborhood with respect toλ and toµ of the divisor of poles of functionsKi(λ), tends to
zero asλ,µ → ∞ and that for the chosen kernelR(λ,µ) problem (9) is uniquely solvable (at least for sufficiently
smallx). The solution of problem (9) normalized byη is the function

ψ(x, λ) = η(x, λ) + ϕ(x, λ),

whereη(x, λ) is a rational function ofλ (normalization),ϕ(x, λ) decreases asλ → ∞ and isanalytic in a neigh-
borhood of poles ofKi(λ).

Problem (9) reduces to an integral equation for the functionϕ

ϕ(x, λ) = ∂̄−1R̂(ϕ(x, λ) + η(x, λ)), (11)

here

(∂̄−1ϕ)(λ) = (2π i)−1
∫∫

ϕ(λ′)
(λ′ − λ)

dλ′ ∧ dλ̄′ = (2π i)−1 lim
ε→0

∫∫
ϕ(λ′)(λ̄′ − λ̄)

(|λ′ − λ|2 + ε)
dλ′ ∧ dλ̄′,

which is supposed to be uniquely solvable for givenR. Solvability is guaranteed if operator∂̄−1R is ‘small enough’
(i.e., the norm of this operator is less than 1 for some properly chosen space of functions).

Let us introduceρ(λ, λ̄) = ∂̄ϕ. Now

ψ(x, λ) = η + (2π i)−1
∫∫

ρ(λ′)
(λ′ − λ)

dλ′ ∧ dλ̄′. (12)
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Substituting (12) into (11), we can get another form of the basic integral equation, resolving the nonlocal∂̄-problem

ρ(x, λ) = R̂(η + ∂̄−1ρ). (13)

The nonlocal̄∂-problem and its special cases (∂̄-problem with a shift, nonlocal Riemann problem, Riemann problem
with a shift) are powerful tools for constructing integrable nonlinear equations and their solutions (see [7–10]).

The algebraic scheme of constructing equations is based on the following property of problem (9): ifψ(x, λ) is
a solution of the problem (9), then the functions

u(x)ψ, Diψ =
(

∂

∂xi
+ Ki

)
ψ (14)

are also solutions. Combining this property with unique solvability of problem (9), one obtains differential relations
between the coefficients of expansion of functionsψ(x, λ) into powers of(λ − λp) at the poles ofKi(λ). Let us
outline the basic steps of this scheme for the KP equation that will be used in this work.

For the KP equation

K1(λ) = iλ, K2(λ) = α−1λ2, K3(λ) = iλ3,

respectively,

D1 = ∂

∂x
+ iλ, D2 = ∂

∂y
+ α−1λ2 (α = 1; i), D3 = ∂

∂t
+ iλ3.

Let us introduce the solution of problem (9) normalized by 1(η = 1),

ψ(λ, x, y, t)λ→∞ → 1 + ψ0(x, y, t)λ
−1 + · · · .

The basis in the space of solutions of problem (9) with polynomial normalization is constituted by the set of functions
Dn

1ψ , 0 ≤ n < ∞. It follows from unique solvability of problem (9) thatψ satisfies the relations

(D3 + D3
1 + g(x, y, t)D1 + h(x, y, t))ψ = 0, (15)

(αD2 + D2
1 + 2v(x, y, t))ψ = 0. (16)

The successive use of coefficients of expansion of these relations asλ → ∞ allows us to define the functions
v, g, h

v = −i
∂

∂x
ψ0, g = 3v, hx = 3

2
(vxx − αvy),

and to derive KP equation for the first coefficient of expansion of the functionψ asλ → ∞:

∂

∂x

(
vt + 1

4
vxxx + 3vxv

)
= −3

4
α2vyy. (17)

3.1. Special cases of the nonlocal ∂̄-problem

In the most important cases the kernelR(λ,µ) is a singular function localized on some manifold inC2. That
means that the kernel contains theδ-function localized on the corresponding manifold, or in other words that the
measure of integration in the operator∂̄−1R̂ is localized on this manifold. The operator∂̄−1R̂ in this case is still
well defined.
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3.1.1. ∂̄-problem with a shift
In a typical situation this manifold is a covering of the complexλ-plane, defined by the equation

f (λ, λ̄, µ, µ̄) = 0, (18)

wheref is some function inC2. Eq. (18) defines a multi-valued shift functionµ = µi(λ, λ̄). The kernel of problem
(9) in this case reads

R =
∑
i

Ri(λ, λ̄)δ(µ − µi(λ, λ̄)).

We will call this case ā∂-problem with a shift.

3.1.2. Nonlocal Riemann problem
Another special case of problem (9) is a nonlocal Riemann problem. Letγ = λ(ξ), ξ ∈ R be an oriented curve

in the complex plane (may be not connected), and the kernel of problem (9) be localized on the product of couple
of these curves inλ and inµ planes. In other words,

R(λ,µ) = δγ (λ)Rγ (λ, µ)δγ (µ), (19)

whereδγ (λ) is aδ-function picking out points onγ . The solutionψ of problem (9) with the kernel (19) is rational
outsideγ and has boundary valuesψ+,ψ− onγ . After regularizingδγ we obtain from problem (9) with the kernel
(19) a nonlocal Riemann problem

ψ+ − ψ− = 1

2

∫
γ

(ψ+ + ψ−)Rγ (λ, µ)dµ, (20)

the integration in (20) goes along the curveγ .

3.1.3. Riemann problem with a shift
A combination of these two special cases leads to the Riemann problem with a shift (or Carleman’s problem).

