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Preface 

This volume contains the proceedings of the conference on the Legacy of the 
Inverse Scattering Transform which was held at Mount Holyoke College in Mas-
sachusetts from June 17-21, 2001. 

Current progress in the area of Solitons and the Inverse Scattering Transform 
continues to be rapid and new applications are also multiplying, with current non-
linear optical technology moving so rapidly, larger and larger intensities becoming 
more available, pulse widths becoming smaller and smaller, and relaxation times 
and damping rates becoming less and less significant. As this limit is approached, 
the exactly integrable soliton equations, such as 3-wave resonant interactions and 
second harmonic generation become more and more relevant to experimental ap-
plications. Experimental techniques are currently being developed to use these in-
teractions to frequency convert high intensity sources into frequency regimes where 
there are no lasers. Other experiments are using these interactions to develop 
intense variable frequency sources, opening up even more new experimental possi-
bilities. 

However, in regard to the mathematics of this area, the 'easy' problems have 
been solved long since, and the field has attained a kind of intellectual adolescence. 
As such, it was felt that it was a good time for taking stock of the current situation, 
and seeing where the area might go next. We believe that such a reconsideration 
of the numerous strands of activity which are the legacy of the Inverse Scattering 
Transform can reveal much about where the field can go in the future, and can even 
re-energize the field significantly. It will also bring lines of research which currently 
are somewhat independent of each other closer together, and possibly even open 
up new avenues of enquiry. 

Thus, the conference provided a forum for the more general exposition and 
assessment of recent developments in Nonlinear Waves and related areas and of 
their potential applicability in various fields, and this is clearly reflected in the 
articles in these proceedings. The present volume is thus expected to be of strong 
interest to experienced and beginning researchers in the Mathematics, Physics, and 
Engineering communities. 

We express our sincere thanks to the American Mathematical Society for their 
support of the Joint Summer Research Conference Series and the publication of this 
volume, and to the U.S. Army Research Office for a generous supplemental travel 
grant that enabled us to cover the travel expenses of all participants. Our greatest 
single debt of gratitude is undoubtedly to Wayne Drady for his thoroughness and 
sang-froid at all stages of the conference organization. We knew that we could 
leave all the practical details in his capable hands and concentrate on enjoying the 

v 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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meeting. Our grateful thanks also to Chris Thivierge and Gil Poulin for all their 
help and support on the many steps in the process of putting this volume together. 
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Contemporary Mathematics 
Volume 301, 2002 

The Legacy of the 1ST 

David J. Kaup 

ABSTRACT. We provide a brief review of some of the major research results 
arising from the method of the Inverse Scattering Transform. 

1. Introduction 

I will give a brief review of several items in the Legacy of the Inverse Scattering 
Transform. In no way is this to be a complete review, since the Legacy has become 
so vast. However, I will treat those items with which I am most familiar, and try 
to detail their significance and importance. 

There is no doubt that the most important contribution was the famous clas-
sical Gardner, Greene, Kruskal and Miura (GGKM) work [1] of 1967 on the KdV 
equation. This was the starting point. They had found a very strange and new 
method for solving the initial value problem of a nonlinear evolution equation, the 
KdV. At that time, and even for several years later, this strange new method was 
considered to be only a novelty, since it would only work for that one equation, the 
KdV. Shortly thereafter, as a prelude to what was to follow, Peter Lax [2] showed 
that if given an appropriate linear operator, L, dependent on a potential, u(x), then 
one could always construct an infinite sequence of evolution operators, B, each of 
which would satisfy 

{1.1) BL-LB = 8tL. 

This sequence of evolution operators could be generated by simply increasing the 
order of the spatial differentials contained in B. Then from (1.1) one would obtain 
additional nonlinear evolution equations, each of the form 

(1.2) OtU = K(u) 

where K was some (nonlinear) operator. All these additional higher order evolution 
equations would be solvable by this same technique. This collection is now known 
as the KdV hierarchy. 

1991 Mathematics Subject Classification. Primary 01A65; Secondary 35Q51. 
Key words and phrases. Solitons, Inverse Scattering Transform. 
The author was supported in part by NSF Grant #0129714. The author thanks an anonymous 
referee for his comments, and also H. Steudel for his comments. 

© 2002 American Mathematical Society 
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2 DAVID J. KAUP 

If we consider the eigenvalue problem for L, 

(1.3a) L'ljJ = ->.'1/J, 

where >. is the eigenvalue, and append to it the condition 

(1.3b) 

then it is easy to see that (1.1) is simply the integrability condition for (1.3). 
Furthermore, as Lax pointed out for the KdV case, (1.1)-(1.3) also implies that the 
eigenvalues, >., in (1.3a) would be stationary, 

(1.4) 

a relation that would occur time-and-time again as the study of integrable equations 
would expand in the decades to follow. 

It was also about this time that the term "radiation" was introduced. We 
haven't said anything yet about solitons or solitary waves, but more will be said 
later. For now, let us note that a remarkable feature of the GGKM method of so-
lution was the appearance of fully nonlinear solitary wave solutions, called solitons. 
The other part of the solution has been called "radiation", and is essentially linear-
like in its behavior. The asymptotics (long-time behavior) of the total solution are 
generally that the radiation does disperse away, leaving the solitons traveling in a 
sea of decaying radiation. 

As to nomenclature, we shall refer to (L + >.)'ljJ as the eigenvalue problem, 'ljJ as 
the eigenfunctions, and Bas the evolution operation. The pair [L + >., B] is known 
as the "Lax pair" . For the KdV equation, the Lax pair is 

(1.5a) 

(1.5b) 

where a is an arbitrary constant and the integrability condition is the KdV equation: 

(1.5c) 

We note here, given Land B, it follows that one can then obtain K(u). How-
ever, an important problem is given K(u), construct L and B. The solution of 
this inverse problem is still an area of active research. One method that sometimes 
works for this is called "Painleve Analysis". For a description of this aspect of the 
Legacy, the reader is referred to Choudhury's article in this same issue. 

It was not until 1971, that the next physically significant integrable system 
was uncovered by V. Zakharov and A.B. Shabat (ZS) [3], which was the focusing 
Nonlinear Schrodinger Equation (NLS) 

(1.6) 

This equation required a different eigenvalue problem, 

(1. 7a) 
(1.7b) 

V1x + i(vl = qv2 

V2x- i(v2 = rv1 

where (v1 , v2 ) is the eigenvector, (is the eigenfunction, and q and rare the "poten-
tials" . For the focusing NLS case, one has r = -q* and r = +q* for the defocusing 
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THE LEGACY OF THE IST 3 

case. The time evolution operator, B, is given by [3]: 
(1.8a) iOtVl = -i(4(2 + 2qr)vl + (4(q + 2iqx)v2 

(1.8b) iOtV2 = (4(r- 2irx)vl + i(4(2 + 2qr)v2. 

Exactly as was shown by Lax [2] for the KdV, one also has a hierarchy here, which 
can be obtained by generalizing (1.8) to higher orders in (. In 1972, Wadati [4] 
found the next member of this hierarchy, the "modified KdV" (mKdV) 

(1.9) 

which was also integrable. Its eigenvalue problem was again the ZS eigenvalue 
problem, (1.7), but where now r = -q, and q real. Also, (1.8) had to be generalized 
to be cubic in (. 

By this time, it was becoming apparent to many researchers, that this strange 
method found by GGKM was not simply a novelty. Rather, there was some-
thing very significant underlying all of this. This became even more obvious when 
Ablowitz, Kaup, Newell and Segur (AKNS) presented a method of solution of both 
the Goursat and Cauchy initial value problems of the sine-Gordon equation [5]. 
This was also based on the ZS eigenvalue problem, but with a very different form 
for the B in (1.8): it was now inversely proportional to the spectral parameter, 
(. The sine-Gordon equation was well known at that time. It had a long history, 
first occuring in 1853 in differential geometry, and was the first equation for which 
Backlund tranformations and N-solitons solutions were found. It was known in 
solid state physics in the 1930's, and in 1965 had found applications in optics. 

The IST solution of the sine-Gordon equation was shortly followed by another 
letter [6] pointing out how one could generate a large number of integrable equa-
tions, each of which were physically significant and important. With one general 
approach, AKNS were able to reproduce all the Lax pairs found up to that time, 
and were able to connect the form of the dependence of B on ( to the linear dis-
persion relation, w(k). (The linear dispersion relation relates how the frequency, 
w, depends on the wave vector, k, in the linear limit, where plane waves, ei(kx-wt), 
are the natural solutions.) In 1974, they published their classic AKNS paper [7], 
wherein they described in detail this new method of solution, calling it the method 
of the Inverse Scattering Transform (IST). One of the major points of this classic 
was that the IST could be viewed as a nonlinear extension of the method of the 
Fourier Transform. 

This was also the start of the explosion in research on solitons and integrable 
systems, because unbeknownst to most westerners, Faddeev, Zakharov and their 
students were all very busy in the same direction. In the next few years, many 
important papers were to be published on the IST and related issues. 

2. The Legacy 

Beginning in 1974, it becomes difficult to try to detail all the results. Never-
theless, we will now discuss in general terms, the legacy which followed from this. 
In the following, we will list the general areas of the legacy, and briefly describe the 
importance and the major contributions made to each one. 

2.1. Method of Solution- the 1ST. Above all, theIST is a method of so-
lution for integrable nonlinear equations. It was the pioneering work of GGKM [1], 
ZS [3] and AKNS [7] which made the most significant impact and set the tone which 
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4 DAVID J. KAUP 

followed. Consider what the IST allows one to do. One may take any reasonable 
initial data, and by means of the direct scattering transform (the eigenvalue prob-
lem), transform the initial data into "scattering data". For the KdV, the scattering 
data consists of a reflection coefficient [p( k); -oo < k < oo], bound state eigenvalues 
[~ 3 ;j = 1, 2, ... , N] and bound state normalization coefficients [C3;j = 1, 2, ... , N] 
where N is the total number of bound states, usually finite. Now, Lax [2] showed 
that the eigenvalues, ~ 3 , would be independent of time, due to (1.1). GGKM showed 
that if u(x, t) evolved according to the KdV equation, the reflection coefficient, p, 
and the normalization coefficients, C3, would evolve according to 

(2.1a) 

(2.1b) 

8tp(k; t) = p(k; O)e8ik3t' 

8tC3(t) = C3(0)e-s~~:Jt. 

Thus it becomes a very simple matter to determine the scattering data at any later 
time. 

Next, one used the solution of the inverse scattering problem, which is the core 
of this method of solution, to reconstruct the potential(s). One transforms (with 
the IST) from the scattering data, at time t, back to the potential(s), at time t. 
For the KdV, the necessary steps are to first construct 

(2.2) 1 loo . N F(z;t) = 21f _
00

p(k;t)etkzdk+ ~C 3 (t)e-~<jz, 

then one solves the linear integral equation 

(2.3) K(x, y) + F(x + y) + 100 K(x, s)F(s + y)ds = 0, 

for K(x, y; t). Lastly u(x, t) is constructed from 

(2.4) u(x, t) = -2 dK(;~ x; t). 

All integrable systems are solved by an IST of the above format, although there can 
be a wide variation in the form of the formats. Some eigenvalue problems are higher 
order and/ or even multidimensional. But there is always some scattering problem 
which maps the potential(s) into a set of scattering data (the Direct Scattering 
Transform). There is always some evolution of the scattering data, as in (2.1). 
There is always an Inverse Scattering Transform that allows one to map from the 
scattering data back to the potential(s), as in (2.2)-(2.4). 

One may describe this method of solution as a method for solving the initial 
value problem of a nonlinear equation by using only linear techniques. Further-
more, one may also say that one solves these nonlinear problems by not solving the 
nonlinear problem. Instead one solves two related linear problems. 

To understand these comments, consider 

(2.5) L(u,() · V = 0, 

where Lis the eigenvalue problem in the Lax pair, as in (1.1)-(1.3) and (is a spectral 
parameter. Let the second component of the Lax pair be B(u, Ux, ... '(,ax, ... ), 
where 

(2.6) 
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THE LEGACY OF THE IST 5 

Now note that (2.5) determines the x-dependence of V(x, t; (), whereas (2.6) de-
termines the t-dependence. Thus one function, V(x, t; (), is being determined by 
two equations. In general, such would overdetermine V, and in order for a mutual 
solution to exist, certain consistency conditions must be satisfied. This condition 
is the single integrability condition, (1.2). When (1.2) is satisfied, then a mutual 
solution exists for (2.3)-(2.6). 

But if this integrability condition is nothing more than the nonlinear evolution 
equation, it therefore follows that if, by some means, we can construct a single-
valued solution for V(x, t; (), for some u(x, t), which satisfies each component of 
the Lax pair, then it follows that u(x, t) must satisfy the nonlinear evolution equa-
tion. So, one could say that the entirety of the method of the IST is based on not 
solving integrable nonlinear equations (at least, not directly). Instead, we solve 
them indirectly, exactly by the same format used in any transform method. This 
is as follows. We satisfy (2.5) by mapping u(x, t) into scattering data and con-
structing the eigenfunctions. We can do this for certain classes of potentials (i.e. 
L1 n L2). Then we always will have reflection coefficient(s), as a function of the 
spectral parameter, (, and certain bound state data (eigenvalues and normalization 
coefficients). This is a linear problem. We satisfy (2.6) by requiring the scatter-
ing data to evolve appropriately (as in (2.1) for the KdV). This is usually easy to 
do, since scattering data is typically defined for x ---> ±oo, where potentials nor-
mally approach specified values (usually zero) in that limit. So one really only needs 
B ( x ---> ±oo). This is also a linear problem. Therefore, by fixing the scattering data 
to evolve appropriately, we have effectively forced u(x, t) to evolve by the nonlinear 
evolution equation. To solve for u(x, t), we need to solve the inverse scattering 
problem, which is also a linear problem. The construction of the kernel(s), F(z), 
as in (2.2), is another linear problem. Equation (2.3) is a linear integral equation 
for K(x, y). Then u is reconstructed as in (2.4) by a linear operation. Thus with 
only linear techniques, we are able to solve these nonlinear evolution equations. 

2.2. Soliton Solutions. One of the unique features of the IST is that it 
allows one to construct an infinity of exact nonlinear solutions, called the N -soliton 
solutions. These are also called reflectionless potentials because the scattering data 
consists of only bound state scattering data, with all reflection coefficients set equal 
to zero. In the case of the KdV equation, when the reflection coefficients vanish, 
the function F(x + y; t) in Eq. (2.3), then separates into a finite sum of products 
of known functions of x andy, allowing one to obtain K(x, y), also as a finite sum 
of known functions. The same is true for all other cases integrable by theIST. 

The value of these solutions is tremendous, since they allow one to study and 
obtain exact results for these systems. The most important solution in this class is 
always the one-soliton solution, since it is the basic building block of these solutions, 
and also of any interactions between solitons and between solitons and radiation. 
The 1-soliton solution of the KdV hierarchy is 

2ry2 
U= --~~~--------

cosh2{ry[x- xo(t)]} 
(2.7) 

and that of the NLS hierarchy is 

(2.8) 
2rye-2ie[x-xo (t )] e -icf>o( t) 

q= cosh{2ry[x- xo(t)]} 
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6 DAVID J. KAUP 

where the form of x0 (t) and ¢o(t) depends on the member of the hierarchy. The 2-
and 3-solitons solutions demonstrate soliton interactions and collisions. Typically 
what happens in any soliton collision is that after the collision, the solitons separate 
out according to their individual velocities, completely unscathed, except for a 
possible phase shift in their positions and/ or phase. There are two well known 
exceptions to this. In the soliton decay case of the 3WRI (8], an initial soliton 
in the high frequency wave can decay into its two daughter waves, transferring 
its identity to them. In the vector NLS (9], similar inelastic type collisions occur 
whereby a soliton in one mode (polarization), can flip to another combination of 
modes. Bound states can occur in the sine-Gordon field, where one can have stable 
2-soliton bound states, called "breathers" (5], which are localized oscillations of the 
sine-Gordon field. 

2.3. Hierarchies. Given any eigenvalue problem, Lax (2] had noted that one 
could always take the eigenvalue problem (the first component of the Lax Pair), and 
by simply extending the order of the evolution operator, B, one could generate an-
other nonlinear integrable equation. All these nonlinear integrable equations which 
have a common eigenvalue problem in the Lax Pair, but different evolution oper-
ators, B, is called a "hierarchy" . Thus, there is a hierarchy for every one of these 
eigenvalue problems. For the Schrodinger equation, the most important members 
are the KdV equation, a 5th order KdV equation (10] and one-dimensional "cavi-
ton" equation (11] (the analogy of the sine-Gordon equation for the Schrodinger 
eigenvalue problem). In the ZS problem, we have a "workhorse" as far as physical 
equations are concerned. If we allow r in ( 1. 7) to be in general independent from q, 
then in addition to the NLS (3], the hierarchy contains the modified KdV (4], the 
sine-Gordon [5], the sinh-Gordon equation [5], coherent pulse propagation and self-
induced transparency (SIT) (12], stimulated Raman scattering (SRS) (13], and the 
defocusing NLS (14]. The hierarchy containing the three-wave resonant interaction 
(3WRI) includes all three forms of this interaction (explosive, soliton decay, and 
stimulated backscatter (SBS)) (8, 15, 16], as well as the Manakov vector NLS (9]. 

2.4. Inverse Scattering. Another aspect of the legacy is the wide variety of 
inverse scattering problems solved. In 1967, the IST of the Schrodinger equation 
had just recently been obtained [17, 18], and it was only in 1972 that theIST of 
the ZS eigenvalue problem had been solved (3]. Since that time, there has been a 
multitude of other and even more complex scattering problems solved. 

The next one was the solution of the third-order eigenvalue problem for the 
three wave resonant interaction (3WRI) (15, 16], which interaction we shall return 
to later. This one differed from the ZS significantly only in the additional order 
of the problem. An important subcase of this was the inverse scattering solution 
for the eigenvalue problem for the vector nonlinear Schr6dinger (VNLS) equation, 
solved by Manakov [9]. This VNLS equation is a very important and key equation 
for several studies of nonlinear optical pulses propagating in optical fibers (19, 20]. 
The generalization of the order 3 problem to order n has been done by Gerdjikov 
and Kulish (21]. 

More complex forms have also been done. The first one of these was the eigen-
value problem for the sine-Gordon equation in laboratory coordinates (22, 23]. 
Here one has the spectral parameter distributed among various potential terms, 
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THE LEGACY OF THE IST 7 

and is 

(2.9a) ( i i ) [ i 1 ] VIx + 2(- 8( COSU VI= 8( sin U- 4(Ux + Ut) V2 

(2.9b) V2x- (~(- 8i( COSU) VI= [ 8i( sin U- ~(Ux + Ut)] VI. 

One notes that due to this form, one cannot easily express this equation in the 
standard form as L · V = AV where L is a nondegenerate differential operator, V 
is the eigenvector and A is the eigenvalue. However, in spite of this, one still can 
solve the direct and inverse scattering problems for such systems. Further examples 
of such eigenvalue problems are the eigenvalue problems for the massive Thirring 
model [24], and the derivative NLSL [25]. A more standard form is the cubic 
generalization of the Schrodinger equation [10, 26], 

(2.10) 7/Jxxx + 6Q7/Jx + 6R'lj; = A'lj; 

which appeared as the eigenvalue problem for the Boussinesq, Sawada-Kotera equa-
tion and the Kaup-Kuperschmidt equation. There is also the inverse scattering for 
multidimensional problems, such as the 3D form of the 3WRI [27], the KPI and II 
equations [28], as well as the DSI and II equations [29]. Several aspects of these 
are still of current research interest. 

2.5. Perturbations and Closure. Once one has an exact method for the 
solution of a system, it then becomes possible to develop perturbation methods, to 
study nearby systems. This work was first done in 1976 for the ZS eigenvalue prob-
lem for the one-soliton solution [30], with a general summary of the perturbation 
method being given in 1978 [31]. 

Key to this, is the concept called "closure" or "completeness", which itself arises 
from the one-to-one nature of the direct scattering transform and the IST [32]. 
What this simply means is that given any potential in the appropriate class, there 
exist a unique set of scattering data that can be associated with it by the eigen-
value problem of the Lax pair, and vice versa for theIST. Thus for any potential 
whose evolution is slightly perturbed away from its integrable value, by the direct 
scattering transform, it will be mapped into some other scattering data near the 
initial integrable scattering data. The perturbation problem is then to determine 
how this scattering data in the perturbed case evolves in time. Once its evolution 
is known, then by the IST, one may map back to the potentials and then obtain 
their evolution. 

One solves this by relating variations in the potentials to variations in the 
scattering data, with the transformation from the former to the latter being ac-
complished by the so-called "squared eigenfunctions" . Then with these squared 
eigenfunctions, one may obtain the evolution of the scattering data under a given 
perturbation. 

Under perturbations, one no longer has the simple evolution of the scattering 
data as in (2.1). Rather, one has a slow mixing of the various elements of the 
scattering data: solitons will decay and/or be pumped, transforming some of their 
energy into radiation and/or absorbing energy from the perturbations. In addition, 
radiation modes will similarly grow and/ or decay. Many aspects of this have been 
covered in the review of soliton perturbations done by Kivshar and Malomed [33] 
as well as in Ref. [31]. 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



8 DAVID J. KAUP 

However, whenever the eigenvalue problem has a singular structure, one has 
difficulties. The classical example is the perturbation theory of the KdV, where the 
Schrodinger eigenvalue problem is singular at k = 0. What happens is that for a 
pure one-soliton solution, p(k) = 0 at k = 0. But if there is just even the smallest 
amount of radiation present, we have p(k = 0) = -1. Now, the width of this 
region in k-space can be very small (propor.tional to the radiation density), so this 
region could be vanishingly small and one might have to look very close to k = 0 
in order to see it. However, due to this singular behavior, any perturbations of the 
KdV soliton which will create any radiation, will always have secular terms [34]. 
Physically what is occurring is that a shelf or a depression is forming due to the 
perturbation [31], and this action does generate a finite shift in the scattering data 
as the perturbation vanishes. 

2.6. General Integrable Evolution Equations. Given a linear dispersion 
relation, what are the possible integrable evolution equations for that system? Well, 
for any integrable system solvable by the ZS IST or the Schrodinger IST, that answer 
has been given by Newell and Kaup [35]. They showed that the most general system 
is any of the AKNS polynomial forms [7], coupled with a generalized SIT system. 
Using the properties of the ZS squared eigenstates and their closure, they were 
able to construct the most general evolution equation, given the linear dispersion 
relation. In other words, the dispersion relation of the linear theory determines the 
nonlinear terms, given the eigenvalue problem. The same could be done for any 
other hierarchy. 

Now, a burning question has always been "Is it ever possible for an exactly inte-
grable system to have evolving eigenvalues (i.e. for soliton amplitudes to evolve)?" 
In general, the answer to this is "No". However, Kaup and Newell did find ex-
ceptions. Such equations can indeed be constructed, but potential applications for 
them seem to be remote. 

2. 7. Optical Systems. One question which arose naturally after a few years 
is "Why are so many of the physical integrable systems related to nonlinear optical 
systems?" As one goes down the list, one has the sine-Gordon equation (which 
applies to two-level atoms and is the sharp line limit of SIT), nonlinear Schrodinger 
(focusing and defocusing- the NLS is almost always the weakly nonlinear limit of 
any almost monochromatic envelope [36]), self-induced transparency (SIT- also 
more generally referred to as two-level coherent propagation), three-level coherent 
propagation [37], three-wave resonant interactions (3WRl) [15, 16, 8], second 
harmonic generation (SHG) [38], the three-dimensional form of the 3WRI [39, 40, 
41], stimulated Raman scattering (SRS) [13, 42, 43], two photon propagation 
(TPP) [44, 45, 46], and degenerate TPP (DTPP) [47]. This is not meant to be 
a comprehensive list, but it does include the major integrable nonlinear optical 
systems. 

Of these, the 3WRl was the first system to demonstrate a major departure 
from the accepted and expected soliton behavior. The first deviation was that the 
radiation would never asymptotically vanish. Also after any and all collisions, nor 
would the radiation separate out from the solitons. The reason for this is that 
the 3WRI has no dispersion, and therefore solitons will never separate from the 
radiation present. They each have the same velocity. One could now ask what is 
the significance of the 3WRI solitons, when they differ so much from KdV or NLS 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



THE LEGACY OF THE IST 9 

solitons? To answer that the best we can say is that in the 3WRI, any solitons 
seem to simply represent a "packet" of something. It is a unit which cannot be 
broken up. Although there are certain exchange rules for the exchanging of solitons 
between the three envelopes [16, 8], nevertheless solitons in the 3WRI do seem to 
be some robust and coherent part of the envelope. On the other hand, the radiation 
component of any envelope has no such finite "packet" size, but rather can always 
be subdivided and redistributed among the three envelopes, subject only to the 
Conservation of Action laws [8]. 

It was the SRS system that first brought to the forefront certain ambiguities 
with the IST on finite intervals. The first solution of the finite interval case, by 
using an infinite interval IST, was given in (45], where the general IST for SRS 
was developed, and features of the solution were discussed. Numerics of SRS have 
been studied by Hilfer and Menyuk (48], the asymptotical form of the solution was 
described by Kaup [49], and was later solved as a Riemann-Hilbert problem by 
Fokas and Menyuk (43]. In the meantime, by analytically solving a model initial 
value problem, Menyuk and Kaup essentially found that for all these integrable 
nonlinear optical problems (except NLS and 3WRI), one could just as easily describe 
the solution as "an infinity of solitons with no radiation" , as well as by the usual 
description of "a finite number of solitons in a sea of radiation". Briefly, why this 
could happen is basically the same reason as why a Fourier transform on a finite 
interval has a variety of forms. There one could use either a cosine series, or a sine 
series, or the exponential series to represent the function. For a given function, the 
coefficients in each of these series is quite different. Another way to look at this, is 
that on a finite interval, there is an infinite number of ways to take and combine 
plane waves to reconstruct some function inside the finite interval. Similarly for 
the IST, on a finite interval, there is no unique form for the scattering data. 

Pursuing this further, consider the case where solitons are forbidden, as in the 
ZS r = +q* case. Now, what is going to happen in this case where no solitons 
are allowed on the infinite interval, if we try to represent the solution on the finite 
interval with no reflection coefficients, and only with solitons? What happens to 
this system on a finite interval? Well, we again find something surprising. Taking 
SHG as an example case of these defocusing systems, we find that the solution 
of a simple initial value problem can also be given in terms of no radiation, but 
now (since regular solitons are forbidden) an infinity of what is called "virtual 
solitons" (50]. These are indeed interesting objects. 

The possibility of their existence was noted way back in 1974 [7]. However, no 
known application was then known for them. In the ZS IST, the typical soliton for 
the focusing case (r = -q*) is of the form 

2rye-2it;(x-xo) e-i</>o 
q= cosh[2ry(x- xo)] 

(2.11) 

Now, if one simply assumes that the defocusing case (r = +q*) has one bound state 
in the scattering data, one obtains the "virtual soliton" solution 

(2.12) 
2ry 

q = sinh(2ry(x- xo)] ' 

which clearly will always be singular on any infinite interval. However, on a finite or 
a semi-infinite interval, as long as x0 lies outside the physical region, the solution 
is perfectly valid. Thus a virtual soliton is the singular, ZS, r = +q*, soliton. 
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(For certain technical reasons, they also were first found in the lower half complex 
plane [50], which is another reason for the prefix "virtual". For more details on 
this, see Steudel's contribution in this same series.) 

As to my first question as to why so many nonlinear optical systems are in-
tegrable, perhaps the principle reason for this is the vast orders of magnitude dif-
ference between the speed of light and other velocities in these physical systems 
(which are typically acoustic velocities, and/or electronic drift velocities). Due to 
this disparity in velocities, one can then expect a multiple-scale expansion to give 
quite good results. Also one would then expect to see the higher order terms scaling 
like some power of this velocity ratio, and therefore rapidly vanishing. 

2.8. Benjamin-Ono Equation. Although we could perhaps have included 
the Benjamin-Ono (BO) equation in the section on eigenvalue problems, it is unique 
enough to justify some additional comments. First it is a one dimension eigenvalue 
problem but it is also a nonlocal eigenvalue problem [51]. Actually it can be 
formulated as an electrostatics problem (Poisson's equation) in two dimensions, 
since it can be stated in terms of Hilbert transforms and their analytical properties. 
This is probably the simplest explanation as to why Fokas and Ablowitz [51] could 
term the BO equation as a "pivotal equation for multidimensional problems". It 
indeed does contain this multidimensional flavor. It also should be noted that there 
are now two versions of its IST [51, 52]. This is not entirely surprising, since the 
multidimensional 3D-3WRI [41] also contains a multitude of different forms of the 
IST. The multidimensional flavor of the BO equation stands out even more when 
one considers its closure property, its perturbation theory, and its Hamiltonian 
structure [53]. 

2.9. Reduction Problems. It seems that almost any integrable system can 
be found in the Yang-Mills field, if one knows how to find the right reduction [54]. 
However, there is another quite useful direction that one can take in reducing 
integrable systems. Let us first note that if one simplifies, or reduces the number 
of degrees of freedom of an integrable system by some set of constraints, consistent 
with the integrable flows, then the reduced system will also be integrable. As one 
example, consider the propagation of N solitons in an optical fiber. It is very 
important to maintain the spacings of these N solitons over long distances. So 
a key question is the stability of such an arrangement, which is simply an N-
soliton solution. However, to try to analyze a 100-soliton state, where every soliton 
has approximately the same amplitude, is not an easy thing to analyze, since the 
transmission coefficient, a, has a zero of order 100 at the pole. Another approach 
for N larger than 2 or 3 is clearly needed. One way to do this is to approximate 
the system as a lattice, since in general, one expects the solitons to have an almost 
equally spacing (or being absent if representing a zero) and of equal amplitude. 
Then it turns out that when theN-soliton system is reduced to a lattice system, 
it reduces to a Complex Toda Lattice of N points, which is integrable. One now 
can study the stability problem of the reduced system, the Complex Toda Lattice, 
and transfer the results to theN-soliton optical pulse [55]. From this, one obtains 
general criteria about how the phase of each successive soliton should be adjusted, 
to maximize the stability of the pulse train, and etc. 

2.10. The Fokas Method. Another new aspect of theIST has been recently 
developed by Prof. Fokas [56]. There are complex practical problems requiring 
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the solution of 2-dimensional, linear, constant coefficient, PDEs but with complex 
boundaries, such as wedges and polygons. Before his work, there was no general 
analytical technique for constructing solutions with such complicated boundaries. 
However, it is a simple matter to create a Lax pair for almost any linear PDE with 
constant coefficients (57]. Once this is done, one then can approach the solution 
of these linear two-dimensional, boundary value problems from the IST point of 
view, whereby one solves (or satisfies) both components of the Lax pair, thereby 
also satisfying the integrability condition, which is just the PDE to be solved. The 
method can also be extended to integrable nonlinear PDEs and evolution equations, 
however the solution then frequently requires the solution of a Riemann-Hilbert 
problem for the reflection coefficients. 

2.11. Unsolved Problems. Now we will discuss what the hard problems are. 
They are hard because they haven't been solved. This is not a complete list, but 
is the start of a list of problems in need of solutions. 

Although we hae a solution for the 1ST of the cubic eigenvalue problem, (2.20), 
there still is no equivalent of the GLM equations for this system. What we do have 
is the solution of the Riemann-Hilbert problem for the eigenfunctions. What is next 
needed is a representation of the eigenfunctions in terms of some transformation 
kernels (like the K(x, y; t) for the KdV). Once these are known, then the equivalent 
GLM equations will follow. Some progress in this direction has recently been made 
by A. Parker [58]. 

There are still aspects of KPI and II that are of interest. Numerical simula-
tions [59] provide valuable insight into the evolution of these equations. I would also 
say that there are probably still some unanswered questions about DSI and II. How-
ever, the unfortunate thing about these two equations is that potential applications 
seem to be almost lacking, due to the scales involved. (Typical parameters for DS 
solitons in water require meter-like distances horizontally, but only centimeter-like 
water depths, and even smaller wave amplitudes.) 

Questions about perturbation theory and closure relations seem to have become 
quite well understood, based on the works of Gerdjikov, Ivanov and Kulish [60], 
Beals and Coifman (61], and J. Yang [62]. They are also quite well understood for 
the 3D3WRI and DSI, since they both use the same eigenvalue problem. However, 
I know of no published work in this area. 

Of the optical problems there is still interest in SHG and DTPP, and the 
latter has even the direct scattering problem to be detailed, as well as the inverse 
scattering problem. 

I also strongly suspect that there are other integrable systems still to be found. 
Here one would have to apply Painleve analysis and see what will result. 
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ABSTRACT. This paper summarizes the results on application of the Inverse 
Scattering Method (ISM) to classical problems of Differential Geometry. Some 
results are new. The most important one is the following - each space of 
diagonal curvature can be approximated by integrable spaces of flat connection. 

1. Introduction 

This article presents, in a brief form, the recent results on application of the 
Inverse scattering method to some problems of Differential geometry. A connection 
between the theory of Integrable systems and Differential geometry is not a new 
concept. The Sine-Gordon equation was introduced in the theory of surfaces of 
constant negative curvature around 1860. Actually, it should be called the "Bonnet 
equation". The Backlund transformations appeared in Differential geometry also 
in nineteenth century. 

At present, it is established that some important integrable equations, found in 
the last three decades in the theory of solitons (Bullough-Dodd equation, Dawey-
Stewartson stationary equation, etc.), have a geometrical interpretation. All of the 
equations mentioned above are in 1 + 1 dimensions. 

In this article we explore some geometrical applications of integrable systems 
in 2 + 1 dimensions. The closest relative of the famous "three-wave equation" , 

8\lll 
OX! 
8\l12 
OX2 

(1.1) 
8\l13 
OX3 

plays the central role in our study. Equation (1.1) describes a resonant interaction 
of three quasimonochromatic wave trains in a nonlinear media. This interaction 
is an induced Raman scattering of the wave 1 to waves 2 and 3, and the inverse 
process. There is a special reason to present this article to this particular collection 
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16 V. ZAKHAROV 

of papers. One of the pioneers in the study of system (1.1) was David Kaup [1]. 
(See also [2], [3].) 

In this article we study the n-dimensional overdeterminated system, 

(1.2) 8Qij 
8uJ 

i, j, k = 1, ... , n, i I: j I: k. 
This system is nontrivial if n 2: 3. For n = 3, equation (1.1) is a special case of (1.2), 
if Qij is a complex-valued matrix. We will study mostly the case of real-valued 
Qij· 

Equation (1.2) have appeared in Differential geometry in the middle of last 
century, long before the concept of Raman scattering was formulated. It's origin was 
connected with the problem of classification of n-orthogonal curvilinear coordinate 
systems in Rn. This problem, which was formulated almost two hundred years 
ago, was considered for a long time as one of the central in Differential geometry. 
In 1910, Gaston Darboux devoted to this problem (to the case n = 3 only), the 
monogragh of 546 pages [4]. If an expert on the Inverse scattering technique looks 
into this book, he will be surprised: how many formulae are familiar to him! 

After the First World War, the problem of n-orthogonal coordinate systems 
was almost forgotten. An interest to this problem was revived ten years ago, when 
Dubrovin and Novikov [5, 6], then Tzarev [7], have published their papers on inte-
grable ststems of hydrodynamic type. The complete solution of this problem was 
found only in 1998 [8]. 

In the theory of n-orthogonal coordinate systems, equation (1.2) is considered 
together with the additional constrain: 

aQij aQji I: (1.3) Eij = ~ + -8 . + QikQjk = o. uuJ u• 
i#J# 

This constrain is a "reduction" imposed on (1.2). However, equation (1.2) itself 
has a nice geometrical interpretation. It describes n-dimensional Riemann spaces 
of diagonal curvature [9, 10]. 

The spaces of diagonal curvature include very interesting class of Riemann 
spaces: 2 - D surfaces, spaces of constant curvature, and spaces of flat connection. 
They all are defined by the reduction more complicated than (1.3). In this article we 
will show how the Inverse scattering method could be implemented for description 
of the spaces of flat connection. We will show also that the closure of this class 
of spaces coincides with the whole class of the diagonal curvature. This question 
was formulated to the author by E. Ferapontov [11]. In this article we will use the 
Inverse scattering method in the form of "dressing method" (2, 9, 12, 13]. 

We will discuss also one important problem. Some classes of the Einstein spaces 
(solutions of Einstein equations of general relativity) belong to the class of spaces of 
diagonal curvature. The Schwartzshield's metric around a black hole is in this list. 
Can one find the class of reduction, which separates the Einstein spaces from the 
whole class of spaces of diagonal curvature? This extremely interesting question is 
still unanswered. 

2. N-orthogonal coordinate systems 

The problem of classification of n-orthogonal curvilinear coordinate systems 
was formulated by Dupin and Binet in 1810. The problem is the following: Find 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 17 

in Rn all coordinate systems, 

(2.1) 

(2.2) 

i i ( 1 n) U = U X, ••• ,X , i = 1, ... ,n 
aui 

det II ~ II# o, 
vxJ 

satisfying the condition of orthogonality, 

n aui aui 
(2.3) :E axk axk = 0, i ¥= j. 

k=1 

In virtue of (2.2) one can resolve equations (2.1), 

(2.4) i i( 1 n) X =X U , ... ,U , 

and introduce Lame coefficients, 

(2.5) Hf = :E(~x:)2. 
k u 

In the coordinate system ui the metric tensor in Rn is diagonal, 
n 

(2.6) ds2 = L:Hf(dui)2 , 

i=1 

and Christoffel's coefficients for the Levi-Civita connection are the following: 

rtm 0 (i:f=l=f=m), 

(2.7) r~~ 
1 8Hi 

Hi 8u1' 

(2.8) rt~ 
H1 8H1 

- H 2 aui . • 
One can calculate the elements of Riemann curvature tensor ~jkl· They are: 

Rij,kl 0, i ¥= j ¥= k ¥= l, 

(2.9) ~k,jk = -H-H· _____!1_- Q·kQk · ( aQ·. ) 
• J auk • J ' i ¥= j ¥= k, 

(2.10) Rii,ii = -HiHiEii, i ¥= j, 
where rotation coefficients Qii are 

1 8Hi 
(2.11) Qii = H· aui' i # j, 

J 

and 

(2.12) 

As far as Rn is flat, the Riemann curvature tensor is identically equal zero. Hence 
Qij satisfy the following two systems of equations: 

(2.13) 

(2.14) 

8Qij 
auk 
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18 V. ZAKHAROV 

If Qij are known, the Lame coefficients Hi can be found as solutions of the linear 
system 

(2.15) 

Two different solutions of system (2.15), Hi and fh are Combescure equivalent, 
Hi<--+ jt, at the same Qij· The Lame coefficients satisfy to Gauss-Lame equations, 

( ) {)2 Hi 1 oHz {)Hi 1 oHm {)Hi 
2·16 ouZ[)um = Hz {)um ouz + Hm ouz oum' 

and to the additional system, 

(2.17) _i_ {)Hi + _i__!_ oHz +""' _1_ oHi oHz = O (i -=f.l). 
[)uZ Hz [)hZ [)ui Hi ouZ w (Hm)2 {)um {)um ' 

One can construct the adjoint linear system, 
{)lJ! i 

(2.18) ouk = Qik\llk, i-=/:- k, 

where \lli are adjoint Lame coefficients. They satisfy to equation (2.16) and to the 
additional system, 

( 2.19) {) {)\lJ i {) 1 o\llz 1 ""' {)\lJ m {)\lJ m 0 
ouz \llzou1 + oui ~ oui + \ll·\llz w [)ui ou1 = 

' ' nf'i,j 
Both systems (2.15), (2.18) are overdeterminated and are compatible in virtue 

of (2.13). 
Note that 

hence 

(2.20) 

One can check that the potential h satisfies the system of Laplace equations, 
o 2h 1 oHk oh 1 oHz oh ---+-----

Hk ou1 ouk Hz ouk ouZ' 
(2.21) 

1 awk oh 1 awz oh -----+---\ll k ouZ OUk \liz ou k [)uZ . (2.22) 

Systems (2.21), (2.22) are overdeterminated linear equations imposed on the po-
tential h. They can be treated as an analog of the "Lax pair" for Gauss-Lame 
equations (2.16). 

Equation (2.21) can be rewritten as follow: 

o 2h k oh z oh 
(2.23) [)uk[)uZ = r kZ [)uk + rZk [)uZ' 

and one can prove that functions xi= xi(ul, ... , un) are solutions of (2.23): 
[)2xi k [)xi z [)xi 

(2.24) [)uk[)uZ = r kZ [)uk + rzk [)uZ. 

Moreover, they satisfy the equations 
[)2xi k oxZ 

(2.25) (ouZ)2 = Lru[)uk' 
k 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 19 

Equations (2.24), (2.25) stem from the fact that a straight line defined by conditions 
xi = ci =canst, i =f. l, is the geodesic line in Rn. 

We see now that the problem of description of n-orthogonal coordinate systems 
can be solved in the following several steps. 