The shift functionµ = µi(λ) is defined now on the curveγ (λ,µ ∈ γ ). In this case

Rγ (λ, µ) =
∑
i

Ri
γ (λ)δγ (µ − µi(λ)),

and

ψ+ − ψ− = 1

2

∑
i

(ψ+(µi(λ)) + ψ−(µi(λ))R
i
γ (λ), (21)

whereµi(λ) is a multi-valued shift function on the curveλ(ξ). We will write problem (21) symbolically in the form

∆(ψ(λ(ξ))) = Rγ (λ, µ(λ))ψ(µ(λ(ξ))), (22)

whereγ = λ(ξ) (ξ ∈ R) is a curve in the complex plane,∆ a jump of the function across the curve, the value of
the function on the curve is the half-sum of the boundary values,µ(λ) the shift function (may be multi-valued).

3.1.4. Integral equations
In all these three cases problem (9) is equivalent to a certain integral equation which can be obtained by a proper

reduction of Eqs. (11) and (13). Let us do that for a Riemann problem with a shift. Introducing

ργ (λ) = ψ+ − ψ−|λ∈γ ,
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we can restore the functionψ in a form

ψ = η + 1

2π i

∫
γ

ργ (λ
′)

(λ − λ′)
dλ′.

Hence

1

2
(ψ+ + ψ−)|λ∈γ = η(λ) + 1

2π i
v.p.

∫
ργ (λ

′)
(λ − λ′)

dλ′,

and from Eq. (21) one gets

ργ (λ) =
∑
i

(
η(µi(λ)) + 1

2π i
v.p.

∫
ργ (λ)

(µi(λ) − λ′)
dλ′
)
Ri
γ (λ), λ ∈ γ. (23)

Let the curveγ consist ofn connected branchesγi = λi(ξ), ξ ∈ R, andρi(ξ) be the jump of the functionψ across
the corresponding branch. Then the expression for the functionψ takes the form

ψ = η + 1

2π i

n∑
i=1

∫
ρi(ξ

′)
(λ − λi(ξ ′))

dλi
dξ ′ dξ ′, (24)

and integral equation (23) reads

ρk(ξ) =
∑
i


η(fi(ξ)) + 1

2π i

n∑
j=1

v.p.

∫
ρj (ξ

′)
(µi(λk(ξ)) − λj (ξ ′))

dλj
dξ ′ dξ ′


Rik(ξ). (25)

Thus we have obtained a system ofn singular integral equations.

3.1.5. The δ-functional kernels
There is one important special case of the nonlocal∂̄-problem which is exactly solvable, which corresponds to

soliton solutions and discrete spectrum (in some broad sense). This is a case ofδ-functional kernels

R(λ,µ) = 2π i
N∑
i=1

Riδ(λ − λi)δ(µ − µi), (26)

whereλi , µi is a set of points in the complex plane,λi 	= µj ,

Ri = ci exp

(∑
n

(Kn(λi) − Kn(µi))xn

)
.

In this case the solution of problem (9) is a rational function, and problem (9) reduces to a system of linear equations.
The formula for the solution normalized by(λ − µ)−1 is

ψ(λ,µ) = 1

λ − µ
+ ((A)−1)ij

Rj

(µj − µ)(λ − λi)
, Aij = δij − Ri

µi − λj
, (27)

or, in a more symmetric form with respect toλ andµ

ψ(λ,µ) = 1

λ − µ
+ ((A′)−1)ij

1

(µj − µ)(λ − λi)
, A′

ij = R−1
i δij − 1

µi − λj
. (28)

In the limit when a pair of polesλi, µj coincide, factors rational with respect toxq appear in the formula forψ .
The limit λi → µi for all 0 < i ≤ N corresponds to a solution rational with respect toxq .
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An expression for solution with canonic normalization (η = 1) can be obtained from the formula (27),

ψ(λ, x) = lim
µ→∞ − µψ(λ,µ, x) = 1 +

∑
j

((A′)−1)ij(λ − λi), (29)

and potential

ψ0(x) = lim
µ→∞λψ(λ, x)

reads

ψ0(x) =
∑
j

∑
i

((A′)−1)ij. (30)

Introducing variablex with K(λ) = iλ, it is easy to check that expression (30) can be rewritten in the form

ψ0(x) ∼ −i
∂

∂x
log det(A) ∼ −i

∂

∂x
log det(A′) (31)

(up to a constant). Indeed,

−i
∂

∂x
log det(A′) ∼ −i

∂

∂x
log det

(
c−1
i δij − exp(i(µi − λj )x)

(µi − λj )

)

=
∑
i

∑
j

exp(i(µi − λj ))

(
c−1
p δpq − exp(i(µp − λq)x)

(µp − λq)

)−1

ji

=
∑
j

∑
i

((A′)−1)ij (32)

(for simplicity, we have omitted other dynamical variablesxq in this calculation).

3.2. Solutions with special properties

3.2.1. Small decreasing solutions (continuous spectrum)
A solution given by the problem (9) in a general case is defined only locally in a vicinity of the pointx = 0,

where thē∂-problem is uniquely solvable. Solvability may be lost on some manifold in a space(x1, x2, x3), where
the solution has a singularity. To get ‘good enough’ solutions having no singularities and bounded (decreasing) as
|x| → ∞ one should put some restrictions on the kernelR(λ,µ). These restrictions were discussed in our paper
[4]. The main result of this paper can be formulated as follows. Let us choose a unit vectorni (

∑
n2
i = 1) defining

a direction in thex-space. The solution given by problem (9) is regular in a neighborhood of straight linexi = niξ

and decreasing along this line asξ → ±∞ if the condition

Re
3∑

i=1

ni(Ki(λ) − Ki(µ)) = 0 (33)

is satisfied (this condition is in fact the condition for the kernelR(λ,µ), it means that we should use the kernel
localized on the manifold (33)), and the kernelR(λ,µ) is ‘small enough’.