(1) Solve system (2.13). 
(2) Find the solutions for linear system (2.15); on this stage one finds all 

Combescure equivalent metrics connected with the given rotation coeffi-
cients Qij satisfying equation (2.14). 

(3) Solve the adjoint system (2.18). 
(4) Integrate the relation (2.20); on this stage one finds the general solution 

of Laplace equations (2.21), (2.22). 
(5) Find the solutions of (2.13), satisfying additional conditions (2.11). 
(6) Find xi(ul, ... , un), the array of solutions of (2.21) and (2.24) satisfying 

additional conditions (2.25). In virtue of the Bonnet theorem, xi are 
defined uniquely up to motions in Rn. Note, that systems (2.24), (2.25) 
are compatible only if equation (2.11) is satisfied. 

The first five points of this program pertain to the intrinstic geometry of Rn in 
a new curvilinear coordinate system. On this stage Rn appears as a flat Riemann 
space with diagonal metric (2.6). The last point realizes embedding of this space 
to Cartesian coordinate system xi ( u 1 , ... , u n). 

3. Spaces of diagonal curvature 

In this chapter we introduce a new geometrical object - the space of diagonal 
curvature. By definition, it is a Riemann space of n dimensions, en, satisfying the 
following two conditions: 

Condition 1. One can introduce in en (in some simple-connected domain) a 
diagonal coordinate system, such that the metric tensor gik is diagonal, 

(3.1) 

Condition 2. In this coordinate system the non-diagonal elements of Rie-
mann's tensor are zero, 

(3.2) Rik,jk = 0, i =1- j =I- k. 

Note, that the diagonal coordinate system (3.1) could be introduced by many 
different ways. en is the space of diagonal curvature if at least in one diagonal 
coordinate system condition (3.2) is satisfied. 

The most trivial example of the space of diagonal curvature is a flat space Rn 
or torus Rn ;zn. In this case, description of diagonal metric tensors is exactly the 
problem of classification of n-orthogonal systems in Rn. One can display other 
examples of the spaces of diagonal curvature. 

1. Adjoint Lame metrics. 
Let Hi be Lame coefficients for an n-orthogonal curvilinear in Rn and \]! i -

adjoint Lame coefficients. Let us consider a Riemann space with the following 
metric: 

(3.3) 

It is a space of diagonal curvature. However, it is not flat in a general case, because 
the additional constrain (2.29) imposed on \]!i is different from condition (2.17) 
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20 V. ZAKHAROV 

imposed on Hi. Only in a very special case of "Egorov's metric", when Qij is a 
symmetric matrix, Qik = Qki, we will have 

2 fJh 
Hi = 1lli, Hi = fJui, 

and conditions (2.16), (2.178) will coincide. 
2. Spaces of constant curvature. 
In the spaces of constant curvature, the Riemann's tensor is: 

(3.4) 

Here E is the curvature of space. 
All such spaces admit diagonal metrics, 9ik = Hfbik· In this case, 

(3.5) 

By a trivial rescaling one can get E = ± 1. 
3. Spaces of flat connection. 
Spaces of flat connection, Gn,N, are generalizations of spaces of constant cur-

vature. Let Hi(k), k + 1, ... , N be a set of Combescure equivalent metrics, cor-
responding to the given rotation coefficients Qij. In the space of flat connection 
Rij,kj = 0, and 

(3.6) 
N 

Eij = L Ek H?) H?)' Ek = ±1. 
k=l 

Spaces of flat connection appear in the following geometrical problem. Let us 
consider a special class of n-orthogonal curvilinear coordinates inn+ N dimensional 
Euclidean space Rn+N. Suppose, that coordinates in this space can be separated 
in two classes: u 1 , ... , un and y1 , ... , yN; and the metric is 

n N 
(3.7) ds2 = LH[(dui)2 + L(dyi)2. 

i=l i=l 

In this case Hi are linear functions on y, 
N 

(3.8) Hi= Pi+ LHfya, 
a=l 

where Pi, Hi are functions on coordinates ui only. 
One can introduce rotation coefficients, 

(3.9) 1 n 1 [)Pi 
Qij(u , ... ,u) = -p ~' 

j uuJ 

which satisfy the system of equations 

(3.10) 
fJQij 
fJuk = QikQkj· 

Hence the n-dimensional Riemann space Gn,N with the metric 

(3.11) 
n 

ds2 = L Hl{dui) 2 
i=l 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 21 

is the space of diagonal curvature. Moreover, Hi satisfies the equations 

( ) 8Hi Q a 3.12 auk = ikHk. 

Thus all arrays Hi, Hf are Combescure equivalent to each other and to Pi. 
One can easily check that 

(3.13) E 8Qij 8Qji ~ Q Q ~HaHa 
ij = 8ui + 8ui + L.J ik jk = - L.J i j . 

kf-i,j a 
It means that cn,N is a space of flat connection. 

All two-dimensional Riemannian spaces (surfaces) are spaces of flat connection. 
Let r be a surface in R3 . One can introduce coordinates Xl' X2 on r such that both 
the first and the second quadratic forms of the surface are diagonal, 

w1 = p2 dx~ + q2 dx~, 
(3.14) w2 = pAdx~ + qB dx~. 
Coordinates x 1 , x2 are defined up to the trivial transformation x 1 = x1 ( u1), x2 = 
x 2 ( u 2). The coefficients of these two quadratic forms w1, w2 cannot be chosen 
independently. They are connected by three nonlinear PDE's known as Gauss-
Codazzi equations (GCE). These equations can be written in a nice and compact 
form after introducing new functions a, (3: 

a = ~ 8p (3 = ~ 8q 
(3.15) q ax2' p axl. 
Thus 

(3.16) 
8p 8q 
a=aq, 8 =f3p, 

X2 X1 

then 

(3.17) 
a A 8B _ (3A a=aB, 

X2 axl- ' 
and 

(3.18) 
aa 8(3 
a+a+AB=O. 

X2 X1 

Let us embed the surface r in R3 . One can do this by constructing in vicinity 
of r a special three-orthogonal coordinate system, such that 

(3.19) 
where 
(3.20) 
Apparently X3 is directed along the normal vectors tor. 

One can check that rotation coefficients Qij are: 

Q31 = Q32 = 0, 
(3.21) 
The rotation coefficients Qij satisfy the system (3.10), which is reduced now to 
system (3.17). Thus, a two-dimensional surface is the space of diagonal curvature. 
Moreover, comparing (3.16) and (3.17) one can see that A2 , B 2 can be treated as 
elements of an orthogonal metric that is Combescure equivalent to the elements of 
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22 V. ZAKHAROV 

first quadratic form p2 , q2 • Hence equation (3.18) can be interpreted as a special 
case of equation (3.13), and 2-D surface is the space of flat connection. In a general 
case, equations (3.10), (3.12) and (3.13) can be called Gauss-Codazzi equations as 
well. 

4. Einstein spaces of diagonal curvature 

So far we discussed Riemann spaces of signature (n, 0) only, but the whole 
theory can be extended to pseudo-Riemann spaces of arbitrary signature (p, q). 
One has just to assume that some Lame coefficients Hi are pure imaginary. In 
this chapter we will discuss spaces of diagonal curvature G(4) satisfying Einstein 
equations of general relativity. 

These equations read: 

( 4.1) Ai - 87rkTi k-7 k• 
where k is the gravity constant, c is the light velocity, and 

. . 1 . Ai. =Ric- -Rc5i.. 2 
(4.2) 

Here R~ is the Ricci tensor, R is a scalar curvature, and T~ is an energy-momentum 
tensor. Thereafter we will use a system of units such that k/c4 = 1. Thus, 

A~= 81rT~. 
We will also use the covariant version of Einstein equations, 

1 
(4.3) Rik- 2Rgik = 81rTik· 

Due to the Bianchi identity, the Einstein's tensor A~ satisfies the condition 

(4.4) AL=O. , 
In virtue of ( 4.1), the same condition is imposed on the energy-momentum tensor, 

(4.5) TL = 0. 

In general, (4.5) is the condition imposed on the energy-momentum spectrum. 
If one interprets Einstein equations in that broad sense, any Riemann space of 
signature (1, 3) can be treated as a solution of Einstein equations (Einstein space) 
for a proper energy-momentum tensor. Condition ( 4.4) is satisfied automatically. 

Suppose that gik is diagonal. In this case gik = 1/ HfcSik, and 
1 

(4.6) Rkl = H~Rki,li· 
• 

In the space of diagonal curvature the Ricci tensor is diagonal too: 

( 4. 7) Rkl Rkc5kl' 

(4.8) 

In the same way: 

(4.9) 

(4.10) 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 23 

and 

(4.11) 

The energy-momentum tensor Tk is diagonal as well: 

(4.12) 

and Einstein equations can be written in the form: 

(4.13) 

Here Tk are arbitrary solutions of the following equation: 

(4.14) ~T= + I::r/'~~~k = o. 
u i#k u 

If Ak are components of the Einstein tensor for some space of diagonal curvature, 
equations ( 4.14) are satisfied automatically. 

Suppose that Tk = 0, and Einstein equations describe metrics in vacuum. In 
this case: 

( 4.15) 

and a + (3 + 'Y = 0. 
At the moment, one can enlist more than a dozen exact solutions of Einstein 

equations with a diagonal metric tensor. It is interesting that most of them describe 
spaces with a diagonal curvature. We present here a list of such spaces, that is far 
from being complete. 

1. "One-dimensional" metrics 
Let 

( 4.16) 

where Hi are functions on one variable only, suppose on x0 . In this case the only 
nontrivial rotational coefficients are 

( 4.17) 1 8Hi 
QiO = -u-~ = QiO(xo), no uxo 

and apparently, all equations (3.10) are satisfied. In a general case, metric (4.16) 
presumes existence of matter. In vacuum, it turns to the Kasner metric: 

(4.18) 

Hl - x2Pl X2 - x2P2 X3 - x2Pa -o, -o, -o, 
P1 + P2 + P3 = 1, p~ + p~ + p~ = 1. 

2. Spherically-symmetric Einstein spaces 
In the theory of general relativity, this is a very important class of spaces, which 

includes the Schwartzshield's space outside of a black hole, the basic cosmological 
models, and Tolman's space describing the collapse of dust matter. In all these 
cases the metric is 

(4.19) 

where Ho, H1 are functions on xo, x1 only. 
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24 V. ZAKHAROV 

In this case, the nonzero rotation coefficients are: 

1 aHo 1 aH1 
QOl = -H -a , Q10 = u--a , Q32 = COSX2, 

1 X1 no Xo 

(4.20) Q 1 Q 1 . 
21 = -, 31 =- SinX2. 

X1 X3 

Among equations (3.10), the only one is non-trivial, 

(4.21) 

and is satisfied in virtue (4.20). 

aQ31 -a- = Q32 Q21, 
X2 

Hence all the spherically symmetric Einstein spaces, both in vacuum and in the 
presence of matter, are spaces of diagonal curvature. 

3. Bianchi III model 
In this case, 

(4.22) 

where a, b, e are functions on xo only. 
One can check that metric ( 4.22) describes the space of diagonal curvature if 

e(xo) = Aa(x0 ), (A is constant). 
4. Bianchi V model 
In this model the metric has the form 

(4.23) 

where a, b, e are functions on x 0 only. 
This model describes the space of diagonal curvature if a= A1e, b = A2e (A~, A2 

are constants). 
5. Bianchi VI model 
Now 

(4.24) 

where again a, b, e are functions on x 0 only. Like in the previous case, this model 
belongs to the spaces of diagonal curvature if a= A1e, b = A2 e. 

These examples show that some important known solutions of Einstein equa-
tions are the spaces of diagonal curvature. Note, that it is not clear so far how 
unique is diagonal coordinatization of Einstein spaces corresponding to the enlisted 
Bianchi models. It might happen that in some other diagonal coordinate system 
equations (3.10) are satisfied for a more broad class of spaces. 

5. Dressing method in application to spaces of diagonal curvature 

In this chapter we describe a procedure of integration of equations (3.10), a 
dressing method described in 1974 [2]. We present here some important develop-
ments of this method. 

Let F(s, s', u) be a matrix n x n-valued kernel of an integral operator F act-
ing on vector-functions on the real axis -oo < s < oo, and u = u 1 , ... , un be 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 25 

n-dimensional parameter. One can study two simultaneous factorizations of the 
operator F: 
(5.1) 
(5.2) 

(1 + k+)- 1 (1 + k-), 
(1 + _M-+)(1 + .M-)-1 

Here k±, .M± are triangle operators. Their kernels, K± ( s, s', u) and M± ( s, s', u), 
satisfy the conditions: 

(5.3) 

Apparently, 

K+(s, s') = 0, s' < s, 
M+(s, s') = 0, s' < s, 
K-(s, s') = 0, s' > s, 
M-(s,s') = 0, s' > s. 

1 +M+ = (1 +K+)-1 , 

and K+, M+ are connected by the relation: 
s' 

(5.4) K+(s, s') + M+(s, s') + 1 K+(s, s") M+(s", s')ds" = 0. 

In a half plane s > s', following integral equations hold: 

(5.5) K+(s, s') + F(s, s') + 100 K+(s, s") F(s", s')ds" = 0, 

(5.6) M-(s, s') + F(s, s') + 100 F(s, s") M-(s", s')ds" = 0. 
s' 

Let Ii be a set of projective operators acting in n-dimensional linear space and 
satisfying the conditions 

(5.7) 

This set can be interpreted as a matrix, 

Ii = diag(O, ... , 10, ... , 0) . ......_._-
i 

One can introduce a set of differential operators, 

(5.8) 

and require 

'(5.9) 

We assume also that 1 + F is an invertible operator. In other words, the relation 

(5.10) (1 + F)O = 0 

implies 0 = 0. If conditions (5.9), (5.10) are fulfilled, the kernels K+ and M-
satisfy equations 

(5.11) 
Di K+ = Di K+ + [h Q] K+ = 0, 
DiM- = DiM- + M- [h Q] = 0, 
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26 V. ZAKHAROV 

or 
aK+ aK+ aK+ 
aui + Ii~ + ~Ii + [!;, Q(s)] K+(s, s') = 0, 

aM- aM- aM-
(5.12) ~ + Ii-,::,- + -,::,-Ii- M-(s, s') [I;, Q(s')] = 0. 

uu" us us' 
Here Q(s) = K+(s,s) = M-(s,s). Moreover, matrix elements Qij(s,u),(i-=/=- j) 
satisfy equation (3.10), 

(5.13) 

We will not prove this fact, which is almost trivial. Another two points are impor-
tant: 

1. Let ¢i = ¢i(s- ui) be a set of n arbitrary functions of one variable. Then 
a set of functions, 

(5.14) 

presents the set of Lame coefficients Hi at any s. In other words, the metric 
n 

i=l 

is a metric of certain space of diagonal curvature. A different choice of ¢i gives 
different Combescure equivalent metrics. 

2. Let the following set of functions, 

(5.15) Wi(s', u) = '1/Ji + 1= ¢k(s'- uk) Mkt (s', s)ds', 

be a set of adjoint Lame coefficients satisfying equation (2.18). Then the metric 
N 

ds2 = L WI(dui)2 
i=l 

presents the adjoint space of diagonal curvature. In Egorov's case, F(s, s') satisfy 
the additional constrain, 

(5.16) 

In this case Hi = \If i. 

6. Differential reduction 

Following the approach of the dressing method, we will call F( s, s', u), satisfying 
equation (5.8), a "dressing function". Relation (5.16) is an example of additional 
constrain, which could be imposed on F without violation of basic equation (3.10). 
One can easily check that relation (5.16) implies the relation 

(6.1) M-(s, s') = [K+(s', s)t, 

or 

(6.2) Mij(s, s') = K}i(s', s). 
In this case, 

(6.3) 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 27 

The additional relations imposed on F can be called reductions. The key role in 
the theory of n-orthogonal coordinate systems plays the· differential reduction, 

oF(s, s') oFtr(s', s) 
(6.4) os' + OS = o, 
which was introduces in [8]. One can note that this reduction leads to an algebraic 
relation, which connects the kernels K+ and M-. Also, it proves that differential 
constrain (6.4) stipulates the differential relation between K+ and M-. Omitting 
a very simple proof, we will just formulate this relation: 

(6.5) ( oK~~', s) rr +oM~;~, s') + M-(s, s') [Q(s')- Qtr(s')] = 0. 

Using this relation one can prove that on the diagonal s = s', 

(6.6) oK:~~, s') + oK+;;s', s) ls'=s = -Q(s) Qtr(s'), 

and finally, that Qij satisfy additional equations, 

oQij oQji I: (6.7) ~ + ~ + QikQjk = 0. uul uu' k-f.i,j 

So, relation (6.4) is the reduction, which gives a solution for the problem of con-
struction of n-orthogonal coordinate systems. 

7. One-soliton solution; a general case. 

The most striking point of the dressing method is an opportunity to construct 
exact solutions of integrable systems in a close form. Let us consider a general case 
of spaces of diagonal curvature and suppose that the "dressing" function F is a 
product of two matrixes: 

(7.1) F(s, s', u) = A(s- u) B(s'- u). 

We will call the corresponding solution of equation (3.19) as "one-soliton solu-
tion". In fact, this is a very complicated solution, which includes many interesting 
Riemann spaces. To satisfy the basic condition (5.8) one should put 

(7.2) 

Integral equations (5.5) and (5.6) can be solved immediately: 

(7.3) 

Here 

(7.4) 

(7.5) 

K+(s, s') = K+(s) B(s') = 
M-(s, ss') = A(s) M-(s'). 

K+(s) = -A(s) (1 + ~(s))- 1 , 

M-(s') = -(1 + ~(s'))- 1 B(s'), 

~ik = L I:-s Bip(~) Apk(~) d~. 
p 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



28 V. ZAKHAROV 

The rotation coefficients Qij take the form 

Qij Qij(u1 - s,··· ,un- s) = 
(7.6) -Aip [(1 + ~)-l]pq Bqjls=s' 

In this equation one can put s = 0. In a general case, Qij is parametrized by 2n2 

functions of one variable. 
Let fi = fi(ui- s) be a set of arbitrary functions of one variable. All Combes-

cure equivalent metrics of spaces of diagonal curvature corresponding to the rotation 
coefficients (7.6) are given as 

(7.7) Hi= fi- Aip [(1 + ~)- 1 ]pq Rq, 

where 
uk-s 

Rq = ~ [oo Bqk(~) fk(~) d~. (7.8) 

For the given Qij, they are parametrized by functions fn· 
The adjoint Lame coefficients \[li are parametrized by another set of functions 

on one variable, gk(uk- s). Now 

(7.9) \[li 9i- Tp [(1 + ~)- 1 ]pq Bqi, 

(7.10) Tp ~ I:-s 9k(~) Akp(~) d~. 
A general solution of the Laplace equations (2.21), (2.22) is given in the form 

(7.11) h = h0 - Tp [(1 + ~)- 1 ] Rq, 

where 
uk-s 

ho = ~ [oo !k(~) 9k(~) d~. (7.12) 

Diagonal elements of the curvature tensor can be presented in the form 
aQij aQji "'"' 

Eij auJ + aui + L...t Qik Qjk = 
kf.i,j 

-Aip [(1 + ~)- 1 ]pq B~j- Ajp [(1 + ~)- 1 LP B~i + 
(7.13) +Aip Ajk [(1 + ~)- 1 ]P 1 [(1 + ~)- 1 ]qm Elk Bmk· 

8. One-soliton solutions; special cases. 

One-soliton solutions exist for all special classes of spaces of diagonal curva-
ture. They are separated from general one-soliton solutions by imposing of some 
constrain on matrixes A(s), B(s). 

The most interesting case is a flat Euclidean space Rn. In this case A and B 
are connected: 

(8.1) 
Here Akj -Ajk are constant antisymmetric matrixes. One can check directly 
(while it is a hard procedure) that, if conditions (8.1) are satisfied, Eij = 0 and the 
metric is flat. 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 29 

The problem of embedding of the n-orthogonal metric to Rn can be solved 
efficiently in the soliton case. Suppose, that the potential h satisfying the Laplace 
equation (2.23), satisfy also the equation 

o2h " k oh 
(8.2) (oul)2 = L.Jll ouk. 

k 

In virtue of (2.20), equation (8.2) is equivalent to the relation 

(8.3) o\I!z =-L Qzk ii!k, 
oxz k#-l 

which is compatible with the definition of ii! 1 

o\I!z 
(8.4) ouk = Qzk ii!k, 

if and only if the metric is flat and Eik = 0. 
Apparently, equation (8.4) is satisfied only for a very special choice of function 

gi ( ~). The following theorem holds: 

THEOREM 8.1. Equations (8.3}, (8.4} are satisfied if and only if gi(~) are con-
stants. 

The proof of this theorem is straightforward but cumbersome. It will be pub-
lished in another article. It should be noted that solutions h in (2.23), (8.3) are 
defined up to an arbitrary constant. If one takes n - 1 arbitrary common solution 
of this system, equations 

(8.5) hi( 1 n) i · 1 1 u ··· u =c z= ··· n-' ' ' ' ' ' 
define all possible geodesics (straight lines) in Rn. By a proper orthogonalization 
we could define xi = xi(ul, · · · , un) and accomplish introducing of n-orthogonal 
coordinates for the soliton case. In the same way, one can find the constrains 
connecting A and B for the spaces of constant curvature and for the spaces of flat 
connection. 

It is a much more difficult problem to determine reductions, which separate 
solutions of Einstein equations for the given equation of matter state. We discuss 
here the vacuum case only. In this case one should satisfy equations (4.10), (4.15). 

Let us study an infinitesimal dressing F---+ 0. In this limit 

(8.6) Q(u1 - s, · · · , un- s) = K(s, s) = -F(s, s), 

and 
oF'c-(ui- s uJ - s') oP.·(uJ- s' ui- s) 

(8.7) -Ei·= •J ' + J• ' · 
J os' OS 

At s = 0, Eij = Eij(ui, uJ). According to (4.10) and (4.15), Eij = aij HiHj, and 

a12 = a34 =a, a13 = a23 = (3, a14 = a23 = 'Y· 

As far as we have Hi= Hi(ui), Hj = Hj(uJ) in the linear approximation, aij must 
be constants. Finally, the dressing matrix F should satisfy the condition 

(8.8) oFij(ui- s, uJ- s') oFji(uJ- s', ui- s) _ .. H( i _ ) H·( j _ ') 
os' + OS - a,J • u s J u s ' 

where aij = aji is a symmetric constant matrix satisfying conditions (4.15). 
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30 V. ZAKHAROV 

One must remember that conditions (8.8) are necessary. The sufficient condi-
tions, which must be imposed on F to find the exact solution of Einstein equations 
in vacuum, are unknown so far. 

9. Dressing via 8-problem 

The dressing procedure described above will lead to the same results, if one 
performs the following replacement in (5.5), (5.6): 

(9.1) 

Let us indroduce: 

(9.2) 

(9.3) 

(9.4) 

F(s, s') J F(A., p,) e-i(>.s-J.ts') d)l. dp,, 

J K(s, p,) eiJ.ts' dp,, 

J M(A., s') e-i>.s dA.. 

One can check that equations (5.5), (5.6) are equivalent to integral equations: 

(9.5) 

(9.6) 

where 

(9.7) 

100 100 ¢( s ~) 
¢(s, A.)+ -oo f(TJ, A.) d1]- i -oo 1] .:_ ~ f(TJ, A.) d~ d1] 

~(A., s') +I: f(A., 17) d17 + i I: !~(~ ~) ~(TJ, s') d~ d17 

¢( s, A.) 
~(A., s') 
f(A.,TJ) 

K(s, A.) ei>.s, 

M(A., s') e-i>.s', 

F(A., TJ) ei(>.-ry)s. 

0, 

0, 

Later on we will omit sometimes the notations s, s'. In equations (9.5), (9.6) 

(9.8) - 1- =lim i]-[ . 
1] - ~ E-->0 ITJ - ~~2 + (:;2 

Taking into account (9.8), one can understand the integration performed in (9.5), 
(9.6) in a more broad sense. So far, all functions are defined in the real axis 
-oo < )1. < oo, -oo < 17 < oo. The dressing procedure does not change if one 
assumes that ¢, )1. are quasianalytic functions defined on the whole complex plane 
C 1 . In this case, F(TJ, A.) is defined on C 2 . One can define: 

(9.9) 

Using the standard formula, 

1 - i J ~( ~ ~ ~ d[, 

1 + i J ~(~~) dT]di]. 

(9.10) 
{) 1 -

{)).. ~ = 1f 8(A.) 8(A.), 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 31 

one obtains 

(9.11) "'(.X .X) = - __!__ 8~ 
'~-' ' 1ri a.X' 

- 1 ox 
'1/J(.X, .x) = 1ri a.x · 

Quasianalytic functions x, x satisfy the equations: 

(9.12) 

(9.13) 

ox 
a>. 
ox 
a.x 

-1ri I x(~, ~) !(~, ~ • .x>.) d~ d~, 

1ri I J(.X, >., ~. ~) x(~, ~) d~ d~, 
which define the dual "non-localB-problem", and are accomplished by the following 
normalization: 

X ~ 1, X ~ 1 at .X ~ oo. 

(9.14) X 

(9.15) Q 

(9.16) p 

In the same way, 

(9.17) 

Equation (5.8) imposes on function f(.X, ry) the following condition: 

(9.18) 

(9.19) 

J(.X,ry) 

i=l 

In virtue of (9.12) and (9.13), functions x, X satisfy the linear systems: 

(9.20) h ( :~ + i.X X li - Q fiX) 0, i i= k, 

(9.21) (:&- i.Xli x- xii Q) Ik 0, i i= k. 

Let us expand equation (9.20) in powers of 1/i.X. The first term of the expansion 
reads: 

(9.22) 8Q Ik ~ - h Q Ii Q + h P = 0. uu• 
Multiplication by Ij (j i= i, k) from the right side gives 

8Q (9.23) h ~Ij = IkQiiQij. uu• 
This is just another notation for equation (5.13). Multiplication of (9.22) by Ii 
leads to definition of P, 

(9.24) 
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32 V. ZAKHAROV 

The second term of the expansion leads to the equation: 

aP 
(9.25) h-;:;--: Ii = Ik Q Ii P IJ. 

uu' 
Let us introduce 

X= X e-i.>..<I>' X= ei.>..<I> Y. 

Apparently, X andY satisfy equations 

(9.26) 

(9.27) 

ax 
h-;:;-: uu' 
aY 
ouk Ii Y IiQh. 

Suppose, that ¢i = ¢i(>.., X), '1/Ji = '1/Ji(>.., X) are two arbitrary sets of functions of 
some complex variable, not necessary analytical one. One can see that the sets 

(9.28) Hi(u 1 ' ... 'un) L J xik(u\ ... 'un, ~' ~) ¢k(~, ~) d~ d~, 
k 

(9.29) 'lii(u\ ... ,un) = I:_j Y(uh, ... ,un,~,~)'lj!i(~,~)d~d~, 
give the arrays of Lame coefficients and adjoint Lame coefficients. 

Now the reductions are some restrictions imposed on j(>.., 7J). The fundamental 
reduction (6.4) reads: 

(9.30) 

Let us impose a more general reduction, 

(9.31) 

where 

(9.32) 

is some matrix function on C 2 and does not depend on ui. From (9.12) one gets: 

(9.33) 

Using (9.12), (9.32) and (9.30) one can obtain the following bilinear identity: 

j :x >..x(>..,X)xtr(->..,-X)d>..dX= 

(9.34) -1r i J x(~, ~) ei~<I> R(~, 7J) e-iry<I> xtr ( -7), -fj) d~ d~ d7J dfj. 

The integral in the left part of (9.34) is proportional to the residue of >.. x xtr at 
infinity. Using the asymptotic expansion (9.14) one gets: 

(9.35) 

Suppose, that R(>.., 7J) is presented in the form: 
N 

(9.36) Ri1(>..,7J) = -2I:_ ¢~kl(>..,X)¢Jkl(-7J,-fi)(-1)'*l. 
k=l 
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 33 

Here cl>~k) (.X),), i = 1, ... , N are some functions on Cl, and a(k) = 0, 1. Then 
formula (9.34) reads: 

N 

(9.37) p _ ptr _ QQtr = L,Hi(k) HY) (-1)a(k). 
k±l 

Here 

(9.38) Hf = L, Xiq(~, ~) eieuk \11~(~, ~) d~ d~. 
q 

Hik are the arrays of Combescure equivalent metrics at different k. Combining 
(9.36) with (9.35), one easily obtains: 

(9.39) Eij = L, Hfk) HJk) ( -1)a(k). 
k 

In other words, reduction (9.31) describes a space of flat connection. If N ---+ oo, 
one can present any matrix function Rij(.X, ry) in the form (9.36). That means that 
the spaces of flat connection are dense in the set of all spaces of diagonal curvature. 

There are some other, more sophisticated methods that allow to separate the 
spaces of flat connection from the total pool of diagonal curvature spaces. One of 
them is describes in [14]. 

Most probably, the Einstein spaces of diagonal curvature are among the spaces 
of flat connection. 
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Algebraic and Analytic Aspects of Soliton Type Equations 

Vladimir S. Gerdjikov 

ABSTRACT. This is a review of two of the fundamental tools for analysis of 
soliton equations: i) the algebraic ones based on Kac-Moody algebras, their 
central extensions and their dual algebras which underlie the Hamiltonian 
structures of the NLEE; ii) the construction of the fundamental analytic so-
lutions (FAS) of the Lax operator and the Riemann-Hilbert problem (RHP) 
which they satisfy. The fact that the inverse scattering problem for the Lax 
operator can be viewed as a RHP gave rise to the dressing Zakharov-Shabat, 
one of the most effective ones for constructing soliton solutions. These two 
methods when combined may allow one to prove rigorously the results ob-
tained by the abstract algebraic methods. They also allow to derive spectral 
decompositions for non-self-adjoint Lax operators. 

1. INTRODUCTION 

We start with three examples of integrable nonlinear evolution equations (NLEE). 
The first one is the well known N-wave equation [49, 48, 35]: 

(1.1) i[I, Qt] - i[J, Qx] + [[I, Q], [J, Q(x, t)]] = 0, lim Q(x, t) = 0, 
x-->±oo 

where Q(x,t) is a smooth n x n matrix-valued function, Q(x,t) = -BQtB and I 
and J are constant diagonal matrices; Bij = 8ijfj, Ej = ±1. 

The second example is the 2-dimensional affine Toda chain [41]: 

(1.2) 82Qk = eQk+l-Qk _ eQk-Qk-1 
8x8t ' 

k = l, ... ,n, 

where we assume that eQn+1 = eQl. 

The third example belongs to the same family as (1.2) and is of the form: 

.8'1/Jk 7rk 82 '1/Jk . ~ d 28t + 'Y coth-;-- 8x 2 + 21' L......,; dx ( '1/Jp'l/Jk-p) = 0, 
p=l 

(1.3) k = l, ... ,n, 

and k- pis understood modulo nand '¢0 = '1/Jn = 0. 
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36 VLADIMIR S. GERDJIKOV 

The integrability of these equations is based on their Lax representations. This 
means that each of the NLEE (1.1)-(1.3) can be represented as the compatibility 
condition 

(1.4) (L(.A), M(.A)] = 0, 

of two linear matrix differential operators depending on the spectral parameter .A. 
Below we v,rill use as Lax operator L(.A) 

(1.5) L(.A)'l/J(x, t, .A) = (i d~ + q(x, t) - .AJ) '1/J(x, t, .A) = 0; 

as examples of M(.A)-operators we use: 

(1.6a) M(.A)'l/J = (i :t + Vo(x, t) +AI) '1/J(x, t, .A)= .A'ljJ(x, t, .A)I; 

(1.6b) M1(.A)'l/J = (i! + Vo(x, t) + .AV1(x, t) + .A2V2) '1/J(x, t, .A)= .A2'1j;(x, t, .A)Vr; 

(1.6c) M2(.A)'ljJ = (i! + Vo(x, t) + ~V-l(x, t)) 'lj;(x, t, .A)= ~'1/J(x, t, .A)V~'i; 
where vr = limx-+±oo V2(x, t) and V~ = limx-+±oo V-1(x, t). 

Choosing the form of L(.A) in (1.5) we fixed up the gauge by assuming that J 
is constant diagonal matrix and q(x, t) = [J, Q(x, t)], i.e. Qjj = 0. 

The system (1.5) with q(x, t) and J 2 x 2-matrices (i.e., g ~ sl(2)) is known as 
the Zakharov-Shabat (ZSs) system; the same system with n x n matrices will be 
referred to below as the generalized Zakharov-Shabat system (GZSs). 

The Lax representation of theN-wave equation is provided by L(.A) (1.5) and 
M(.A) (1.6a). If the potentials in these operators are n x n-matrix ones we may 
assume that the Lie algebra underlying the Lax representation is g ~ sl(n). The 
set of independent fields Qij(x, t) equals n(n- 1) and may be restricted by the 
involution [49, 52, 48]: 

(1.7) 

Often by N-wave equations in the literature people mean eq. (1.1) with the invo-
lution (1.7). Such systems with n = 3 and n = 4 find applications in describing 
wave-wave interactions, see [48, 49, 35]. 

The Lax representation of the Zn-NLS eq. (1.3) is provided by (1.5) and (1.6b) 
but with rather specific restrictions imposed on q(x, t) and J: 

n 

(1.8) ij(x, t) = i L 'lj;k(x, t)K~, 
k=l 

n 
j = coL wk-l/2 Ekk, 

k=l 

n 

Ko = L Ek,k+l, 
k=l 

Here and below we will denote by Ejk the nxn-matrices equal to (Ejk)mn = c5jmc5kni 
the indices should be taken modulo n, i.e. En,n+l = En,l and the constant c0 will 
be defined below. 

The affine Toda chain (1.2) has several equivalent Lax representations. We 
mention here two of them. Their Lax operators are: 

(1.9) LToda = i d~ - ~ t d~k Ekk + i.A t e<Qk+1 -Qk)/2 Ek,k+l, 
k=l k=l 
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and its gauge equivalent: 

:: . d ·~ dQk . 
(1.10) LToda = ~ dx - ~ ~ dx Ekk + ~.>..Ko. 

k=1 

The corresponding M-operators are of the form (1.6c). Both choices (1.9) and 
(1.10) are not of the form (1.5), but are adjusted to the grading of the Lie algebra 
sl(n, C) we introd~ce in the next subsection, see formulae (1.20)-(1.25) below. 

The operator LToda (1.10) after a similarity transformation with the constant 
matrix uo, such that u01 Kouo = 2:~= 1 wk Ekk can be cast into the form of (1.5) in 
which both q(x, t) and J have a special form: 

(1.11) -( ) _ ·~ dQk kpKP qx,t--~~dxw O> 

n 
- ""' k 1/2 J = co~ w - Ekk· 

k=1 j=1 

where w = exp(27ri/n). The special form of q(x, t) and J in both (1.8) and (1.11) 
shows that both models have only n - 1 independent fields. This special form 
can also be made compatible with the structure of the graded and Kac-Moody 
algebras [11, 33, 31] and is best understood with the method of the reduction 
group proposed by Mikhailov [41]. 

The idea of the ISM is based on the possibility to linearize the NLEE [53, 2, 
9, 13, 49, 48, 35]. To this end we consider the solution to the NLEE q(x, t) as a 
potential in L(.>..) (1.5). In order to solve the direct scattering problem for L(.>..) we 
introduce the Jost solutions '1/J±(x, t, .>..) and the scattering matrix T(.>.., t) as follows: 

(1.12) id:x± + (q(x, t)- .>..J)'l/J±(x, t, .>..) = 0, 

(1.13) 

(1.14) 

lim '1/J±(x, t, .>..)eiAJx = :n_, 
x--->±oo 

T(.>.., t) = 'I/J"f1 '1/J_(x, t, .>..). 
The Jost solutions of L(.>..) are also eigenfunctions of the operator M(.>..). We 

can use this fact to determine the t-dependence of the scattering matrix: 

(1.15) i~~ + [/(.>..), T(.>.., t)] = 0, 

which can be easily solved as follows: 
(1.16) T(.>.., t) = eif(A)tT(.>.., O)e-if(A)t. 

By f(.>..) E I) above we mean the dispersion law of the NLEE; for the N -wave 
system we have !N-w(.>..) = .>..I. 

Thus the solution of the NLEE for a given initial condition q(x, t)lt=O = q0 (x) 
can be performed in three steps, see [48, 9, 13]: 

(1) insert q(x, 0) as a potential in L(.>..) and determine the corresponding scat-
tering matrix T(.>.., 0); 

(2) Given T(.>.., 0) and the dispersion law f(.>..) find T(.>.., t) from eq. (1.16); 
(3) Given T(.>.., t) reconstruct the corresponding potential q(x, t) of L(.>..) which 

will be also the solution of the NLEE. 
Step 2 is trivial. Steps 1 and 3 involve solving the direct and inverse scattering 

problem for (1.5) which can be reduced to linear integral equations. The most 
difficult step 3 provided for the name of the method. The most effective method to 
solve it for operators like L(.>..) is based on the equivalence to a RHP [45]. 
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Along with solving the inverse scattering problem in step 3) we will construct 
also the minimal set of scattering data 'I'. Indeed the scattering matrix T(>., t) 
has n 2 matrix elements with only one obvious constraint det T(>., t) = 1 while 
the potential q(x, t) has only n(n- 1) matrix elements. Therefore there must be 
additional interrelations between the matrix elements ofT(>., t). 

The analysis of the mapping between q(x, t) and 'I' allows one to interprete it 
as a generalized Fourier transform [2, 36, 25, 21, 27, 28, 29, 30]. The proof of 
all these facts and the effective solving of the ISP for the GZSs (1.5) is based on the 
possibility to construct fundamental solutions of (1.5) which are section-analytic 
functions of the spectral parameter >.. 

Algebraic structures: Kac-Moody and graded Lie algebras 

Let us now briefly outline the first basic tool inherent in the Lax representation 
-its algebraic structure. Indeed, L(>.) and M(>.) above are polynomial in>. and/or 
1/ >. whose coefficients take values in some simple Lie algebra g. 

Let us take generic Lax operators in the form: 

(1.17) 

(1.18) 

(1.19) 

L(>.)'I/J = (i d~ + U(x, t, >.)) '1/J(x, t, >.) = 0, 

M(>.)'I/J = (i :t + V(x, t, >.)) '1/J(x, t, >.) = '1/J(x, t, >.)Va"(>.), 

U(x, t, >.) = L Uk(x, t)>.k, 
k 

V(x, t, >.) = L Vk(x, t)>.k, 
k 

where the potentials U(x, t, >.)and V(x, t, >.)are polynomials in>. and/or 1/>.. Such 
potentials can be viewed as elements of a Kac-Moody algebra gc. Roughly speaking 
the construction of gc involves a simple Lie algebra g and an automorphism C of 
finite order, i.e. there exist such an integer h that Ch = n.. Then we can split g 
into a direct sum of linear subspaces 

(1.20) 
h-1 g = EB g(k), 
k=O 

which are eigensubspaces of C, i.e. if 
(1.21) x(k) E 9(k) ¢::} 

where w = exp(27ri/h). The decomposition (1.20) satisfies the grading condition: 

(1.22) [ X(k), X(m)] = X(k+m) E g(k+m). 

where the superscript k + m in g(k+m) is understood modulo h. Then the elements 
of the corresponding Kac-Moody algebra '9c have the form: 

(1.23) X(>.) = L >.k x(k), 
k"5.N1 

Obviously due to (1.22) the commutator of any two elements X(>.), Y(>.) of the 
form (1.23) will also have the form (1.23). 

The classification and the theory of the Kac-Moody algebras can be found in 
[33, 31]. Their simplest realization can be obtained from a pair (g, C) with a few 
special choices of the automorphism of finite order C, namely: 
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a) C = :8.; then each of the subspaces g(k) ':::::'. g. This leads to a generic GZS 
system if J is real and to a generic CBC system if J is complex. 

b) Ch = 1 where C is the Coxeter automorphism of g and h is the Coxeter num-
ber. This leads to a CBC system with Zh-reduction and will be used in analyzing 
the NLEE (1.2) and (1.3). 

c) CV where Vis a nontrivial external automorphism of g. Such gradings also 
lead to interesting NLEE but will not be used in this paper. 

The Kac-Moody algebras are obtained from the constructions a)-c) with addi-
tional central extensions; they are split into three classes: of height 1 (cases a) and 
b)) and of height 2 and 3 depending on the order of V. 

The potential U(x, t, >.)for theN-wave equations equals [J, Q(x, t)]->.J belongs 
to a Kac-Moody algebra with g ':::::'. sl(n) and C = :n.. The potential U(x, t, >.) = 
ij(x, t) ->.]of the form (1.8) and (1.11) gives rise to the NLEE (1.2) and (1.3) is 
related to Kac-Moody algebra of the class b) with g ':::::'. sl(n). The Coxeter number 
then is h = n; the Coxeter automorphism can be realized as inner automorphism 
of the form: 

(1.24) C(X) = CoXC01, 

n 

Co= LwkEkk, 
k=l 

where C obviously satisfies en = :n.. With this choice of C we can easily check that 
the linear subspaces g(k) are spanned by 

(1.25) g(k) =lc {E· · k - • . J,J+ ' j, k = 1, ... , n}, 

and j + k is considered modulo n. Comparing (1.8), (1.10) with (1.25) below we 
find that ij(x, t) E g(o) and J E g(ll. Note that now the condition X(k) E g(k) 

imposes a set of nontrivial constraints on X(k). 

The idea to use finite order automorphisms for the reductions of the NLEE was 
proposed first by Mikhailov [41] who introduced also the notion of the reduction 
group. The Zn-reduction condition according to [41] is introduced by: 

(1.26) C(U(x, t, >.w)) = U(x, t, >.), C(V(x, t, >.w)) = V(x, t, >.), 

where we have chosen the simplest possible realization of the Zn group on the 
complex >.-plane: >.---+ >.w with w = exp(27ri/n). 

The Kac-Moody algebras, like the semi-simple Lie algebras have an important 
property which ensures the solvability of the inverse scattering problem for L(>.) and 
the non-degeneracy of the Hamiltonian structures of the NLEE. While the semi-
simple Lie algebras possess just one invariant bilinear form (X, Y) = tr (ad x, ad y) 
the Kac-Moody algebras possess a family of invariant bilinear forms: 

(1.27) ((X(>.), Y(>.))/P) =Res .x-P-1 (X(>.), Y(>.)), 
.X=O 

for all integer values of p. 
We will need also a central extension of the Kac-Moody algebras g = g EB c 

where the central element is generated by the 2-cocycle: 

(1.28) l oo II dY(x, >.) \\ (p) 
wp(X(x, >.), Y(x, >.)) = -oo dx\\ X(x, >.), dx 11 · 
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This means that each element of g is a pair (X ( x, .A), c x) where c x is a constant. 
The commutation relation in g is defined by: 

(1.29) [(X(x, .A), ex), (Y(x, .A), cy)] = ([X(x, .A), Y(x, .A)],wp(X(x, .A), Y(x, .A))). 

Important role for the Hamiltonian formulation of the NLEE is played by the 
dual algebras 9*, g* = 9* EEl c and their splittings into direct sums of Borel-like 
subalgebras. These splittings for 9 = 9+ EEl 9- look like: 

(1.30) 9+ = {t uk(x).Ak}, 
k=O 

and for the dual 9* = 9't EEl 9~: 

(1.31) 

The co-adjoint orbits of g on g* in fact are isomorphic to the space of coefficients for 
which the NLEE is written. Thus they are natural candidate for the phase space 
of these equations. The freedom provided by the parameter p is directly related to 
the existence of hierarchy of Hamiltonian structures for the NLEE. 

Fundamental analytic solutions 

The second important tool in this scheme is the fundamental analytic solution 
(FAS) of L(.A). We will see that using the FASone is able to: 

- reduce the solving of the ISP for L(.A) to an equivalent Riemann-Hilbert 
problem (RHP) for the FAS [45, 48, 52]; 

-construct the kernel of the resolvent for L(.A) and derive the spectral decom-
position for L(.A) [26, 18, 30]; 

- construct the 'squared' solutions of L(.A) which allow the interpretation of 
the ISM as a generalized Fourier transform (GFT) [2, 34, 36, 25, 28, 29, 30]; 

- construct the Green function for the recursion operators A± and prove the 
completeness relation for the 'squared' solutions. This property ensures the unique-
ness of the solution of the ISM [25, 27, 19, 30]. 

The existence of FAS is ensured by the analytic dependence of both U(x, t, .A) 
and V(x, t, .A) on .A. The properties of FAS depend crucially on the boundary 
conditions imposed on the potential q(x, t). For simplicity here we consider the 
class of potentials q(x, t) that are sufficiently smooth functions of x and tend to 
zero fast enough for x ---+ ±oo for any fixed value oft. 

The FAS for the Zakharov-Shabat system (i.e. g ~ sl(2)) can easily be con-
structed due to the fact that each of the columns of the Jost solutions 

(1.32) L(.A)'l/J±(x, t, .A) = 0, lim eiJ>.x.J, (x t .A) = n. 
± '!-'± ' ' ' X-+ 00 

allow analytic extension either for A E IC+ or for A E IC_, see [2]. 
If we analyze the analyticity properties of the Jost solutions '1/J±(x, t, .A) related 

to algebras of higher rank one finds that only the first and the last columns of 
'1/J±(x, t, .A) allow analytic extensions off the real .A-axis. An important result of 
Zakharov and Manakov [49, 48] consisted in showing that a FAS for the GZS with 
g ~ sl(n) and real-valued J can be constructed by taking proper linear combinations 
of the columns of '1/J±(x, t, .A). 
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The construction is more complicated for the Caudrey-Beals-Coifman (CBC) 
systems when the eigenvalues of J are complex [5, 6, 8]. The generalization of this 
construction for CBC systems related to any simple Lie algebra g was done in [30]. 

We make attempt to outline the construction and the properties of each of 
these tools. Then we show how the FAS can be used to construct the kernel of 
the resolvent of L(A.) and to exhibit its spectral properties and the structure of its 
discrete spectrum. Finally we illustrate how these tools can be used in the analysis 
of the NLEE and their fundamental properties and finish with some conclusions. 

Both these aspects are rather broad; they have been widely discussed in hun-
dreds of papers. Therefore inevitably the list of references consists mainly of reviews 
and monographs and bears an illustrative character. The thorough reader is advised 
to consult also the papers referred to in these references. 

2. CONSTRUCTION OF THE FAS 
Preliminaries: J ost solutions and scattering matrix 

The direct and the inverse scattering problem for the Lax operator (1.5) will 
be done for fixed t and in most of the corresponding formulae t will be omitted. 

The crucial fact that determines the spectral properties of the operator L is 
the choice of the class of functions where from we shall choose the potential q(x). 
Below for simplicity we assume that the potential q(x) is defined on the whole axis 
and satisfies the following conditions: 

C.l: By q(x) E VRs we mean that q(x) possesses smooth derivatives of all 
orders and falls off to zero for lxl ---t oo faster than any power of x: 

lim lxlkq(x) = 0, \fk = 0, 1, 2, ... 
x-+±oo 

C.2: q(x) is such that the corresponding operator L has only a finite number 
of simple discrete eigenvalues. 

Below we will use along with L'l/J(x, .A) = 0 also the following equivalent formu-
lations of the system (1.5): 

(2.1) i ~! + q(x, t)~(x, .A) - A.[J, ~(x, .A)] = 0, ~(x, .A) = 1/J(x, A.)eiAJx, 

(2.2) 
d'¢ A A 

i dx - 1/J(x, A.)q(x, t) + A.'lj;(x, A.)J = O, '¢(x, .A) = (1/J(x, .A))-1, 

(2.3) 
.d~ A A 

z dx - ~(x, A.)q(x, t) + A.[~(x, .A), J] = 0, 

where by 'hat' we denote the inverse matrix, X= x- 1 . The Jost solutions ~±(X, .A), 
X±(x, .A) and ~±(x, .A) for the systems (2.1)-(2.3) can be introduced by: 

lim ~±(x, .A)= :n., 
x-+±oo 

lim •1• (x A.)e-i>..Jx = :n. 
± 'I'± ' ' lim ~±(x, .A) = :n., 

x-+±oo X-+ 00 

in analogy to (1.13); then their scattering matrices are: 

T2(.A) = eiAJx(~-(x, .A))-1~+(x, A.)e-iAJx = T(.A), 
T3(.A) = '¢+(x, A.)(-j;_(x, .A))-1 = r-1(.A), 
T4(.A) = ei.Ux~+(x, .A)(~-(x, .A))-le-i.Ux = r-l(.A), 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



42 VLADIMIR S. GERDJIKOV 

Below we will consider two specific reductions of the Lax operator: the GZSs 
with Z2-reduction: 

(2.4) B(Ut(x,t,E)..*))B-1 = U(x,t,)..), E = ±1. 
The first possible choice for B = diag ( E1 , ••. , En), Ej = ±1 with E = 1 leads to the 
classical N-wave equations [49, 48] with 

(2.5) J = diag (al, ... 'an), 
Since all eigenvalues of J are real ( E = 1), or purely imaginary ( E = -1), the Lax 
operator becomes a GZSs. The second choice forB: 

n 

(2.6) k = n+ 1- k, E = -1, 
k=l 

will be used in combination with the Zn-reduction: 
- --1 (2.7) Co(U(x,t,w)..))C0 =U(x,t,)..), cn=:n.. 

which leads to the CBC system. For the sake of convenience in doing the spectral 
problem of CBCs we choose Co = E~=l Ek,k+l; then £()..) has the form (1.5) with 
diagonal complex-valued J given by (1.8) or (1.11) where co= 1 (resp. c0 = i) if 
E = 1 ( resp. E = -1). Both Lax operators will have similar spectral properties. 

In solving the NLEE (1.2) and (1.3) we will need to apply both reductions 
(2.4) and (2.7) simultaneously. An attempt for classification of the Z2-reductions 
is made in [23]. 

The FAS of the GZSs with Z2-reduction. 

Let us outline without proofs the construction of the FAS for the GZSs with 
real J, see [49, 48, 5, 8, 30]. For definiteness we assume that the real eigenvalues 
of J are pair-wise different and ordered as follows: 

(2.8) J = diag (a1, ... , an), a1 > a2 > · · · >an. 
PROPOSITION 2.1. Let the potential of (1.5} q(x) E 9Rs satisfies conditions 

(C.1}, (C.2} and (2.5}. Then: 
a} the Jost solutions ~±(x,)..) and ~±(x,)..) of (2.1}, (2.2} exist and are well 

defined functions for ).. E lR; 
b) the matrix elements of the scattering matrix T()..) and its inverse T()..) are 

Schwartz-type functions of).. for ).. E JR. 

REMARK 2.2. The proposition 2.1 concerns the Jost solutions as fundamental 
solutions. One can prove that the first and the last columns ~~] (x, )..) and~~] (x, )..) 
of the Jost solutions allow analytic extension with respect to ).. as follows: 

Column ~~l(x,)..) ~~l(x,)..) ~~l(x,)..) ~~l(x,)..) 
Analytic for ).. E <C_ ).. E <C+ ).. E <C+ ).. E <C_ ' 

Analogously the first and the last rows of the Jost solutions~~] (x, )..) and~~] (x, )..) 
allow analytic extension with respect to ).. as follows: 

Row ~~l(x,)..) ~~l(x,)..) ~~l(x,)..) ~~l(x, )..) 
Analytic for ).. E <C+ ).. E <C_ ).. E <C_ ).. E <C+ ' 

All the other columns of ~±(x, )..) and rows of ~±(x, )..) are defined only for ).. E lR 
and do not allow analytic extensions off the real axis. 
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We start by explaining the construction of the FAS x±(x, A) or rather of the 
solutions 

(2.9) 

to equation (2.1) which allow analytic extensions for A E C±· Skipping the details 
(see [45, 48, 49]) we formulate the answer and determine ~+(x, A) as the solution 
of the following set of integral equations: 

i ?:. j; 

Analogously we define~- (x, A) as the solution of the set of integral equations: 

l x h 
(2.11a)~ij(x, A)= i dye-i>.(a;-ai)(x-y) L Qip(y)~~(y, A), 

00 p=l 
i > j; 

i 5_ j; 

THEOREM 2.3. Let q(x) E 91ts satisfies conditions (C.l}, (C.2} and let J satisfy 
(2.8}. Then the solution ~+(x, A) of the eqs. (2.10} (resp. ~-(x, A) of the eqs. 
(2.11}} exists and allows analytic extension for>. E C+ (resp. for>. E C_). 

REMARK 2.4. Due to the fact that in eq. (2.10) we have both oo and -oo as 
lower limits the equations are rather of Fredholm than of Volterra type. Therefore 
we have to consider also the Fredholm alternative, i.e. there may exist finite number 
of values of >. = >.t E C± for which the solutions ~±(x, >.) have zeroes and pole 
singularities in>.. The points At in fact are the discrete eigenvalues of L(>.) inC±. 

The reduction condition (2.4) with € = 1 means that the FAS and the scattering 
matrix T(A) satisfy: 

Each fundamental solution of the Lax operator is uniquely determined by its 
asymptotic for x ___. oo or x ___. -oo. Therefore in order to determine the linear 
relations between the FAS and the Jost solutions for A E JR. we need to calculate 
the asymptotics of FAS for x ___. ±oo. Taking the limits in the right hand sides of 
the integral equations (2.10) and (2.11) we get: 

(2.13a) 

(2.13b) 

lim ~t3 -(x, >.) = 8ij, 
x--+-co 

lim ~i3-(x,A)=8ij, x--+-oo 

fori ?:. j; lim ~t3-(x, A)= 0, 
X--+00 

fori 5_ j; lim ~i3 -(x, A) = 0, 
x-+oo 

This can be written in compact form using (2.9): 

fori< j; 

fori> j; 
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where the matrices s±(-X), n±(,X) and r±(-X) are of the form: 

( 
1 st; .. . stn ) ( 1 T{; .. . Tt, ) 
0 1 . .. Sin 0 1 .. . T:};, 

(2.15a) s+(-X) = . . . . , r+(-X) = . . . . , . . . . . . . . . . . . . . . . 
00 ... 1 00 ... 1 

(2.15b) n-(-X) = diag (D1, D2, ... , D;;), 

( 1 0 0) T2J. 1 0 
r-(-X) = . . . . , 

T~i T~ .. : i 
(2.15c) 

Let us now relate the factors r±(-X), s±(,X) and D±(-X) to the scattering matrix 
T(-X). Comparing (2.14) with (1.14) we find 

(2.16) T(-X) = r-(-X)D+(-X)S+(-X) = r+(-X)D-(-X)S-(-X), 

i.e. r±(-X), s±(-X) and n±(,X) are the factors in the Gauss decomposition of T(-X). 
It is well known how given T(-X) one can construct explicitly its Gauss decom-

position, see the Appendix A. Here we need only the expressions for n±(-X): 

(2.17) n+(-X)- mj(-X) v-:(-X) = m;;_H1 (-X) 
1 - mj_1 (-X)' 1 m;;_1(-X) ' 

where mJ= are the principal upper and lower minors of T(-X) of order j. 

COROLLARY 2.5. The upper (resp. lower) principal minors mJ=(-X) (resp. mj (-X) 
ofT(-X) are analytic functions of A for A E (\ (resp. for A E <C_). 

PROOF. Follows directly from theorem 2.3, from the limits: 

(2.18) }.!.~ ~Jj(x, -X)= Dj(-X), x~~ ~jj(x, -X)= Dj(-X), 

and from (2.15b) and (2.17). D 

COROLLARY 2.6. The following relations hold: 
a) lim ~±(x, -X)= 11; b) lim mJ=(-X) = 1. 

.>.-+oo .>.-+oo 

PROOF. a) follows from the integral equations (2.10), (2.11) taking into account 
that the integrands in their right hand sides vanish for A---+ oo. b) follows from a), 
(2.18) and (2.15b). D 

In what follows we will also assume that the set of minors m~(-X) have only 
finite number of simple zeroes located at the points 

(2.19) 3 := {-XJ E <C±, j = 1, ... ,N.} 

Generically each of the AJ can be a zero of a string of minors, e.g.: 

(2.20) mt(-X) =(-X- -Xj)mt,1 + D ((-X- -Xj)2), 

for 1 ~ 11 < F1 ~ n. Let us introduce the quantities bjk as follows: 

(2.21) b· = { 1 if -Xj is a zero ofmt(-X); 
Jk 0 if -Xj is not a zero of mt(-X). 
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and note that the reduction (2.4) means that the Gauss factors of T(>.) satisfy 
(E = 1): 

(2.22a) 

(2.22b) 

B (s+(>.*)) t B-1 = s-(.x), 

(n+(>.*))t =n-(>.). 

The relations (2.22a) are strictly valid only for >. E lR while (2.22b) together with 
(2.15b) and (2.17) leads to the following constraints on the minors mt(>.): 

(2.23) (mt(>.*))* = m;;_k(>.). 

Thus if >.t is a zero of mt(>.) then x;; = (>.t)* is a zero of m;;_k(>.). 

The FAS of the CBCs with Zn-reduction. 

The crucial difference with the Z2-case treated above consists in the fact that 
now J is given by (1.8) or (1.11) and has complex eigenvalues. Skipping the details 
(see [5, 6, 8, 30]) we just outline the procedure of constructing the FAS. 

First we have to determine the regions of analyticity. For potentials q(x) sat-
isfying the conditions (C.1) and (C.2) and subject to the Zn-reduction (2.7) these 
regions are the 2n sectors nv separated by the rays l11 on which Im>.(aj- ak) = 0. 
We remind that if we assume also the Z2-reduction (2.6) with c0 = Eco then 
ak = c0wk- 112 • Then the rays l11 are given by: 

(2.24) 
1r(v- 1) 

l 11 : arg(>.) = <Po + , n 
v = 1, ... ,2n, 

where ¢0 = 1rj(2n) only if E = 1 and n is odd; in all other cases <Po= 0. Thus the 
neighboring rays l 11 and l 11+1 close angles equal to 1r /n. 

The next step is to construct the set of integral equations analogous to (2.10) 
whose solution will be analytic in nv. To this end we associate with each sector nv 
the relations (orderings) > and < by: 

i> j 
(2.25) II 

i < j 
II 

II II 

if Im>.(ai- aj) < 0 
Im>.(ai- aj) > 0 

Then the solution of the system (2.10) 

for >. E nv, 
for>. E n11 • 

(2.26a)~ij(x, >.) = 8ij + i jx dye-i>.(a;-a3)(x-y) t Qip(y)~; 1 (y, >.), 
-oo p=1 

(2.26b)~ij(x,>.) = ilx dye-i>.(a;-aj)(x-y) tQip(y)~;j(y,>.), i< j; 
00 p=l v 

i?. j; 
II 

will be the FAS of the CBCs in the sector n11 • The asymptotics of ~ 11 (x, >.) and 
~ 11 - 1 (x, >.) along the ray l11 can be written in the form: 

(2.27a) 

(2.27b) 

(2.27c) 

lim ei>.Jx~ 11 (x, >.ei0 )e-i>.Jx = Sj-(>.), >. E lv, 
x--+-oo 

lim ei>.Jx~v- 1 (x, >.e-i0 )e-i>.Jx = S;;(>.), A E lv, 
x--+-oo 

lim ei>.Jx~ 11 (x, >.ei0 )e-i>.Jx = T;; Dj-(>.), >. E lv, 
X->00 
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46 VLADIMIR S. GERDJIKOV 

(2.27d) lim ei>.Jx~v- 1 (x, Ae-i0 )e-i>.Jx = T;; D;;(A), 
X->00 

where the matrices Sj", T;; (resp. S;;, Tv-) are upper-triangular (resp. lower-
triangular) with respect to the v-ordering. As in the previous case they provide the 
Gauss decomposition of the scattering matrix with respect to the 11-ordering, i.e.: 

(2.28) 

More careful analysis shows [30] that in fact Tv(A) belongs to a subgroup 1!5v of 
SL(n, <C). Indeed, with each ray lv one can relate a subalgebra flv c sl(n, <C). 

If Zn-symmetry is present each of these subalgebras 9v is a direct sum of sl(2)-
subalgebras. Each such sl (2)-subalgebra can be specified by a pair of indices ( k, s) 
and is generated by: 

(2.29) e(k,s) _ E - ks, f (k,s) _ E - sk, k< s. 
v 

Then the scattering matrix Tv (A) will be a product of mutually commuting matrices 
TSk,s) of the form: 

(2.30) TSk,s) = :n. +(at;ks(A) -1)Ekk+(a~;ks(A) -1)Ess -b~;ks(A)Eks+bt;ks(A)Esk, 

where k < s, with only 4 non-trivial matrix elements, just like the ZS (or AKNS) 
v 

system. 
The Zn-symmetry imposes the following constraints on the FAS and on the 

scattering matrix and its factors: 

(2.31a) 
(2.31b) 

Co~v(x, Aw)C01 = ~v- 2 (x, A), 
CoS;(Aw)C01 = s;_2 (A), 

CoTv(Aw)C01 = Tv-2(A), 
CoD;(Aw)C01 = D;_2 (A), 

where the index 11 - 2 should be taken modulo 2n. Consequently we can view as 
independent only the data on two of the rays, e.g. on h and hn = lo; all the rest 
will be recovered from (2.31). 

If in addition we impose the Z2-symmetry (2.4), (2.6) withE= -1 then we will 
have also ak = iwk- 112 and: 
(2.32) 

B(~v(x, -A*))t s-1 = (C+1-v(x, A))-1, B(s;(A*))B-1 = (S!+l-v(.x))-1, 

and analogous relations for T! (A) and D~ (..\). Another interesting subcase takes 
place for even values of nand Z2-reduction (2.4), (2.6) withE= 1; then ak = wk-112 

and the FAS satisfy: 
(2.33) 

B(~v(x,.X*))tn-1 = (en+1-v(x,.X))-1, B(s;(.X*))B-1 = (Sln+l-v(.X))-1, 

In both cases the rays lv are defined by (2.24) with ¢0 = 0. The pairs of indices 
{kv,mv} specifying the imbeddings of the sl(2)-subalgebras related to the ray lv 
are defined as follows: 

a) forE= 1 

(2.34) b) forE= -1 

kv + mv = [%] + 2- 11( mod n), 

kv+mv=2-v( modn), 

One can prove also that D;t (A) ( resp. D;; (A)) allows analytic extension for 
A E nv (resp. for A E nv-1, compare with corollary 2.5. Another important fact is 
[30] that D;t(.X) = D;;+1 (.X) for all .X E nv. 
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The inverse scattering problem and the Riemann-Hilbert problem. 

The next important step is the possibility to reduce the solution of the ISP for 
the GZSs to a (local) RHP. Indeed the relation (2.14) can be rewritten as: 
(2.35a) ~+(x, t, A) = C(x, t, A)G(x, t, A), A E JR, 
(2.35b) G(x, t, A) = e-i(>..Jx-f(>..)t)Go(A)ei(>..Jx-f(>..)t), 

(2.35c) Go(A) = s-(A)S+(A)'t=o; 

in other words the sewing function G(x, t, A) satisfies the equations: 
.dG .dG 

(2.36) z dx - A[J, G(x, t, A)] = 0, zdt + [/(A), G(x, t, A)] = 0, 

Here j(A) E ~ determines the dispersion law of the NLEE. Together with 
(2.37) lim ~±(x, A) = 1l, 

>..-+oo 

eq. (2.35) is known as the RHP with canonical normalization. 

THEOREM 2.7 ([45]). Let ~+(x, t, A) and ~-(x, t, A) be solutions to the RHP 
(2.35}, (2.37} allowing analytic extension in A for A E <C± respectively. Then 
x±(x, t, A) = ~±(x, t, A)ei>..Jx are fundamental analytic solutions of both operators 
L and M, i.e. satisfy eqs. (1.5}, (1.6} with 

(2.38) q(x, t) = lim A (J- ~±(x, t, A)Ji,±(x, t, A)) . 
>..-+oo 

PROOF. Let us assume that ~±(x, t, A) are regular solutions to the RHP and 
let us introduce the function: 

± ,d~± A± ± A± (2.39) g (x, t, A) = z dx ~ (x, t, A)+ A~ (x, t, A)J~ (x, t, A). 

If ~±(x, t, A) are regular then neither ~±(x, t, A) nor their inverse i,±(x, t, A) have 
singularities in their regions of analyticity A E <C±. Then the functions g±(x, t, A) 
also will be regular for all A E <C±. Besides: 
(2.40) lim g+(x,t,A) = lim g-(x,t,A) = AJ. 

>..-+oo >..-+oo 

The crucial step in the proof of [52] is based on the chain of relations: 
+ (2,35) ,d(~-a) A A- - A A_ 

g (x, t, A) = z dx G~ (x, t, A)+ A~ GJG~ (x, t, A) 

= id;: 1,-(x, t, A)+ C (i~~ G + AGJG(x, t, A)) i,-(x, t, A) 

(2,36) d~- A ( A A ) A 
= i dx C (x, t, A) + C A[J, G]G + AGJG(x, t, A) C (x, t, A) 

= i d;: 1,- (x, t, A)+ AC Ji,- (x, t, A) 

(2.41) A E JR. 
Thus we conclude that g+(x,t,A) = g-(x,t,A) is a function analytic in the whole 
complex A-plane except in the vicinity of A ---+ oo where g+(x, t, A) tends to AJ, 
(2.40). Next from Liouville theorem we conclude that the difference g+(x, t, A) -AJ 
is a constant with respect to Ai if we denote this 'constant' by -q(x, t) we get: 
(2.42) g+(x, t, A)- AJ = -q(x, t). 
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48 VLADIMIR S. GERDJIKOV 

It remains to remember the definition of g+(x, t, >.) (2.39) to find that ~±(x, t, >.) 
satisfy (2.1), i.e. that x±(x, t, >.) is a fundamental solution to L. The relation 
between q(x, t) and ~±(x, t, >.) (2.38) can be obtained by taking the limit of the 
left-hand sides of (2.42) for >. ---+ oo. 

Arguments along the same line applied to the functions h±(x, t, >.) 

(2.43) ± .d~± '± ± '± h (x, t, >.) = zdt~ (x, t, >.) - ~ (x, t, >.)f(>.)~ (x, t, >.), 

can be used to prove that x± (x, t, >.) are fundamental solutions also of the operator 
M; equivalently it satisfies (V'(x, t, >.) = V(x, t, >.)- J(>.)): 

(2.44) id!: + V'(x,t,>.)~±(x,t,>.) + [f(>.),~±(x,t,>.)] = 0, 

and one finds that h+(x,t,>.) = h-(x,t,>.) is a function analytic everywhere inC 
except at >. ---+ oo where it has a polynomial behavior of order N - 1. Denoting the 
polynomial as V(x, t, >.) we derive (2.43). 

To conclude the proof of the theorem we have to account for possible zeroes 
and pole singularities of ~±(x, t, >.) at the points 3 (2.19). Below we derive the 
structure of these singularities which is such that they do not influence the functions 
g±(x, t, >.) and h±(x, t, >.). The theorem is proved. 0 

The analyticity properties of m~(>.) allow one to reconstruct them from the 
sewing function G(>.) (2.35c) and from the locations of their zeroes through (see 
Appendix B): 

(2.45) !>k(>.) = ~ 100 ~In { 1' 2' · · ·' k} + t bjkln).- >.j, 
27rZ -oo J.L - ). 1, 2, ... ' k G(J.!) j=l ). - ).j 

where 

(2.46) 

One can view !>k(>.) as generating functionals of the conserved quantities for 
the related N-wave-type equations; the relevant expressions for them in terms of 
the scattering data can be obtained from the right hand sides of (2.45). 

Quite analogously we can treat also the CBCs with Zn-symmetry. More pre-
cisely, we have: 

(2.47) e'.l(x, t, >.) = ~v-l(x, t, >.)Gv(x, t, >.), A E lv, 

Gv(x, t, >.) = e-i>..Jx+if(>..)tGo,v(>.)ei>.Jx-if(>..)t, Go,v(>.) = S;(>.)S;j""(>.)lt=o 

The collection of all relations (2.47) for v = 1, 2, ... , 2n together with 

(2.48) lim ~v(x, t, >.) = :n., 
>..-.oo 

can be viewed as a local RHP posed on the collection of rays "E = { lv }~~ 1 with 
canonical normalization. Rather straightforwardly we can reformulate the results 
for the GZSs for the CBCs and prove that if ~v(x, >.)is a solution of the RHP (2.47), 
(2.48) then xv(x, >.) = ~v(x, >.)ei>..Jx satisfy the CBC with potential 

(2.49) q(x, t) = lim (J- ~v(x, t, >.)J~v(x, t, >.)). 
>..-.oo 
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ALGEBRAIC AND ANALYTIC ASPECTS OF SOLITON TYPE EQUATIONS 49 

We finish this subsection by formulating the dispersion relations for the functions 
ln mt k(.A) which allows us to reconstruct them from their analyticity properties: 
(2.50) 

lnmtk(.A) = L ~ _J.L_ln 1 ··· k + LLbZjln ~k , 
2n ( )f) 1 d { }'17 n N A - A+ Wry 

, 2n~ 1 J.L - .A 1 . . . k a ( ) . .A - .A . kwry 
t)=l v '1 I.L ry=l J=l J, 

where .A E nv and the superscript 'f1 in the integrand shows that we should use the 
ordering characteristic for the sector Ory; bZj are the analogs for bkj (2.21) in Ory. 

Both dispersion relations (2.45) and (2.50) can be used to derive the so-called 
trace identities (see [48, 13]) for the GZSs and CBCs respectively. Indeed, lh(.A) 
and ln mt,k (.A) allow asymptotic expansions 

CXl CXl 

(2.51) l)k(.A) = Ll)ks).x-s, lnmt,k(.A) = LM~~2.x-s. 
s=l s=l 

The expansion coefficients l)ks) and M~~2 are local integrals of motion, i.e. their 
densities depend only on q(x, t) and its derivatives with respect to x. Their explicit 
calculation is done via recurrent procedure. We illustrate it by the two first integrals 
of motion of the Zn-NLS equation (1.3): 

(2.52) Mi~{ = L /_: dx t, 'l/;p'l/Jn-p(x, t), 

(2.53) Mi~{ = ~1= dx {ticotan (7rp) (dd'l/;p'l/Jn-p-'l/;p d'l/Jdn-p) 
2w -= p=l n x x 

~ L 'l/;p'l/Jk'l/Jz(x,t)}, 
p+k+l=n 

One can also expand the right hand sides of the dispersion relations (2.45) and 
(2.50) over the inverse powers of .A which allows to express l)ks) and M~ 82 also in 
terms of the scattering data of GZSs and CBCs. ' 

The dressing Zakharov-Shabat method 

One of the most fruitful ideas for the explicit constructing of the NLEE's solu-
tions is based on the possibility starting from a given regular solutions et(x, t, .A) 
to the RHP to construct new singular solutions e±(x, t, .A) having zeroes and pole 
singularities at the prescribed points >.j E C±. The structure of these singularities 
are determined by the dressing factor Uj(x, t, .A): 

(2.54) 

which for the SL(n)-group has a simple fraction-linear dependence on .A: 

.A- .xt 
Cj(A) = J ' 

.A-\ 
(2.55) 

(2.56) u-:- 1 = lim Uj(x, t, .A). 
J,- X-+-00 
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50 VLADIMIR S. GERDJIKOV 

Here Pj(x, t) is a projector PJ = Pj which for simplicity is chosen to be of rank 1; 
then it can be written down as: 

(2.57) Pj(x) = lnj)(mjl, 
(mjlnj) 

where the bra- and ket- eigenvectors (mjl and lnj) are the 'left' and 'right' eigen-
vectors of the projector. 

From (2.54) there follows that the dressing factor u(x, t, .X) satisfies the equa-
tion: 

(2.58) 
du 

i dx + q(x, t)u(x, t, .X)- u(x, t, .X)q0 (x, t) - .X[J, u(x, t, .X)] = 0. 

The main advantage of the dressing method is in the fact that one can determine 
the x and t-dependence of (mj I and lnj) through the regular solution x~(x, t, .X) as 
follows: 

(2.59)lnj) = x;lj(x, t)lnJ), (mjl = (mJixoj(x, t), 
or equivalently these vectors are solutions to the equations: 

(2.60) id~;) + U(O)(x, t, .Xj)lnj) = 0, idlnj) + v<o)(x t .x+)ln ·) = 0 
dt ' ' J J ' 

( ) .d(mjl ( I (o)( _) _ 2.61 z~ - mj U x, t, .Xj - 0, id(mjl - (m ·IV(0l(x t .X-:-)= 0 
dt J ' ' J ' 

(2.62) U(O)(x, t, .X)= qo(x, t)- .XJ, v<0l(x, t, .X)= V(x, t, .X)Iq=qo. 

Here q0 (x, t) is the potential corresponding to the regular solutions x~(x, t, .X) to 
the RHP and v<0l(x, t, .X) is obtained from V(x, t, .X) (see (3.35), (3.36)) replacing 
q(x, t) by q0 (x, t). This construction is well defined also in the case when x~(x, .X) 
are singular solutions to the RHP, provided they are regular for .X = .X]=. 

If q(x, t) is the potential corresponding to the singular solution x±(x, t, .X) then: 

q(x, t) = q0 (x, t) + lim .X(J- uj(x, t, .X)Juj(x, t, .X)) 
.X-+oo 

(2.63) = qo(x, t)- (.Xj- .Xj)[J, Pj(x, t)]. 

Thus starting from a given regular solution of the RHP (and related solution 
q0 (x, t) to the NLEE) we can construct a singular solution to the RHP and a new 
solution q(x, t) of the NLEE depending on the .X]= and on the eigenvectors of Pj(x). 
If we start from the trivial solution q0 (x, t) = 0 of the NLEE then we will get the 
one-soliton solution of the NLEE. Repeating the procedure N times we can get the 
N-soliton solution of the NLEE. 

With the explicit formulae for Pj(x) and using (2.54) we can establish the 
relationship between the scattering data of the regular RHP and the corresponding 
singular one. The dressing factor uj(x, .X) is determined by the constant vectors 
(mJI and lnJ) can not be quite arbitrary. The condition that q(x) vanishes for 
x --+ ±oo requires that if (nJ)s = 0 for all 1 ~ s < Ij and Fj < s ~ n then also 
(mJ)s = 0 for all1 ~ s < 11 and F1 < s ~ n. Thus we derive that: 

(2.64) lim Pj(x) =Err , 
x---.oo 1 3 

lim Pj(x) = Epy, 
x~-CXJ J J 

and therefore 

(2.65) 
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The interrelation between the Gauss factors of the corresponding scattering matri-
ces are: 

(2.66) s±(.A) = Uj,-(.A)Sg=(.A)uj;~(.A), 
and 

(2.67) 

Comparing these last relations with (2.17) we find for the principal minors of T(.A) 
and To(.A): 

(2.68a) 

- _.A-Xj + (2.68b) m 8 (.A) - + m0 8 (.A), for n- F1· < s '5. n- ! 1·, .A E C_ U JR, .A-.A. , 
J 

and m;=(.A) = m~ 8 (.X) for the other values of s. Thus the result of the dressing is 
that the string or' upper principle minors m:t(.A), Ij '5. s < Fj acquire simple zero 
at .A= .Aj while the string of lower principle minors m;(.A), n- Fj < s '5. n- Ij 
acquire simple zero at .A = Xj. 

Obviously if we impose on L(.A) the Z2-reduction then we should restrict also 
the dressing factor by: 

(2.69) B(u(x,t,E.A*))t B-1 = u(x,t,.A). 
The ansatz (2.55) satisfies (2.69) if Xj = E(.Aj)* and the vectors Jnoj), (mojl are 
related by: 

(2.70) 

If we impose the Zn-reduction (2. 7) then u(x, t, .A) must satisfy: 

(2.71) Cou(x, t, w.A)C01 = u(x, t, .A). 
Such conditions require generalizations of the ansatz (2.55) [41]: 

n-1 
(2.72) Uj(X, t, .A)= ll + L (cj(W 8 .A)- 1) C0Pj(x)C08 • 

s=O 

A slightly different approach treating also multi-soliton solutions of the Zn-symmetric 
NLEE is given in [5]. 

Up to now we dealt with the algebra g :::::- sl(n, C). Treating the other simple Lie 
algebras (orthogonal or symplectic) needs additional care especially in constructing 
the dressing factors [51, 23]. 

In fact uj(x, .A) (2.55) must be an element of the corresponding group. From 
the ansatz (2.55) it follows that uj(x, .A) belongs to GL(n, C), but one can always 
multiply u(x, .A) by an appropriate x- and t-independent scalar and to adjust its 
determinant to 1. Such a multiplication goes through the whole scheme outlined 
above but is adequate only for the sl(n, C) case. However the ansatz (2.55) can not 
be used, e.g. for the case so(n, C). The adequate ansatz is formulated below [23]. 

THEOREM 2.8. Let g "' Br or Dr and let the dressing factor u(x, .A) be of the 
form: 

(2.73) ui(x,.A) = 1l+(cj(.A)-1)Pi(x)+(cj1(.A)-1)P-i(x), P_i = SoPTS0\ 
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where 80 is introduced in (A.11} and Pj(x) is a rank 1 projector (2.57}. Let the 
constant vectors lno) and (mol satisfy the condition 
(2.74) (moiSimo) = (noiSino) = 0. 
Then uj(x, >.) (2. 73} satisfies the equation (2.58} with a potential 
(2.75) q(x) = qo(x)- (>.j- >.j)[J,pj(x)], Pj(x) = Pj(x)- P_j(x). 

PROOF. Due to the fact that x~(x, >.)take values in the corresponding orthog-
onal group we find that from (2.74) it follows (miSim) = 0, (miJSim) = 0 and 
analogous relations for the vector In). As a result we get that 

Let us now insert (2. 73) into (2.58) and take the limit of the r.h.side of (2.58) 
for>.~ oo. This immediately gives eq. (2.75). In order that Eq. (2.58) be satisfied 
identically with respect to >. we have to put to 0 also the residues of its r.h.side 
at >. ~ >.j and >. ~ Xj. This gives us the following system of equation for the 
projectors Pj(x) and P_j(x): 

dP. 
(2.77) i d: + q(x)Pj(x)- Pj(x)qo(x)- >.j[J, Pj(x)] = 0, 

(2.78) id=~j + q(x)P-j(x)- P_j(x)qo(x)- >.j[J, P_j(x)] = 0, 

where we have to keep in mind that q is given by (2.75). Taking into account (2.76) 
and the relation between Pj(x) and P_j(x) eq. (2.77) reduces to: 

dP· 
(2.79) i d: + [qo(x), Pj(x)] +>.j Pj(x)J- >.j JPj(x)- (>.j- >.j)Pj(x)JPj(x) = 0. 

One can check by a direct calculation that (2.57) satisfies identically (2.79). The 
theorem is proved. 

0 

3. THE RESOLVENT AND SPECTRAL PROPERTIES OF GZSs AND CBCs 
The FAS x± ( x, >.) of L( >.) allows one to construct the resolvent of the operator L 

and then to investigate its spectral properties. By resolvent of L(>.) we understand 
the integral operator R(>.) with kernel R(x, y, >.) which satisfies 

(3.1) L(>.)(R(>.)f)(x) = f(x), 
where f(x) is an n-component vector function in en with bounded norm, I.e. 
f~oo dy(JT(y)J(y)) < 00. 

From the general theory of linear operators [4, 12, 46] we know that the point 
>. in the complex >.-plane is a regular point if R(>.) is a bounded integral operator. 
In each connected subset of regular points R(>.) is analytic in >.. 

The points >. which are not regular constitute the spectrum of L(>.). Roughly 
speaking the spectrum of L(>.) consist of two types of points: 

• i) the continuous spectrum of L(>.) consists of all points >. for which R(>.) 
is an unbounded integral operator; 

• ii) the discrete spectrum of L(>.) consists of all points >. for which R(>.) 
develops pole singularities. 
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Let us now show how the resolvent R(>.) can be expressed through the FAS of 
L(>.). Indeed, if we write down R(>.) in the form: 

(3.2) R(>.)f(x) = i: R(x, y, >.)f(y), 

the kernel R(x, y, >.) of the resolvent is given by: 

(3.3) R( >.) = { R+(x,y,>.) for).. E c+, 
x, y, R-(x, y, >.) for).. E c-, 

where 

(3.4) R±(x, y, >.) = ±ix±(x, >.)e±(x- y)x±(y, >.), 

e±(z) = B(:r=z)IIo- B(±z)(:O.- Ilo), 
ko 

Ilo = ~Ess, 
s=l 

where k0 is the number of positive eigenvalues of J; namely: 

(3.5) 

Due to the condition tr J = I:;=l a8 = 0, ko is fixed up uniquely. 
The next theorem establishes that R( x, y, ).. ) is indeed the kernel of the resolvent 

of L(>.). 

THEOREM 3.1. Let q(x) satisfy conditions (C.l) and (C.2) and let >.j be the 
simple zeroes of the minors mt(>.). Then 

(3.6) 

(1) R± (x, y, >.) is an analytic function of).. for).. E C± having pole singulari-
ties at >.j E C±; 

(2) R±(x, y, >.) is a kernel of a bounded integral operator for Jm)..-=/=- 0; 
(3) R(x, y, >.) is uniformly bounded function for).. E lR and provides a kernel 

of an unbounded integral operator; 
( 4) R± (x, y, >.) satisfy the equation: 

L(>.)R±(x, y, >.) = 118(x- y). 

IDEA OF THE PROOF. (1) is obvious from the fact that x±(x, >.) are the 
FAS of L(>.); 

( 2) Assume that Im ).. > 0 and consider the asymptotic behavior of R+ ( x, y, ).. ) 
for x, y ~ oo. From equations (2.9) we find that 

n 

(3.7) R/j(x, y, >.) = ~ ~~(x, >.)e-i.>.av(x-y)e:p(x- y)€~(y, >.) 
p=l 

Due to the fact that x+(x, >.) has triangular asymptotics for X~()() 
and ).. E C+ and for the correct choice of e+(x- y) (3.4) we check that 
the right hand side of (3. 7) falls off exponentially for x ~ oo and arbitrary 
choice of y. All other possibilities are treated analogously. 