To get a solution which is ‘good enough’ in a neighborhood of some plane, defined by two vectorsni,mi , one
has to satisfy two conditions

Re
3∑

i=1

ni(Ki(λ) − Ki(µ)) = 0, Re
3∑

i=1

mi(Ki(λ) − Ki(µ)) = 0.



L.V. Bogdanov, V.E. Zakharov / Physica D 165 (2002) 137–162 145

In a generic case a pair of conditions (33) define some manifold with real dimension 2 in the spaceC
2 of complex

variablesλ,µ.
Let us illustrate this result using the simple example of the KP equation. To obtain a small nonsingular solution

decreasing in the plane(x, y) it is sufficient to use the problem (9) with the kernel localized on the manifold defined
by the system of conditions (33)

Im(λ − µ) = 0, (34)

Reα−1(λ2 − µ2) = 0. (35)

If α = i, the solution of the system (34) and (35) isλ,µ ∈ R, which defines a nonlocal Riemann problem on the
real axis. So small decreasing solutions of the KP1 equation are given by the nonlocal Riemann problem

ψ+ − ψ− =
∫
γ

(ψ+ + ψ−)Rγ (λ, µ)exp(φixi)dµ, (36)

that was originally used by Manakov [15] to integrate KP1 equation.
If α = 1, the solution of the system (35) isµ = −λ̄. Thus small decreasing solutions of KP2 equation are given

by the∂̄-problem with a conjugation

∂̄ψ(x, y, t, λ) = R(λ,−λ̄)exp(φixi)ψ(x, y, t,−λ̄), (37)

and we reproduce the problem used by Ablowitz et al. [16] to integrate KP2 equation.

3.2.2. Dimensional reduction
Solutions independent of the variablexj can be obtained from problem (9) with the kernel localized on the

manifold

Kj(λ) − Kj(µ) = 0. (38)

This observation allows us to use(2+1)-dimensional dressing method for(1+1)-dimensional equations and leads
us naturally to thē∂-problem with a shift and, for decreasing solutions, to the Riemann problem with a shift. Let us
consider this observation in more detail.

If we have(2 + 1)-dimensional integrable equation, defined by the functionsKi(λ), we can descend to the
(1+ 1)-dimensional case, using condition (38) for some coordinatexi in the original or rotated coordinate system.
For example, they-independent KP equation gives the KdV equation

(vt + 1
4vxxx + 3vxv) = 0.

Condition (38) in this case reads

λ2 − µ2 = 0,

and solutions of the KdV equation are given by the∂̄-problem with a shift [8]

∂̄ψ(λ) = R(λ,−λ)exp(φixi)ψ(−λ), (39)

the shift function for this case is quite simple (µ = −λ), and it is easy to transform problem (39) to a local matrix
(2 × 2) Riemann problem.

We may also consider the case of thet-independent KP equation, which corresponds to the simplified Boussinesq
equation

3
4α

2vyy = −(1
4vxx + 3

2v
2)xx. (40)
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Condition (38) in this case reads

λ3 − µ3 = 0,

and solutions of simplified Boussinesq equation (40) are given by the∂̄-problem

∂̄ψ(λ) =
3∑

i=1

Riψ(eiλ),

wheree3
i = 1. The simplified version of the Boussinesq equation was considered in [14]. Let us show that for

decreasing solutions our approach leads to the Riemann problem with a shift for the functions analytic in sectors
(such a geometry for local matrix Riemann problem arose in [14] from analytical properties of the direct scattering
problem). Combining condition (38) with condition (33)

Im(λ − µ) = 0,

we obtain

λ − eiµ = 0, λ − µ = ξ, ξ ∈ R.
The solution of this system is

λ = ξ(1 − ei)
−1, µ = −ξ(1 − e−1

i )−1,

it defines a Riemann problem with a shift on the pair of straight lines with the vectors exp(iπ/6), exp(−iπ/6), the
shift function isµ = −λ̄. So we arrived at the problem for the function analytic in corresponding sectors.

For an arbitrary rational functionKi(λ) condition (38) defines a multi-valued shift functionµi(λ), and the
correspondinḡ∂-problem reads

∂̄ψ(λ) =
n∑

i=1

Riψ(λi(µ)). (41)

4. Boussinesq equation via the ∂̄-dressing method

Let us consider the KP equation in the moving frame

∂

∂x

(
(vt − βvx) + 1

4
vxxx + 3vxv

)
= −3

4
α2vyy, β2 = 1. (42)

Solutions of this equation are given by problem (9) with the dependence of the kernel on variablesx, y, t defined
by the expressions (compare (10) and (14))

D1 = ∂

∂x
+ iλ, D2 = ∂

∂y
+ α−1λ2 (α = 1; i), D3 = ∂

∂t
+ iλ3 + iβλ. (43)

Time-independent solutions of Eq. (42) satisfy the Boussinesq equation

(3
4α

2vyy − βvxx) = −(1
4vxx + 3

2v
2)xx. (44)

Such solutions are given by problem (9) (v = −i(∂/∂x)ψ0), if the support of kernelR(λ,µ) belongs to the manifold
defined by condition (38)

(λ3 + βλ − µ3 − βµ) = 0, λ 	= µ, (45)
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or

λ2 + λµ + µ2 + β = 0.