(3) For ).. E lR the arguments of 2) can not be applied because the exponen-
tials in the right hand side of (3.7) lm).. = 0 only oscillate. Thus we 
conclude that R±(x, y, >.) for ).. E lR is only a bounded function and thus 
the corresponding operator R(>.) is an unbounded integral operator. 
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54 VLADIMIR S. GERDJIKOV 

(4) The proof of eq. (3.6) follows from the fact that L(A)X+(x, A)= 0 and 

(3.8) de±~:- y) = =t=ll.b'(x- y). 

D 

PROPOSITION 3.2. Let q(x) satisfy the conditions (C.1} and (C.2}, let 3 = 
{Aj, j = 1, ... , N} be the set of simple zeroes (2.20} of the minors m;(A) and let 
Ij :::; k0 < Fj for all j = 1, ... , N. Then the kernel of the resolvent R+(x, y, A) 
(resp. R-(x,y,A)) has simple poles for A= AJ (resp. for A= Xj) with residues 
given by: 

(3.9a) ~es± R±(x,y,A) = =t=2ivj lnj(x)) (mj(y)l, 
).._)..j 

(3.9b) lnj(x)) = (11- Pj(x))xd,j(x)IIolno,j), (mj(y)l = (mj(~)~~:~y)), 
_ lnj(x)) 

(3.9c) lnj (x)) = (mj(x)lnj(x)), (mj(Y)I = (mo,jiiioxO,j(y)(Jl.- P1(y)), 

where AJ = /-Lj ± ivj and X~j(x) = xt(x, AJ) are the FAS corresponding to the 
potential q0 satisfying (C.1} and (C.2} and whose set of simple zeroes is 3o = 
3\{Aj,Aj}. 

PROOF. Let xt(x,A) be the FAS of Lo(A) with potential qo(x); then xt(x,A) 
are regular for A = Aj. Now we apply the dressing method choosing AJ as the 
locations of the singularities and construct the projector Pj(x) using the constant 
vectors lno,j) and (mo,jl· The normalizing factor uj,~(A) in the right hand side 
of (2.54) is a diagonal matrix that commutes with Ilo. Then we insert x±(x, A) = 
Uj(x, A)Xt(x, A) in (3.4) and note that the pole singularity of R+(x, y, A) at A= AJ 
(resp. R- (x, y, A) at A = Aj) can come up only from the factor uj1 (y, A) (resp. 
u(x, A)). To derive the expressions in (3.9) one needs the explicit form of the 
projectors Pj(x) and Pj(Y) (2.57) and (2.59). 

The right hand sides of (3.9) do not vanish if the following conditions 

IIolno,j) =f.lno,j), or IIolno,j) =f. 0, 
(3.10) 

or (mo,j liTo =f. 0. 

hold. In other words if (3.10) hold then the residues (3.9) do not vanish, R±(x, y, A) 
have simple poles at A= AJ and by definition AJ are discrete eigenvalues of L(A). 
Eq. (3.10) is equivalent to the condition Ij :::; k0 < Fj. Indeed violating this 
condition we get either (11. - Ilo)lno,j) = 0 or II0 Ino,j) = 0 and as a result -
vanishing right hand sides in (3.9). 

To finish the proof one must check that from the definitions (3.9b) the relations 
(2.68) follow. Besides lnj) and (mj I satisfy: 

.dlnj) ± ± 
(3.11) ~----;{X+ (q(x)- Aj J)lnj) = 0, 

where q(x) is given by (2.63). D 

COROLLARY 3.3. The discrete spectrum of the Lax operator (1.5} consists of the 
zeroes of the principal minors mj(A) for A E <C+ and mj(A) for A E <C_ provided 
the conditions (3.10} are satisfied. 
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l'+,oo 

FIGURE 1. The contours/'± =JR. U l'±oo· 

Now we can derive the completeness relation for the eigenfunctions of the Lax 
operator (1.5) by applying the contour integration method (see e.g. [26, 27, 2]) to 
the integral: 

(3.12) - 1 i +( 1 i -( J(x, y)- -. d>..R x, y, >..)- -2 . d>..R x, y, >..), 
27fZ 'Y+ 7fZ 'Y _ 

where the contours/'± are shown on the Figure 1. Skipping the details we get: 

8(x- y) t :s Ess = 2~ I: d>.. {t.lx[sl+(x, >..))(xlsl+(y, >..)1 

(3.13) - t lxlsl-(x, >..))(xlsl-(y, >..)1} 
s=ko+l 

N 

+ 2i L Vj { lnj(x)) (mj(y)l- lnj(x)) (mj(Y)I}. 
j=l 

This relation (3.13) allows one to expand any vector-function lz(x)) E en over 
the eigenfunctions of the system (1.5). Indeed, let us multiply (3.13) on the right 
by J I z(y)) and integrate over y. This gives: 

I z(x)) = 2~ I~= d>.. { 2::;~1lxlsl+(x, >..)) · (t(>..)- L:;=ko+l xlsl-(x, >..)) · (;(>..)} 

(3.14) +L:f=1vj (lnj(x))(j -lnj(x))(j), 
where the expansion coefficients are of the form: 

(3.15) 

(1=(>..) = -i I: dx(xlsl±(x, >..)IJiz(x)), (j(>..) = -i I: dx (mJI J lz(x)). 
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REMARK 3.4. If q(x) ~ 0 then x+(x,A) ~ x-(x,A) ~ exp(-iAJx) the set 3 is 
empty and (3.14) goes into the usual Fourier transform for the space en. 

REMARK 3.5. Here we used also the fact that all eigenvalues of J are non-
vanishing. In the case when one (or several) of them vanishes we can prove com-
pleteness of the eigenfunctions only in a certain subspace of en. 

The resolvent for the CBCs is defined quite analogously: 

R(x, y, A) = Rv(x, y, A), A E !1v, 
Rv(x, y, A)= ixv(x, A)8v(x- Y)Xv(x, A), 

(3.16) ev(z) = 0( -z)IIo- O(z)(:O.- Ilo), Ilo = L Ess, 
s :'S ko,v 

v 

where Xv(x, A) = ~v(x, A)ei.Ux and ko,v is the number of positive eigenvalues of 
Im (AJ) in the v-th ordering. 

The following theorem is a specific case of one in [30]. 

THEOREM 3.6. Let q(x) satisfy the conditions {C.l) and {C.2) and let 3 
u;=1 (32p-1 u 32p) where 

3 - { \+ p-1 ("\ 2p-1 = /\j w E H2p-1, j = 1, ... , N}, 
(3.17) 32p := {AjwP E !12p, j = 1, ... ,N}, 
are the sets of zeroes and poles of the minors mv,k(A) in the sectors !1v. Then 

(1) Rv(x, y, A) is an analytic function of A for A E !1v having pole singularities 
at 3v; 

(2) Rv(x, y, A) is a kernel of a bounded integral operator for A E !1v; 
(3) For A E lv U lv+1 Rv(x, y, A) is an uniformly bounded function which is a 

kernel of an unbounded integral operator; 
(4) Rv(x, y, A) satisfies the equation: 

(3.18) L(A)Rv(x, y, A)= 11.8(x- y). 

The next natural step is to establish the structure of the singularities of Rv ( x, y, A) 
at the points of 3. This is done quite analogously by using the dressing factor (2.72). 
Note that in these matters the symmetry complicates the calculations. 

One of the effects of the Zn-symmetry is that the sets 3v are determined 
uniquely by 31 and 3o: 

(3.19) 31 = { AJ E !11, j = 1, ... , N}, 3o = { Aj E !12n, j = 1, ... , N}. 
The residue of Rv(x, y, A) at the point A= Aj can be cast into the form: 

Res R 1(x, y, A)= -2ilmAj/nj(x))(mj(x)/, 
>-=>.j 

(3.20) Res_ R 2n(x,y,A) = 2ilmAj/nj(x))(mj(x)/, 
>-=>.j 

where /nj(x)) and (mj(x)/ are properly normalized eigenvectors of the Lax oper-
ator corresponding to the eigenvalues AJ E !1±l· The residues in the other sectors 
!1v with v =f. 0, 1( mod 2n) are evaluated from (3.20) by employing eq. (2.31). 
Here we also have the analog of the condition (3.10). 
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The derivation of the completeness relation of the eigenfunctions for CBCs 
with Zn-reduction follows the same lines but needs some modifications. Instead of 
J(x, y) (3.12) we should consider 

- 2n (-1)v-1 J 
J(x, y) = L 21ri J, d>..Rv(x, y, >..), 

v=1 'Yv 

(3.21) 

where the contours 'Yv are defined by: 

(3.22) 

Here lv are the rays (2.24) oriented from 0 to oo; 'Y':' is the 'infinite' arc R0 ei'Po 
with Ro » 1 and 1r(v -1)/n:::; cp0 :::; 1rvjn; by overbar we denote the same contour 
with opposite orientation. Thus all the contours "f2v_ 1 (resp. "f2v) are positively 
(resp. negatively) oriented. 

Now we apply again the contour integration method and get two answers for 
J(x, y). The first, according to Cauchy residue theorem is: 

(3.23) J(x, y) ~ ~ t, C!1w• 11,»+1 (x, y, A)+ ,!\';" w• R,p(x, y, A)) . 
Integration along the contours taking into account that lim>.__,oo xv(x, >..) = :n. gives: 

- 2n ( -1)v-1 1 -1 
(3.24) J(x,y)=L 21ri dx(Rv(x,y,>..)-Rv-1(x,y,>..))+J c5(x-y). 

v=1 lv 

The completeness relation follows after equating both expressions and taking into 
account that (compare with (3.20) and (2.31)): 

Res R2p+1(x, y, >..) = -2iim>..j!n]2P+l)(x))(mj2P+1)(x)j, 
>.=>.jwP 

(3.25) R~s R2p(x, y, >..) = 2iim>..j!n]2P)(x))(mj2P)(x)j, 
>.=>.j wP 

where !n]2P)(x)), !n?P+l)(x)) (resp. (mJ2p)(x)j , (mJ2P+ 1)(x)l) are properly nor-
malized discrete eigenfunctions of the CBCs (1.5) (resp. of the adjoint CBCs (2.2)) 
corresponding to the discrete eigenvalues Xj w2P and >..j w2P. For the lack of space 
we can not provide all the details of the calculations. The final result is similar to 
the one for GZSs. Namely, any vector-function jz(x)) E en can be expanded over 
the eigenfunctions of the CBCs as follows: 

(3.26) jz(x)) = 

t, (- ;~~1 l d.X {, ~ .• (,!:.(.X)Ix"·l•l (x, .X)) - • ~ .• (;,.(>) lx"~ 1,[•1 (x, .X))} 

N 2n 

+ L L:Im>..j [(t,)nj(xt'+)- c:jlnj(xt·-)], 
j=1v=1 

where the expansion coefficients are given by: 

(t,8 (>..) = -i I: dx(xv,[sl(x, >..)jJjz(x)), 
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58 VLADIMIR S. GERDJIKOV 

(3.27) (;,8 (,\) = -i I: dx(xv-1,[sl(x,.A)IJiz(x)), 

(~j = -i I: dx(mj(x)IJiz(x)), c;,j = -i I: dx(mj-1(x)IJiz(x)). 

The completeness relations derived for GZSs and CBCs above can be viewed 
as the spectral decompositions for the generically non-self-adjoint operators L(,\). 

REMARK 3. 7. The special case of a CBCs with Zn-symmetry is equivalent to 
n-th order scalar differential operator [ 11]. Indeed, one can easily check that the 
system L (1.5), (1.8) can be written down as: 

(3.28) Lx = i [ d~ + ~ 'lj;k(x)K~ + i.Acow- 112 ~ wk Ekk l x(x, .X) = 0. 

After similarity transformation with u0 = 2:::;,j=1 W 8 j Esj goes into: 

(3.29) 

L-- 1 -1L -X= -:U0 uox = z 
[ d n _ n l 
dx + ~ ¢s(x)Ess- ,\ ~ Es,s+1 X(x, ,\) = 0, 

n 

¢s(x) = L'lj;k(x)wks, 5. = i,\c0w- 112 , 

k=1 

and can be rewritten as the scalar operator 

(3.30) 

where dkX(x, ,\) = dXjdx + ¢k(x)X(x, .A). If ¢k(x) are real functions (additional 
Z2-reduction of the type (2.6) ensures this) then L(n) is a self-adjoint operator. 

REMARK 3.8. The author is aware that these type of derivations need addi-
tional arguments to be made rigorous. One of the real difficulties is to find explicit 
conditions on the potential q(x) that are equivalent to the condition (C.2) or equiv-
alently, to the conditions that m~(,\) have only finite number of simple zeroes. 
Nevertheless there are situations (e.g., the reflectionless potentials) when all these 
conditions are fulfilled and all eigenfunctions of L(,\) can be explicitly calculated. 
Another advantage of this approach is the possibility to apply it to Lax operators 
with more general dependence on,\, e.g., quadratic or polynomial in .A. 

The 'diagonal' of the resolvent 

By the diagonal of the resolvent one usually means R(x, y, .X) evaluated at y = x. 
However the definition (3.3) is not continuous for y = x and needs regularization. 
The simplest possibility is to consider as the diagonal of the resolvent: 

1 
R(x, .X) = 2 (R(x + 0, x, .X)+ R(x, x + 0, ,\)). 

In fact we will consider as the a somewhat more general expression: 

(3.31) 

where P is a constant diagonal matrix. Obviously Rp(x, .X) satisfies 

(3.32) 
.dRp(x, ,\) 
z dx + [q(x)- .XJ, Rp(x, .X)] = [L(.X), Rp(x, .X)] = 0. 
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Thus Rp(x, .\) belongs to the kernel of the operator [L(.\), ·]. Due to the fact that 
x±(x, .\) is the FAS and satisfies a RHP with canonical normalization we find: 

00 

(3.33) Rp(x,.\) =iP+ LR~)(x).\-k. 
k=l 

The coefficients R~)(x) can be expressed through q(x) using the recursion relations 
generalizing the ones of AKNS [2, 18, 37, 27]. These relations are solved by the 
recursion operators A± which have the form: 

(3.34) A±X = ad:J 1 (i~~ + P0 ([qx),X(x)] + i [q(x), i~ dy[q(y),X(y)J]), 

where Po is the projector onto .the off-diagonal part of the matrix P0 X = X6, the 
matrix X(x) in (3.34) satisfies X= PoX and 

(ad -1 Xf) .. - (X6)ij 
J 0 •J - • 

ai- aj 

The coefficients R~)(x) can be expressed in compact form through A± as follows: 

(3.35) R~+H = A±R~f = -Alad:J1 [iP,q(x,t)], 

(3.36) R~)d = i ixoo dy(:Jl- Po) ([q(y, t), R~)fJ) + x.!!~oo R~)d(x, t). 

Quite naturally these coefficients, or rather the diagonal of the resolvent gen-
erates [17, 10, 18]: 

-the class of NLEE. Given the dispersion law, e.g., f(.\) = .\N P of the NLEE 
we can write down the equation itself by: 

( (N))f 
.dq . dRp (N) -

(3.37) -2 dt + 2 dx + P0 ([q(x, t), Rp (x, t)] - 0. 

- the corresponding Lax representations, or in other words, the M -operators 
for each of these NLEE as follows: 

N 

(3.38) v~N)(x,.\) = LR~)(x).\N-k_ 
k=O 

- the integrals of motion of the corresponding NLEE. This follows from 

THEOREM 3.9 ([18]). The quantities 

(3.39) 
k k 

rr(k) =LEss- -11, 
s=l n 

satisfy the relations 

(3.40) 100 
( ± ( ) . (k) ) - d ( ) -oo dxtr R 11(k) x, A J- 2II J --d.\ :Dk A , 

where ::vt(>•) is defined by (2.45). 

Combined with the (3.34) we can deduce that the diagonal of the resolvent and 
the recursion operator 

(3.41) 
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directly reproduce the generating functionals of the conserved quantities. 
The termin 'squared' solutions and recursion operator do not reflect properly 

the algebraic properties of these objects. The recursion operators A± can be under-
stood as the Lax operator L(.>..) in the adjoint representation. One of the definitions 
of the adjoint representation means that we should replace each element U(x, .>..) E g 
by ad u(x,>.)" = [U(x, .>..), ·]. Therefore due to (3.32) we can view the diagonal of the 
resolvent R~(x, .>..) as the eigenfunction of L(.>..) in the adjoint representation. It 
remains to project out the kernel of adJ in order to derive A± from L(.>..). 

The 'squared' solutions are eigenfunctions of A± and belong to a linear space, 
which is the co-adjoint orbit of g+. determined by J. The gauge covariant way to 
introduce them involves the FAS of L(.>..) and is: 
(3.42) 

e~(x,.>..) =Po (x±(x,.>..)EiiX±(x,.>..)), hJ(x,.>..) =Po (x±(x,.>..)H{x±(x,.>..)), 

where x±(x, .>..) are the FAS of L(.>..) GZSs. The similarity transformation by 
x±(x, .>..) is the adjoint action of the group 0 on the algebra g; therefore e;(x, .>..) 
and hJ(x, .>..) are elements again of g. The projection I10 = ad :J1ad J is a natural 
linear operator on g. Besides the 'squared' solutions are analytic functions of .>.. 
having both poles and zeroes at AJ. 

More detailed analysis based on the Wronskian relations reveals several other 
important aspects [36, 19, 30] of the 'squared' solutions of GZSs. First, the sets 

{et(x, .>..), eji(x, .>..)}, et;k(x), eji;k(x), et;k(x), e}i;k(x), i < j, k = 1, ... N} 

and 

i < j, k = 1, ... N} 

form complete sets of functions on !m that realize the mapping !m ~ '!'. Here by 
ej;,;k(x) and ej;,;k(x) we have denoted: 

>-=>-t 
Second, it is possible to expand the potential [P, ad :J 1q(x, t)] and its varia-

tion ad:J 18q(x) over each of the complete sets shown above. The corresponding 
expansion coefficients are expressed through '!' and their variations. These facts 
constitute the grounds on which one can show that the ISM can be understood as 
a generalized Fourier transform. The important difference as compare to the stan-
dard Fourier transform is in the fact that the operator L (as well as the operators 
A±) allows for discrete eigenvalues. Therefore the completeness relations involve 
both integrals along the continuous spectrum and sum over the discrete eigenvalues. 
In the usual Fourier transform the discrete eigenvalues are absent. 

Hamiltonian properties of the NLEE 

Here we briefly formulate the Hamiltonian properties of the NLEE paying more 
attention to its algebraic structure. This has been widely studied problem, see 
[3, 11, 39, 14, 17, 10, 13, 48, 18, 19] and the numerous references therein. 

In doing so we follow mainly the ideas of [39] with a natural generalization 
from sl(2) to sl(n)-algebras. The main idea in these papers is the possibility to 
write down the Lax equation (1.4) in explicitly Hamiltonian form as the co-adjoint 
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action of g on its dual g*. Obviously any non-trivial grading in g (resp. g, g) will 
reflect into a corresponding grading of the dual algebra g* (resp. g*, g*). 

Below we will need also the Cartan-Weyl basis of sl ( n). Choosing for definite-
ness the typical n x n representation we fix it up by: 

(3.43) I)= l.c. {Hi= Eii- Ei+1,i+1• i = 1, ... , n- 1}, 

As invariant bilinear form we can use (X, Y) = tr (XY). Then the commutation 
relations can be written in the form: 

[Hi, Ejk] = (ei- ei+l, ej- ek)Ejk, j f= k, 
(3.44) [Ejk, Ekl] = Ei~, [Ejk, Eli]= -Elk, l f= j, 

k-1 

[Ejk,Ekj] = L,Hs, j < k. 
s=j 

By ek above we mean an orthonormal basis in the n-dimensional Euclidean space 
with a standard scalar product: (ej, ek) = 8jk· Those, who are familiar with Lie 
algebras will recognize ei- ei+1 as the simple roots of sl(n) and the set of ej - ek, 
j f= k as the root system of sl(n). 

If C = 1L (i.e. with the trivial grading) each of the matrices Uk(x) in (1.19) is 
of generic form: 

n-1 
(3.45) Uk(x) = L u)k) Hj + L u);) Eiw 

j=1 #p 

The coefficients u)k)(x), u);)(x) can be viewed as linear functionals on uk(x) and 
thus they belong to g*. Using the bilinear form (1.27) they can be interpreted as 
linear functionals on g and thus as elements also of g*. The algebraic structure on 
g* can be introduced in analogy with the commutation relations (3.44), namely: 

{ (s)( ) (m) ( )} _ ( ) (s+m-p)( )J:( ) ui x , uj,j+k y P - ei- ei+1, ej - ek uj,j+k x u x- y , 

(3.46) {u~:J+k(x),u~:.'k,j(y)t = u~:/m-p)(x)8(x-y), 

{ (s) ( ) (m) ( )} _ (s+m-p)( )J:( ) ui,i+k x , uj+k,i y P - -uj+k,i+k x u x- y , 
i+k-1 

{ u~:}+k(x), u~:'L(y)} = L u~s+m-p)(x)8(x- y) + i8s+m,p8'(x- y). 
p l=i 

The derivation of these relations follows [39] in a rather straightforward manner; 
though a bit tedious, it can be generalized also to any simple Lie algebra. 

Note that if p = -1 then the term with 8'(x- y) disappears and the Poisson 
brackets (3.46) become ultralocal. Then we can rewrite them in a compact form 
using the classical r-matrix [13]: 

(3.47) { U(x, .A)~ U(y, f.L)} _
1 

= [r(.A- f.L), U(x, .A)® 1L + 1L ® U(x, f.L)]8(x- y), 

(3.48) ITo r(.A -f.L) = --, .A-f.L 

n 

ITo = L Eij ® Eii· 
i,j=1 
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The left hand side of (3.47) has the structure of the usual tensor product of n x n 
matrices, but instead of taking the product one should rather take the Poisson 
bracket between the corresponding matrix elements of U(x, A) and U(y, J.L). 

The relations (3.47) are local in the sense that for the evaluation of the left 
hand side of (3.47) we need to use only the Poisson brackets between the matrix 
elements of U(x, A) and do not need the boundary conditions on the potentials. 
The effectiveness of the r-matrix, when it exists, is in the possibility to evaluate 
the Poisson brackets between the matrix elements of the scattering matrix T(A). 
To do this we need to 'integrate' (3.47) which needs to take into account also the 
boundary conditions. For periodic boundary conditions on q(x) this gives: 

(3.49) 

For vanishing boundary conditions on q(x) and J = J* the calculations need some 
additional considerations with the result (see [13]): 

{ T(A) ripT(J.L)} _
1 

= r +(A- J.L)T(A) Q9 T(J.L)- T(A) Q9 T(J.L)r _(A- J.L), 

(3.50) 

From both relations (3.49) and (3.50) there follows that the principal minors mt(A) 
commute with respect to the Poisson brackets (3.46) [19], i.e.: 

(3.51) 

Since ::Dk(A) are the generating functionals of integrals of motion :Dis) (see eq. 
(2.51)), then eq. (3.51) means that all these integrals are in involution with respect 
to these Poisson brackets. 

The Zn-symmetry may modify substantially some of the above results. Indeed, 
it can be viewed as a set of constraints on the phase space 9J1 and on the generic 
Poisson brackets (3.46). Then one should evaluate the corresponding Dirac brackets 
on the reduced phase space. However in the case of the Zn-NLS equation (1.3) with 
Lax operator L given by (1.5), (1.8) somewhat surprisingly the approach of [39] 
gives us directly the correct answer. If we define '1/Jj (x, t) as linear functionals of 
U(x, t, A) = q(x, t)- AJ by: 

(3.52) '1/Jj(x, t) = I.tr (U(x, t, A)Kn-j), 
n 

and make use of (1.8) then the set of Poisson brackets in (3.46) simplify to 

(3.53) 

Together with the Hamiltonian H = w2 M~ 2{ (2.53) they provide the Hamiltonian 
formulation of (1.3). Unfortunately this P~isson brackets are not ultra-local and 
the corresponding Lax operator does not allow classical r-matrix of the form (3.47). 

For the affine Toda chain (1.2) the simplest Poisson brackets are provided by: 

(3.54) 
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The corresponding Lax operator (1.9) unlike the previous case allows classical r-
matrix satisfying (3.47) which however has more complicated dependence on A -11; 
it is known as the trigonometric r-matrix [38]. 

Another special property of the Zn-symmetric CBCs concerns the existence 
of the so-called symplectic basis [25]. The elements of these bases are special 
linear combinations of the 'squared solutions' (3.42) which are also complete in 
9Jt and which are such that the expansion coefficients of oq(x, t) over it produce 
the variations of the action-angle variables of the corresponding set of NLEE. In 
[25] this basis was worked out for the Zakharov-Shabat system related to the sl(2) 
algebra. For GZSs related to algebras of higher rank such basis is yet unknown 
although it must exist since the action-angle variables for them are known [40, 7]. 

For the Zn-symmetric CBCs the construction of the symplectic basis is very 
much like the one in [25] due to the fact that the subalgebras 9v related to each of 
the rays lv are direct sums of sl(2) subalgebras. It is a complete set of functions on 
the phase space of the corresponding Zn-symmetric NLEE (1.1) and (1.2). Skip-
ping the details we just give the explicit expressions for the set 21. of action-angle 
variables of the Zn-NLS equation in terms of the scattering data of its Lax operator. 
Obviously 21. will consists of two sets of functions 21. = 21.0 U 21.1 each set defined on 
the ray lo and h respectively: 

where 

2lo = {7rij(A), ~~;ij(A), 

21.1 = {7rij(A), 1\;ij(A), 

- 1 ( + -) (3.55) 1rij(A)- -;;:In 1 + PijPij , 

A E lo, 
A E h, 

i + j = 2( mod n)} , 
i + j = 1 ( mod n)} , 

and the coefficients aij(A), bij(A) were introduced in (2.30). 
Quite analogous are the expressions for the action-angle variables for the two-

dimensional affine Toda chain provided we use the scattering data of the Lax op-
erator (1.10). 

4. CONCLUSION 

The restricted space did not allow us to give more details or explanations on 
these and related problems. We only mention some of them below. 

One such important to our mind result is the interpretation of the ISM as a 
generalized Fourier transform. In its derivation for the GZSs and CBCs [27, 19, 30] 
both algebraic methods and analytic ones were used. As a result the pair-wise 
equivalence of the symplectic structures in the hierarchy becomes obvious. 

The approach based on the Kac-Moody algebras is a natural basis for the 
Hamiltonian hierarchies. If one can derive a hi-Hamiltonian formulation of a given 
NLEE then there is a whole hierarchy of them related by a recursion operator A. 
Here we mention the paper [15] where the operator A was derived as the 'ratio' of 
two such Hamiltonian structures for the N-wave equations. The result, of course 
coincides with the natural expression for A obtained with the AKNS recursion 
method and whose spectral theory was constructed by other means in [27, 18]. 

The method based on the diagonal of the resolvent of the Lax operator started 
by Gel'fand and Dickey [17, 10] can be viewed also as a formal algebraic one. 
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The authors studied by algebraic means the ring of operators, commuting with L. 
They expressed most of the quantities, including the diagonal of the resolvent of 
L, as series over fractional powers of L and did not investigate the existence and 
convergence of these series. Once identified with the expression (3.31) in terms of 
the FAS these problems find their natural and positive solution. 

Besides the classical r-matrix corresponding to the ultralocal Poisson brackets 
there exist also dynamical r-matrices depending on the fields Qij(x) in the NLEE. 
One of the problems, that is still not solved is to find the interrelation between the 
dynamical r-matrices, rand the recursion operator A. 

Finally, we should mention that both approaches have been further generalized. 
For example, the analytic approach was generalized from a local RHP to a nonlocal 
RHP and to 8-bar problem (also local and nonlocal), see [1, 50, 37]. This allowed 
to treat NLEE of soliton type in 2 + 1 dimensions. 

Another direction is to study Lax operators with more general ..\-dependence 
such as polynomial, or rational [51]. 

Obviously all results concerning spectral decompositions can be formulated in a 
gauge covariant way thus allowing to treat also gauge equivalent NLEE [28, 29, 19]. 

The algebraic approach was also generalized to use as a basis infinite dimen-
sional algebras such as Virasoro algebra, Wl+oo etc. which lead to the important 
construction of the Japanese T-function and its relation to the soliton theory, see 
[32, 14]. 

Thus we just outlined the beginning of all this and so it is time to stop. 
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Appendix A. Gauss decompositions 

The Gauss decompositions mentioned above have natural group-theoretical in-
terpretation and can be generalized to any semi-simple Lie algebra. It is well 
known that if given group element allows Gauss decompositions then its factors are 
uniquely determined. Below we write down the explicit expressions for the matrix 
elements of r±(..\), s±(..\), D±(..\) through the matrix elements ofT(..\): 

(A.1) r- (..\) ' ' .. ·' 1 - ' P 1 { 1 2 . 1 }(j) 
pj mj(..\) 1, 2, ... , j- 1, j T(.X)' 

(A.2) A (-1)i+P { 1, 2, ... 'p, ... ' j }(j-1) 
rj-;, ( ..\) + ( ) 1 2 · 1 mj-1 ..\ ' ' · · ·' p, · · ·' J - T(.X) 

(A.3) 
(-1)P+j { 1 2 ... , p, J. 1 }(j) s+.(..\) = , , ... , -

PJ mj_1 (..\) 1, 2, ... ' p, ... ' j T(.X) ' 

(A.4) sf(..\) = --- , , .. ·, J - , J 1 { 1 2 . 1 . }(j-1) 
JP mj(..\) 1, 2, ... , j- 1, p T(.X) ' 
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(A.5) r+(>,) = p, J + 1, ... ' n- 1, n 1 { . }(n-j+l) 

PJ m;;-_J+l (.X) j, j + 1, ... , n- 1, n T(>.) 

(A.6) f+ (> .. ) = - J, J + ' ... ' p, ... ' n ( l)P+J { . . 1 - }(n-j) 

JP mn_j(.X) j + 1, j + 2, ... , p, ... , n T(>.) ' 

(A.7) 
( l)p+j { · 1 · 2 }(n-j) S~(.X) = - J ~ '~ + ' ... '~' ... ' n ' 
m;;-_j(.X) J, J + 1, ... , p, ... , n T(>.) 

(A.8) S~ ( ') J, J + , ... , n- , n 1 { · · 1 1 }(n-j+l} 
;;, A = ----

m;;-_j+l(A) p, j + 1, ... , n -I, n T(>.) 

where 

(A.9) 

Tid1 Tikh · · · Tidk 

is the minor of order k of T(.X) formed by the rows i1, i2 , ... , ik and the columns 
j1, j2, ... , ]k; by p we mean that pis missing. 

From the formulae above we arrive to the following 

COROLLARY A. I. In order that the group element T(.X) E SL(n, C) allows the 
first (resp. the second) Gauss decomposition (2.16) is necessary and sufficient that 
all upper- (resp. lower-) principle minors mt(.X) (resp. m;(.X)) are not vanishing. 

These formulae hold true also if we need to construct the Gauss decomposition 
of an element of the orthogonal SO(n) group. Here we just note that if T(.X) E 
SO(n) then 

(A.IO) S0 (T(.X))TS01 = r- 1 (.X), 
where 

(A.ll) 

no 

no 
So= z)-I)k+l(Ek,n+l-k +En+l-k,k), if n = 2no, 

k=l 

So= 2::) -I)k+l(Ek,n+l-k + En+l-k,k) + ( -l)no Eno+l,no+l> if n = 2no + 1. 
k=l 

One can check that if T(.X) satisfies (A.IO) then each of the factors r±(.X), s±(.X) 
and D±(.X) also satisfy (A.IO) and thus belong to the same group 0. In addition 
we have the following interrelations between the principal minors of T(.X): 

mj(.X) = m~_j(.X), for SO(n), 
(A.12) mj(.X) = m~_j(.X), for SP(n), 

Appendix B. Dispersion relations for 1:>k(.X) and ln mt,k(.X) 

Let us introduce the functions tt" (.X): 

! +(.X)= mt(.X) 
k Rk(.X)' 
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which like mt(A) are: i) analytic for A E C±; ii) satisfy lim;._.00 fr(A) = 1. Besides, 
fr(A) have no zeroes in their regions of analyticity and therefore the functions 
lnfk(A) are analytic for A E C± and tend to 0 for A---+ oo. This allows one to apply 
the Plemelji-Sokhotzky formula with the result: 

(B.l) - - 1 100 df..L ( + - ) 1Jk(A)- -2 . --, ln fk (J..L)fn-k(J..L) , 
7rZ _ 00 f..L- A 

where 

(B.2) 

It remains to insert the above definitions of fr(A) into (B.l) and (B.2) to derive 
Eqs. (2.45), (2.46). 

The dispersion relation (2.50) is derived analogously treating the integral 

(B.3) J(A)=f(-~~-1 i ~Aln{m~k(J..L)rrft(J..L=~~k)b~.j}· 
v=l "Yi J..L 7)=1 j=l f..L J,k 

with A E 0.., and the contours 'Yi as in (3.22). 
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Differential Forms, Spectral Theory, and Boundary Value 
Problems 

A.S. Fokas 

ABSTRACT. We review a new method for studying boundary value problems 
for integrable PDEs in two dimensions. Examples of integrable PDEs are 
linear PDEs with constant coefficients and the usual nonlinear integrable PDEs 
such as the Korteweg-deVries equation. The starting point of the method is 
formulating the given PDE as the condition that an appropriate differential 
1-form W(x1, x2, k), k E IC, is exact. The fundamental properties of an exact 
form W are the existence of a 0-form, and the vanishing of the integral of W 
around a closed contour. The spectral analysis of the associated 0-form gives 
rise to a Riemann-Hilbert (RH) problem with explicit exponential (x1, x2) 
dependence, while the vanishing of the integral of W around the boundary of 
the domain gives rise to a global relation. The RH problem and the global 
relation form the basis of this method. As illustrative examples, we discuss 
boundary value problems for: {a) an evolution equation with third order spatial 
derivative on the half-line; {b) the modified Helmholtz equation on a convex 
polygon; (c) the defocusing nonlinear Schriidinger equation on the half-line. 

1. Introduction 

A general approach to solving boundary value problems for two-dimensional 
integrable PDEs was announced in [1] and developed in several publications, see 
the review [2]. Examples of integrable PDEs are linear PDEs with constant coeffi-
cients and the usual nonlinear integrable PDEs such as the nonlinear Schrodinger 
equation. 

This method provides a unification as well as a significant extension of the fol-
lowing topics: (a) The classical integral transform and Green's function methods 
for solving linear PDEs and several of their variants such as the Wiener-Hop£ tech-
nique; (b) the integral representation of the solution of linear PDEs in terms of the 
Ehrenpreis fundamental principle; (c) the inverse scattering method for solving ini-
tial value problems for nonlinear integrable evolution equations. In addition it has 
interesting implications for: (A) The numerical solution of linear elliptic PDEs; (B) 
the spectral theory of linear differential operator; (C) the investigation of nonlinear 
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non integrable PDEs. It has already been used by more than forty researchers for 
the analysis of boundary value problems for linear evolution equations with spa-
tial derivatives of arbitrary order, for linear elliptic PDEs including the Laplace, 
the bi-harmonic and the modified Helmholtz equations, and for several nonlinear 
integrable PDEs. These boundary value problems are formulated either in a polyg-
onal domain or in a time dependent domain. Applications include fluid mechanics, 
acoustics, elasticity, pattern formation and statistical mechanics. 

We first present a brief review of the topics (a)- (c) mentioned above, then 
we introduce the new method, and then discuss its relation with (a)-(c) and with 
(A)-( C). 

A. Transform methods for linear PDEs 
The proper transform for a given boundary value problem is specified by the 

PDE, by the domain, and by the boundary conditions. For some simple boundary 
value problems, there exists an algorithmic procedure for deriving the associated 
transform, see for example [3], [4]. This procedure is based on the analysis of either 
of the two ODE's obtained by separation of variables and it involves constructing 
the Green's function of a single eigenvalue equation and of integrating this Green's 
function in the complex k-plane, where k denotes the eigenvalue. An alternative 
procedure, based on a Riemann-Hilbert (RH) or ad-bar problem, has been recently 
introduced in [5]. 

ODE in x1 

1 
x 1 - trasnform 

Separation of Variables 
1 

2 ODEs 

FIGURE 1.1 

ODE in x2 
1 

x2 - trans farm 

For an evolution equation, the proper transform for the initial value problem on 
the line is the Fourier transform. The proper transform for the Dirichlet problem 
on the half-line for an evolution equation with second order spatial derivative, is 
the sine transform: 

ExAMPLE 1.1. Let w(k) be a polynomial of order n with real coefficients. 
The solution of the initial value problem 

(1.1) 
(at+ iw( -iax))q(x, t) = 0, -oo < x < oo, t > 0, 

q(x,O) = q0 (x) E Hii(IR), 

where ii = n/2 for n even, ii = (n + 1)/2 for n odd, is given by 

(1.2a) q(x, t) = 2~ I: eikx~iw(k)tiio(k)dk, 
(1.2b) iio(k) =I: e~ikxqo(x)dx. 

EXAMPLE 1.2. The solution of the initial value problem 

(1.3) 
iqt + qxx = 0, 0 < X < oo, t > 0 

q(x, 0) = qo(x) E S(JR+), q(O, t) = go(t) E C 1 
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is given by 

(1.4a) 

(1.4b) 

q(x, t) = ~ 1= sin(kx)e-ik2t (io(k) + ik 1t eik2 r go(r)dr) dk, 

iio(k) = 1= sin(kx)qo(x)dx. 

REMARK 1.3. 
• Equation (1.2a) provides the spectral decomposition of q(x, t). Indeed, 

this equation involves (x, t) in an explicit exponential form, and it also 
involves the spectral function ij0 ( k). This is to be contrasted with equation 
(1.4a) where the initial condition q0 (x) gives rise to the spectral function 
ij0 (k), but the boundary condition go(t) gives rise to J~ exp(ik2r)go(r)dr 
which is a function of both k and t. 

• The explicit exponential dependence on (x, t) of equation {1.2a) implies 
that it is straightforward to compute the large t behavior of equation 
(1.2a). The analogous computation for equation (1.4a) is less straightfor-
ward. 

• For an applied mathematician, the derivation of equations {1.4), consti-
tutes the solution of the problem, but for an analyst it is just the first 
step. Indeed, the rigorous investigation of the above IBV problem in-
volves the following: Given q0 (x) define ij0 (k) by equation {1.4b); given 
iio(k) and go(t), define q(x, t) by equation (1.4a). Then prove that q(x, t) 
solves equation (1.3) and that q(x, 0) = q0 (x), q(O, t) = g0 (t). The proof 
of the former equality is a direct consequence of the sine-transform but 
the proof of the latter equality is less straightforward since the relevant 
integral is not uniformly convergent at x = 0. 

• The transform method has been enormously successful for solving a great 
variety of initial and boundary value problems. However, for sufficiently 
complicated problems the classical transforms fail. For example, there 
does not exist an x-transform for solving evolution equations with a third 
order derivative on the half line, such as 

{1.5) Qt + Qx + Qxxx = 0, 0 < X < 00, t > 0; 
in this case there exists a t-transform (the Laplace transform) but it in-
volves solving a cubic algebraic equation, and also assumes boundary con-
ditions which decay as t --t oo (otherwise one has to use certain causality 
arguments). 

Similarly there do not exist proper transforms for solving BVP's for 
elliptic equations even of second order and in simple domains. The fail-
ure of transforms led to the development of several ingenious but ad-hoc 
techniques, which include conformal mappings for the Laplace and the 
bi-harmonic equations, as well as the formulation of the Wiener-Hop£ fac-
torization problem [6]. 

B. Euler-Ehrenpreis-Palamodov representations 
There exist appropriate generalizations of the Fourier transform which are ca-

pable of capturing the general solution of linear PDEs in a smooth convex domain 
[7], [8]. An elementary implication of this general result is that there exists a mea-
sure dp(k) such that the solution of any IBV problem of equation (1.1) on the half 
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line is given by 

(1.6) q(x, t) = i eikx-iw(k)tdp(k), 

where Lis an appropriate curve in the complex k-plane. However, in general it is 
not clear how to compute dp( k), although recently some progress has been made 
for some particular types of domains [9], [10]. 

As a verification of the above result we note that it is possible to rewrite 
equation (1.4a) in the form (1.6) where dp is supported on the real axis and on the 
positive imaginary axis. 

C. The Inverse Scattering Transform 
There exist nonlinear evolution equations, whose initial value problem on the 

line can be solved by a certain nonlinear Fourier transform called the inverse scat-
tering transform [11], [12]. 

EXAMPLE 1.4. (The defocusing NLS) 

(1.7) 
iqt + Qxx - 2lql 2q == 0, -()() < X < 00, t > 0 
q(x, 0) = qo(x) E S(IR). 

This initial value problem can be solved by the inverse scattering transform pair. 
However, this pair, in contrast to the Fourier transform pair, cannot be written in 
terms of explicit integral representations. Instead, the map 

qo(x) ___. iio(k) 
is defined via the solution of a linear Volterra integral equation, and the inverse 
map, 

iio(k) ___. qo(x) 
is defined via the solution of a matrix RH problem [13]. 

Recall that the separation of variables of a linear evolution equation gives rise to 
two ODE's. The spectral analysis of the x-ODE gives rise to the Fourier transform. 
The distinctive property of an integrable nonlinear PDE is that it can also be 
associated with two ODE's (called the Lax pair [14]); the spectral analysis of the 
x-ODE (i.e. of the x-part of the Lax pair) gives rise to the inverse scattering 
transform pair. 

The evolution of ij(k, t) is determined by the nonlinear PDE itself, or equiva-
lently by the t-part of the Lax pair. 

REMARK 1.5. 
Consider the linearized version of equation (1.7), i.e. equation (1.3). The two 

ODEs obtained by separation of variables of this equation are 

(1.8) [)2 ~~~'.A) - .AX(x, .A) = 0, aT~; .A) - i.AT(t, .A)= 0. 

It turns out that equation (1.3) can also be associated with two other ODEs which, 
in analogy with the nonlinear PDE (1.7), we call a Lax pair [15] 

(1 9) af-l .k af-l ·k2 . k . ax - z f.-l = q, at + z f.-l = ZQx - q. 

There exist two different ways of obtaining the Fourier transform. The classical 
one involves analyzing equation (1.8a), while the alternative one involves analyzing 
equation (1.9a) [15]. We emphasize that it is only the latter analysis that can be 
generalized to the nonlinear equation (1. 7). This suggests that perhaps equations 
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(1.9) are more fundamental than equations (1.8). It will be shown in this paper that 
this is indeed the case. In this relation we note that, just like the Fourier transform, 
the sine transform can also be obtained by analyzing either of equations (1.8a) or 
(1.9a). However, if one wants to obtain the Ehrenpreis form of the solution of the 
IBV of Example 1.2, then one must analyze both equations {1.9} simultaneously. 
This suggests another reason why equations (1.9) are more fundamental than equa-
tions (1.8): They provide the appropriate framework for performing a novel type of 
analysis, namely the simultaneous spectral analysis of compatible linear equations. 
It turns out that differential forms provide a most convenient formalism for this 
purpose. 

D. A New Method 
DEFINITION 1.6. An equation in two dimensions (x~, x2) is called integrable if 

and only if it is equivalent to the condition that an appropriate differential 1-form 
W(x~,x 2 , k) is closed, where k E C. 

For linear PDEs with constant coefficients, W can be found algorithmically, 
see Appendix A. For nonlinear integrable PDEs the existence of W is a direct 
consequence of the Lax pair. 

EXAMPLE 1.7. Equation (1.5) is associated with the closed form W, 

(1.10) W = e-ikx+iw(k)t { qdx- [qxx + ikqx + (1- k2 )q]dt}, w(k) = k- k3 . 

Indeed, if e = exp[-ikx + iw(k)t] then 

dW = ( eq)tdt 1\ dx - { e[qxx + ikqx + (1 - k2)q]} x dx 1\ dt 

( ( eq)t + { e[qxx + ikqx + (1 - k2 )q]} x) dt 1\ dx 
= e[qt + qxxx + qx]dt 1\ dx. 

Thus dW = 0 iff q satisfies equation (1.5). 
The fundamental properties of an exact differential1-form Ware the existence 

of a 0-form p,C 0 l(x~, x2, k), and the vanishing of the integral of W around a closed 
contour. These two properties form the basis of the new method. Indeed: 

(1). The spectral analysis of the associated 0-form yields the solution q(x~, x2) 
in terms of the solution of either a Riemann-Hilbert problem or a d-bar problem. 
These problems are formulated in the complex k-plane and are determined in terms 
of a certain function of k called the spectral function and denoted by q(k). This 
function in turn is defined in terms of the boundary values of q(x~, x2) and of 
its derivatives. Since for a well posed boundary value problem only some of the 
boundary values are prescribed as boundary conditions, part of q(k) is unknown. 

(2). The vanishing of the integral of W around the boundary of the given 
domain gives rise to a simple global algebraic relation satisfied by the spectral func-
tion. The analysis of this relation determines the unknown part of the spectral 
function in terms of the given boundary conditions. For linear PDEs, the relevant 
Riemann-Hilbert and d-bar problems can be solved in closed form, thus step (1) 
yields an explicit integral representation of q(x~, x2) in terms of the spectral func-
tion. For nonlinear integrable PDEs the investigation of the solvability of these 
problems must be carried out for each equation separately: 

The constructions (1) and (2) are summarized in Figure 1.2. 
The most difficult step of the methodology outlined above is the analysis of the 

global relation. It turns out that for linear evolution equations in {0 < x < oo, t > 
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0} [16] or in {0 < x < 1, t > 0} [17], this step involves only algebraic manipulations; 
for linear evolution equations in the time-dependent domain {l(t) < x < oo, t > 0} 
[18], it involves solving a system of linear Volterra integral equations; for linear 
elliptic equations in a polygonal domain, it involves either algebraic manipulations, 
or solving an auxiliary matrix Riemann-Hilbert problem [19]-[23]; for nonlinear 
integrable evolution equations in {0 < x < oo, t > 0} [24]-[25] or {0 < x < 1, t > 0} 
[26], it involves solving a system of nonlinear Volterra integral equations. 

We now discuss the relation of the new method with the three topics (a)-( c) 
reviewed earlier. 

Given a PDE: 
Construct W(x1, x2, k) 

/ "" dfl,(O) = W 

Given a domain 0: 
the spectral analysis of f.L(O) 

l 

§W =0 

.f =fan 
l 

q(x1,x2) in terms of ij(k) 
and 

algebraic relation for ij( k) 
Given BCs: 

l ij( k) in terms of the 
boundary values the unknown part of ij(k) 

of q and its derivatives 

FIGURE 1.2 

(a). Suppose that q(x1,x2) satisfies a linear PDE. The existence of the differ-
ential 1-form W(x1, x 2 , k) is equivalent to the existence of a Lax pair. Performing 
the spectral analysis of the x 1-part of the Lax pair corresponds to constructing an 
x 1-transform, similarly performing the spectral analysis of the x2-part corresponds 
to constructing a x 2-transform. The advantage of the 1-form W is that it provides 
the tool for performing the simultaneous spectral analysis. This gives rise to a new 
transform, which in contrast to both the x 1 and x 2-transforms is "custom made" 
for the given PDE and the given domain. In this sense the new method provides 
the synthesis of separation of variables. 

Suppose that q( x 1 , x 2 ) satisfies a linear PDE in a convex polygon. In this 
case, step (1) yields for q(xb x 2 ) an integral representation in the complex k plane, 
which has an explicit x 1 and x2 dependence in the form of an exponential and which 
involves the spectral function ij(k), k E <C. This function can be computed by ana-
lyzing the global equation. For evolution equations and for elliptic equations with 
simple boundary conditions, this involves the solution of a system of algebraic equa-
tions, while for elliptic equations with arbitrary boundary conditions, it involves 
the solution of an auxiliary Riemann-Hilbert problem. For simple polygons, this 
Riemann-Hilbert problem is formulated on the infinite line, thus it is equivalent to 
a Wiener-Hopf problem. This explains the central role played by the Wiener-Hopf 
technique in many earlier works. 

(b). For linear equations in a convex domain, the explicit x 1 , x2 dependence 
of q(x1, x2 ) is consistent with the Ehrenpreis formulation of the solution. Thus 
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this method provides the concrete implementation as well as the generalization to 
concave domains of this fundamental principle. 

(c) An important advantage of the new method is that it can be nonlinearized. 
Indeed, the results for linear PDEs obtained by this method can be generalized to 
integrable nonlinear PDEs. In the nonlinear case, the relevant RH and d-bar prob-
lems cannot be solved in closed form. However, their (x1 , x2 ) dependence is of the 
same exponential form as the one occurring in the associated linear equations. In 
this sense, the new method provides the nonlinearization of the Ehrenpreis princi-
ple. For the Cauchy problem, the solution representation obtained by this method 
coincides with the one obtained by the inverse scattering transform. 

Regarding (A)-(C) we note: 
(A) A numerical method 
The new method has led to the formulation of a new numerical scheme for 

solving elliptic PDEs. This is based on the numerical solution of the global relation 
[27]-[28]. 

(B) Spectral Theory 
The new method has motivated the study of certain classes of linear differential 

operators which in general are non-self-adjoint. In these studies the RH and the 
d-bar problems play a crucial role [5]. 

(C) Nonlinear non-integrable PDEs 
It should be emphasized that although this method is directly applicable only 

to integrable PDEs, it nevertheless has important implications for non integrable 
PDEs. Indeed, by formulating such equations as "forced" linear PDEs and by 
combining the new method with standard PDE techniques, it is possible to prove 
the well posedness of boundary value problems for a large class of nonlinear PDEs 
[29]. 

This paper is organized as follows: In §2 we solve an initial-boundary value 
problem for equation (1.5). In §3 we first present the formulae for q(x1 , x2 ) and 
for ij(k) associated with the modified Helmholtz equation in an arbitrary convex 
polygon, and then discuss boundary value problems for the semi-strip. In §4 we 
discuss the defocusing nonlinear Schrodinger equation on the half-line. 

2. Linear Evolution PDEs on the Half-Line 

We will illustrate the three steps needed for the rigorous implementation of 
the method by using equation (1.5). This equation is a particular case of equation 
(1.1), where 

(2.1) w(k) = k- k3 .label2.1 

Equation (1.1) is analyzed in [16]. 
THEOREM 2.1. Let q(x, t) satisfy 

qt + qx + qxxx = 0 0 <X< 00, 0 < t < T 

q(x,O) = qo(x) E H 2 (JR+), q(O,t) = go(t) E H 1 ([0,T]), qo(O) = go(O) 

where T is a positive constant. The unique solution of this IBV problem is given by 

(2.2) q(x, t) = __!__ loo eikx-iw(k)tijo(k)dk + __!__ { eikx-iw(k)tg(k)dk, 
211' -oo 211' J {)D+ 
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where the curve aD+ and the spectral function ij(k) = {iio(k),g(k)}, are defined as 
follows: 

(2.3) aD+: Imw(k) = 0, Imk > 0. 

(2.4) 

(2.5) 

(2.6) 

v1(k), v2 (k) are the two nontrivial roots ofw(k) = w(v(k)). 
The rigorous investigation of the above IBV problem involves the following 

steps, see [16] for details. 
Step 1 Assuming existence: (a) construct the integral representations for q(x, t) 

and for ij( k); (b) find the global relation. 
(a) For linear equations there exist several ways of obtaining the relevant rep-

resentations. The simplest one is to use the Fourier transform and contour defor-
mation, see [30] and Appendix B. Among these different approaches, the only one 
which nonlinearizes is the one based on the spectral analysis of the equation 

(2.7) d ( e-ikx+iw(k)tJ.L(X, t, k)) = W(x, t, k). 

This approach will be illustrated in §4 as an introduction to the analysis of the 
NLS. All of these approaches imply that q(x, t) is given by equation (2.2) where 
ij0 (k) is defined by equation (2.4), while g(k) is defined by 

(2.8) g(k) = (1- k 2 )9o(k) + ik[J1(k) + fJ2(k), 

(2.9) 

and 

(2.10) 

(b) The equation 

g1(t)=a:j,q(O,t), j=0,1,2. 

J W(x,t,k)=O, lao 
where an is the boundary of the domain {0 < X < oo, 0 < t < T} yields, see 
Figure 2.1, 

(2.11) iio(k) + g(k) = eiw(k)T c(k), 

where 
c(k) = 1= e-ikxq(x,T)dx, Imk ~ 0. 

Step 2. Assuming the validity of the global relation, prove existence: Namely 
assume that there exist functions Qo(x), {gj(t)}~, such that the functions ij(k) and 
g(k) defined by equations (2.4}, (2.8}, (2.9}, satisfy equation (2.11}, where c(k) is 
some function holomorphic for Imk < 0 and of 0(1/k) ask -+ oo. Then prove 
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X 

FIGURE 2.1 

that if q(x, t) is defined by equation (2.2}, (a) q(x, t) solves equation (1.5}; (b) 
q(x, 0) = qo(x); otq(O, t) = 9i(t), j = 0, 1, 2. 

The proof of (a) is a direct consequence of the exponential dependence of 
(x, t). The proof of (b) follows from the fact that exp( -iw(k)t)g(k) is analytic 
and bounded in D +, 

D+ = {k E C, lmw(k) > 0, lmk > 0}. 
The proof of (c) is based on the global relation and on appropriate contour defor-
mations. 

Step 3. Given boundary conditions, analyze the global relation 

FIGURE 2.2 

Using the definition of fJ(k), the global relation (2.11) becomes 

(2.12) t1o(k) + (1 - k2 )flo(k) + ikfJ1 (k) + fJ2 (k) = eiw(k)T c(k ), lm k :::; 0. 
The crucial observation is that fli(k), j = 0, 1, 2, depend on k only through w(k). 
Thus these functions are invariant if k ~ v(k), where v(k) is defined by 

w(k) = w(v(k)). 
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This equation has two nontrivial roots: If v1(k) E D1 then kED+, and if v2(k) E 
D2, then kED+· Thus evaluating equation (2.12) at v1(k) and v2(k) we find 

iio(vj(k)) + (1- vJ(k))9o(k) + ivj(k)91(k)_+ 92(k) = 

= eiw(k)T c(vj(k)), j = 1, 2, kED+. 
Solving these two equations for 91 ( k), 92 ( k) and substituting the resulting expres-
sions in equation (2.8) we find that 9(k) is given by equation (2.5) plus an addi-
tional term involving eiw(k)T multiplied by a certain combination of c(v1(k)) and 
c(v2(k)). However, this additional term does not contribute to q(x, t). Indeed, 
exp[ikx + iw(k)(T- t)], as well as c(vj(k)), are bounded and analytic forkED+, 
thus Cauchy's theorem implies that this additional term vanishes. 

REMARK 2.2. Let 9(k, t) be defined by equation (2.5) where 9o(k) is replaced 
by 

9o(k, t) =fat eiw(k)r 9o(T)dT. 

It is straightforward to show that q(x, t) is also given by an expression similar to 
the rhs of equation (2.2) where 9(k) is replaced by 9(k, t). This is consistent with 
causality. 

REMARK 2.3. The representation (2.2) is very convenient for computing the 
asymptotic properties of q(x, t). These include the long time asymptotics [31] as 
well as the small dispersion limit [32]. 

3. Linear Elliptic PDEs 

It is shown in appendix A that the equation 

(3.1) Qzz + aq = 0, z = x + iy, a constant 

is associated with the closed differential 1-form 

(3.2) ·k ;"'- ( ia ) W(z, z, k) = e-• z-kz qzdz- kqdz . 

If equation (3.1) is valid in a convex polygon n, it is straightforward using equation 
(3.2) to construct the integral representations for q(z, z) and for ij(k) [33]. If a is 
positive, the relevant contour in the complex k-plane consists of a union of rays and 
of circular arches; if a is negative the contour involves only rays. For simplicity we 
consider the latter case. 

PROPOSITION 3.1. Let q(z, z) satisfy 

(3.3) 

0 is a bounded convex polygon specified by Z1, Z2, · · · , Zn: 

on side (j) : 
(3.4) 

where {/3j, '/'j }]' are constants, {gj }1 are smooth functions; and q8 , QN denote the 
tangential, normal derivatives. Assume that there exists a smooth global solution. 
Then q(z, z) is given by 

( -)- 1 Ln 1 ikz-;"'2 z• (k)dk q z z -- e k g· -
' 2rri . 1 k ' j=l lJ 

(3.5) zEn 
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z. 
j+l 

(j) 

FIGURE 3.1 

79 

where the contours {lj}1 and the spectral function g(k) = {fJj}1, are defined as 
follows: lj is the ray from 0 to oo making an angle - arg(zj - ZJ+I) with the real 
k-axis; 

(3.6) 

Furthermore, the spectral function satisfies the global relation 
n 

(3.7) :~:::)j(k) = 0, k E C. 
j=l 

The derivation of equations (3.5), (3.6), using the spectral analysis of the equa-
tion 

(3.8a) d ( e-ikz+ ;'k2 z Jt) = W 

is given in [33]. Equation (3.7) is a direct consequence of 

(3.8b) 1 w = 0; Ian 
an alternative derivation of equations (3.5), (3.6) is given in [34] using the funda-
mental differential form, which is a slight generalization of W. 

REMARK 3.2. If f2 is an unbounded polygon with Zl = Zn = oo, then the 
summation in equations (3.5), (3.7) are only upton -1; also equation (3.7) is not 
valid for all k but only in a. certain domain of the complex k-plane [33]. 

REMARK 3.3. The above proposition is step 1 of the new method. Step 2 is 
also valid, namely it is possible to show that the global relation (3.7) is not only a 
necessary but also a sufficient condition for existence [27]. However, step 3, namely 
the analysis of the global relation, is now more complicated: In general it involves 
the formulation of an auxiliary matrix RH problem; for some simple polygons and 
for simple boundary conditions this RH problem can either be solved in closed form 
or can be bypassed and g(k) can be computed via the algebraic manipulation of 
the global relation. 

EXAMPLE 3.4. 
Let q(z, z) satisfy equation (3.3) in the semistrip {0 < x < oo, 0 < y < l} 

depicted in Figure 3.2 with the boundary conditions (3.4) on each side. It is shown 
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y 

X 

FIGURE 3.2 

in [22] that for arbitrary values of (3j, '"'/j, the spectral function can be computed 
via a 2 x 2 matrix RH problem. However, if either of the conditions 

(3.9a) (2a2 -'"'!~)sin 2(31 = br - 2a2) sin 2(32, 

or 

(3.9b) 

are valid, then the RH problem becomes triangular and can be solved in closed 
form. If both equations (3.9) are valid then the part of g(k) contributing to q(z, z) 
can be found via the algebraic manipulation of the global relation. 

The derivation of the above results can be found in [22]. Here we only note 
that just as in the case of linear evolution equations, the invariant properties of the 
global relation play a crucial role: Using the definition of gj (equation (3.6)), the 
boundary conditions (equation (3.4)), and integration by parts, it follows that each 
gj involves an unknown function. Using that on the sides (1), (2), (3), z is given 
by x, iy, x + il, it follows that these unknown functions are given by 

rl 2 
\li2(k) = Jo eky+ak Yq2(y)dy, 

\li3( -ik) = ~o= e-ikx+ '~ 2 xq3(x)dx, 

where q1(x) = q(x, 0), q2(y) = q(O, y), q3(x) = q(x, l). Thus the global relation (3.7) 
becomes a relation with known coefficients among 

(3.10a) 

The complex conjugate and the transformation k ----t k of this relation yields a 
relation among 

(3.10b) 

Equations (3.10) involve the unknown vector functions 

{\lil ( -ik), \lil(ik)}, {\li2(k), \li2(k)}, {\li3( -ik), \li3(ik)}. 
The first and the third unknown vectors are invariant under the transformation 
k ____, -k. Thus we supplement equations (3.10), with the equations obtained from 
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(3.10) by the substitution k---+ -k. We denote these equations by (3.10)'. The 4 
equations (3.10) and (3.10)' are the basic equations needed for the determination 
of the unknown functions \]! j • 

Both equations (3.10) are valid for k E ~; eliminating W2(k) from these two 
equations we obtain a relationship between W1 (±ik) and W3(±ik). Using the substi-
tution k---+ -kin this equation (or equivalently eliminating w2( -k) from equations 
(3.10)') we obtain a second relation between w1 (±ik) and w3(±ik). These two 
relations together with the fact that { \]! j ( ik), \]! j ( -ik)}, j = 1, 3 are sectionally 
holomorphic functions with a cut along the real axis, and of 0(1/k) as k ---+ oo, 
define a 2 x 2 matrix RH problem. 

4. Integrable Nonlinear Evolution Equations on the Half-Line 

The rigorous implementation of the new method to the nonlinear Schrodinger 
(NLS) equation on the half line is presented in [24]. The Korteweg-deVries (KdV) 
equation with dominant surface tension, and the sine-Gordon (sG) equation in 
laboratory coordinates can be treated similarly [25]. In what follows we discuss the 
three steps (analogues to the three steps presented in §2) needed for the analysis of 
the defocusing NLS equation on the half line: 

(4.1) iqt + Qxx- 2lql2q = 0, 0 <X< 00, 0 < t < T 

(4.2) q(x, 0) = q0 (x) E 8(~+), q(O, t) = g0 (t) E C1 (0, T), q0 (0) = g0 (0), 
where T is a given positive constant. 

Step 1. Assuming existence: (a) Construct the integral representations of 
q(x, t) and of the spectral function q(k); the former involves the formulation of a 
RH problem and the latter involves the solution of certain linear Volterra integral 
equations. (b) Derive the global relation satisfied by q(k). 

If A is a 2 x 2 matrix, define G-3A by [a3 , A], a3 = diag(1, -1); then it follows 
that 

e&a A= eaa Ae-aa. 

Step 1 is based on the fact that the defocusing NLS equation (4.1) is equivalent 
to 

(4.3) 

where J-L is a 2 x 2 matrix, and the differential lform W is defined by 

(4.4) W = e(ikx+2ik2 t)&a ( Q(x, t)J-L(X, t, k)dx + Q(x, t, k)J-L(X, t, k)dt), 

(4.5a) ( 
0 q(x, t) ) 

Q(x,D= , 
q(x, t) 0 

(4.5b) Q(x, t, k) = 2kQ- iQxa3 - ilql 2a3. 

The derivation of (a) involves the spectral analysis of equation (4.3). For pedagog-
ical reasons we first consider the spectral analysis of the equation 

(4.6a) d (eikx+ik2 tJ-L(x,t,k)) = W(x,t,k), k E C, 

(4.6b) W(x, t, k) = eikx+ik2t(qdx + (iqx + kq)dt), 
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which corresponds to the linearized version of equation (4.1), i.e. to equation 

iqt + qxx = 0. 

Performing the spectral analysis of equation ( 4.6a) means: Construct a function 
J.L(X, t, k) which for (x, t) E n = {0 < X < oo, 0 < t < T}, is bounded ink for all 
k E C. 

We claim that such a J.L is given by 

llJ 
Rek 

ll2 

FIGURE 4.1 

/Ll 1r ~ arg k ~ 3; 

(4.7) J.L = /L2 3; ~ arg k ~ 21r 

/L3, Im k;::: 0 

Indeed, equation (4.6a) implies 

(4.8) J.L*(x, t, k) = e-ikx-ik2t W(~, T, k), l (x,t) 

(x. ,t.) 

where (x*, t*) is any point in the domain n. 

T r----------------------

· (x,t) 

0 

FIGURE 4.2 

The properties of J.L with respect to k depend on the particular choice of (x*, t*). 
It was shown in [33] that if n is a polygon there exists a canonical way of choosing 
(x*, t*), namely the corners of the polygon n which we denote by (xj, tj)· The 
collection of the corresponding functions /Lj define a function J.L = {J.Lj }f which is 
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sectionally holomorphic in the complex k-plane. In this particular example, there 
exist three corners, 

Thus we define f..Ll, J.L2, J.L3 , and we also choose the contours shown in Figure 4.3 

t t 
T 1-------.... T f-------e 
~ (x,t) t (x,t) 

llt ll2 

t 
T 

~ 
(x,t) 

FIGURE 4.3 

Equation (4.8) involves the exponential exp[ik(~- x) + ik2(T- t)]. In the case 
of f..Ll, 

~ - x :::; 0 and T - t 2 0; 
thus the exponential is bounded in the intersection of arg k :::; 0 and of arg k E 
[0, 1r /2] U [1r, 37r /2], i.e. in 1r ::=; arg k ::=; 37r /2. Thus f..Ll is bounded and analytic for 
1r < arg k < 37r /2. Similarly for f..L2, f..L3· 

These considerations together with the estimate J.L = 0(1/k), k -+ oo (which 
follows from equation (4.8)), imply that J.L is a sectionally holomorphic function in 
C\{~Ui~-}. Equation (4.8) implies that the "jumps" of J.L are of the "Ehrenpreis 
form" exp[-ikx- ik2t]p(k). For example 

( t k) ( t k) -ikx-ik2 t A (k) f..L2 x, , - f..Ll x, , = e g , 

g(k) = 1T eik2 -r(iqx(0, T) + kq(O, T))dT. 

Similarly 
( t k) ( t k) -ikx-ik2 t A (k) f..L2 x, , - f..t3 x, , = e Qo , 

iio(k) = 100 eikEq(~, O)d~. 
Thus J.L can be expressed in terms of { iio ( k), g ( k)}: 

(4.9) _ 1 100 -ilx-il2 t iio( l) dl 1 J -ilx-il2 t fJ(l) dl J.L- -- e -- - - e --
2i7r _00 l - k 2i7r L l - k ' 
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: Imk 

----------- Rek 

L 

FIGURE 4.4 

where Lis depicted in Figure 4.4. Equation (4.9) together with 

q = J.Lx + ikJ.L, 
yield 

(4.10) 

We note that 

(4.11) iio(k) = -J.L3(0, 0, k), 
We now return to the NLS equation. In analogy with equation (4.8) we now 

have 

(4.12) l (x,t) 
J.L*(x, t, k) =I+ e-(ikx+2ik2t)ua W(~, T, k), 

(x. ,t.) 

where I is the 2 x 2 identity matrix. Again associated with the three corners we 
define J.L1 , J.L2, J.L3· These matrices are simply related by the matrix analogues of 
ij0 (k) and of g(k). Due to certain symmetries these matrices have the form 

( 4.13) ( 
a(k) b(k) ) 

iio(k) = _ , 
b(k) a(k) 

( 
A(k) B(k) ) 

g(k) = - . 
B(k) A(k) 

The matrices J.L3 (x, 0, k) and J.L2(0, t, k) satisfy linear jntegral equations, thus the 
functions {a( k), b( k), A( k), B( k)} cannot be written in closed form. Similarly, since 
J.L is a 2 x 2 matrix, the associated RH problem is not a scalar RH problem, thus it 
cannot be solved in closed form. 

Using fan W = 0, with J.L = J.L3 in the definition of W, it is straightforward to 
derive the global relation satisfied by the spectral function. 

Step 2. Existence under the assumption that the spectral functions satisfy the 
global relation. 

Given qo(x) ES(JR+), the space of Schwartz functions on the positive real axis, 
define {a(k),b(k)}. Assume that there exist smooth functions g0 (t) and g1 (t) such 
that if {A(k),B(k)} are defined in terms of them, then {a(k),b(k),A(k),B(k)} 
satisfy the global relation. Define q(x, t) through the solution of the RH problem 
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formulated in Step 1. Then prove that: (a) q(x, t) is defined for all 0 < x < oo, 
t > 0; (b) q(x, t) solves the NLS; (c) q(x, 0) = qo(x), 0 < x < oo and q(O, t) = go(t), 
Qx(O, t) = 9l(t), t > 0. 

We give the definitions of {a(k),b(k),A(k),B(k)} and the main theorem. 
Definition of a(k), b(k). Let q0 (x) E S(IR+). The map 

(4.14) S: {qo(k)}--> {a(k),b(k)} 
is defined as follows: 

(4.15) ( b(k) ) a(k) = cp(O, k), 

where the vector-valued function cp(x, k) is defined in terms of q0 (x) by 

(4.16) 
( 1 0 ) ( 0 qo(x) ) Oxcp(x, k) + 2ik cp(x, k) = · cp(x, k), 

0 0 !Jo(x) 0 

0 < x < oo, Imk ~ 0, }~~ cp(x, k) = ( ~ ) . 

Definition of A(k), B(k). Let {go(t), 91(t)} be smooth functions for 0 < t < T. 
The map 

( 4.17) S: {g0 (t),g1(t)}--> {A(k),B(k)} 
is defined as follows 

(4.18) ( 
-e-4ik2~ B(k) ) = <P(T k) 

A(k) ' ' 

where the vector-valued function <P(t, k) is defined by 

8t<P(t, k) + 4ik2 ( ~ : ) <P(t, k) = Q(t, k)<P(t, k), 0 < t < T, k E C, 

( 4.19) <P(O, k) = ( ~ ) , 

and Q(t, k) is given by: 

Q(t, k) = 2k ( 0 go(t) ) - i ( 0 91 (t) ) a-3- ilgo(t)1 2a-3. 

9o(t) 0 91 (t) 0 

THEOREM 4.1. Given q0 (x) E S(IR+) define {a(k),b(k)} according to the def-
inition (4.15). Suppose that there exist smooth functions {g0 (t),g1 (t)} satisfying 
go(O) = Qo(O), 91(0) = oxq(O), such that the functions {A(k),B(k)} which are 
defined from {m(t)}6 according to definition (4.18} satisfy the global relation 

(4.20) a(k)B(k)- b(k)A(k) = e4ik2 T c(k), Imk ~ 0, 

where c(k) is analytic and bounded for Im k > 0 and is of 0(1/k), k--> oo. 
Define M(x, t, k) as the solution of the following 2 x 2 matrix RH problem: 
M is holomorphic fork in C\£, where £ is the union of the real and of the 

imaginary axes of the complex k-plane. 

M_(x,t,k) = M+(x,t,k)J(x,t,k), k E £, 
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where J is defined in terms of a, b, A, B by {see Figure 4.5) 

( 1 ~)' c -r(k)e-2iB )· Jl = J3 = 
r(k )e2i(;l 1 

( 1 
-"((k)e-2iB ), J4 = 

;oy(k)e2i(J 1 -l"f(k)l2 
where 

b(k) B(k) 1r 2 
"f(k) = a(k), k E IR; r(k) = a(k)d(k), "2 :S arg k :S 1r; B(x, t, k) = kx + 2k t, 

d(k) = a(k)A(k)- b(k)B(k) 

M(x, t, k) =I+ 0(1/k), k---> oo. 
Then M(x, t, k) exists and is unique. 

+ 
12 =J r:/~ ---E--+----3---}4 

+ 

FIGURE 4.5 

Define q(x, t) by 
q(x, t) = 2i lim (kM(x, t, k)h2· 

k-+oo 

Then q(x, t) solves the NLS equation with 

q(x, 0) = qo(x ), q(O, t) = go (t), qx (0, t) = gl (t). 
The global relation plays a crucial role in the proof of this theorem. In-

deed, q(O, t) and qx(O, t) are defined through M(O, t, k) whose jump matrix involves 
exp[4ik2t], {a(k),b(k),A(k),B(k)}. On the other hand g0 (t) and g1 (t) are defined 
through the inverse of the mapS, (4.17). It can be shown that this inverse map can 
be expressed in terms of a RH problem for a 2 x 2 matrix M(t)(t,k) whose jump 
matrix involves exp[4ik2t] and {A(k), B(k)}. It can be shown that these two RH 
problems are equivalent iff the global relation is valid. 

Step 3. Analyze the Global Relation 
The global relation together with the definition of {A(k), B(k)} yield a nonlin-

ear Volterra integral equation for g1(t) in terms of g0 (t) and q0 (t). It is shown in 
[24] that this nonlinear equation has a global solution. 

We recall that the analogous step for linear evolution equations was solved by 
algebraic manipulations. This was based on the invariance of the global relation 
under k ---> v(k). Unfortunately, the global relation now involves <I>(t, k) which in 
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general breaks this in variance. However, for a particular class of boundary condi-
tions this invariance survives. This is precisely the class of "linearizable problems", 
namely a class of problems for which {A( k), B( k)} can be explicitly written in terms 
of {a(k),b(k)}. 

Some linearizable cases are given below: The basic RH problem has a jump 
matrix which is uniquely defined in terms of the scalar functions a(k), b(k), and 
r(k), where r(k) involves a(k), b(k), and B(k)/A(k), 

B(k) 
r(k)- PA[k) 

- a(k) [ a(k) - pb(k) ~~z~] 0 

The basic RH problems for the KdV with dominant surface tension and for the sine 
Gordon have a similar form [25], where p = ±1 for the NLS, p = 1 for the KdV, 
p = -1 for the sine Gordon ( sG). 

sG: 

In [25] the following concrete linearizable cases are solved. 
NLS: 

qx(O, t)- xq(O, t) = 0, x constant, x 2: 0. 

q(O, t) = x, X constant. 
KdV: 

q(O, t) = x, qxx(O, t) =X+ 3x2 , X constant. 
For each of these cases, B/A, and hence r(k), can be explicitly given in terms of 
a(k), b(k): 

where for the sG, 

while for the KdV, 

NLS: 

KdV,sG: 

1 
v(k) = k' 

B(k) 2k + ix b( -k) 
A(k) 2k- ix a( -k)' 

B(k) f(k)b(v(k))- a(v(k)) 
A(k) = f(k)a(v(k))- b(v(k))' 

f(k) = ik2 + 1 sinx , 
k2 -1 cosx -1 

1 
112 + kv + k2 + 4 = 0, f(k) = v+k ( 1 - 4vk). 

II- k X 
We emphasize that since {a( k), b( k)} are determined in terms of the initial con-
ditions and since B(k)/A(k) and therefore r(k) is explicitly written in terms of 
{a( k), b( k)}, it follows that linearizable initial boundary value problems on the half 
line are solved as effectively as initial value problems on the line. 

REMARK 4.2. We discuss the general features of this method for an integrable 
evolution equation with spatial derivatives of order n. 

(1) The "jump matrices" of the relevant RH problem have explicit x, t de-
pendence of the form exp[ifl(k)x + ih(k)t], and they depend on the 
calar functions { a(k), b(k), A(k), B(k)} (compare with Theorem4.1). This 
means that the associated expression for q(x, t) provides the proper non-
linearization of the Euler-Ehrenpreis-Palamodov representation as well as 
the proper spectral representation of the solution. This representation in-
volves the direct and the inverse map between the values of q(x, t) on 
the boundary, i.e. { q(x, 0), { 8~q(O, t)}~-l }, and the spectral functions 
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{a(k), b(k), A(k), B(k)}. We emphasize that for a proper spectral decom-
position (since the value of q(x, t) on the boundary are functions of one 
variable only) the spectral functions must be functions of only one vari-
able. 

(2) Precisely because the solution is given in the above spectral representation 
form,it is possible to study effectively the asymptotic properties of the 
solution, such as its long t behavior. For the NLS, sG and KdV equations 
on the half line this has been done in [35], [36], [37] respectively. The 
relevant analysis is based on the basic RH problem and on the Deift-Zhou 
method [38]. The latter method is an elegant nonlinearization of the 
steepest descent method and it yields rigorous asymptotic results for RH 
problems with exponential x, t dependence. In our opinion this result 
is one of the most important developments in the theory of integrable 
systems in particular and in the theory of RH problems in general, thus it 
is quite satisfying that the new method gives rise to RH problems precisely 
of the type that can be analyzed by the Deift-Zhou method. We also note 
that recently a highly nontrivial generalization of the Deift-Zhou method 
has been developed which is able to analyze the zero-dispersion limit of 
the Cauchy problem on the line [39]. Since this method is also based on 
the analysis of a RH problem with exponential x, t dependence, we expect 
that the method of [39] applied to our RH problem will yield an effective 
description of the zero dispersion limit of initial-boundary value problems 
on the half-line [32]. 

(3) It is the authors opinion that the most remarkable fact about boundary 
value problems for integrable nonlinear PDEs is the simplicity of the global 
relation. Indeed, although the relation between the initial and the bound-
ary values of q is very complicated, this relation takes a simple algebraic 
form in the k-space, see equation ( 4.20). The simplicity of the global re-
lation has two important consequences: (a) Under the assumption that 
there exist spectral functions satisfying this relation, it is possible to prove 
that the associated q(x, t) exists, satisfies the given nonlinear PDE, and 
q(x,O) = q0 (x), {8~q(O,t) = 9t(t)}~- 1 . (b) Given initial conditions and 
a subset of {gt(t)}~-l it is possible to prove the global existence of the 
remaining part of this set. We emphasize that the global relation is a 
simple algebraic relation between the two components of an eigensolution 
of the t-part of the Lax pair evaluated at x = 0. Thus since the compo-
nents satisfy a linear eigenvalue equation, the derivation of appropriate 
estimates for their large k behavior is based on the analysis of a linear 
problem. Thus, although the global relation is a nonlinear equation its 
rigorous investigation involves mostly the analysis of a linear equation. 

(4) In recent years there have been important developments in the analysis 
of boundary value problems of nonlinear PDEs using PDE techniques 
[40], [41]. It is remarkable that some of these techniques yield global 
results. It is satisfying that there exist now a rigorous theory using the 
integrability machinery, so that it is possible to make comparisons between 
these different approaches. Although at the moment the PDE results are 
proven in less restrictive functional spaces, the advantage of our method 
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is that it yields rigorous asymptotic results. We reiterate that this is a 
consequence of the Deift-Zhou theory and of our simple RH problem. 

Appendix A 

An explicit formula for W(x1, x2, k) associated with an arbitrary two dimen-
sional linear operator with constant coefficients is given in [34]. Here we present 
two examples. 

EXAMPLE A.l. A closed differential1-form associated with equation (1.1) is 

(A.21) W(x t k) = e-ikx+iw(k)t [qdx _ w(k) - w( -i8x) qdt] 
' ' k + i8x . 

Indeed, let 
W = e(qdx- Adt), e = exp[-ikx + iw(k)t]. 

Then 

dW = [(eq)t + (eA)x]dt 1\ dx = -ie[(w(k)- w( -i8x))q + (k + i8x)A]dt 1\ dx. 

Hence dW = 0 provided that 

A w(k) - w( -i8x) - q - k +i8x . 

We note that (k + i8x) is a factor of w(k) - w( -i8x), thus A involves q and its 
spatial derivatives. For example, if w(k) = k- k3 , then 

w(k)- w(l) = 1- (k2 z2 kl) 
k-l + + ' 

thus 
A= (1 - k2 )q + ikqx + qxx· 

EXAMPLE A.2. A closed differential 1-form associated with equation (3.1) is 
given by (3.2). 

Indeed, let 

W (Ad Bd ) [ 'k ia _] = e z- z , e = exp -z z- kz . 

Then 

(A.22) dW = [(eA)z + (eB)z] dz 1\ dz = e [ ( 8z- i:) A+ (8z- ik)B] dz 1\ dz. 

Writing equation (3.1) in the form 

it follows that equation (A.22) can be rewritten as 

dW = e { ( 8z- i:) (A- qz) + (8z- ik) ( B- i: q)} dz 1\ dz, 

which implies A= qz and B = iaqjk. 
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Appendix B 

Solving equation (1.5) with a Fourier transform we find 
(B.23) 

q(x, t) = 2~ i: eikx-iw(k)tqo(k)dk + 2~ i: eikx (lot eiw(k)(T-t)q(O, T, k)dT) dk, 

where q0 (k) is defined by equation (2.4) and 

(B.24) w = k- k3 , q(x, t, k) = Qxx + ikqx + (1- k2 )q. 
The simplest way to derive equation (B.23) is to note that equation (1.5) is equiv-
alent to (compare with (1.10)) 

(B.25) 

Let 

(B.26) q(k, t) = looo e-ikxq(x, t)dx. 

Then 

(eiw(k)tq(k,t))t = looo (e-ikx+iw(k)tq(x,t))t dx = eiw(k)tq(O,t,k), 

where we have used (B.25) to compute the above integral. Hence 

q(k, t) = e-iw(k)qo(k) +lot e-iw(k)(T-t)q(O, T, k)dT, 

and the inverse Fourier transform of equation (B.26) implies (B.23). 
Equation (B.23) can be rewritten in the form 

(B.27) q(x, t) = 2_ foo eikx-iw(k)tqo(k)dk + 2_ { eikx-iw(k)tg(k, t)dk, 
21r -oo 27r } f)D+ 

where aD+ is defined in equation (2.3) and 

(B.28) q(k, t) = (1- k2 )g0 (k, t) + ikg1 (k, t) + g2 (k, t), 

gj(k, t) =lot eiw(k)T 9j(T)dT, 9j(t) = at,q(O, t), j = 0, 1, 2. 

lmro(k)<O Rero(k)<O 
L2 

-11'13 J;(J 

FIGURE B.1 
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Indeed, we write fJD+ as the union of the three contours Lj, j = 1, 2, 3, depicted 
in Figure B.l. The function exp[ikx- iw(k)t]g(k, t) is analytic and bounded in the 
region bounded by £ 1 and by the ray Rek E [-oo, -1/vfJ]. Thus the integral along 
this ray can be deformed along £ 1 . Similar considerations apply to the ray Re 
k E [1/vfJ, oo). 

We note that if g(k) is defined by equation (2.8) then g(k) equals g(k, t) plus a 
term involving an integral from t toT. This term is analytic and bounded in the 
domain D+ thus, by Cauchy's theorem this term does not contribute to equation 
(B.27). Hence q(x, t) is given by either equation (B.27) or equation (2.2). 
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Chaos in Partial Differential Equations 

Yanguang (Charles) Li 

ABSTRACT. This is a survey on Chaos in Partial Differential Equations. First 
we classify soliton equations into three categories: 1. (1 + 1 )-dimensional soliton 
equations, 2. soliton lattices, 3. (1+n)-dimensional soliton equations (n;::: 2). 
A systematic program has been established by the author and collaborators, 
for proving the existence of chaos in soliton equations under perturbations. 
For each category, we pick a representative to present the results. Then we 
review some initial results on 2D Euler equation. 