This relation defines ā∂-problem with a shift

∂̄ψ(λ, x, y) = R(λ,µ(λ))exp(φixi)ψ(µ(λ), x, y), µ = 1
2(−λ ± (4β − 3λ2)1/2). (46)

Solutions of the Boussinesq equation, given by problem (46) (v = −i(∂/∂x)ψ0), are defined locally in the neigh-
borhood of the pointx = 0, y = 0. We consider the Boussinesq equation as a dynamical equation with respect to
the variabley. To obtain small solutions decreasing as|x| → ∞, we should investigate the intersection of manifold
(38) with the manifold, defined by condition (33):

Im(λ − µ) = 0. (47)

Conditions (45) and (47) define a Riemann problem with a shift (the Carleman’s problem) which is a proper tool to
solve the Boussinesq equation. Introducingξ = (1/2)(λ − µ), ν = −i(1/2)(λ + µ), ξ ∈ R, one can get

β + ξ2 − 3ν2 = 0. (48)

4.1. About the reduction

Let us make a remark about the reduction. Forα = 1 v(x, y) is real if the kernel of the problem (9) satisfies the
condition

R(λ,µ) = R̄(−λ̄,−µ̄) (49)

for α = i if

R(λ,µ) = R̄(µ̄, λ̄). (50)

4.2. Continuous spectrum

4.2.1. ‘Plus’ Boussinesq equation
One can see that the properties of the Boussinesq equation depend essentially on the sign ofβ. Let β = 1. The

corresponding equation (‘plus’ Boussinesq equation) reads

3
4α

2vyy − vxx + 1
4vxxxx + (3

2v
2)xx = 0. (51)

In the caseα2 = 1 it is a nonlinear wave equation, having in a linear approximation monochromatic solution

v � ei(ωy+kx), ω2 = 4
3(k

2 + 1
4k

4).

In the caseα2 = −1 it is a nonlinear elliptic equation. In both cases Eq. (51) can be solved by the following Riemann
problem with a shift

−3ν2 + ξ2 + 1 = 0, λ = −µ̄, λ = ξ + iν, µ = −ξ + iν. (52)

Eq. (52) defines a hyperbola with the branches belonging respectively to upper and lower half-planes (Fig. 1). The
shift is defined as change of sign of the real part ofλ. Let us introduce

ρ±(ξ) = 0ψ |±
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Fig. 1. Localization of continuous spectrum for ‘plus’ Boussinesq equation.

jumps of the functionψ(λ) across upper and lower branches of the hyperbola. The functionψ can be represented
in the form

ψ = 1 + 1

2π i

∫ ∞

−∞
ρ+(ξ ′)

(λ − λ+(ξ ′))
dλ+
dξ ′ dξ ′ + 1

2π i

∫ ∞

−∞
ρ−(ξ ′)

(λ − λ−(ξ ′))
dλ−
dξ ′ dξ ′,

where

λ±(ξ) = ξ ± i

√
1 + ξ2

3
.

The Riemann problem with a shift (52) is equivalent to the system of two integral equations (25)

ρ+(ξ)=
(

1 + 1

2π i
v.p.

∫ ∞

−∞
ρ+(ξ ′)

(λ+(−ξ) − λ+(ξ ′))
dλ+
dξ ′ dξ ′ + 1

2π i

∫ ∞

−∞
ρ−(ξ ′)

(λ+(−ξ) − λ−(ξ ′))
dλ−
dξ ′ dξ ′

)

×R+(ξ)e(4i/
√

3α)ξ
√

1+ξ2y+2iξx,

ρ−(ξ)=
(

1 + 1

2π i
v.p.

∫ ∞

−∞
ρ−(ξ ′)

(λ−(−ξ) − λ−(ξ ′))
dλ−
dξ ′ dξ ′ + 1

2π i

∫ ∞

−∞
ρ+(ξ ′)

(λ−(−ξ) − λ+(ξ ′))
dλ+
dξ ′ dξ

)

×R−(ξ)e(−4i/
√

3α)ξ
√

1+ξ2y−2iξx .

The solution of the Boussinesq equation is given by the formula

u = − ∂

∂x

1

2π

∫ ∞

−∞

(
ρ+(ξ)

dλ+
dξ

+ ρ−(ξ)
dλ−
dξ

)
dξ.

4.2.2. ‘Minus’ Boussinesq equation
This equation,

3
4α

2vyy + vxx + 1
4vxxxx + (3

2v
2)xx = 0
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arises after puttingβ = −1. The reduced̄∂-problem for this equation is described by the conditions

λ2 + λµ + µ2 = 1 (53)

(time independence) and

Im(λ − µ) = 0 (54)

(decreasing at infinity inx-direction). There are two possibilities to satisfy these conditions.

1. λ andµ are real(λ2 < 4/3, µ2 < 4/3) and

µ = −1

2
λ ±

√
1 − 3

4
λ2. (55)

We have a Riemann problem on the cut−√
4/3 < Reλ <

√
4/3 with the twofold shift (55).

2. λ andµ are complex,λ = ν + iξ , µ = −ν + iξ , ξ, ν ∈ R,

ν2 − 3ξ2 = 1. (56)

Bothλ andµ belong to the hyperbola (see Fig. 2). The shift as for the ‘plus’ Boussinesq equation is reflection
with respect to imaginary axis.

Let us parameterize the curves, on which the solutionψ of the Riemann problem with a shift has a discontinuity,
in the following way

γ+ = λ+(ξ) = iξ +
√

1 + 3ξ2, −∞ < ξ < ∞, γ− = λ−(ξ) = iξ −
√

1 + 3ξ2, ∞ < ξ < ∞,

γ0 = λ0(ξ) = ξ, ξ2 < 4
3,

Fig. 2. Localization of continuous spectrum for ‘minus’ Boussinesq equation.
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and introduce the jumpsρ+(ξ), ρ−(ξ), ρ0(ξ) of the functionψ across the curves. Then the functionψ can be
represented in the form

ψ = 1 + 1

2π i

∫ ∞

−∞
ρ+(ξ ′)

(λ − λ+(ξ ′))
dλ+
dξ ′ dξ ′ + 1

2π i

∫ ∞

−∞
ρ−(ξ ′)

(λ − λ−(ξ ′))
dλ−
dξ ′ dξ ′ + 1

2π i

∫ √
4/3

−√
4/3

ρ0(ξ
′)

(λ − ξ ′)
dξ ′.

The Riemann problem in this case is equivalent to the system of three integral equations

ρ0(ξ)= 1 +
(

1

2π i

∫ ∞

−∞
ρ+(ξ ′)

(µ+(ξ) − λ+(ξ ′))
dλ+
dξ ′ dξ ′ + 1

2π i

∫ ∞

−∞
ρ−(ξ ′)

(µ+(ξ) − λ−(ξ ′))
dλ−
dξ ′ dξ ′

+ 1

2π i

∫ √
4/3

−√
4/3

ρ0(ξ
′)

(µ+(ξ) − ξ ′)
dξ ′
)
R+

0 (ξ)ei((1/2)ξ−
√

1−(3/4)ξ2)x+(1/α)((3/2)ξ2−ξ
√

1−(3/4)ξ2−1)y

+
(

1

2π i

∫ ∞

−∞
ρ+(ξ ′)

(µ−(ξ) − λ+(ξ ′))
dλ+
dξ ′ dξ ′ + 1

2π i

∫ ∞

−∞
ρ−(ξ ′)

(µ−(ξ) − λ−(ξ ′))
dλ−
dξ ′ dξ ′

+ 1

2π i

∫ √
4/3

−√
4/3

ρ0(ξ
′)

(µ−(ξ) − ξ ′)
dξ ′
)
R−

0 (ξ)ei((1/2)ξ+
√

1−(3/4)ξ2)x+(1/α)((3/2)ξ2+ξ
√

1−(3/4)ξ2−1)y,

where

µ± = 1

2
ξ ±

√
1 − 3

4
ξ2,

ρ+(ξ)= 1 +
(

1

2π i

∫ ∞

−∞
ρ+(ξ ′)

(λ−(ξ) − λ+(ξ ′))
dλ+
dξ ′ dξ ′ + 1

2π i

∫ ∞

−∞
ρ−(ξ ′)

(λ−(ξ) − λ−(ξ ′))
dλ−
dξ ′ dξ ′

+ 1

2π i

∫ √
4/3

−√
4/3

ρ0(ξ
′)

(λ−(ξ) − ξ ′)
dξ ′
)
R+(ξ)e2i

√
1−3ξ2x+(4i/α)ξ

√
1−3ξ2y,

ρ−(ξ)= 1 +
(

1

2π i

∫ ∞

−∞
ρ+(ξ ′)

(λ+(ξ) − λ+(ξ ′))
dλ+
dξ ′ dξ ′ + 1

2π i

∫ ∞

−∞
ρ−(ξ ′)

(λ+(ξ) − λ−(ξ ′))
dλ+
dξ ′ dξ ′

+ 1

2π i

∫ √
4/3

−√
4/3

ρ0(ξ
′)

(λ+(ξ) − ξ ′)
dξ ′
)
R−(ξ)e−2i

√
1−3ξ2x−(4i/α)ξ

√
1−3ξ2y.

The solution of the Boussinesq equation is given by the formula

u = − ∂

∂x

1

2π

[∫ ∞

−∞

(
ρ+(ξ)

dλ+
dξ

+ ρ−(ξ)
dλ−
dξ

)
dξ +

∫ √
4/3

−√
4/3

ρ0(ξ)
dλ0

dξ
dξ

]
.

In this case the spectral dataRγ split into two parts; the short-wave part of continuous spectrum is localized on the
hyperbola (56), and the long-wave part of the spectrum on the segment of the real axis (in fact on the covering of
this segment); see Fig. 2. Forα = 1 hyperbola corresponds to the stable part of the spectrum (exponent (10) fory is
imaginary) and the segment to the unstable part (exponent is real), forα = i the situation is reversed, i.e., long-wave
instability takes place forα = 1, and short-wave instability forα = i.
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4.3. Soliton solutions

Behavior of solitons in the case of the Boussinesq equation is very unusual for integrable systems. We will mostly
study the case of the ‘plus’ Boussinesq equation withα2 = 1. This equation has a stable ‘wave sector’ (i.e., in
the linear limit it is a wave equation), and it may be considered as integrable nonlinear generalization of the wave
equation. There are two soliton sectors for this equation: ‘usual’ solitons, running with the velocity limited from
above, and soliton configurations, forming a singularity in a finite time. The latter may be considered as bounded
states of several singular solitons.

But even ‘usual’ solitons demonstrate quite extraordinary behavior in this case. They are unstable with respect to
small perturbations and may decay into two solitons or two singular solitons (that means a formation of singularity).

This phenomenon was discovered by Orlov [2] several years ago, but it is not well known even in the
soliton community, so we would like to investigate it here in detail in the framework of our general
approach.

To study soliton solutions of the Bousinesq equation, we start from the general determinant formula (31). For the
KP equation in the moving frame (42) from this formula we get (see similar expression for KP in [11])

v = ∂2

∂x2
log det(A), Aij = δij − Ri

µi − λj
, (57)

where

Rk = −ick exp

(
i(µk − λk)

(
x − i

α
(µk + λk)y

))
.

We will use an equivalent form of this formula

v = ∂2

∂x2
log det(Ã), (58)

Ãij = 1

−ici
exp(Φi)δij + 1

λi − µj

, (59)

where

Φk = i(λk − µk)(x − i(µk + λk)y).

To get solutions for the Boussinesq equation (44), the pairs(λk, µk) should satisfy the condition of dimensional
reduction (45)

λ2 + λµ + µ2 + 1 = 0,

andλk 	= µj . The reduction (49) is to be taken into account.
We should also put some restrictions to get from the formula (57) solutions having no singularities at least for

some values ofy (y is dynamical variable, ‘time’, in our treatment). The prescription we will use is to put the
condition

Re(λi − µi) = 0. (60)

Then the exponents containingx are real, and aty = 0 we can provide the absence of singularities by the
choice of coefficients. This condition together with condition (45) define a curve to which the pointsλi, µi

should belong. This curve is identical to the curve we studied in the case of the ‘minus’ Boussinesq equa-
tion with the interchanged real and imaginary axes (see Fig. 3). So we have the curve consisting of two parts:
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Fig. 3. Localization of discrete spectrum for ‘plus’ Boussinesq equation.

the segment of the imaginary axis and hyperbola. Let us consider the simplest solutions corresponding to these
parts.