1. Introduction 

It is well-known that the theory of chaos in finite-dimensional dynamical sys-
tems has been well-developed. That includes both discrete maps and systems of 
ordinary differential equations. Such theory has produced important mathematical 
theorems and led to important applications in physics, chemistry, biology, and en-
gineering etc. [8] [26]. On the contrary, the theory of chaos in partial differential 
equations has not been well-developed. On the other hand, the demand for such a 
theory is much more stronger than for finite-dimensional systems. Mathematically, 
studies on infinite-dimensional systems pose much more challenging problems. For 
example, as phase spaces, Banach spaces possess much more structures than Eu-
clidean spaces. In terms of applications, most of important natural phenomena are 
described by partial differential equations, nonlinear wave equations, Yang-Mills 
equations, and Navier-Stokes equations, to name a few. 

Nonlinear wave equations are the most important class of equations in nat-
ural sciences. They describe a wide spectrum of phenomena; motion of plasma, 
nonlinear optics (laser), water waves, vortex motion, to name a few. Among these 
nonlinear wave equations, there is a class of equations called soliton equations. This 
class of equations describes a variety of phenomena. In particular, the same soliton 
equation describes several different phenomena. For references, see for example [3] 
[1]. Mathematical theories on soliton equations have been well developed. Their 
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94 YANGUANG (CHARLES) LI 

Cauchy problems are completely solved through inverse scattering transforms. Soli-
ton equations are integrable Hamiltonian partial differential equations which are the 
natural counterparts of finite-dimensional integrable Hamiltonian systems. 

To set up a systematic study on chaos in partial differential equations, we 
started with the perturbed soliton equations. We classify the perturbed soliton 
equations into three categories: 

(1) Perturbed (1+1)-Dimensional Soliton Equations, 
(2) Perturbed Soliton Lattices, 
(3) Perturbed (1 + n)-Dimensional Soliton Equations (n ~ 2). 

For each category, we chose a candidate to study. The integrable theories for every 
members in the same category are parallel, and for members in different categories 
are substantially different. The theorem on the existence of chaos for each candidate 
can be parallelly generalized to the rest members of the same category. 

• The candidate for Category 1 is the perturbed cubic focusing nonlinear 
Schrodinger equation [22] [21] [14], 

iBtq = a;,q + 2[lql 2 - w2]q + Perturbations, 

under periodic and even boundary conditions q(x+1) = q(x) and q( -x) = 
q(x), w is a real constant. 

• The candidate for Category 2 is the perturbed discrete cubic focusing 
nonlinear Schrodinger equation [11] [23] [24], 

iq-., 1 
h2 [qn+l - 2qn + Qn-1] 

+lqni 2 (Qn+l + Qn-d- 2w2 qn +Perturbations , 

under periodic and even boundary conditions Qn+N = Qn and Q-n = Qn· 
• The candidate for Category 3 is the perturbed Davey-Stewartson II equa-

tions [15], 

{ 
i8tq = [a; - a;Jq + [2(lql 2 - w2 ) + uy]q +Perturbations, 

[a;+ a;Ju = -48ylql2 , 

under periodic and even boundary conditions 

and 

q(t, X+ lx, y) = q(t, x, y) = q(t, x, y + ly), 
u(t, x + lx, y) = u(t, x, y) = u(t, x, y + ly), 

q(t, -x, y) = q(t, x, y) = q(t, x, -y), 
u(t, -x, y) = u(t, x, y) = u(t, x, -y). 

We have established a standard program for proving the existence of chaos in per-
turbed soliton equations, with the machineries: 

(1) Darboux Transformations for Soliton Equations. 
(2) Isospectral Theory for Soliton Equations Under Periodic Boundary Con-

dition. 
(3) Persistence of Invariant Manifolds and Fenichel Fibers. 
( 4) Melnikov Analysis. 
(5) Smale Horseshoes and Symbolic Dynamics Construction of Conley-Moser 

Type. 
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The most important implication of the theory on chaos in partial differential 
equations in theoretical physics will be on the study of turbulence. For that goal, we 
chose the 2D N avier-Stokes equations under periodic boundary conditions to begin 
a dynamical system study on 2D turbulence. Since they possesses Lax pair [17] and 
Darboux transformation [25], the 2D Euler equations are the starting point for an 
analytical study. The high Reynolds number 2D N avier-Stokes equations are viewed 
as a singular perturbation of the 2D Euler equations through the perturbation pa-
rameter c = 1/ Re which is the inverse of the Reynolds number. Corresponding 
singular perturbations of nonlinear Schri:idinger equation have been studied in [31] 
[30] [19] [20]. We have studied the linearized 2D Euler equations and obtained a 
complete spectra theorem [16]. In particular, we have identified unstable eigenval-
ues. Then we found the approximate representations of the hyperbolic structures 
associated with the unstable eigenvalues through Galerkin truncations [18]. 

2. Existence of Chaos in Perturbed Soliton Equations 

By existence of chaos, we mean that there exist a Smale horseshoe and the 
Bernoulli shift dynamics for certain Poincare map. For lower dimensional systems, 
there have been a lot of theorems on the existence of chaos [8] [26]. For perturbed 
soliton equations under dissipative perturbations, we first establish the existence 
of a Silnikov homoclinic orbit. And then we define a Poincare section which is 
transversal to the Silnikov homoclinic orbit, and the Poincare map on the Poincare 
section induced by the flow. Finally we construct the Smale horseshoe for the 
Poincare map. In establishing the existence of the Silnikov homoclinic orbit, we 
need to build a Melnikov analysis through Darboux transformations to generate 
the explicit representation for the unperturbed heteroclinic orbit, the isospectral 
theory for soliton equations to generate the Melnikov vectors, and the persistence 
of invariant manifolds and Fenichel fibers. We also need to utilize the properties of 
the Fenichel fibers to build a second measurement inside a slow manifold, together 
with normal form techniques. The Melnikov measurement and the second mea-
surement together lead to the existence of the Silnikov homoclinic orbit through 
implicit function arguments. In establishing the existence of Smale horseshoes for 
the Poincare map, we first need to establish a smooth linearization in the neigh-
borhood of the saddle point (i.e. the asymptotic point of the Silnikov homoclinic 
orbit). Then the dynamics in the neighborhood of the saddle point is governed by 
linear partial differential equations which are explicitly solvable. The global dy-
namics in the tubular neighborhood of the Silnikov homoclinic orbit away from the 
above neighborhood of the saddle point, can be approximated by linearized flow 
along the Silnikov homoclinic orbit due to finiteness of the passing time. Finally we 
can obtain a semi-explicit representation for the Poincare map. Then we establish 
the existence of fixed points of the Poincare map under certain except-one-point 
conditions. And we study the action of the Poincare map in the neighborhood of 
these fixed points, and verify the Conley-Moser criteria to establish the existence 
of Smale horseshoes and Bernoulli shift dynamics. 

2.1. Existence of Chaos in Perturbed (1+1)-Dimensional Soliton Equa-
tions. For this category of the perturbed soliton equations, we chose the candidate 
to be the perturbed cubic nonlinear Schri:idinger equation. The cubic nonlinear 
Schri:idinger equation describes self-focusing phenomena in nonlinear optics, deep 
water surface wave, vortex filament motion etc.. Recently, more and more interests 
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are on perturbed nonlinear Schrodinger equations describing new nonlinear optical 
effects, for example, the works of the Laser Center at Oklahoma State University. 

2.1.1. Dissipative Perturbations. In a series of three papers [22] [21] [14], we 
proved the existence of chaos in the cubic nonlinear Schrodinger equation under 
dissipative perturbations. We study the following perturbed nonlinear Schrodinger 
equation: 

(2.1) 

under even periodic boundary conditions 

q( -x) = q(x), q(x + 1) = q(x); 

where i =;=I, q is a complex-valued function of two variables (x, t), (w, a, f) are 
positive constants, c is the positive perturbation parameter, b 2 is a "regularized" 
Laplacian specifically defined by 

00 

A2 - ""' 2A D q =- L...J3ikiqi coskjx, 
j=l 

in which kj = 27rj, ijj is the Fourier transform of q, (Jj = (3 for j :::; N, (Jj = a*kj2 

for j > N, (3 and a* are positive constants, and N is a large fixed positive integer. 
THEOREM 2.1 (Homoclinic Orbit Theorem). There exists a positive number co 

such that for any c E (0, co), there exists a codimension 1 hypersurface Ec in the ex-
ternal parameter space {w, a, f, (3, a*}. For any external parameters (w, a, f, (3, a*) E 
Ec, there exists a symmetric pair of homoclinic orbits hk = hk ( t, x) ( k = 1, 2) in 
H"i,p (the Sobolev space H 1 of even and periodic functions) for the PDE (2.1), which 
are asymptotic to a fixed point qc. The symmetry between h1 and h2 is reflected by 
the relation that h2 is a half-period translate of h1 , i.e. h2(t,x) = h 1(t,x + 1/2). 
The hypersurface Ec is a perturbation of a known surface (3 = t~;(w)a, where t~;(w) 
is shown in Figure 1. 

For the complete proof of the theorem, see [22] and [21]. The main argument 
is a combination of a Melnikov analysis and a geometric singualr perturbation 
theory for partial differential equations. The Melnikov function is evaluated on a 
homoclinic orbit of the nonlinear Schrodinger equation, generated through Darboux 
transformations. For more details on this, see the later section on the Darboux 
transformations for the discrete nonlinear Schrodinger equation. 

THEOREM 2.2 (Horseshoe Theorem). Under certain generic assumptions for 
the perturbed nonlinear Schrodinger system (2.1}, there exists a compact Cantor 
subset A of~ (a Poincare section transversal to the homoclinic orbit), A consists 
of points, and is invariant under P (the Poincare map induced by the flow on~). 
P restricted to A, is topologically conjugate to the shift automorphism x on four 
symbols 1, 2, -1, -2. That is, there exists a homeomorphism 

¢: Wf--->A, 
where W is the topological space of the four symbols, such that the following diagram 
commutes: 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CHAOS IN PARTIAL DIFFERENTIAL EQUATIONS 97 
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FIGURE 1. The curve of,.,= ,.,(w). 

For the complete proof of the theorem, see [14]. The construction of horseshoes 
is of Conley-Moser type for partial differential equations. 

2.1.2. Singular Perturbations. Recently, singular perturbation, i.e. replacing 
D2q by 8'/cq, has been studied [31] [30] [19] [20]. Consider the singularly perturbed 
nonlinear Schrodinger equation, 

(2.3) 

where q = q(t,x) is a complex-valued function of the two real variables t and x, 
t represents time, and x represents space. q( t, x) is subject to periodic boundary 
condition of period 1, and even constraint, i.e. 

q(t, x + 1) = q(t, x) , q(t, -x) = q(t, x) . 

w is a positive constant, a > 0, {3 > 0, and r are constants, and E: > 0 is the per-
turbation parameter. The main difficulty introduced by the singular perturbation 
t::8'/c is that it breaks the spectral gap condition of the unperturbed system. There-
fore, standard invariant manifold results will not apply. Nevertheless, it turns out 
that certain invariant manifold results do hold. The regularity of such invariant 
manifolds at E: = 0 is controled by the regularity of e"' 8 ~ at E: = 0. 

THEOREM 2.3 (Li, [19]). There exists a E:o > 0, such that for any E: E (0, t::0 ), 

there exists a codimension 1 surface E"' in the space of (w, a, {3, r) E R+ x R+ x 
R+ x R+, where w E ( 1r, 2rr) / S, S is a finite subset. For any external parameters 
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on the codimension-one surface, the perturbed nonlinear Schrodinger equation (2.3} 
possesses a symmetric pair of homoclinic orbits hk = hk(t, x) (k = 1, 2) in C~p[O, 1] 
(the space of c= even and periodic functions on the interval {0,1}) , which is 
asymptotic to a saddle fixed point q"'. The symmetry between h1 and h2 is reflected 
by the relation that h2 is a half-period translate of h1, i.e. h2(t,x) = h1(t,x+ 1/2). 
The hypersurface E"' is a perturbation of a known surface (3 = l"i(w)a, where l"i(w) 
is shown in Figure 1. 

2.1.3. Hamiltonian Perturbations. The problem on the existence of chaos in the 
cubic nonlinear Schrodinger equations under Hamiltonian perturbations is largely 
open. The right objects to investigate should be "homoclinic tubes" rather than 
"homoclinic orbits" due to the non-dissipative nature and infinite-dimensionality 
of the perturbed system. Transversal homoclinic tubes are objects of large dimen-
sional generalization of transversal homoclinic orbits. As Smale's theorem indicates, 
structures in the neighborhood of a transversal homoclinic orbit are rich, structures 
in the neighborhood of a transversal homoclinic tube are even richer. Especially 
in high dimensions, dynamics inside each invariant tubes in the neighborhoods of 
homoclinic tubes are often chaotic too. We call such chaotic dynamics "chaos in 
the smalf', and the symbolic dynamics of the invariant tubes "chaos in the large". 
Such cascade structures are more important than the structures in a neighborhood 
of a homoclinic orbit, when high or infinite dimensional dynamical systems are 
studied. Symbolic dynamics structures in the neighborhoods of homoclinic tubes 
are more observable than in the neighborhoods of homoclinic orbits in numerical 
and physical experiments. When studying high or infinite dimensional Hamiltonian 
system (for example, the cubic nonlinear Schrodinger equation under Hamiltonian 
perturbations), each invariant tube contains both KAM tori and stochastic layers 
(chaos in the small). Thus, not only dynamics inside each stochastic layer is chaotic, 
all these stochastic layers also move chaotically under Poincare maps. 

There have been a lot of works on the KAM theory of soliton equations under 
Hamiltonian perturbations [29] [5] [9] [4] [28]. For perturbed nonlinear Schrodinger 
equations, we are interested in the region of the phase space where there exist hyper-
bolic structures. Thus, the relevant KAM tori are hyperbolic. In finite dimensions, 
the relevant work on such tori is that of Graff [7]. In infinite dimensions, the author 
is not aware of such work yet. 

In the paper [13], the author studied the cubic nonlinear Schrodinger equation 
under Hamiltonian perturbations: 

(2.4) iqt = qxx + 2[lql2 - w2]q + E[al + 2a2q] , 
under even periodic boundary conditions q( -x) = q(x) and q(x + 1) = q(x); where 
i =A, q is a complex-valued function of two variables (t, x), (w, a1, a 2) are real 
constants, E is the perturbation parameter. The system (2.4) can be written in the 
Hamiltonian form: 

where H = Ho + EH1, 
iqt = 8H/8q, 

Ho = 11 [lql4- 2w2lql2 -lqxl2]dx, 

H1 = 11[al(q+q)+a2(q2 +q2)]dx. 
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DEFINITION 2.4. Denote by W(c) a normally hyperbolic center manifold, by 
W(cu) and W(cs) the center-unstable and center-stable manifolds such that W(c) = 
w(cu) n w(cs)' and by pt the evolution operator of the partial differential equa-
tion. Let H be a submanifold in the intersection between the center-unstable 
and center-stable manifolds W(cu) and W(cs), such that for any point q E H, 
distance{Ft(q), W(cl} ---+ 0, as it! ---+ oo. We call H a transversal homoclinic tube 
asymptotic to w(c) under the flow pt if the intersection between w(cu) and w(cs) 

is transversal at H. Let :E be an Poincare section which intersects H transversally, 
and Pis the Poincare map induced by the flow Ft; then Hn:E is called a transversal 
homoclinic tube under the Poincare map P. 

THEOREM 2.5 (Homoclinic Tube Theorem). There exist a positive constant 
co > 0 and a region£ for {a1,a2,w), such that for any c E (-co,co) and any 
( a 1 , a 2 , w) E £, there exists a codimension 2 transversal homoclinic tube asymptotic 
to a codimension 2 center manifold W(c). 

For a complete proof of this theorem, see [13]. 

2.2. Chaos in Perturbed Soliton Lattices. For this category, we chose the 
candidate to be the perturbed cubic nonlinear Schrodinger lattice. 

2.2.1. Dissipative Perturbations. In a series of three papers [11] [23] [24], we 
proved the existence of chaos in the discrete cubic nonlinear Schrodinger equation 
under a concrete dissipative perturbation. 

We study the perturbed discrete cubic nonlinear Schrodinger equation 

iqn ~2 [qn+l- 2qn + qn-1] + lqnl 2 (qn+l + Qn-d- 2w2qn 

(2.5) + ic [- aqn + ~ (qn+l - 2qn + Qn-d + r]' 
under even periodic boundary conditions (QN-n = qn) and (qn+N = qn) for ar-
bitrary N; where i = y=I, qn's are complex variables, h = 1/N, (w, a, ,B, r) are 
positive constants, c is the positive perturbation parameter. 

Denote by :EN (N 2:: 7) the external parameter space, 

{ I 7r 27r 
(w,a,,B,r) wE (Ntan N,Ntan N), 

r E (0,1),a E (O,ao),,B E (O,,Bo); 

where ao and ,Bo are any fixed positive numbers.} 

THEOREM 2.6. For any N (7 ::; N < oo ), there exists a positive number co, such 
that for any c E (0, co), there exists a codimension 1 submanifold Ec: in :EN; for any 
external parameters (w, a, ,B, r) on Ec:, there exists a homoclinic orbit asymptotic to 
a fixed point Qc:· The submanifold Ec: is in an O(c"') neighborhood of the hyperplane 
,B ="' a, where"'= "'(w; N) is shown in Figures 2 and 3, v = 1/2- Oo, 0 < Oo « 
1/2. 

REMARK 2.7. In the cases (3::; N::; 6), "'is always negative as shown in Figure 
3. Since we require both dissipation parameters a and ,B to be positive, the relation 
{3 = "'a shows that the existence of homoclinic orbits violates this positivity. For 
N 2:: 7, "'can be positive as shown in Figure 2. When N is even and 2:: 7, there is 
in fact a pair of homoclinic orbits asymptotic to a fixed point qc: at the same values 
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of the external parameters; since for even N, we have the symmetry: If qn = f(n, t) 
solves (2.5), then qn = f(n+N/2, t) also solves (2.5). When N is odd and~ 7, the 
study can not guarantee that two homoclinic orbits exist at the same value of the 
external parameters. 

For the complete proof of this theorem, see [23]. 
THEOREM 2.8 (Horseshoe Theorem). Under certain generic assumptions for 

the perturbed discrete nonlinear Schrodinger system (2.5}, there exists a compact 
Cantor subset A of E (a Poincare section transversal to the homoclinic orbit), A 
consists of points, and is invariant under P (the Poincare map induced by the flow 
on E). P restricted to A, is topologically conjugate to the shift automorphism X on 
four symbols 1, 2, -1, -2. That is, there exists a homeomorphism 

¢ : W ~-+A, 

where W is the topological space of the four symbols, such that the following diagram 
commutes: 

W __!____.A 

xl lP 
W ---+ A 

</> 
For the complete proof of the theorem, see [24]. 
The unperturbed homoclinic orbits for the discrete nonlinear Schrodinger equa-

tion 

(2.7) iq"-n = : 2 [qn+l- 2qn + qn-1] + lqnl 2 (qn+1 + qn-1)- 2w2qn, 

was constructed through the Darboux transformations which will be presented be-
low in details. The discrete nonlinear Schrodinger equation is associated with the 
following discrete Zakharov-Shabat system [2]: 

(2.8) 
(2.9) 

where 

L(z) ( Z ihqn ) 
n ihijn 1/z ' 

B(z) _!:__ ( 1- z 2 + 2iA.h- h2qnifn-1 + w2 h2 -zihqn + (1/z)ihqn-1 ) 
n h2 -izhiJn-1 + (1/z)ihifn 1/z2 - 1 + 2iA.h + h2iJnqn-1- w2 h2 ' 

and where z = exp(i>..h). 
Fix a solution qn(t) of the system (2.7), for which the linear operator Ln has 

a double point zd of geometric multiplicity 2, which is not on the unit circle. We 
denote two linearly independent solutions (Bloch functions) of the discrete Lax pair 
(2.8;2.9) at z = zd by (¢1;, ¢:;;,). Thus, a general solution of the discrete Lax pair 
(2.8;2.9) at (qn(t), zd) is given by 

¢n(t; zd, c)= ¢t + c¢:;;, 
where cis a complex parameter called Backlund parameter. We use ¢n to define a 
transformation matrix r n by 

z + (1/z)an 
Cn 

bn ) 
-1/z+zdn ' 
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CHAOS IN PARTIAL DIFFERENTIAL EQUATIONS 103 

where, 

(zd;:~n [1</>n2l2 + lzdl2l</>nll2]' 

- zd~n [1</>n2l2 + lzdl2l</>nll2]' 
lzdl4-1 -
(zd)2~n </>nl</>n2, 

lzdl4- 1-
d d~ </>n1</>n2, 

Z Z n 

- :d [14>ntl2 + lzdl2l</>n212J. 
Then we define Q n and \If n by 

(2.10) 

and 
(2.11) 
where 'l/Jn solves the discrete Lax pair (2.8;2.9) at (qn(t), z). Formulas (2.10) and 
(2.11) are the Backlund-Darboux transformations for the potential and eigenfunc-
tions, respectively. We have the following theorem [11]. 

THEOREM 2.9 (Backlund-Darboux Transformations). Let qn(t) denote a solu-
tion of the system {2. 7}, for which the linear operator Ln has a double point zd of 
geometric multiplicity 2, which is not on the unit circle and which is associated with 
an instability. We denote two linearly independent solutions {Bloch functions} of 
the discrete Lax pair {2.8;2.9} at (qn, zd) by(</>;;,,</>:;;). We define Qn(t) and Wn(t; z) 
by {2.10} and {2.11}. Then 

(1) Qn(t) is also a solution of the system {2. 7). {The eveness of Qn can be 
guaranteed by choosing the complex Backlund parameter c to lie on an 
certain curve.) 

(2) Wn(t; z) solves the discrete Lax pair {2.8;2.9} at (Qn(t), z). 
(3) ~(z; Qn) = ~(z; qn), for all z E C, where~ is the Floquet discriminant. 
(4) Qn(t) is homoclinic to qn(t) in the sense that Qn(t) ---> ei0± qn(t), expo-

nentially as exp( -altl) as t ---> ±oo. Here ()± are the phase shifts, a is 
a nonvanishing growth rate associated to the double point zd, and explicit 
formulas can be developed for this growth rate and for the phase shifts ()±. 

Next we consider a concrete example. Let 
(2.12) qn = q, Vn; q =a exp{ -2i[(a2 - w2 )t] + i'y }, 

where Ntanf[j <a< Ntan ~for N > 3,3tani <a< oo for N = 3. Then Qn 
defined in (2.10) has the explicit representation: 

(2.13) Qn=Qn(t; N,w,)',r,±)=q[%.. -1], 

where, 
G = 1 + cos2P- isin2Ptanhr, 

1 . H n = 1 ± ----::a sm P sech T cos 2n {}, 
cosv 
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T = 4N2 JP sin {)y' p cos2 {) - 1 t + r, 
where r is a real parameter. Furthermore, 

J pcos2 {)- 1 
P = arctan . {) , 

-.;psm 
7r jqj2 

{) = N' p = 1 + N2 . 
As T--+ ±oo, Qn--+ qe'f-i2P. Therefore, Qn is homoclinic to the circle lqnl =a, and 
heteroclinic to points on the circle which are separated in phase of -4P. 

2.2.2. Hamiltonian Perturbations. In the paper [12], the author studied the 
discrete nonlinear Schrodinger equation under Hamiltonian perturbations: 

1 2 2 (2.14) iqn h2 [qn+l - 2qn + qn-l] + lqnl (qn+l + qn-d- 2w qn 

+ E{ [a1(qn +tin)+ a2(q~ + q~)]qn + [a1 + 2a2tJnJ~; lnpn} , 

where i =A, q~s are complex variables, n E Z, (w,a1,a2) are real constants, 
E is the perturbation parameter, h is the step size, h = 1/N, N 2: 3 is an integer, 
Pn = 1 + h2lqnl 2, and qn+N = qn, q_n = qn· The system (2.14) can be written 
in the Hamiltonian form: 

where H = Ho + EH1, 

.. &H 
zqn = Pn !:)- , 

uqn 

1 N-1 2 
Ho = h2 L [qn(qn+l + qn-1)- h2 (1 + w2h2) lnpn], 

n=O 

1 N-1 

H1 = h2 L [al(qn + tln) + a2(q~ + q~)JlnPn· 
n=O 

THEOREM 2.10 (Homoclinic Thbe Theorem). There exist a positive constant 
Eo > 0 and a region£ for (a1,a2,w), such that for any E E (-Eo,Eo) and any 
( a1, a 2, w) E £, there exists a codimension 2 transversal homoclinic tube asymptotic 
to a codimension 2 center manifold w(c). 

For a complete proof of this theorem, see [12]. 
2.3. Chaos in Perturbed (1 + n)-Dimensional Soliton Equations (n 2: 

2). For this category of the perturbed soliton equations, we chose the candidate to 
be the perturbed Davey-Stewartson II equations. The Davey-Stewartson II equa-
tions describe nearly one-dimensional water surface wave train [6]. There have been 
a lot of studies on the inverse scattering transforms for this set of equations [1] [3]. 
The inverse scattering transforms for (1 +n)-dimensional soliton equations ( n 2: 2) 
are substantially different from those for ( 1 + 1 )-dimensional soliton equations and 
soliton lattices. In fact, the Davey-Stewartson II equations possess finite-time sin-
gularities [27]. For the perturbed Davey-Stewartson II equations, the theory on 
chaos is largely unfinished. So far, its Melnikov theory has been successfully built. 

Although the inverse spectral theory for the DSII equations is very different 
from those for (1+1)-dimensional soliton equations and there is no Floquet spec-
tral theory, its Backlund-Darboux transformation is as simple as those for (1+1)-
dimensional soliton equations, e.g. the cubic nonlinear Schrodinger equation. These 
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CHAOS IN PARTIAL DIFFERENTIAL EQUATIONS 105 

Biicklund-Darboux transformations are successfully utilized to construct hetero-
clinic orbits of Davey-Stewartson II equations through an elegant iteration of the 
transformations. In [22], we successfully built Melnikov vectors for the focusing cu-
bic nonlinear Schrodinger equation with the gradients of the invariants Fj defined 
through the Floquet discriminants evaluated at critical spectral points. The invari-
ants Fj 's Poisson commute with the Hamiltonian, and their gradients decay expo-
nentially as time approaches positive and negative infinities - these two properties 
are crucial in deriving and evaluating Melnikov functions. Since there is no Floquet 
discriminant for Davey-Stewartson equations (in contrast to nonlinear Schrodinger 
equations [22]), the Melnikov vectors here are built with the novel idea of replacing 
the gradients of Floquet discriminants by quadratic products of Bloch functions. 
Such Melnikov vectors still maintain the properties of Poisson commuting with the 
gradient of the Hamiltonian and exponential decay as time approaches positive 
and negative infinities. This solves the problem of building Melnikov vectors for 
Davey-Stewartson equations without using the gradients of Floquet discriminant. 
Melnikov functions for perturbed Davey-Stewartson II equations evaluated on the 
above heteroclinic orbits are built. 

2.3.1. Darboux Transformations. First we study the Darboux transformations 
for the Davey-Stewartson II (DSII) equations: 

(2.15) i8tq = [a; - a;Jq + [2(JqJ 2 - w2 ) + uy]q ' 
[a;+ a;Ju = -4ayJqJ 2 ; 

under periodic boundary conditions q(t, x+lx, y) = q(t, x, y+ly) = q(t, x, y), where 
q and u are a complex-valued and a real-valued functions of three variables (t, x, y). 
To simplify the study, we may also pose even conditions in both x andy. The DSII 
equations are associated with a Lax pair and a congruent Lax pair. The Lax pair 
is: 

(2.16) 
(2.17) 

where'¢= ('¢1,'1/J2f, and 

( 
D- q) 

L = r D+ ' 

A = i [ 2 ( ~g: ~f ) + ( -( ; 1_ r) 

Here we denote by 

(2.18) 

where r = ij, a 2 = -1, 

r1 = ~[-U +iV], 

The congruent Lax pair is: 

(2.19) 

(2.20) 
t,(f; >.{/;, 
at{!; = A{/; , 

) ] . 
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L= (
-Dr+ 

-a; qax 
rax a; 

Let (q, r = q, r1, r2) be a solution to the DSII equation, and let >.o be any value of 
>.. Denote by 'ljJ = ( 'lj;1 , 'lj;2 )T the eigenfunction solving the Lax pair (2.16, 2.17) at 
(q, r = q, r1, r2; >.o). Define the matrix operator: 

r=[A+a b J 
c A+d ' 

where !\ = aay - >., and a, b, c, d are functions defined as: 

a = ~ [ 'I/J2 /\2 ¢2 + (3{;1 /\1 'I/J1] , 

b 

c 

d = ~ [ ¢2 ;\1 'I/J2 + f3'l/J1 ;\2 ¢1] ' 

in which /\1 = aay - >.o, /\2 = aay + Xo, and 

~ = - [f31'1/J11 2 + I'I/J21 2] 
Define a transformation as follows: 

{ (q,r=~q,r1,r2) : 

Q q- 2b, 

R (3q- 2c, 

(2.21) R1 r1 + 2(D+a), 

R2 r2- 2(D-d), 

<I> r¢; 

where¢ is an eigenfunction solving the Lax pair (2.16, 2.17) at (q,r = q,r1 ,r2;>.), 
D+ and D- are defined in (2.18), 

THEOREM 2.11 ([15]). The transformation (2.21} is a Biicklund-Darboux trans-
formation. That is, the functions (Q, R = Q, R1, R2) defined through the transfor-
mation (2.21} are also a solution to the Davey-Stewartson II equations. The func-
tion <I> defined through the transformation ( 2. 21) solves the Lax pair ( 2.16, 2.17) at 
(Q, R = Q, R1, R2; >.). 
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A concrete example with two iterations of the Darboux transformations has 
been worked out in [15]. 

2.3.2. Melnikov Vectors. The DSII equations can be put into the Hamiltonian 
form, 

(2.22) 

where 

6Hj6q, 
-6Hj6q, 

H = fly /x [lqyl2 -lqxl2 + ~(r2- rl) lql2] dx dy. lo lo 2 

Let '1/J = (7jJ1,7jJ2)T be an eigenfunction solving the Lax pair (2.16, 2.17), and{/;= 
({/;1 , {/;2 )T be an eigenfunction solving the corresponding congruent Lax pair (2.19, 
2.20); then 

LEMMA 2.12. The inner product of the vector 

where S = ( ~ ~ ) , with the vector field J\7 H given by the right hand side of 

(2.22) vanishes, 
(U , J\7 H) = 0 . 

where 

and 

Consider the perturbed DSII equations 

(2.24) { 
i8tq = [8~- 8~]q + [2(lql2 - w2) + uy]q + c:if, 

[8~ + 8~]u = -48y lql 2 , 

where f is the perturbation which can depend on q and q and their derivatives and 
t, x andy. Let G = (!, ])T. Then the Melnikov function has the expression, 

(2.25) 

where the integrand is evaluated on an unperturbed heteroclinic orbit obtained 
through the Biicklund-Darboux transformations given in Theorem 2.11. A concrete 
example has been worked out in [15]. 
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3. Two-Dimensional Euler Equations 

One of the most important implications of chaos theory of partial differential 
equations in theoretical physics will be on the study of turbulence. For that goal, the 
author choose the 2D Navier-Stokes equations under periodic boundary conditions 
to begin a dynamical system study. 

(3.1) an an an [ J - = -u - - v - + E ~n + f , at ax oy 
ou ov 
ax+ oy = o; 

under periodic boundary conditions in both x and y directions with period 2n, 
where n is vorticity, u and v are respectively velocity components along x and y 
directions, f = 1/ Re, and f is the body force. When f = 0, we have the 2D Euler 
equations, 

(3.2) 
an an an ---u --v-at - ax ay ' 
ou ov 
ax+ ay = 0 · 

The relation between vorticity n and stream function w is, 

n = av _au = ~w ax ay ' 
where the stream function W is defined by, 

aw aw 
U=--oy , v=-ox 

3.1. Lax Pair and Darboux Transformation. The main breakthrough in 
this project is the discovery of the Lax pair for 2D Euler equation [17]. The 
philosophical significance of the existence of a Lax pair for 2D Euler equation is 
beyond the particular project undertaken here. If one defines integrability of an 
equation by the existence of a Lax pair, then 2D Euler equation is integrable. 
More importantly, 2D Navier-Stokes equation at high Reynolds numbers is a near 
integrable system. Such a point of view changes our old ideology on Euler and 
N avier-Stokes equations. 

Starting from Lax pairs, homoclinic structures can be constructed through 
Darboux transformations [15]. Indeed, in [25], the Darboux transformation for 
the Lax pair of 2D Euler equation has been found. Our general program is to first 
identify the figure eight structures of 2D Euler equation, and then study their conse-
quence in 2D Navier-Stokes equation. The high Reynolds number 2D Navier-Stokes 
equation is viewed as a singular perturbation of the 2D Euler equation through 
the perturbation f~, where f = 1/ Re is the inverse of the Reynolds number. 
As mentioned above, singular perturbations have been investigated for nonlinear 
Schrodinger equations. 

We consider the 2D Euler equation, 

(3.3) 
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CHAOS IN PARTIAL DIFFERENTIAL EQUATIONS 109 

where the bracket { , } is defined as 

{f,g} = (axf)(ayg)- (ayf)(axg), and 0 = ~w. 

THEOREM 3.1 ([17]). The Lax pair of the 2D Euler equation (3.3} is given as 

(3.4) { L<p = >.<p , 
Ot'P + A<p = 0 , 

where 
L<p = {O,<p}, A<p = {w,<p}, 

and ). is a complex constant, and <p is a complex-valued function. 
In [25], A Backlund-Darboux transformation is found for the above Lax pair. 

Consider the Lax pair (3.4) at ). = 0, i.e. 

(3.5) 
(3.6) 

{O,p} = 0, 
OtP + {\IT, p} = 0 , 

where we replaced the notation <p by p. 
THEOREM 3.2. Let f = f(t,x,y) be any fixed solution to the system (3.5, 3.6}, 

we define the Gauge tmnsform G f: 

(3.7) p = Gtp = ~x lPx- (ax lnf)p] , 

and the tmnsforms of the potentials 0 and \IT: 

(3.8) q, = \IT + F , 0 = 0 + ~F , 

where F is subject to the constmints 

(3.9) {O,~F} = 0, {O,F} = 0. 
Then p solves the system (3.5, 3.6} at (0, q,). Thus (3. 7) and (3.8} form the 
Darboux tmnsformation for the 2D Euler equation ( 3. 3) and its Lax pair ( 3. 5, 3. 6). 

3.2. Linearized 2D Euler Equations. Under the periodic boundary condi-
tion and requiring that both u and v have means zero, 

12
7r 12

7r u dxdy = 12
7r 12

7r v dxdy = 0, 

expanding 0 into Fourier series, 0 = LkEZ2f{O} Wk eik·X, where W-k = wk , k = 
(kt, k2), X (x, y), the system (3.2) can be rewritten as the following kinetic 
system, 

(3.10) 

where A(p, q) is given by, 

(3.11) A(p, q) 

Wk = L A(p, q) WpWq ' 
k=p+q 

1 
2[lql-2 -IPI-2](plq2- P2ql) 

~[lql-2- IPI-2]1 Pl ql I ' 
2 P2 q2 

where lql2 = qt +q~ for q = (q1 , q2), similarly for p. To understand the hyperbolic 
structures of the 2D Euler equations, we first investigate the linearized 2D Euler 
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FIGURE 4. An illustJ~tion of the classes ~k and the disk DIPI· 

equations at a stationary solution. Denote {wk}kEZ2j{O} by w. Consider the simple 
fixed point w*: 

(3.12) w; = r, wk, = 0, if k i= p or - p, 

of the 2D Euler equation (3.10), where r is an arbitrary complex constant. The 
linearized two-dimensional Euler equation at w* is given by, 

(3.13) wk = A(p, k- p) r wk-p +A( -p, k + p) f wk+p . 

DEFINITION 3.3 (Classes). For any k E Z 2 I{O}, we define the class L,k to be 
the subset of z2 1 {o}: 

L,k = { k + np E Z 2 I{O} I n E Z, pis specified in (3.12) }· 

See Figure 4 for an illustration of the classes. According to the classification 
defined in Definition 3.3, the linearized two-dimensional Euler equation (3.13) de-
couples into infinite many invariant subsystems: 

A(p, k + (n- 1)p) r wk+(n-l)p 

(3.14) +A( -p, k + (n + 1)p) f wk+(n+l)p · 

DEFINITION 3.4 (The Disk). The disk of radius IPI in Z 2 I {0}, denoted by DIP I' 
is defined as 

D1p 1 = { k E Z 2 I {O} Ilk I < IPI } . 
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i2lbl 

-----------it-;:,-0----------+- ~{A} 
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FIGURE 5. The spectrum of LA in case 1. 
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FIGURE 6. The spectrum of LA in case 2. 
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• • 

----------+----------~{:X} 

• • 

FIGURE 7. The quadruple of eigenvalues for the system led by the 
class Ek labeled by k = (1, o)T, when p = (1, 1)T. 

The closure of Dlvl , denoted by DIP I, is defined as 

v1v1 = { k E Z 2 1 {o} IJkJ ~ IPI } . 

THEOREM 3.5 (Unstable Disk Theorem). If Ek n DIPI = 0, then the invariant 
subsystem {3.14} is Liapunov stable for all t E R, in fact, 

L \wk+nv(t)\2 ~a L \wk+nv(0)\2' Vt E R, 
nEZ nEZ 

where 

a= [max{-pn}] [min{-Pn}]-l, O<a<oo. nEZ nEZ 

THEOREM 3.6. The eigenvalues of the linear system {3.14) are of four types: 
real pairs (c, -c), purely imaginary pairs {id, -id}, quadruples {±c ± id}, and zero 
eigenvalues. 

THEOREM 3.7 (The Spectral Theorem). (1) If Ek n Dlvl = 0, then the 
entire £2 spectrum of the linear operator CA {defined by the right-hand 
side of the invariant subsystem) is its continuous spectrum. See Figure 5. 

(2) IfEknDivl # 0, then the entire essential £2 spectrum of the linear operator 
CA is its continuous spectrum. That is, the residual spectrum of CA is 
empty, ar(CA) = 0. The point spectrum of CA is symmetric with respect 
to both real and imaginary axes. See Figure 6. 
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( ... ) 

(C) 

FIGURE 8. The heteroclinic orbits and unstable manifolds of the 
Galerkin truncation. 
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We can calculate the eigenvalues through continued fractions. Let p = (1, 1f, 
in this case, only one class ~k labeled by k = (1, o)T has no empty intersection 
with .DIPI (the other class labeled by k = (0, 1)T gives the complex conjugate of 
the system led by the class labeled by k = (1, O)T). For this class, there is no real 
eigenvalue. Numerical calculation through continued fractions gives the eigenvalue: 

.X= 0.24822302478255 + i 0.35172076526520 . 

Thus we have a quadruple of eigenvalues, see Figure 7 for an illustration. Denote 
by L the right hand side of (3.13), the spectral mapping theorem holds. 

THEOREM 3.8 ([10]). 
a(etL) = eta(L)' t =f 0. 

Moreover, the number of eigenvalues has a sharp upper bound. Let ( denote 
the number of points q E Z 2 / {0} that belong to the open disk of radius IPI, and 
such that q is not parallel to p. 

THEOREM 3.9 ([10]). The number of nonimaginary eigenvalues of L (counting 
the multiplicities) does not exceed 2(. 

3.3. Approximate Explicit Representations of the Hyperbolic Struc-
tures of 2D Euler Equations. From Figure 7, we see that the simple fixed point 
given by p = (1, 1), has unstable eigenvalues. Our interest is to obtain represen-
tations of the correponding hyperbolic structures for 2D Euler equations. In [18], 
through Galerkin truncation, we obtained the approximate explicit representation. 
Figure 8 shows the heteroclinic orbits and unstable manifolds of the Galer kin trun-
cation. 

4. Conclusion and Discussion 

We have reported the status of chaos in nonlinear wave equations and of study 
on 2D Euler equations. In particular, we have summarized the most recent results 
on Lax pair and Darboux transformations for 2D Euler equations. 
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Multi-Soliton Complexes 

Nail N. Akhmediev, Andrey A. Sukhorukov, and Adrian Ankiewicz 

ABSTRACT. This paper reviews the latest advances in the area of multi-soliton 
complexes (MSCs). We present exact analytical solutions of coupled nonlinear 
Schriidinger equations, which describe multi-soliton complexes and their inter-
actions on top of a background in media with self-focusing or self-defocusing 
Kerr-like nonlinearities. We present numerical examples illustrating the re-
markable properties of MSCs, such as their reshaping after collisions. This 
occurs because the fundamental solitons composing an MSC can acquire dif-
ferent lateral shifts. We also obtain an accurate estimate for the peak intensi-
ties of stationary and interacting MSCs, by establishing a rigorous relationship 
between the eigenvalues of incoherently-coupled fundamental solitons and the 
range of admissible intensities. 