First, in complete analogy with formulae (55) and (56), we introduce parameterization of the pairs of points
λk, µk in the following way: for the segment of the imaginary axis

λ = −iξ, µ = −iη, η = −1
2(ξ ±

√
4 − 3ξ2) (61)

for pairs belonging to hyperbolaλ = ξ − iν, µ = ξ + iν, ξ, ν ∈ R,

ν2 − 3ξ2 = 1. (62)

Let us start with solutions corresponding to the points on the hyperbola.
We should take two pairs of points on the hyperbola

λ1 = ξ − i
√

1 + 3ξ2, +µ1 = ξ + i
√

1 + 3ξ2, λ2 = −λ̄1 = −ξ − i
√

1 + 3ξ2,

µ2 = −µ̄1 = −ξ + i
√

1 + 3ξ2 (63)

to satisfy reduction condition (49)

R(λ,µ) = R̄(−λ̄,−µ̄).

The general formula for determinant solution (59) corresponding to two pairs of points(λ1, µ1), (λ2, µ2) is

det(Ã)= (λ1 − λ2)(µ1 − µ2)

(λ1 − µ2)(µ1 − λ2)
+ λ1 − µ1

−ic1
exp(Φ1) + λ2 − µ2

−ic2
exp(Φ2)

+ λ1 − µ1

ic1
exp(Φ1)

λ2 − µ2

−ic2
exp(Φ2). (64)
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Fig. 4. The curve inx, y plane where solution has a singularity.

Let us take two pairs of points on the hyperbola parameterized by formulae (63) andc1, c2 = c ∈ R. Then
determinant (64) is real, and it is given by the expression

det(Ã) = ξ2

1 + 4ξ2
+ 2

√
1 + 3ξ2

c
(e2

√
1+3ξ2(x−2iξy) + e2

√
1+3ξ2(x+2iξy)) + 4(1 + 3ξ2)

c2
e4

√
1+3ξ2x. (65)

For positivec this expression has no zeroes at initial moment, so the solution is nonsingular and decreasing. But
then at some moment zeroes appear in this expression, so the singularities are formed. Let us illustrate this process
by several figures corresponding to some special choice of parameters (c = −20, ξ = 1). Fig. 4 shows the lines
on the planex, y, where the determinant is equal to zero. The general form of the solution is given by Fig. 5.
Fig. 6 illustrates development of singularity for the solution (dynamics is considered with respect toy variable).
Fig. 7 shows the solution after creation of singularity. Then the solution behaves like two singular solitons (see
Fig. 8), first they go away from each other to some maximal distance, then they come close and the singularity
disappears (see Fig. 9). The process is periodic with respect toy. Qualitatively this picture is the game for arbitrary
values of parameters. The change ofc just shifts the picture. Parameterξ defines the period of the process and the
characteristic length. Maximal distance between the singularities is

lmax = 1√
1 + 3ξ2

arccosh

(
1

F(ξ)

)
, (66)

time between creation and disappearance of singularities is

t = 1

2ξ
arccosh(F (ξ)), (67)

where

F(ξ) = 2ξ

√
1

1 + 4ξ2
. (68)
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Fig. 5. General form of solution inx, y plane.

The functionF(ξ) is a monotone increasing function equal to zero atξ = 0 with the limit 1 at infinity and−1 at
minus infinity.

Dynamics of singularities becomes more complicated when we consider a solution corresponding to a set of
several pointsλi, µi . The case of four pairs of points is illustrated by Fig. 10.

4.3.1. Decay of solitons
A pair of points belonging to the segment of the imaginary axis gives us a soliton solution

detÃ = 1 + λ − µ

−ic
exp(i(λ−µ)(x − i(µ + λ)y)).

Fig. 6. Development of singularity.
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Fig. 7. Singularity formed.

Using parameterization (63), we get the formula

detÃ = 1+ξ−η

c
exp((ξ−η)(x − (ξ + η)y)) = 1 + 3ξ ±

√
4 − 3ξ2

2c
e(1/4)(3ξ±

√
4−3ξ2)(2x−(ξ∓

√
4−3ξ2)y),

(69)

v = ∂2

∂x2
log cosh

3ξ ±
√

4 − 3ξ2

8
(2(x − x0) − (ξ ∓

√
4 − 3ξ2)y). (70)

To understand the dependence of the soliton on parametersξ, η, it is useful to recall that these parameters belong
to the ellipse

ξ2 + ξη + η2 = 1. (71)

Fig. 8. Two singular solitons stage of development of singularity.
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Fig. 9. Disappearance of singularity.

Introducing velocity of the soliton

v = ξ + η,

and a parameter defining amplitude of the soliton

A = ξ − η,

we rewrite the equation of this ellipse in the form

3v2 + A2 = 4.

Then it is easy to see that the absolute value of velocity of the solitonv = ξ+η is limited by
√

4/3. For(ξ−η)/c > 0
the soliton is nonsingular. Asξ−η → 0, the amplitude of the soliton goes to zero, and velocity reaches its maximum
|v| → √

4/3. Two points withξ = η belonging to the ellipse are the points of the change of sign, where (for fixed
c) the nonsingular soliton becomes singular and vice versa.

There are some unusual features concerning the behavior of the soliton under small perturbations, which come
to light when we study two-soliton solutions. The general formula of two-soliton interaction (64) rewritten for the
segment of the imaginary axis in terms of parametersξ, η looks like

det(Ã) = (ξ1−ξ2)(η1−η2)

(ξ1−η2)(η1−ξ2)
+ξ1 − η1

c1
exp(Φ1) + ξ2 − η2

c2
exp(Φ2) + ξ1 − η1

c1
exp(Φ1)

ξ2 − η2

c2
exp(Φ2),

(72)

where

Φi = (ξi − ηi)(x − (ξi + ηi)y) = Ai(x − viy).

Considering formula (63) definingηk throughξk, one remarks that there are two possible choices ofη corresponding
to the sameξ (and also two possibleξ corresponding to the sameη). It is natural to ask what kind of solution we
get if we consider two pairs of points with the sameξ (or the sameη). The formula (72) in this case degenerates,
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Fig. 10. The curve inx, y plane where solution has a singularity, the case of four pairs of pointsλi, µi on the hyperbola.

the first term in it is equal to zero. Naively, we expect this solution to be a two-soliton solution. But further study
shows that this solution possesses rather unusual properties. It describes the decay of soliton (70) (or fusion of two
solitons).

Considering formula (72) withξ1 = ξ2 = ξ , we get

det(Ã) = +ξ − η1

c1
exp(Φ1) + ξ − η2

c2
exp(Φ2) + ξ − η1

c1
exp(Φ1)

ξ − η2

c2
exp(Φ2), (73)
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or, using explicit parameterization (63) ofη1, η2 throughξ ,

det(Ã) ∼ 1 + 2c2 e(1/4)(3ξ−
√

4−3ξ2)(−2x+ξy+
√

4−3ξ2y)

3ξ −
√

4 − 3ξ2
+ 2c1 e(1/4)(3ξ+

√
4−3ξ2)(−2x+ξy−

√
4−3ξ2y)

3ξ +
√

4 − 3ξ2
, (74)

herec1, c2 ∈ R, and the determinant is written up to an exponential factor that does not change the solution.
Experimenting with the plots obtained by Mathematica from this formula for some choice of parameters, one
discovers two solitons for some (big positive) values ofy, and one soliton for other (big negative) values. Analytic
study of formula (74) confirms this impression.

Let us consider the simplest case of the staying soliton (soliton with velocity zero). In this case the value of
parameterξ is equal to 1, and formula (69) (with the sign+) takes the form

detÃ ∼ 1 + 1
2c exp(−2x), (75)

that corresponds to the standard soliton solution with zero velocity

v = cosh−2(x − x0).

Substitutingξ = 1 to the ‘two-soliton’ formula (74), we get

det(Ã) ∼ 1 + c2 exp(y − x) + 1
2c1 exp(−2x). (76)

To study asymptotic behavior of the solution corresponding to this determinant, we should take into account that
the solution is given by the second derivative of the logarithm of the determinant (formula (57)). Aty = −∞ we
discover only a staying soliton of the form (75)

v ≈ ∂2

∂x2
log

(
1 + 1

2
c1 exp(−2x)

)
,

which is nonsingular ifc1 is positive. Multiplying the determinant (76) by exp(x − y) (that does not change the
solution), we get another representation of the ‘two-soliton’ solution

v = ∂2

∂x2
log

(
exp(x − y) + c2 + 1

2
c1 exp(−x − y)

)
.

Using this representation to study asymptotic behavior of the solution aty = ∞ in the arbitrary moving frame
x = x̃ + vy, we discover that forv = ±1 asymptotics is nontrivial, corresponding to two solitons moving with
velocitiesv = ±1,

v ≈ ∂2

∂x2
log(exp(x − y) + c2) + ∂2

∂x2
log

(
1

2
c1 exp(−x − y) + c2

)
. (77)

As we have mentioned before, for a nonsingular staying solitonc1 is positive. Ifc2 is also positive, formula (77)
gives two nonsingular solitons, and negativec2 corresponds to two singular solitons.

The initial data for the solutionv corresponding to the determinant (76) may be made infinitely close to the
one-soliton solution by the choice of constants. In fact aty = −∞ this is exactly a soliton. But then this slightly
disturbed soliton solution decays! It may decay into two solitons or into two singular solitons, depending on the
initial perturbation (see Figs. 11 and 12). So the staying soliton solution for the Boussinesq equation is unstable
with respect to small perturbations, it may develop a singularity or decay into two solitons.

A natural question to ask next is whether an arbitrary soliton may decay. To answer it, we start from some general
remarks concerning the decay formula (73)

det(Ã) ∼ 1 + c1

ξ − η1
exp(−Φ1) + c2

ξ − η2
exp(−Φ2). (78)
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Fig. 11. Decay of soliton into two solitons.

Using the simple example of the staying soliton, we have shown that three different solitons enter this formula. The
soliton is defined by a pair of real parametersξ, η satisfying equation (71), or, in other words, by the point of ellipse
(71). The pointη, ξ defines the same soliton (up to a change of constantc). Deriving formula (78), we start from
two solitons having the sameξ . To understand the appearance of the third soliton, it is easy to show that ifη = η1,
ρ = η2 satisfy Eq. (71) with the sameξ , then the point(η, ρ) also belongs to the ellipse (71). So the formula (78)

det(Ã) ∼ 1 + c1

ξ − η
e−(ξ−η)(x−(ξ+η)y) + c2

ξ − ρ
e−(ξ−ρ)(x−(ξ+ρ)y) (79)

Fig. 12. Decay of soliton into two singular solitons.
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containsthree solitons with the parameters(ξ, η), (ξ, ρ), (η, ρ). Thus, the decay process is characterized by three
real parametersξ, η, ρ, possessing the property that each pair of parameters defines the point of the ellipse (71).
Depending onξ (which definesη andρ through the formula (63)), each soliton is present only aty = ∞ or at
y = −∞.