1. Introduction 

Dynamic nonlinear systems have properties which were initially surprising to 
scientists [FPU55, Fer65, AkhOl]. The concept of 'solitons', first introduced 
in [ZK65], helped to demistify at least some of these surprises. The inverse scatter-
ing technique, developed later in a number of works [GGKM67, ZS71, AKNS74], 
gave scientists a powerful tool for understanding and for investigating the properties 
of nonlinear systems with an infinite number of degrees of freedom. The theory has 
far-reaching consequences which allow us not only to solve specific problems, but 
also to understand the situation qualitatively. For example, this was the case with 
the so called multi-soliton complexes (MSCs). 

A multi-soliton complex is a self-localized state which is a nonlinear superposi-
tion of several fundamental solitons [AAOO]. In optics, it can be a single beam or 
pulse created by a nonlinear superposition of fundamental solitons, where each has 
the same velocity. The nonlinear superposition can be either coherent or incoherent, 
in the sense that the phases of the separate solitons in the collection can be either 
related or independent. The solitons in the group may be bound together, or at 
least may stay close to each other, simply because they have the same initial speed. 
A large class of problems involve MSCs. They arise from diverse applications in op-
tics. The first review on this subject [AAOO] appeared more than a year ago. The 
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present article can be considered as a continuation of [AAOO] which summarizes 
new material published since that time. 

MSCs have common properties which are of interest in broad areas of physics. 
These include systems of fermions in one space dimension in the Hartree - Fock ap-
proximation, envelope solitons of random phase waves [Has75, Has77], multicom-
ponent Bose-Einstein condensates at zero temperature [BV97], self-confinement 
of optical pulses in multimode glass fibers [Has80] and short pulses in multi-core 
optical fibers [BA95]. Gap solitons [dS94], Manakov solitons [Man73] and vec-
tor solitons [CJ88, TS88] are particular examples of MSCs. A similar case is 
a soliton and its 'shadow' [Men87, Men88]. A parametric interaction between 
two waves at different frequencies can result in their coupling and the formation 
of a parametric soliton [KS74, KS75], which is another example of an MSC. One 
more widely - explored model of nonlinear superposition of high frequency and 
low frequency vibrations is that of Davydov solitons in solid state physics, molecu-
lar physics and biology [Dav91, Sco92]. Recently, it has been shown that spatial 
incoherent solitons [MCSS96, SS98, CCJ97, CCMS97] can propagate in photo-
refractive materials [SSV+95, DSS+93, ICMASM+94, ZAMS96, MSAZ96]. 
In many cases, multisoliton complexes appear in conservative systems which may 
be Hamiltonian. However, generalization to nonconservative systems is also possi-
ble [Ascc+gs]. 

The number of components, M, in a complex can be arbitrary, and can go up to 
infinity for incoherent solitons [SM98, SA98]. We assume, throughout the rest of 
this paper, that the components have independent phases. The difference between 
the two types of phase relationship means that, when the interactions between the 
components are phase-dependent, stationary self-trapping can occur only if the rel-
ative phases of all the components are fixed, so that the soliton solutions which form 
are one-parameter families and they can be represented on plots of Hamiltonian-
versus-energy [AA97]. On the other hand, when the phases are independent, the 
MSC is a multi-parameter family. In the latter case, coherent four wave mixing 
(FWM) terms (which are also known as energy exchange terms) average out and 
effectively disappear [KSAA96, Has80]. This is the case for spatial incoherent 
solitons which can be excited in photorefractive materials [SCOl]. 

In general, MSCs can be described by a set of M coupled nonlinear Schrodinger 
(NLS) equations. For example, evolution of spatial solitons along the propagation 
direction can be modeled, in the parabolic approximation, by a system of NLS equa-
tions for the set of modes, where the equations are coupled through the change of 
refractive index. In the case of ( 1 + 1 )-D spatial geometry, the normalized equations 
describing the propagation of M self-trapped, mutually-incoherent wave packets in 
a medium with a Kerr-like nonlinearity are [SCOl] 

. OUm 1 o2um ( ) 
(1.1) 2& + 2 ox2 +F I Um = 0, 

where m = 1, 2, ... , M, while M is the number of modes (or components), Um is 
the complex amplitude of the m-th mode, x is the transverse coordinate, z is the 
coordinate along the direction of propagation, I = "2:~ 1 lui 12 is the total intensity, 
and F( I) is the normalized change of refractive index profile created by all the 
incoherent components of the light beam. The response time of the nonlinearity is 
assumed to be long compared with temporal variations of the mutual phases of all 
the components, so the medium responds to the average light intensity, and this is 
just a simple sum of modal intensities I. 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



MULTI-SOLITON COMPLEXES 119 

Ordinary solitons are known to behave like single particles. Thus, the differ-
ence between a single ordinary soliton and an incoherent soliton could be com-
pared to that between an elementary particle and a complicated structure, such 
as an atom. Indeed, detailed analysis has shown that MSCs are multi-parameter 
families of solutions [AKS98], as distinct from single-parameter families, such as 
NLSE-solitons [AA97]. Moreover, MSCs behave like multi-particle objects in col-
lisions [AKS98]. A simple example of a one-parameter family of "optical mesons" 
has been considered in [DH97]. 

Solitons belonging to different components can couple together through the 
cross-phase modulation (XPM) effect, since the presence of one component results 
in a modification of the effective refractive index for the other components according 
to Eq. (1.2). The possibilities include various combinations of bright and dark 
solitons [Man73, Ino76, TS88, TWWS88, ADPS88, Chr88]. For example, 
a coupled dark-bright soliton pair has been observed in a self-defocusing nonlinear 
medium [SB92]. 

Since a multi-soliton complex is, by definition, a composite structure, it can 
behave in a more complicated way than a conventional one-component soliton. 
For example, the MSC shape is not fixed, so it can change after collisions with 
other solitons [AKS98]. In the following, we study the features of bright and 
dark MSCs. These can be linked to experimental observations in electrically biased 
photorefractive crystals. 

Let us briefly outline some general properties of Eqs. (1.1) and (1.2). The set 
of equations (1.1) has M quantities 

00 

Qi = J luil 2 dx, 
-00 

which are conserved separately from the conservation of the total energy 
M 

Q= L:Qi. 
i=l 

This occurs because there is no energy transfer mechanism between the components. 
In fact, this is the main difference from the phase-dependent components case, where 
only the total energy is conserved. 

We now consider the low saturation case, where the photorefractive medium 
response approximately follows the Kerr-law dependence [DCDOl], and in normal-
ized units we have 

(1.2) F(I) = si, 
where s = +1 in the self-focusing case and s = -1 in the defocusing case. 

In some special cases, the coupled NLS equations are found to be inte-
grable [AC91, MP82, GI82, NPSSM98, KLOl]. In particular, Eqs. (1.1), with 
the nonlinear response function defined in Eq. (1.2), are, in fact, a generalized 
Manakov set. This set of coupled equations is completely integrable by means of 
the inverse scattering technique (IST). This technique was first developed for a 
one-component (M = 1) NLS equation [ZS71], then extended to the case of two 
(M = 2) coupled equations [Man73], and it was later demonstrated that the equa-
tions are integrable for arbitrary M [GK83, MP82]. As a consequence, any solu-
tion ofEq. (1.1) and (1.2) can be represented as a nonlinear superposition of a finite 
number of solitary waves and radiation modes which correspond to the discrete and 
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continuous parts of the linear (L, A) operators, respectively [Man73, ZS71]. The 
soliton part of the solution accounts for wave localization, while radiation waves 
appear if the background is present. The property of integrability allows a simple 
qualitative approach to the problem, and we can also find exact solutions in explicit 
analytical forms. 

Every fundamental soliton (labeled j) is characterized by (i) a complex 
wavenumber kj = Tj +iJ.Lj, (ii) a shift in the coordinate plane (xj, Zj), and (iii) a po-

larization vector p(j) in the function space, normalized to unity as L~=l lpgl 12 = 1. 
The simplest bright single-soliton solution in a self-focusing medium (s = +1) can 
be written as: 

(1.3) um(x, z) = pgl Tj sech(,Bj) ei"~i, 

where ,Bj = rj(Xj - J.ljZj ), 'Yj = J.ljXj + (r]- J..L])zj/2, and (xj, Zj) = (x- Xj, z- Zj) 
are the shifted coordinates. The peak soliton intensity and its inverse width are 
determined by the real part of the wavenumber, Tj, while the imaginary part, J.lj, 
characterizes the tangent of the inclination angle of the soliton (or the velocity in 
the transverse direction). Moreover, each fundamental soliton can be "spread out" 
into several incoherent components, as defined by the polarization vector. We note 
that the term "polarization" is used because Eqs. (1.1), in the case M = 2, can 
describe coupling of two components with orthogonal polarizations of the electric 
field [Man73]. However, in our case, the polarization parameters p(j) are not 
related to the orientation of the electric field. 

The solution for a single radiation mode, in the form of a plane wave, can be 
characterized by a similar set of parameters, 

(1.4) u (x z) =p(j) r· eiai 
m ' m J ' 

where aj J.lXj + (2sr] - J..L])zj/2. Such a plane wave exists for either sign of 
nonlinearity, s = ±1, and it is stable in a self-defocusing medium. Moreover, an 
incoherent superposition of a large number of plane waves can be stable, even in a 
self-focusing medium, as was shown in Ref. [Ssc+oo]. In the presence of solitons, 
the plane waves are distorted, but due to the integrability of the original equations, 
the corresponding solutions can be obtained in an explicit form, as we demonstrate 
in Sec. 3 below. 

2. Bright multi-soliton complexes 

2.1. General solution. A stationary MSC can only be formed by incoher-
ently coupled fundamental solitons with identical angle tangents (velocities) J.lm, 
and radiation waves. In the framework of the integrable model given by Eqs. (1.1) 
and (1.2), such a structure is asymptotically unstable, since a small perturbation 
can result in a change of the fundamental soliton angles. Nevertheless, the break-up 
of multi-soliton complexes into individual fundamental solitons can be neglected if 
we consider their propagation over finite distances, since the instability mode only 
grows linearly with distance. 

For multi-soliton complexes existing in photorefractive crystals, all the soli-
tons and radiation modes should have orthogonal polarization vectors, i.e. 
L~= 1 pMJp~) = Ojn· Indeed, if this condition is not satisfied, an intensity profile 
will experience periodic beating due to the difference in the phase velocities of the 
fundamental solitons and radiation waves (see, e.g., Refs. [AA97, PS99, SA99]), 
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X 

FIGURE 1. Evolution of an MSC intensity profile with multi-scale 
periodic "beating" due to internal coherent interactions. 

121 

as illustrated in Fig. 1. However, such behavior is not consistent with the fact that 
the model Eqs. (1.1) was introduced for time-averaged fields. 

The mathematical description can be simplified in the case of orthogonal po-
larizations if we use the rotational symmetry in the functional space of the original 
Eqs. (1.1). Indeed, it is sufficient to find solutions Uj where each fundamental non-
linear eigenmode belongs to a different component, p~) = 6mj, and then the full 
family of solutions can be determined using the following transformation: 

(2.1) 
M 

Um = L RmjUj, 

j=l 

where the matrix Rmj defines a rotation in the M -dimensional space (characterized 
by M- 1 angles), which preserves the MSC intensity profile Em luml2 =Em luml 2 • 

Bright MSC solutions of Eqs. (1.1) and (1.2), existing in the self-focusing case 
(s = +1), can be found from the set of linear equations [NW76]: 

M * 1 
'"""" ejemum 
L..J k · + k* + 2r · Uj = -eJ' 
m=l J m J 

(2.2) 

where ej = XJ exp ((Jj + i"'J). The coefficients XJ can be arbitrary, but, in order to 
simplify the analysis, it is convenient to choose them in a special way [SA99], 

(2.3) Xj= II~, 
m"#j 
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where bjm = (kj + k';,.)/(kj- km), and the square root value is taken on the branch 
with argument in the range ( -71" /2, 7r /2]. 

For the particular choice of coefficients given by (2.3), it is possible to derive an 
explicit analytical solution of Eqs. (2.2) for the mode amplitudes in multi-soliton 
complexes. Using the mathematical induction approach, we obtain the following 
result [SA99]: 

(2.4) 

where 

(2.5) 

ei~j L 
Uj = --

U 
{1, ... ,j -l,j+l, . .. ,M}--+L 

U= 
{l, ... ,M}--+L 

C{F{(x, z), 

FL = cosh(Sb), F{ = cosh(Sl). 

Here L denotes sets of indices (£1, £2), and the summation goes over all possible 
permutations of soliton numbers between the two sets. Then, the variables for each 
realization of L are found to be: 

II 
(2.6) 

sl = sb + i 2: <{Jjm - i 2: <{Jjm, 
mE£1 mE£2 

where Cjm = lbjml, <{Jjm = arg (1/bjm)/2, with the function arg providing an argu-
ment value in the interval [0, 2rr). 

We note that only (3j and 'Yi depend on the coordinates (x, z). All the other 
coefficients are expressed in terms of the complex wave numbers kj and constant 
shifts in positions ( x j, Zj) of M fundamental solitons. Since Eqs. ( 1.1) possess a 
translational symmetry along the x and z axes, the soliton solution can be shifted 
as a whole. Therefore, the number of independent parameters controlling the mul-
tisoliton complex is 2M - 1. 

2.2. Soliton interactions. Suppose we have an initial field distribution con-
sisting of fundamental solitons whose positions along the x axis are dj. We assume 
that each pair of solitons (numbered j and m) are either (i) well separated, i.e. 
ldj - dml :» (rj1 + r;;;_1 ), or (ii) compose a symmetric MSC, i.e. dj = dm and 
/-lj = J-lm. Then, the intensity profiles of all the solitons are symmetric, and the 
shifts Xj in the general solution, are: 

(2.7) Xj = dj + L 8Xjm/2 + ZjJ-lj, 
m#j 

where Zj is an arbitrary parameter which determines the soliton phase, and 

(2.8) 
{ 

1, 
sign(~)= 0, 

-1, 

~ > 0, 
~ = 0, 
~ < 0. 
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FIGURE 2. Interaction of two multisoliton complexes, resulting in 
subsequent reshaping. The stationary (zero-velocity) MSC is com-
posed of four fundamental solitons with amplitudes rm = 1, 2, 3, 4 
(J.Lm = 0), while the MSC at an angle (moving MSC) consists of 
two solitons with Tm = 1, 2 and angle tangent (velocity) J.Lm = 0.5. 
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In general, the fundamental soliton profiles are asymmetric, and simple analytical 
expressions for the shift parameters cannot be obtained. 

It follows from Eq. (2.7) that, after the collisions, the fundamental solitons ac-
quire lateral shifts (i.e. shifts along the x axis). For a single soliton, the translational 
shift is found to be 

(2.9) 

Here the summation involves the fundamental solitons which participate in the 
collisions with the soliton number j. This result agrees with the expression found 
in theM= 2 case [Man73]. According to Eq. (2.9), the shift is different for each 
soliton in an MSC. As a result, the intensity profile of an MSC changes after a 
collision [AKS98] (see an example in Fig. 2). 

3. Multi-soliton complexes on a background 

3.1. General solution. We now study the properties of MSCs existing on 
top of a background which is composed of radiation modes (see Fig. 3). A simple 
case with one component in the radiation field was studied in [AA99]. In general, 
there can be an arbitrary number (Mr) of radiation modes, and, to be specific, we 
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bound states 

FIGURE 3. Modal structure of an MSC on a background: (i) dis-
crete levels- fundamental solitons and (ii) continuum spectrum-
radiation waves. 

assume that they belong to the components with Ms + 1 :::; m :::; M 8 + Mr, while 
the fundamental solitons are numbered so that 1 :::; m :::; M 8 • 

In order to reveal the basic properties of radiation modes in the presence of 
an MSC, we first perform a linear analysis, assuming that the radiation wave am-
plitudes are vanishingly small, and that they do not contribute to the intensity 
profile. We note that, in the limit rj ___, 0, Eqs. (1.3) and (1.4) coincide. Therefore, 
the low-amplitude radiation mode profile can be found by taking Eqs. (2.4), which 
define soliton profiles in bright MSCs,_and considering the limit 

(3.1) rm ___, +0. 

Then, the profile in component number m will approach that of a dark mode, 
provided that the limiting transformation is done properly. It is now convenient to 
return to the system of linear equations (2.2), and after applying the limit (3.1) we 
have (up to a constant phase which can be neglected) [SAOO, SAAOl]: 

(3.2) 

where 
Ms Uje* 

Jm = L k* + .J • 
j=l j Zf..tm 

(3.3) 

This sum depends only on the amplitudes of the bright components, which in turn 
are found from an independent system of M 8 linear equations (2.2). Note that 
solution (3.2), which is valid in the limit rm ___, 0, reduces to a simple plane-wave 
profile given by Eq. (1.4) in the absence of bright components. 

When the radiation wave amplitudes r m are not small, both the radiation modes 
and the bright soliton profiles defined by Eq. (2.2) are distorted according to the 
nonlinear superposition principle. In the following, we develop a special technique 
for constructing solutions for MSCs with a non-zero background. We recall that 
the self-induced waveguide depends only on the mode intensities. Thus, important 
information can be obtained by analyzing the normalized intensity profile of the 
low-amplitude dark mode defined by Eq. (3.2), lum/rml2 = 1 + Jm + J;,. + 1Jml2 . 
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In order to calculate this value, we multiply Eqs. (2.2) by uj/(kj - ip), add the 
complex conjugate and sum over the fundamental soliton numbers 1 :::; j :::; M 8 • 

On comparing the resulting expression with Eqs. (3.2) and (3.3), we obtain the 
following relation: 

(3.4) 
M. L Uj 

j=l kj + iJ.Lm 

2 2 

+ 1~: I = 1' 

where the subscript m indicates a radiation mode. This remarkable result demon-
strates an intrinsic relation between the intensities of bright and dark solitons. 
Moreover, relation (3.4) opens up an opportunity to introduce a scaling transforma-
tion and construct solutions for MSCs on a background, with the dark components 
having non-zero amplitudes [SAOO, SAAOl]. Indeed, let us scale the bright soliton 
intensities with the following coefficients, 

(3.5) 

while for the radiation modes we put Um = 1. Then, the full intensity of the 
re-scaled solution, Um, including the contribution of the finite-amplitude radiation 
waves, is found to be 

(3.6) i = h +sf. 

Here I is the intensity profile of the bright MSC on a zero background, and h = 
2:::~~~ 1 [rj [2 is the background intensity. Quite remarkably, this procedure can be 
used for both signs of nonlinearity (s = ±1). We note that the nonlinearly- induced 
waveguide profiles defined by Eq. (1.2) coincide for the original [F(I) = I(x, z)] and 
re-scaled [F(i) = sh + I(x, z)] solutions, up to a constant background. Therefore, 
the self-consistency condition is preserved, and this is the principal feature of the 
introduced transformation. The presence of the background can be taken into 
account by modifying the propagation constants, so that the resulting functions 
satisfy the original Eqs. (1.1) and (1.2). We finally obtain: 

(3.7) - ( ) U ishz ( ) Um X, Z = me Um X, Z . 

At this point, the derivation of the analytical solutions for MSCs existing on top 
of several radiation modes is complete, and the component profiles are defined by 
Eqs. (3.5) and (3.7), together with Eqs. (2.2) and (3.2). Each solution of this type 
corresponds to a multi-parameter family which can be generated with the help of 
the rotation transformation (2.1). 

Let us now extend the analytical results to the case where the background is 
composed of a continuum set of radiation modes, i.e. Mr --+ +oo. This situation 
corresponds to spatial optical solitons excited by an incoherent light source [SCOI]. 
Here the plane waves in the background can be characterized by an angular distri-
bution function, R(p) (~ 0), so that R(p)dJ.L is the wave intensity corresponding 
to the tangents of inclination angles in the interval (J.L, J.L + dp). Therefore, the full 
background intensity is h = f~: R(p)dp, and the scaling coefficients for bright 
components are 

(3.8) 
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We note that, for a finite number of radiation modes, the distribution function can 
be written as R(J.L) = L:J!:i;~ 1 r}8(f..L- f..Lj), and then expression (3.8) reduces to 
Eq. (3.5). 

We stress that the above results are valid for both self-focusing (s = +1) and 
self-defocusing (s = -1) media. As follows from Eq. (3.6), the qualitative difference 
is that, in the former case we have bright complexes on a constant background while 
in the latter case dark dips are formed. 

3.1.1. Modulation of background components. According to the general rela-
tion (3.6), the intensity profile is uniquely determined by the eigenvalues of the 
bright fundamental solitons and the background intensity h, and does not depend 
on the the angular distribution of radiation waves. However, the total intensity of 
the soliton components, 

Ms 

Is= L 1Uml2 luml2 , 
m=l 

and the intensity of the radiation modes, 

Ms 

(3.9) Ir = Ib- L (1Uml 2 - s)luml 2 , 
m=l 

both depend on the scaling coefficients Um, defined in Eq. (3.8). As follows from 
Eq. (3.9), each fundamental soliton creates a dark hole in the background, and 
the corresponding modulation depth is proportional to the bright-dark coupling 
coefficient, given by the value (I U m 12 - s). Interestingly enough, the radiation 
mode profiles are the same in self-focusing and self-defocusing media, provided the 
distribution function and soliton eigenvalues remain unchanged. 

However, there are some key differences between solitons in self-focusing and 
self-defocusing media. In the former case, any modulation of the background is 
compensated by the bright components having larger amplitudes (since 1Uml2 > s, 
and s = + 1). On the other hand, in a self-defocusing medium, a dark soliton 
creates an effective waveguide, which in turn can trap bright components. Such a 
self-trapping mechanism results in the restriction that there is a minimum for the 
dark soliton width. This happens because the maximum intensity contrast is limited 
by the value of the background intensity. As a matter of fact, the limitation can 
be even stricter, since the maximum modulation depth, M = maxx(h- I)/ h:::; 1, 
cannot always reach the value of 1. Then, according to Eq. (1.3), the characteristic 
width corresponding to one fundamental soliton cannot exceed the value (Mh)-112 . 

The actual limit can be determined by solving the existence conditions, which follow 
from the requirement that the right-hand-side of Eq. (3.8) be non-negative, since, by 
definition, IUml2 :?: 0. It is interesting to note that these conditions involve only the 
individual wavenumbers of fundamental solitons, and that they are automatically 
satisfied for interacting solitons forming MSCs. 

The radiation modes are characterized by a non-trivial phase modulation. For 
practical applications, it is especially important to know the phase jump, or the 
additional phase shift which appears due to the presence of bright fundamental 
solitons. Using Eqs. (2.2) and (3.2), we find the following relation, 

icf>(l-') _ IT if..L - km 
e - m=l if..L + k;,. ' 
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FIGURE 4. (a) Total intensity profiles for multisoliton com-
plexes, and the corresponding decomposition between (b) bright 
and (c) dark components in a self-focusing medium. Each MSC 
consists of three fundamental solitons with rm = 2, 3, 4; the MSC 
on the right is stationary (f.lm = 0), while the MSC on the left has 
a non-zero (positive) incidence angle (f.Lm = 3). Angular width of 
background distribution is p = 1. 
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(c) 

0 4 

where ¢ is the phase jump, and f.L defines the inclination angle of the radiation mode. 
Then, the phase jump can be found as a sum over the phase shifts associated with 
individual fundamental solitons, 

(3.10) 
M. Ms ( ) 

¢(1-L) = L ¢m(f.l) = L 2arctan :m . 
m=l m=l f.l f.lm 

We see that the absolute values of the individual phase shifts are limited to 1r. 
However, the total phase jump can become larger than n if M > 1, i.e. if the MSC 
is composed of several fundamental solitons. 

3.1.2. Special case of dark-only solitons. Pure dark solitons, supported by a de-
focusing nonlinearity (s = -1), were extensively investigated earlier in one [AA97] 
and two-component [SK97] cases. Our solution (3. 7) can be reduced to describe 
such cases, if we choose the soliton wave numbers in such a way that IUml = 0 in 
Eq. (3.5). Then, the amplitudes of all the bright solitons reduce to zero, and the 
resulting expression gives a multi-dark soliton solution. In the case of a single dark 
component, the condition reduces to a simple relation [ZS71] h = lkml 2 , where 
1 :S m :S Ms. 

3.2. General results for a Gaussian angular distribution. Let us now 
analyse the features of the bright-dark decomposition for a Gaussian-type angular 
distribution of the radiation waves which compose the background, 

(3.11) 1 2/ 2 R(f.l) =h-e-~-' P , 
p..fiF 

where p(> 0) is the characteristic angular width. Since the integral in Eq. (3.8) 
cannot be expressed in elementary functions for arbitrary p, we first consider the 
limiting cases. Specifically, for a narrow angular distribution, i.e. p « 1, we have 
(1Uml2 - s) ~ h/(r:r, + f.L:r,), while for p » 1 (and p » f.Lm) we obtain (1Uml 2 - s) ~ 
h..fiF/(prm) ----+ 0. Therefore, we expect that, for a fixed background intensity 
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FIGURE 5. Intensity distributions for p = 7 in a self-focusing 
medium. Parameters and notation are the same as in Fig. 4. 

h, the modulation of the radiation waves should be reduced (i) for wider angular 
distributions, i.e. larger p, and (ii) for MSCs having higher velocities /Mml· 

On the other hand, since the phase jump depends on the radiation mode wave 
number JL, the excitation of solitons can be more difficult in cases of wider angular 
spectra of radiation modes, i.e. larger p. Additionally, for an MSC at an angle, 
i.e. when Mm = const. #- 0, the dependence ¢(JL) becomes asymmetric, unless 
R(JL- Mm) = R(Jtm - JL). 

3.3. Bright solitons in a self-focusing medium. For a self-focusing non-
linearity (s = +1), MSCs exist in the form of bright localized waves having higher 
intensity than the background, as follows from Eq. (3.6). Examples of the total in-
tensity profiles and the bright-dark mode decomposition are shown in Figs. 4 and 5 
for different values of p. The MSC on the right has zero angle (with the corre-
sponding Jlm = 0), while the other MSC (on the left) has a positive angle; thus in 
the latter case, the corresponding background modulation is smaller, as predicted 
in Sec. 3.2. 

A collision between two MSCs is illustrated in Fig. 6. This example corresponds 
to the initial conditions shown in Fig. 4. A remarkable fact is that the total intensity 
profile does not depend on the value of p, provided that h is preserved. The intensity 
profile for the collision will be the same for other values of p or for other distribution 
functions. In these examples, the MSC actually has an intensity which is relatively 
small compared with the background level. 

Note that the shape of each MSC changes after the collision, for the reasons 
discussed in Sec. 2.2. In particular, a symmetric MSC becomes asymmetric after a 
collision. The presence of radiation does not influence this process. Another feature 
of a collision is that the lateral shift of the MSCs is relatively large. For example, 
it can easily be seen on the scale of Fig. 6. In contrast to single solitons, MSCs 
experience larger shifts during collisions, due to the multiple contributions from all 
the constituent fundamental solitons. 

3.4. Dark solitons in self-defocusing medium. To describe MSCs on a 
background in a self-defocusing medium (s = -1), we first have to determine the 
existence conditions, as outlined in Sec. 3.1.1. By considering the case of the Gauss-
ian distribution given by Eq. (3.11), we find that, for a narrow angular spectrum, 
in the lowest-order approximation, the existence condition is / km /2 = r;.. + JL;;_. :::; h. 
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X 

FIGURE 6. Interaction of two multisoliton complexes existing on 
a multi-component background in a self-focusing medium. Input 
profile corresponds to Fig. 4. 
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Therefore, the minimum soliton width, which is of order r;;,1 , can be achieved if 
the soliton angle is zero. In the other limit where p » 1 and p » J-tm, we have 
rm ::; h.fii / p, i.e. the minimum width increases linearly with an increase in p. 
Numerically-calculated existence regions are shown in Fig. 7 for two values of p in 
Eq. (3.11). Figure 7(a) clearly shows that the existence region is very similar to 
that in the case of a single component radiation field when p is relatively small. 
However, the existence regions become visibly different when p is large, as seen in 
Fig. 7(b). 

The range of possible soliton widths for various p is given by the shaded region 
in Fig. 8. This result shows that the distribution function for the radiation field 
influences the properties of an MSC, in that it changes the limiting parameters for 
the existence of the MSC, although the intensity profile of the MSC is not directly 
influenced by the properties of the radiation field. 

Figure 9 shows an example of the intensity distribution for a self-defocusing 
medium (i.e. dark MSCs on a background). We have chosen the soliton eigenvalues 
to be the same as those in Figs. 4 and 6. According to our general expression (3.6), 
the total intensity profiles in self-defocusing and self-focusing media are "mirror-
images" relative to the level of the background. Even the radiation mode intensities 
coincide in these two cases- cf. Figs. 4(c) and 9(c). However, the bright com-
ponent intensities are different, as is clearly seen in Fig. 4(b) and 9(b). This is a 
manifestation of the nontrivial nature of the nonlinear superposition of the solitons 
and the background components. 
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FIGURE 7. Grey shading marks existence regions in the pa-
rameter space of fundamental soliton eigenvalues (rm, J.Lm)· The 
angular distribution function is given by Eq. (3.11) with h = 40 
and (a) p = 1 or (b) p = 7. Dashed lines correspond to the case of 
a single component background, when p -+ 0. 
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FIGURE 8. Dependence of the range of possible soliton widths on 
the parameter p for the angular distribution function of radiation 
waves given by Eq. (3.11) with h = 40. 
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Figure 10 shows a collision of two MSCs on a background. Again, we can 
see that the nonstationary intensity profile created by the soliton interaction during 
collision is the "mirror image" of that for bright MSCs in a self-focusing medium, as 
shown in Fig. 6. The symmetry relation is mathematically exact. Correspondingly, 
the lateral shift is also governed by the same rules as those for a bright MSC. 

An important consequence is that the change of refractive index induced by 
incoherent MSCs has exactly the same pattern in cases of self-focusing and self-
defocusing media with Kerr-type nonlinearity. 
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FIGURE 9. Intensity distributions in a self-defocusing medium. 
Parameters and notation are the same as in Fig. 4. 

4. Intensity limits in multi-soliton complexes 

4.1. Estimate of the peak intensity. For a single NLS describing the evolu-
tion of a coherent field, soliton interactions are phase-sensitive, so that constructive 
or destructive nonlinear interference can be observed. Since the profiles of interact-
ing solitons are distorted according to the nonlinear superposition principle, large 
variations of the peak intensities can occur. Indeed, it has been demonstrated that 
the peak intensity can vary by a factor of N 2 for N interacting solitons [AM91]. 
In some sense, phase sensitivity can be "amplified" due to nonlinearity, so that 
it is greater than that occuring for linear interference between mutually coherent 
sources. Knowledge of how the maximal beam intensity of stationary and interact-
ing MSCs changes during and after collisions can be important for the development 
of switching devices based on incoherent solitons. In what follows, we derive a rig-
orous relationship between the parameters of incoherently-coupled solitons and the 
range of admissible intensities for MSCs. 

We perform the analysis for bright MSCs in a self-focusing medium, when the 
background is absent. However, with the use of Eq. (3.6), the results can be readily 
applied to bright solitons in a self-focusing medium existing on top of a background, 
and also to dark solitons which can exist in media with a self-defocusing Kerr-type 
nonlinearity. 

Although the general solution for the MSC profile can be obtained in an ex-
plicit form (2.4), it is not possible to find an explicit analytical expression for the 
maximum intensity, and it can only be determined by numerically solving transcen-
dental equations. Therefore, a different approach is needed to make an analytical 
estimate for the peak intensity levels. In order to do this, we turn Eq. (3.4) into an 
inequality, 

(4.1) t I k~ ~ i 1

2

:::; 1' j=1 J J1 

which is valid for any (real) J-l· This key result makes it possible to estimate the 
limitations on the total intensity. Indeed, it follows that the upper boundary is 

(4.2) 
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X 

FIGURE 10. Interaction of two multisoliton complexes existing 
on a multi-component background in a self-defocusing medium. 
Input profile corresponds to Fig. 9. 

and p, is chosen to minimize the value of Iinf. The above estimate is invariant 
relative to a change of all the fundamental soliton angle tangents (velocities) by a 
constant (J.Li --+ /.Lj + tl.p,). This property is due to the Galilean symmetry of original 
equations (1.1) [AA97]. We shall now consider several examples illustrating the 
physical meaning of Eqs. (4.1) and (4.2). 

4.2. Stationary solitons. Let us first analyse the properties of a single MSC, 
composed of several solitons with identical angle tangents, J.Lm. In such a case, the 
optimal choice for the free parameter in Eq. (4.2) is J.L = J.Lm, and we have Iinf = 
maxj(r]). Note that this value can be interpreted as the minimal squared radius 
of a circle which has its center at the point (0, J.Lm) in the parameter space (r, p,) 
and which contains all the soliton eigenvalues within it [see Fig. ll(a)]. Thus Iinf is 
proportional to the area ( 1rr}) of this circle. On the other hand, we note that, for a 
stationary MSC, the amplitude profiles satisfy a self-consistent eigenvalue problem, 
viz. d2Um/dx2 - r~Um + 2I Um = 0, where the functions Um = Um exp( -hm) are 
real. Then, since solutions should be localized in the transverse direction (x), we 
conclude that 

(4.3) Imax(z) > Isup = max(r]/2). 
J 

This means that the variations of the peak intensity are strictly limited by the largest 
eigenvalue in an MSC, as illustrated in Fig. 11. Note that Imax = Iinf if there is 
only one fundamental soliton (Fig. 11, left). The peak intensity decreases if several 
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FIGURE 11. (a) Geometrical illustration of the maximum in-
tensity criterion for a stationary MSC: black dots mark the eigen-
values of fundamental solitons in the (r, J.L) parameter space, and 
the radius of the shaded semicircle determines the maximum am-
plitude. (b) Intensity profiles corresponding to upper plots; the 
shaded bands show the allowed ranges for the peak intensities. 
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4 

solitons compose an MSC, but always remains above the lower limit (Fig. 11, right). 
This occurs despite the fact that the individual fundamental soliton intensities are 
always superimposed, i.e. destructive interference is not possible, in contrast to the 
case of coherent interactions. The observed decrease of total intensity underlines the 
complicated nature of the nonlinear superposition phenomenon, and occurs because 
the profiles of individual solitons are strongly distorted due to the nonlinear self-
action effect. 

4.3. Interacting solitons. Our general results can also be applied to the case 
when solitons have different angle tangents, J.Ln. In other words, we can estimate 
the peak intensity changes during the collision of several MSCs. As follows from the 
form of Eq. (4.2), the limiting value Iinf depends only on the maximum eigenvalue 
in each of the colliding MSCs. Again, Eq. ( 4.2) has a clear geometrical interpre-
tation: the optimal value of J.L in Eq. ( 4.2) must be chosen to minimize the area 
of a semicircle which has its center at the point (O,J.L), and which contains all the 
soliton eigenvalues. Two examples, corresponding to a collision between a single 
fundamental soliton and an MSC with different angle tangents (J.Ln), are shown in 
Fig. 12. When the relative angle is small (Fig. 12, left), the intensity at the impact 
area of the collision decreases. We have already observed this effect for a stationary 
MSC when the relative angle is zero. However, for larger relative angles, the peak 
intensity increases (Fig. 12, right). 
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FIGURE 12. (a) Geometrical illustration of the maximum in-
tensity criterion for interacting MSCs: black dots mark the eigen-
values of fundamental solitons in the (r, J.L) parameter space, and 
radius of the shaded semicircle determines the maximum ampli-
tude. (b) Dependencies of the peak intensities, corresponding to 
the upper plots, on the propagation distance; dashed line shows 
the maximum possible value. 
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In order to understand the differences in the interaction pattern, we study the 
dependence of the peak intensities on the relative angle tangent of the colliding 
MSCs. To illustrate the key features, we consider interactions of two identical 
MSCs with a relative angle tangent 2J.L1 [see Fig. 13(a)). Although Eq. (4.2) can 
be used to obtain an estimate for the peak intensities, as in the previous examples, 
we find that the results are not optimal for large /Ll· To obtain a more accurate 
estimate, we recall that Eq. (4.1) is satisfied for all (real) J.L simultaneously. We 
now choose J.L = ±J.L1 , add the corresponding inequalities together, and obtain the 
following upper limit, 

(4.4) 

We thus see that Iinf(/Ll --t +oo) --t 2maxj(r]), which is a simple sum of the upper 
bounds for individual MSCs. This result means that the interaction of solitons 
with large relative angles is weak, and the MSC intensities are added together 
similarly to the linear case. As a matter of fact, this is a general property of optical 
solitons [8899). Results of numerical simulations for soliton collisions are presented 
in Fig. 13(b). We also illustrate the evolution of the intensity profiles at small and 
large relative angles in Figs. 13(c) and (d), respectively. 
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FIGURE 13. (a) Location of the eigenvalues of fundamental 
solitons in the (r, p,) parameter space (black dots). (b) Ranges of 
the peak intensity variations during the soliton collision vs. relative 
angles shown with shading; dashed line gives the maximum possible 
value. (c,d) Intensity profiles illustrating soliton collisions at small 
(p,1 = 0.5) and large (p,1 = 5) relative angles. 
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10 

(d) 

In conclusion, we have obtained an exact solution for multisoliton complexes 
on top of a multi-component background composed of radiation waves in Kerr-type 
nonlinear media. We have identified similarities and differences between bright and 
dark MSCs which exist in self-focusing and self-defocusing media, respectively. In 
particular, we have found that the intensity profiles in these two cases are "mirror-
images" relative to the level of the background, and that they depend only on 
the eigenvalues of the fundamental solitons. For example, the reshaping of MSCs 
after collisions is determined by the lateral shifts of the fundamental solitons and is 
not affected by the background components. On the other hand, the width of dark 
solitons has a minimum, and this value depends strongly on the angular distribution 
of the radiation waves. We have performed a detailed analysis of the key soliton 
characteristics for the case of a Gaussian angular distribution of radiation waves, 
and presented numerical examples illustrating the principal features of bright and 
dark MSCs. 

We have also obtained an accurate estimate for the peak intensities of multi-
soliton complexes. We have demonstrated that incoherent coupling can result in a 
decrease of the peak intensity when the relative soliton angles are small (or zero) 
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and nonlinear interaction is strong. On the other hand, solitons with large relative 
angles can roughly be superimposed as linear waves, since the interaction is weak. 
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A Unified Approach to Integrable Systems via Painleve 
Analysis 

S. Roy Choudhury 

ABSTRACT. We review an algorithmic procedure based on truncated Painleve 
expansions to derive various features of integrable equations, including Lax 
Pairs, Hirota's Tau Function, Darboux Transformations and multisoliton so-
lutions, and Miura Transformations to related equations. 

1. Introduction 

The techniques of Painleve analysis [1] are by now well-known in the area of 
testing nonlinear systems for integrability. The purpose of the present review is 
to focus on one of the developments which have taken place in the field over the 
past decade or so. These developments have been in several directions. Since the 
objective here is to be more discursive than in regular research articles, we shall 
primarily be concerned with one of these, i.e. the formulation of a technique for algo-
rithmically deriving from the Painleve analysis all properties relevant to integrable 
systems including auto-Biicklund Transformations, Lax Pairs, Miura Transforma-
tions to related systems (if any), Darboux Transformations, Hirota's Tau function, 
and multisoliton solutions. In fact, the method has also been applied to the deriva-
tion of similarity reductions of nonlinear PDEs (NLPDEs), although we shall not 
consider this here. It will thus be seen that the techniques of Painleve analysis are 
by now much broader than as mere tests for the integrability of a system. In fact, 
the area has developed to a point where it may be considered as one which yields a 
major unifying perspective on integrable systems, as well as one which complements 
the perspectives afforded by other approaches. 

In order to keep the treatment to a manageable length while still being reason-
ably complete, we shall concentrate on the sub-area mentioned above. However, for 
the sake of readability as well as for the purpose of introducing some relevant con-
cepts and terminology, we shall briefly summarize some earlier work in the area in 
Section 2. This will hopefully orient the reader better as to where the work detailed 
in this paper fits within the overall field of Painleve analysis. Some key references 
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are mentioned in Section 2, although the list is not meant to be exhaustive. Follow-
ing this, we shall develop the main theme of the paper in Section 3, using integrable 
( 2+ 1) generalizations of NLS-type systems (and of the Kaup equation in particular) 
as examples. Section 4 will develop the theme further by considering the additional 
example of the well-known AKNS system(s). Finally, Section 5 summarizes the 
main results of the paper. It also contains some comments on the current status 
and future prospects of this particular sub-area of Painleve analysis. 

2. Background and Basic Concepts 

Although not yet fully proven, the Painleve tests [I] seem to provide extremely 
useful necessary conditions for identifying the completely integrable cases of a wide 
variety of families of nonlinear ordinary and partial differential equations, as well 
as integrodifferential equations. Originally, Ablowitz et al. [2] conjectured that 
a nonlinear partial differential equation is integrable if all its exact reductions to 
ordinary differential equations have the Painleve property. This approach poses 
the obvious operational difficulty of finding all exact reductions. This difficulty was 
circumvented by Weiss et al. [3] by postulating that a partial differential equation 
has the Painleve property if its solutions are single-valued about a movable singular 
manifold. In this paper, we follow this latter approach to perform the Painleve 
analysis of several nonlinear evolution equations. 