Considering formula (79) in the moving frame

x = x̃ + (ξ + η)y,

we discover that a soliton with the parameters(ξ, η) is present at

y = sign((ξ − ρ)(η − ρ))∞.

Similarly, we come to the conclusion that a soliton with the parameters(ξ, ρ) is present at

y = sign((ξ − η)(ρ − η))∞.

Rewriting expression (79) in equivalent form

det(Ã) ∼ e−(η−ξ)(x−(ξ+η)y) + c1

ξ − η
+ c2

ξ − ρ
e−(η−ρ)(x−(η+ρ)y), (80)

and considering the moving frame

x = x̃ + (η + ρ)y,

we show that a soliton with the parameters(η, ρ) is present at

y = sign((η − ξ)(ρ − ξ))∞.

Choosing to be definiteξ > ρ > η, we discover that formula (79) describes decay of a soliton with the parameters
(ξ, η), i.e., the smallest and the largest of parametersξ, ρ, η. Let us use explicit parameterization (63)

η = −1
2(ξ +

√
4 − 3ξ2), ρ = −1

2(ξ −
√

4 − 3ξ2).

If we start from the maximal value ofξ = √
4/3, formula (79) describes decay of a soliton with the parameters

(ξ, η); the velocity of this soliton is

v = 1
2(ξ −

√
4 − 3ξ2).

Asρ comes close toξ (atξ = √
1/3), the velocity of the soliton(ξ, ρ) reaches maximal velocityv = √

4/3, and the
velocity of decaying soliton(ξ, η) reaches the valuev = −√

1/3. At ρ = ξ formula (79) degenerates, it describes
one soliton with velocityv = −√

1/3. As ξ becomes smaller than
√

1/3, ρ becomes larger thanξ , and formula
(79) describes decay of soliton(ρ, η) with the velocity

v = −ξ.

At ξ = −√
1/3, ξ becomes equal toη, formula (79) degenerates once again, the velocity of decaying soliton reaches

the value
√

1/3, and for−√
1/3 > ξ ≥ −√

4/3 it describes decay of solitonξ, ρ with the velocity

v = 1
2(ξ +

√
4 − 3ξ2).

Thus, the velocity of the decaying soliton changes in the range

−
√

1
3 < vdec<

√
1
3.
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There are decay processes into two solitons or two singular solitons, depending on the choice of constantsc1, c2 in
the formula (79).

There are no decay processes for the solitons with|v| > √
1/3, so these solitons are stable (with respect to decay).

Thus, we have answered our first questions, and the answer is negative, not all solitons may decay.

4.3.2. Interaction of solitons
The next question is about soliton systems and interaction of two solitons. It is whether singularities may ap-

pear as a result of interaction, and are there any stable soliton systems (not forming singularities as a result of
interaction).

Remark. In general, studying stability of systems of solitons, one should take into account not only the interaction
between solitons, but also the interaction of solitons with the continuum spectrum also. We would like to emphasize
that here we will take into account only the soliton sector, so we are able to give only a partial answer to these
questions. Indeed, systems of solitons stable with respect to interaction between solitons may, in principle, under
arbitrary small perturbation develop instability and even singularity. However, for the Boussinesq equation the
questions we consider are nontrivial even for pure soliton interactions.

First we would like to formulate two results concerning these questions.

Statement 1. Solitons moving in one direction with velocities|v| > √
1/3 do not form singularities as a result of

two-soliton interaction.

Statement 2. Two-soliton interaction of solitons with velocities|v| < √
1/3 necessarily leads to formation of a

singularity (i.e., the result of interaction of two solitons always is two singular solitons).

The proof of both statements is based on formula (72). Interaction of two solitons is much more standard in soliton
theory than the decay process, so we will not consider it in detail. Using moving reference frames and considering
asymptotical behavior of solution (72) aty = ±∞, it is easy to show that the character of the interaction process
is defined by the sign of the first term in the formula (72)

c = (ξ1 − ξ2)(η1 − η2)

(ξ1 − η2)(η1 − ξ2)
. (81)

If c > 0, the result of interaction is a pair of solitons, and forc < 0 the result is a pair of singular solitons (that
means that singularity is formed in the process of interaction). The points of change of signξ1 = ξ2, η1 = η2,
ξ1 = η2, η1 = ξ2 correspond to degeneration of formula (72) into fusion process and appearance of third soliton.
The results of analysis of triple soliton diagram given before show that it always contains two solitons moving in
the same direction; one with velocity|v1| <

√
1/3 (the decaying soliton, or, for the inversed time, the result of

fusion), and another with velocity|v2| >
√

1/3. The third soliton moves in the opposite direction with the velocity
|v3| >

√
1/3.

Let us take two solitons moving in the same direction with velocities|v| > √
1/3. There are no fusion diagrams

containing these solitons, and expression (81) does not change sign when we change parameters of solitons. It is
easy to check that in this case the sign is positive, and the result of interaction of two solitons is two (nonsingular)
solitons, that proves Statement 1. This statement can be easily generalized to the case ofN -soliton interaction, and
thus the system of solitons moving in the same direction with velocities|v| > √

1/3 does not form singularities and
is stable with respect to decay processes. In other words, this system demonstrates a ‘standard’ behavior usually
associated with a system of solitons.
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Similarly, considering two solitons moving with velocities|v| < √
1/3, we come to the conclusion that the sign of

expression (81) is negative. Interaction of two solitons in this case always results in two singular solitons, i.e., in the
formation of singularity, that proves Statement 2. Thus, the system of solitons moving with velocities|v| < √

1/3
demonstrates rather extraordinary behavior. First, the solitons are unstable under perturbation and may decay into
two solitons or two singular solitons. And second, interaction of two solitons unavoidably leads to formation of a
singularity in a finite time.
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