There is now a compelling body of evidence that if an equation possesses the 
Painleve property it is likely to be integrable, i.e., the Painleve test is a necessary 
test for integrability. In the cases where the criteria for the Painleve test are met, 
the analysis may have failed to detect an essential singularity and further analysis 
would be needed to rigorously prove integrability by: 

(a) constructing the full set of integrals of the motion [5], or 
(b) linearizing the equations, e.g., by the inverse scattering transform [6], or 
(c) reducing them to one of Painleve's transcendental equations [1, 4, 7]. 
The usefulness of the Painleve approach is not limited to integrability predic-

tion, and use of the generalized Weiss algorithm [4, 8] yields auto-Backlund trans-
formations and Lax pairs for the integrable cases. Painleve analysis also yields a 
systematic procedure for obtaining special solutions when the equation possesses 
only the conditional Painleve property [9]-[14], when the compatibility conditions 
of the Painleve analysis result in constraint equations for the movable singular 
manifold which is no longer completely arbitrary. 

Weiss' original technique [3, 8] was extensively developed by others (see [15, 
16] for instance). This approach, which will be briefly reviewed in this section, 
involves the Weiss strategy of truncating the Painleve singularity expansion for 
the solution of the system of NLPDEs at the constant term, thereby imposing 
a specific choice of singular manifold function which has come to be called 'the 
singular manifold'. This singular manifold function and the truncated (singular 
part) of the Painleve expansion are then used to semi-algorithmically derive an auto-
Biicklund transformation between two different solutions of the NLPDE(s), and also 
to derive the associated linear scattering problem or Lax Pair. The latter step is 
not completely algorithmic since it involves linearizing the overdetermined system 
of PDEs connecting various derivatives of the singularity manifold by employing a 
'Weiss substitution' which may often involve prior, extraneous knowledge about the 
NLPDE(s) under consideration. References 15 and 16 also discuss the connections 
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between Painleve analysis and other properties of, and approaches to, integrable 
systems such as Lie symmetries and Hirota's method. However, the original semi-
algorithmic character of the Weiss SMM persists. 

A second recent approach, which has opened up a whole new sub-field, involves 
making the entire process of singularity analysis invariant under the homographic 
or Mobius transformation [17, 18]. This significantly simplifies the testing for inte-
grability [18], the derivation of Lax Pairs [19, ?] , as well as the derivation of special 
families of analytic solutions (see [21]-[24] for instance). Some of these special fam-
ilies of analytic solutions have also been employed in tandem with Melnikov theory 
to analytically investigate the breakdown of coherent structure solutions and the 
onset of chaos in NLPDEs under forcing [25, 26]. Note that the invariant analysis 
yields a fully algorithmic procedure for finding Lax pairs,but none for auto-BTs, 
tau functions, and multisoliton solutions. We shall not consider this approach at 
all in this review. 

A third approach [27, 28] involves significant extensions of the original Weiss 
procedure to derive the 'Weiss substitution' and the Lax Pair completely algorith-
mically. In addition, this technique algorithmically derives many other important 
features of integrable systems such as Miura Transformations, Darboux Transfor-
mations, multisoliton solutions, and Hirota's tau function. Much of this work is 
motivated by the connections sought to be made between the various properties of 
integrable systems in [15] and [16]. Earlier work along these lines includes [29]. 
We shall develop this approach systematically in the next two sections. 

There has also been other activity in the area in recent years, including inves-
tigations of why the Painleve test works, and on higher-order truncations and so 
on. We do not refer to these at all here since they do not directly impact the topic 
of this article. 

In the remainder of this section, we briefly review Weiss' original approach [8] 
in the context of the simplest of the many integrable systems which he considered, 
viz. the KdV equation 

(2.1) u~ + 6u'u~ + u~xx = 0 

We use primed variables here for reasons which will become clear subsequently. 
The behavior of the solutions of (2.1) around a movable singular manifold [1, 3, 4] 
¢(x, t) = 0 is determined by a 'leading-order analysis' whereby one makes the ansatz 

(2.2) u'(x, t) = uo(x, t)[¢(x, t)ta 
and balances the most singular or dominant terms (the ones with the most negative 
powers of ¢; usually the highest derivatives and some or all of the most nonlinear 
terms). For (2.1), balancing the most singular parts of the nonlinear and dispersive 
terms yields [1, 3, 4] 

(2.3) a=2, uo=-2¢; 

At this point, if testing for integrability [1, 3, 4], one determines the so-called 
resonances or Kowaleskaya exponents or indices, and then attempts to construct a 
Laurent expansion solution of the NLPDE with the full complement of arbitrary 
functions. We shall instead follow what has come to be called 'the Singular Mani-
fold Method (SMM)' by following Weiss' [8] original prescription of constructing an 
expansion in inverse powers of ¢ and truncating it at the constant term. It should 
be noted that, once this is done and in contrast to the situation while testing for 
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integrability, the singular manifold is no longer an arbitrary function. Instead, it is 
a well-defined function which has come to be called 'the singular manifold'. Weiss' 
original idea was that information about the integrable system was encoded in this 
singular manifold. In particular, he was able to derive auto-Biicklund Transforma-
tions (auto-BTs) between two distinct solutions of the NLPDE(s), as well as the 
associated Lax Pair, in a semi-algorithmic fashion from the equations satisfied by 
<P and its derivatives. Let us briefly review the steps associated with this next. 

Inserting the truncated expansion (truncated at the constant term) in terms of 
powers of 'the singular manifold function' 

(2.4) 

the 0(¢-4 ) terms yield 

(2.5) 

1 _ -2¢~ U1 (x, t) ( ) 
u - ¢2 + <P + u x, t 

ul = 2<Pxx 

Note that the coefficients ( uo and ul) of the singular part of the truncated expansion 
(2.4) are thus fully determined and it is necessary to ensure this before proceeding 
to the next step. The reason for using the primed variables in the original equation 
(2.1) should also now be apparent from inspecting (2.4). 

Once the coefficients in the singular part of the truncated expansion are deter-
mined, we then re-insert the truncated expansion (2.4), together with these explicit 
singular coefficients (2.5), into (2.1) to obtain the so-called Painleve-Biicklund equa-
tions 

(2.6a) 

(2.6b) 
(2.6c) 
(2.6d) 

{)2 
u'(x, t) = 2 ox2 ln¢ + u 

<Px<Pt + 4</Yx<Pxxx - 3¢;,x + 6u¢;, = 0 

<Pxt + <Pxxxx + 6u¢xx = 0 
Ut + 6uux + Uxxx = 0 

The first thing we note from (2.6d), and Weiss proved that this is a generic 
feature, is that the final coefficient (that for the constant term) in (2.4) satisfies 
the original KdV equation (2.1). Thus, (2.6a) provides an auto-BT between two 
solutions u' and u of the KdV equation. This can be used as an explicit auto-
BT if one can determine 'the singularity manifold function' ¢. There are several 
strategies for doing this, and we shall consider one of them in the next section. Thus, 
the Weiss singularity manifold method (SMM) provides an algorithmic method for 
finding auto-BT's. 

Next, one might be inclined to think that the remaining Painleve-Biicklund 
equations (2.6 b-d) constitute an overdetermined system of three equations for the 
two variables u(x, t) and <P(x, t). They are, however, self-consistent, with the last 
one being the solvability condition for the other two. Also, they may always be lin-
earized to yield the associated linear scattering problem or Lax Pair for the system. 
For (2.1), Weiss and his co-workers used two different strategies [3, 8], and other 
strategies have included those in [19] and [?]. While each of the Weiss strategies 
has semi-algorithmic features, neither is fully algorithmic and self-consistent in the 
sense that each utilizes some a priori information about (2.1). We shall use the 
simpler Weiss strategy here, and develop a more systematic and algorithmic ver-
sion of the other one in the next two sections. Utilizing the well-known AKNS-type 
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substitution (Weiss et al [3] used v instead of'¢ in their original work) 

(2.7) 

transforms (2.6 b,c) into the well-known Lax Pair 

(2.8a) 
(2.8b) 

'l/Jxx + ( U + A)'lj; = 0 

'l/Jt + 4'¢xxx + 6u'¢x + 3ux'¢ = 0 
for the KdV equation. 

One might sum up the results above by saying that this original Weiss SMM 
thus provided an algorithmic method for obtaining an auto-BT and semi-algorithmic 
methods for obtaining the Lax Pair for integrable NLPDEs via the use of truncated 
Painleve expansions. 

It should also be noted that various other aspects of the Weiss SMM have been 
investigated (see [8], [19], and [20] for instance). In particular, Conte and Musette 
have used the singular part of the truncated expansion in a so-called 'singular part 
transformation' to algorithmically derive Darboux Transformations for numerous 
integrable systems. 

In the next two sections, we shall follow the third approach mentioned at the 
beginning of this section and develop the Weiss SMM further into an algorithmic 
method for deriving various properties of integrable systems. We shall illustrate 
the requisite techniques using two integrable (2+ 1) versions of the Kaup equation 
in the next section and the well-known AKNS system(s) in Section 4. We shall 
notice some interesting contrasts between what the SMM yields for the systems in 
Section 3 and that in Section 4. 

3. Unified Treatment of Integrable (2+1) 
Generalizations of the Kaup Equation 

In this section, we first develop the analysis using two members of the integrable 
(2+1) NLS Type systems considered by Mikhailov and his co-workers [30]-[32] as 
typical examples. We choose systems in (2+1) dimensions intentionally so as to 
demonstrate both the algorithmic nature of the analysis as well its direct applica-
bility to systems in more than one spatial dimension. As we shall see, the analysis 
in (2+1) is, as one might expect, somewhat more involved than for (1+1) systems, 
but in a fashion which may be developed algorithmically and systematically. We 
shall mention appropriate references as we proceed, but two background papers of 
general relevance are those by Estevez and her co-workers [27, 28]. 

In particular, we shall consider the following two integrable generalizations of 
the Kaup equation [33]: 
(3.1a) u~ = u~x + 2p'u~ 
(3.1b) -v~ = v~x- 2p'v~ 

(3.lc) 

and 

(3.2a) 

(3.2b) 
(3.2c) 

p~ = (u + v)x 

u' = u' + (u'2 + u'v') + q' t yy y 

-v' = v' - (v'2 + u'v') + q1 t yy y 

q' = (v'u' - u'v') X X X Y' 
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3.1. Analysis of (3.1). We shall detail the calculations and the procedure 
for (3.1) first, and subsequently summarize similar computations for (3.2). 

As usual, we first perform the leading-order analysis as in Section 2 and assume 

(3.3) 

Balancing the most singular second derivative and nonlinear terms in the first 
two equations yields: 

(3.4a) 
(3.4b) 
(3.4c) 

Q + (3 = -2 
')'=1 

Po= (a+ 1)¢x/2. 

At this point, it is tempting to look at the apparently symmetric way in which the 
variables u and v occur in (3.1) and thus assume that a= (3 = -1. However, it is 
straightforward to check that this choice leads to a contradiction. One may obtain 
consistent choices by a. balancing the left hand side of (3.1c) with the first term on 
the right, with the other term being less singular, or by b. balancing the left side 
of (3.1c) with the second term on the right. These correspond respectively to: 

(3.5) Q = 1, (3 = -3 

or 

(3.6) Q = -3, (3 = 1. 

We shall detail the case corresponding to (3.4)/(3.5) and summarize the anal-
ogous results for (3.4)/(3.6) subsequently. As discussed in Section 2, we shall next 
invoke the Weiss SMM by substituting expansions for our variables truncated at 
the constant term (and with coefficients of all singular terms explicity expressed 
in terms of derivatives of the singular manifold function), and use the resulting 
expansions to develop an algorithmic method for deriving various properties of the 
integrable system (3.1). For (3.4)/(3.5), the leading order 0(¢-3 ) terms in (3.1a,b) 
yield the coefficients of the singular terms in u and p explicitly as 

(3.7) 

Using these, we substitute the truncated expansion 

(3.8a) 

(3.8b) 

(3.8c) 

u' = ¢y +u 
¢ 

v' = vo¢3 + VI ¢4 + ... 
1 ¢x p = ¢+p. 

Substituting these in (3.1) yields equations at various orders in ¢, the Painleve-
Backlund equations, which are contained in Appendix A. Notice that (A9) and 
(A10) show that 

(3.9) Vo =VI= 0 

Thus, (A4) to (A6), and (A8) to (All), are identically satisfied. The only non-
trivial equations surviving are (A1) to (A3) and (A7) which are given below for 
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ease of comprehension in the following calculations: 

(3.10a) 
(3.10b) 
(3.10c) 
(3.10d) 

c/Jt - 2p¢x - c/Jxx = 0 
-c/Jyt + 2c/JxUx + 2pc/Jxy + c/Jxxy = 0 

Py = Ux 
-Ut + 2pux + Uxx = 0 

Substituting (3.10c) in (3.10b) and integrating with respect toy yields 

(3.11) -c/Jt + 2p¢x + c/Jxx = A*(x, t) 
which is the same as (3.10a) if the 'constant' of integration on the right is taken 
to be zero. Thus, we may essentially just ignore (3.10b) since it is really the y 
derivative of (3.10a). 

We now work with the remaining Painlev&Backlund equations in (3.10) to de-
rive the so-called singular manifold equation (SME). The essential idea in deriving 
the SME is to express all physical or field variables (or potentials in the language 
of scattering) in terms of functions of the singularity manifold and, using these, to 
derive a consistency condition on this singularity manifold which is the SME. The 
motivation for this is that analysis of the SME yields an algorithmic method for 
deriving the Weiss substitution and thus linearizing the Painleve-Backlund equa-
tions to obtain the Lax Pair. The details vary from case to case, but the essential 
ideas in deriving the SME and analyzing it are common to all examples. For this 
purpose, we also define the quantities [17]-[19] 
(3.12a) V = ¢xx/¢x 
(3.12b) cl = ¢tf¢x 
(3.12c) 
which satisfy the compatibility conditions 

(3.13a) vt = (C1x + C1 V)x (from ¢xxt = c/Jtxx) 
(3.13b) Vy = (C3x + VC3)x (from c/Jxxy = c/Jyxx) 
(3.13c) C3t = C1y + C1C3x- C3C1x (from c/Jyt = c/Jty) 

Using (3.10c) in (3.10d) yields 

a [p2 Ut = ay +Px] 

(3.14) 

Integrating the consistency condition Uxt = Utx with respect to y yields 

(3.15) Pt = ax[p2 + Px] + .X(x, t) 
From (3.10a) and (3.12), we have 

1 
(3.16) p = 2(C1- V) 

Using this in (3.15) yields the SME 

(3.17) 1 [1 2 2 1 ] 2(C1- V)t =ax 4(C1 - 2Cl V + V ) + 2 (Clx- Vx) + .X(x, t) 

The key to linearizing the Painleve-Backlund equations in algorithmic fashion 
is to perform a leading-order singularity analysis of the SME and the consistency 
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conditions (3.13), treated as an NLPDE in C1 and V in a manner analogous to 
Section 2. In other words, we apply the first part of the SMM to the SME. Assuming 

(3.18) 

and balancing the most singular terms (those within the square bracket) in ( 3 .17) 
yields 

(3.19) a= b = -1 

and 

(3.20) co = vo or co - vo = 2xx 

Next, using (3.18)/(3.19) and balancing the most singular terms in (3.13a) yields 

(3.21) 

which, with (3.20), implies 

(3.22) 

Vo = Xx 

co = 3xx or co = Xx· 

Once this leading-order analysis of the SME is complete, we follow an approach 
due to Musette and Conte [20, 34, 35] and assign a separate singularity manifold, 
i.e., two distinct x's, to each of the two branches for c1 and v in (3.18) to (3.22). 
Denoting these as '1/J+ and '1/J- (the connection of these to the original singularity 
manifold¢ will become apparent in the following step), (3.18) through (3.22) yield 
the following leading behaviors: 

(3.23) V = ¢xx = '1/Jt + '1/J; 
¢x '!jJ+ 'lj;-

and 

(3.24) c = ¢t = 3'1/Jt + '1/J; 
1- ¢x 'lj;+ 'lj;-. 

Integrating (3.23) with respect to x and using the result in (3.24) yields the con-
nection of the original singularity manifold variable ¢ to the 'lj;s, i.e. 

(3.25) 

and 

(3.26) 

These last two equations are in fact the analogues of the Weiss substitutions. Note 
that, unlike Weiss' original procedure, they have been derived here completely 
algorithmically and self-consistently from the singularity analysis. More specifi-
cally, in Weiss' original procedure [3, 8], such substitutions were based on either 
guesswork or information regarding the order of the underlying linear scattering 
problem, both of which were based on extraneous knowledge about the system. As 
in Section 2, these substitutions will be key to linearizing the Painlev&-Backlund 
equations (3.10a,c,d) to yield the Lax Pair for the system, and we proceed next to 
this step. 

Using (3.23)/(3.24) in (3.16) yields 

(3.27) '1/Jt = p'l/J+. 
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Using (3.27) for p(x, t) in (3.10c) and interchanging the order of the derivatives, 
the resulting equation may be integrated with respect to x to yield 

(3.28) 

The last two equations comprise the spatial part of the Lax Pair for (3.1) (with 
unprimed variables instead of primed ones). It is straightforward to check that the 
compatibility condition for (3.27)/(3.28) yields the governing equation (3.1c) for 
the system (remember that v = 0 for this branch of the analysis, as is apparent 
from (3.8)/(3.9)). Next, solving for u from (3.28) and using the result in the first 
term in (3.10d) yields 

(3.29) d ['1/J"t] -A1t + dt 'tjJ+ - 2pux + Uxx· 

This constitutes the temporal part of the Lax Pair and it is straightforward to verify 
that the compatibility condition for (3.28) and (3.29) yields the first governing 
equation (3.1a) for the system (with unprimed variables), while the compatibility 
of (3.27) and (3.29) simply yields the x derivative of (3.1a). 

Notice that, since (3.10b) is redundant and (3.10a) was used to obtain (3.16) 
and hence (3.27), we have linearized all the Painleve-Backlund equations (3.10) to 
obtain the Lax Pair for (3.1) (with unprimed variables). Notice too that (3.1b) is 
trivially satisfied for this branch of the analysis since v = 0 by (3.8b) and (3.9). 

At this point, we remind ourselves that the above branch of the singularity 
analysis of (3.1) corresponds to (3.4)/(3.5). Performing an exactly analogous anal-
ysis for the other branch corresponding to (3.4)/(3.6) results in (the '1/J± functions 
in (3.30) to (3.37) are different from those in (3.23) to (3.29)): 

a. (3.8)/(3.9) are replaced by 

u' =0 

v' =- c/>y + v 
¢ 

(3.30) 1 ¢x 
p = -¢;+P 

b. (3.23) (3.26) are replaced by 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

c. the resulting Lax Pair is 

(3.35) 

(3.36) 

(3.37) 

v = '1/J:% + '1/J; 
'tjJ+ 'ljJ-

cl = - '1/J:% - 3'1/J; 
'tjJ+ 'ljJ-

¢x = 'I/J+'I/J-
¢t = -'1/Jt'I/J-- 3'1/J;'I/J+ 

'1/J; = -p'I/J-
'1/J:;; + [v- .\2(y, t)]'I/J- = 0 
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Note that the consistency of the last three equations recovers the second and third 
governing equations (3.1b) and (3.1c), while u = 0 for this branch of the analysis 
and so (3.1a) is trivially satisfied. 

Thus, the Lax system (3.27)-(3.29) recover the governing equations (3.1a,c), 
while (3.35)-(3.37) recover (3.1b,c). 

Once we have the Lax Pair, the next step in the analysis is to proceed to 
derive Darboux Transformations [36], i.e. transformations of the potentials u, v, 
and p and the eigenfunctions'¢ which leave the Lax Pair(s) invariant. Once again, 
a systematic procedure may be formulated from the Weiss SMM. If non-trivial 
Darboux Transformations (DTs) result, they may then be iterated [36] in the usual 
manner starting from relatively simple seminal solutions of the governing PDEs 
following the Crum procedure to generate more complex families of multisoliton 
solutions. It is worth commenting here that, for many systems, the iteration of 
DTs appears to work better than the iteration of auto-BTs where one often remains 
confined to the same family of solutions after a single iteration. In addition, the 
procedure for deriving DTs may be iterated to generate Hirota's tau function. We 
shall lay out the basic ideas for the derivation of DTs next. 

The key idea in deriving DTs is due to Konopelchenko and Stramp [37] and 
involves treating the Lax Pair itself as a system of NLPDEs in the field variables 
(potentials) u,p and the 'lj;s. We shall primarily follow [27, 28] here. Assuming a 
singular manifold (h, spectral parameter At and +/- Lax Pair eigenfunctions 'l/Jt 
associated to starting (or seminal) solutions u, v, and p of (3.1) yields the equations: 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

rPtx = 'l/Ji'¢1 

rPlt = 3'¢ix'¢1 + '¢1x'¢t 

'¢ix = P'¢t 

'¢iy = [u- At (y, t)J'l/Jt 

d ['¢tyl Att + dt 'l/Jt = 2pux + Uxx· 

Here, we have used (3.25) to (3.29). New solutions u' and p' may be constructed 
using the auto-BTs (3.8a,c) (with ¢ replaced by ¢t corresponding to the seminal 
solutions), and associating a singular manifold¢;, spectral parameter A2 and+/-
Lax Pair eigenfunctions '¢~ to these yields the analogous equations: 

(3.43) 

(3.44) 

(3.45) 
(3.46) 

(3.47) 

"'' - .t.'+ .t,l-'f'2x- '1-'2 '1-'2 

"' = 3·',1+ .t,l- + .t,l- .t.'+ 'f'2t 'l-'2x'l-'2 'l-'2x'l-'2 

'¢~~ = p'¢~+ 
'l/J~t = [u'- A2(y, t)]¢~+ 

Next, following [37] and treating the Lax Pair (3.45) to (3.47) as a coupled system of 
NLPDEs in u', p' and the 'lj;~s, we may apply the SMM to this system of NLPDEs 
and thus add the following truncated expansion for the ¢~+ to those in (3.8a,c) 
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(with ¢replaced by ¢ 1 for the seminal solutions) to obtain: 

(3.48) ¢'+ _ ¢+ _ '¢to+ 
2 - 2 ¢1 

(3.49) 

(3.50) 

u1 = ¢ 1y +u 
¢1 

1 _ ¢1x + 
p - ¢1 p. 

Now, for a DT, the transformation of potentials and eigenfunctions given by 
(3.48) to (3.50) must preserve the Lax Pair. In other words, the original starting 
solutions corresponding to u, p, and 'l/J"t must satisfy the same Lax Pair equations 
(3.45) to (3.47) for the same eigenvalue A2, i.e., 

(3.51) 

(3.52) 

(3.53) 

.!.+ - ~!.+ 
'f'2x - 1''1-'2 

'l/Jty = [u- A2(y, t)J'l/Jt 

d ['¢tyl A2t + dt 'l/J"t = 2pux + Uxx· 

Substituting the truncated expansions (3.48) to (3.50) in (3.45) to (3.47) and us-
ing (3.38)/(3.39) and (3.51) to (3.53) yields, after some computer algebra with 
MATHEMATICA, the trivial result: 

(3.54) o+ = o. 
Also, a leading-order singularity analysis of (3.13c), in a manner similar to that 
performed on (3.13a) while analyzing the SME (3.17) to derive (3.23)/(3.24), shows 
that 

(3.55) 

for some arbitrary k. Using (3.38), (3.54), and (3.55) (with ¢ = ¢ 1 ) in (3.38) 
to (3.50) yields the following DT under which the Lax Pair(s) are invariant (and 
corresponding to v = 0 as discussed earlier) 

(3.56) ul- k(3'¢tx'¢1 + '¢1x'¢t) + u 
- J'l/Jt'¢1 dx 

(3 57) I 'l/Jt'¢1 
. p = J 'l/Jt '¢1 dx + p 

(3.58) '¢~+ = 'l/Jt. 
Note that this DT may be iterated starting from simple seminal solutions of 

(3.1) (with v = 0) and using the Crum procedure [36]. In order to do this, one would 
substitute the simple seminal solutions for u and pin (3.40) to (3.42) to obtain the 
first iterate for'¢!- This may then be substituted in (3.56)/(3.57) to yield a second 
iterate for the potentials u and p, and the process may then be iterated as long 
as closed-form solutions may still be readily obtained. Before attempting this, we 
make one other comment. It is possible to iterate the singular manifold function 
itself to obtain Hirota's tau function. However, (3.58) makes it apparent that, for 
the present example (3.1), only trivial or identity iterates result for the'¢ functions, 
and hence for the ¢s (see (3.25)). We therefore postpone the discussion of Hirota's 
method to the next section, where the situation will turn out to be different from 
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the one we just considered. For the same reason, we shall postpone consideration 
of the iteration of DTs to Section 4. 

In order to complete the treatment of (3.1), we finally turn to a discussion ofthe 
iteration of the auto-BT (3.8) for this equation in order to derive analytic solutions 
of (3.1). The relevant equations here will be (3.1), (3.8) (with v0 = v1 = 0), and 
(3.10a,c). Starting from the simplest vacuum solutions u = p = 0 (v = 0 anyway 
for the branch corresponding to (3.10)) as seminal solutions, (3.10a) yields the heat 
equation (in t and x) for the first iterate of¢. Thus, 

(3.59) 

Using this and the seminal solutions in (3.8) yields the next iterate for the solutions, 
i.e. 

(3.60) 

(3.61) 

u' = c~ (y) + 2.Jit, c~(y)ex2 /4t 

c1(y) + 2.Jit, c2(y)ex2 / 4t 

xc1(y) p'= ----------~~---------
-2tcl(Y)- 4-J;it3 c2(y)ex2j4t. 

It is straightforward to check that these are indeed solutions of (3.1) for v = 0 and 
arbitrary c1 (y) and c2 (y). One may try and iterate the process by using the last 
two equations in (3.10a) to obtain a second iterate for¢, but the solution becomes 
complicated and so we shall stop at this point. Figures 1 to 3 show plots of the 
solutions (3.60) and (3.61) for: 

a. plot of p for c1(y) = 1r, c2(y) = y5 at t = 1; 

b. plot of u for c1 (y) = exp( -y2 /4t), c2(y) = y5 at t = 1; 
and 

c. plot ofp for c1(y) = c2(y) = exp(-y2/4t) at t = 1; 

These solutions will be extensively discussed elsewhere, but note in particular the 
strong x andy modulations in Figure 1, as well as the yjx modulations respectively 
in Figures 2 and 3. 

This concludes our treatment of (3.1), and we turn next to a relatively brief 
treatment of (3.2). In order to illustrate other features of the SMM method under 
consideration, we shall refer to features of (3.2) which are analogous to those seen 
above for (3.1) only briefly. Our main concentration will be on features dissimilar 
to those discussed for (3.1) 

3.2. Brief analysis of (3.2). Attempting a leading-order analysis of (3.2) by 
substituting 

(3.62) 

it is straighforward to check the possible consistent dominant balances and conclude 
the following: 

a. as for (3.1) (see (3.5)/(3.6)), consistent dominant balances exist with a and f3 
having unequal values. We do not consider these cases or branches of the singularity 
analysis further as they are similar to the treatment in Section 3.1 and will be 
detailed elsewhere. 
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and 

b. unlike (3.1), (3.2) admits a consistent dominant balance with 

et=,B=1 
(3.63) ')'=3. 

We shall concentrate on this branch as it illustrates somewhat different features of 
the analysis from those discussed in Section 3.1. 

The leading-order analysis for the branch discussed in b above yields 

(3.64) 

(0,0,0) 
or 

{ uo, vo, 0} = (0, -q)y, 0) 
or 
(¢y,O,O) 

Using the last of these together with (3.62)/(3.62), and substituting the resulting 
truncated expansions 

(3.65a) 

(3.65b) 

(3.65c) 

u' = cPy + u 
q) 

v' = v 

into (3.2) results in equations at different orders in powers of q) (analogous to those 
in Appendix A for (3.1)). Solving these as in Section (3.1) yields 

(3.66) v = v(y, t) 
(3.67) q1 = -vq)~ 
(3.68) Q2 = qJyVy + VqJyy 
together with the conditions 

(3.69) 
(3.70) 

-2vq)~ + cPtcPy - 2uq)~ - cPycPyy = 0 
2¢yvy + 2v¢yy + 2¢yuy - cPyt + 2u¢yy + cPyyy = 0. 

It is straightforward to check that (3.70) is the y partial of (3.69) and this 
'apparent overdeterminedness' might seem reminiscent of that observed in (2.6b-d) 
for the KdV equation. There is however an important difference from that case. 
Careful inspection of (3.66) to (3.69) (and (3.65c)) reveals an insufficient number 
of equations to eliminate all field variables (or potentials) u, v, and q and derive an 
SME. In fact, this is characteristic of a singular branch of the Painleve analysis. 
Such a branch may not be used to algorithmically derive the various properties of 
the integrable system (3.2) as was done using a general or regular branch of (3.1) 
in the previous subsection. However, it may still be used to derive special analytic 
solutions (these are usually referred to as 'singular' solutions, but in the sense of 
solutions not contained in the general solution and not necessarily in the sense of 
possessing singularities). We shall use the governing equations above for the chosen 
singular branch of the Painleve analysis to derive special analytic solutions of (3.2). 
The procedure used will be iteration of the auto-BT (3.65), as was done for (3.1) 
at the end of Section 3.1, and we proceed to this next. 
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The relevant equations are (3.65) to (3.69). Starting with vacuum solutions 
u = v = q = 0 of (3.2), (3.69) yields the heat equation (in t and y) for ¢;. Solving 
this yields 

(3.71) 

Using this and (3.66) to (3.68) in (3.65) yields the next iterate 

(3.I) u' = ydl(x) 
-2td1(x)- 4Jri3 d2(x)eY 2 /4t 

(3.72) q' = 0 

for solutions of (3.2). It is straightforward to check that these satisfy (3.2). A 
typical plot of the solution in (3. 72) is shown in Figure 4 for: 

plot of u for d1(x) = exp( -x2 /4t), c2 (x) = x5 at t = 10. 
This concludes our discussion of the (2 +I) dimensional generalizations (3.I) and 
(3.2) of the Kaup equation. We proceed next to a consideration of the well-known 
AKNS equation(s) in the following section. 

4. The AKNS Equation in (I+ I)-dimensions 

We shall use the AKNS system [38) in I+ I 

(4.I) Myxxx + 4MyMxx + 8MxMxy = 0, 
to illustrate further features of the method. This section of the review follows [27]. 
Some of the steps which are similar to Section 4 are omitted. 

The leading-order analysis and truncation at the constant level yields 

(4.2) M' = M + ~. 
The substitution of the truncated expansion (4.2) into equation (4.I) provides 

the following results (details are omitted): 
• Mas well as M' should be solutions of (4.I). This means that (4.2) could be 

considered as an auto-Biicklund transformation between two solutions M' and M 
of the same equation. 

• The solution M can be written in terms of the singular manifold in the 
following way: 

(4.3) 

(4.4) 

These are the Painleve-Biicklund equations and >. is an arbitrary constant of inte-
gration that, as in Section 3, plays the role of the spectral parameter. 

• The singular manifold equations. The equations that the truncation proce-
dure implies for ¢; are: 
(4.5) 

where S is the schwartzian derivative defined as (17): 
v2 

(4.6) S = Vx- 2· 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



A UNIFIED APPROACH TO INTEGRABLE SYSTEMS VIA PAINLEVE ANALYSIS 153 

Also, the compatibility condition ¢xxt = ¢txx between definitions (3.12a) and 
(3.12c) requires: 

(4.7) 

It is straightforward to show that the singular manifold equations are just the AKNS 
system once again. In fact with the change of variables 

(4.8) S = 4px + 2-\, 

(4.9) c3 = P;, 
( 4.5) is trivially satisfied and ( 4. 7) yields 

0 = Pyxxx + 4PyPxx + 8PxPxy 
which is the AKNS system once again. 

As we have seen above, the singular manifold equations, written in terms of V 
and c3 are (see (3.13b)): 

(4.10) Vxy - VVy = 4-\C3x, 
(4.11) Vy = (C3x + C3 V)x 
which can be considered as a new system of nonlinear equations as in Section 4. If 
we apply the Painleve analysis to this system to derive the Weiss substitution, the 
leading terms are (using 'ljJ for the singularity manifold) 

V ,...., Vo'l/Ja, C3 ,...., C3o'l/Jb. 

Using these in (4.10-4.11) yields 

a= -1, b = -2, Vo = 2'1/Jx, 

As in Section 4, these leading terms provide the key for the linearization of the 
truncated solutions ( 4.3-4.4). If we replace V by its dominant term 

(4.12) ¢xx = Vo'l/Ja = 2 '1/Jx =} ¢x = 'I/J2. 
¢x '1/J 

Thus, ( 4.3) becomes 

(4.13) 0 = '1/Jxx + (2Mx + -\)'1/J 
and from (4.12), (4.4) and (4.7) we obtain 

'1/Jy 1 ( 2--:;j;" = C3x + C3 V = 2,\ 2Mxy + Vxy + 2V My + VVy) 

or (using V = Vo'l/Ja = 2'1/Jx/'1/J) 

(4.14) 0 = 2-\'1/Jy + Mxy'l/J- 2My'l/Jx· 

(4.13) and (4.14) are precisely the Lax pair for the AKNS system. 
As in Section 4, we can consider the Lax pair itself as a pair of coupled nonlinear 

equations between M and '1/J. Let us now explain how to proceed to find a Darboux 
Transformation and Hirota's tau function using this. 

Since M' is also a solution of ( 4.1), an associated singular manifold ¢~ linked 
to a spectral parameter -\2 can be defined just by defining (from (4.12)) 

(4.15) 
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and a Lax pair forM' can be written as (from (4.13) and (4.14)) 

(4.16) 
(4.17) 

0 = 1/J~xx +(2M~+ A2)¢~, 

0 = 2A2¢~y + M~y¢~- 2M~¢~x' 

where the notation means that ¢~ is an eigenfunction corresponding to M' with 
eigenvalue A2. If we call ¢1 and ¢2 two singular manifolds for M attached to 
spectral parameters A1 and A2 respectively the corresponding eigenfunctions are 
defined from (4.12) as: 

( 4.18) 

(4.19) 
</J1x = 1/J~, 
</J2x = 1/J~. 

Using (4.13)/(4.14), the Lax pairs take the form 

(4.20) 
(4.21) 
(4.22) 
(4.23) 

0 = 1/J1xx + (2Mx + AI)¢1, 
0 = 2A1¢1y + Mxy¢1- 2My¢1x, 
0 = 1/J2xx + (2Mx + A2)1/J2, 
0 = 2A2¢2y + Mxy¢2 - 2My¢2x· 

If we use the singular manifold ¢ 1 to construct the truncated Painleve expansion 
(¢2 may be used with A= A2 instead) 

(4.24) M'=M+ ¢1x 
¢1 

and we then treat (4.16-4.17) as a system of nonlinear coupled equations, a similar 
expansion should be performed for ¢~. In other words, 

e 
(4.25) ¢~ = ¢2 + ¢1. 

The substitution of the truncated expansions (4.24-4.25) in (4.16)/(4.17) pro-
vides the functional form for 8. The result is 

(4.26) 

where 

(4.27) 

The expansions (4.24)/(4.25) leave invariant the Lax pair (4.13-4.14), or are 
Darboux transformations. The eigenfunctions and singular manifolds are trivially 
related through ( 4.18) and we therefore have the following: with two eigenfunctions 
¢ 1 and ¢ 2 for M, we can construct an eigenfunction ¢~ for the iterated solution 
M' using (4.25)-(4.27). Hence they provide a standard Darboux transformation. 

Furthermore, (4.15) is a nonlinear equation that relates¢~ and¢~. This means 
that the singular manifold ¢~ itself could also be expanded in terms of ¢1 

(4.28) ¢~ = ¢2 + ~ 
and by substituting this expansion in (4.15) and using (4.25)-(4.27), we obtain 

(4.29) 
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The procedure described above may be easily iterated. The singular manifold ¢~ 
for M' can be used to construct a new solution 

(4.30) M" = M' + ¢~x 
¢~ 

that combined with (4.24) can be written as 

(4.31) 

where 

(4.32) 

M" = M + 712x ' 
712 

and by using (4.28) and (4.29) 

(4.33) 712 = ¢2¢1- [n('!jJ1,'1/J2)] 2 . 

Note that the function 712 for the second iteration is not a singular manifold but 
it can be constructed from two singular manifolds of the first iteration. Thus, the 
SMM algorithmically yields Hirota's bilinear method [39]. It also provides the 
algorithm to construct solutions for the 7-function, as we will see below. 

The easiest nontrivial solutions can be obtained from the seminal solution 

(4.34) M=aoy 

(so that Mx and Mxy are zero in (4.20-4.23). For this solution, exponential solutions 
of (4.20-4.23) are 

(4.35) '1/Ji = exp ( kix - ~: y) , 
where 

(4.36) 

and, integrating (4.18)/(4.29) after using (4.35), the corresponding manifolds are 

1 2 
(4.37) ¢i = 2ki (ai + '1/Ji ), 

where ai are arbitrary constants. Now, (4.27) implies 

(4.38) 

and (4.33) also yields 

(4.39) 1 ( .t,2) ( .t,2) '1/J~'l/J~ 
712 = 4k1k2 al + '~-'1 a2 + '~-'2 - (kl + k2)2. 

Using (4.24) and (4.31), we can write the first and second iterates as: 

(4.40) 

(4.41) 

M l </J1x 
= aoy+ ¢";"' 

M il + 712x = aoy --, 
712 
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where 

(4.42) 

(4.43) 

(4.44) 

( 4.45) 

S. ROY CHOUDHURY 

a1 (h = 2k1 (1 + F1), 
a1a2 

T12 = -k k {1 + F1 + F2 + A12F1F2}, 
4 1 2 

ai = exp(2kixoi), 

Fi = exp ( 2ki ( x - ~f y - Xoi)) , 
A = (k1- k2) 2 

12 k1 + k2 
(4.40) corresponds to the one-soliton solution and (4.41) to the interaction of two 
solitons for the AKNS system in 1 + 1. 

5. Conclusions and Prospects 

In this review, we have considered a technique which has evolved over the 
last decade or so and which provides a method of algorithmically deriving various 
properties of integrable systems from truncated Painleve expansions. As should be 
apparent from the examples we have considered, the technique has by now evolved 
to a point where it affords one form of unifying perspective on integrable systems, 
and also provides an algorithmic method for investigating new integrable systems 
such as new integrable hierarchies of equations. 

Future work will probably seek to develop and refine the method further. In 
addition, it will probably continue to be used to investigate new integrable equations 
or hierarchies. 
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Appendix A 

Substituting (3.8) in (3.1) yields: 
From (3.1a): 

(A.1) 

(A.2) 

(A.3) 

From (3.1b): 

0 (;2): ¢y[¢t- 2pl¢x- tPxx] = 0 

0 ( ~) : - tPyt + 2¢xU1x + 2pl¢xy + tPxxy = 0 

0(1) : - U1f + 2plulx + Ulxx = 0 

(A.4) 0(1) : V1t- 2pl V1x + V1xx = 0 
(A.5) 0(¢): 4vl¢t + Vot- 8p1v1¢x- 2p1Vox + 6¢xV1x + 4v1¢xx + Voxx = 0 

(A.6) 0(¢2): 4¢x(vl¢x +Vox)+ 3vo{¢t- 2pl¢x + tPxx} = 0 

From (3.1c): 

(A.7) 0(1): -Ply+ Ulx = 0 
(A.8) 0(¢): 0=0 

(A.9) 0(¢2) : 3vo¢x = 0 

(A.10) 0(¢3) : 4vl¢x +Vox= 0 

(A.ll) 0(¢4) : Vlx = 0 
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10 

Fig. 1 Plot of p for c1(y) = 1r, c2(y) = y5 at t = 1 for Eq. (3.1) 

5 

u 

10 -10 

Fig. 2 Plot of u for c1 (y) = exp(- y2 / 4t),c2 (y) = y5 at t = 1 for Eq. (3.1) 
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Fig. 3 Plot ofp for c1 (y) = c2 (y) = exp(-y2 /4t) at t = 1 for Eq. (3.1) 

0.00002 
u 

10 -10 

Fig. 4 Plot of u for di(x) = exp( - x2 /4t), c2 (x) = x5 at t = 10 for Eq. (3.2) 
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Asymptotic stability of solitary waves 
for Nonlinear Schrodinger equations 

Vladimir S. Buslaev and Catherine Sulem 

ABSTRACT. This review deals with long-time behavior of solutions of nonlin-
ear Schrodinger equations for initial conditions in a small neighborhood of a 
stable solitary wave. Under some hypothesis on the structure of the spectrum 
of the linearized operator near the soliton, the solution decomposes, asymp-
totically in time, into a solitary wave with slightly modified parameters and a 
dispersive part described by the free Schrodinger equation. Time behavior of 
the correction is explicitly calculated. 

1. Introduction 

This survey deals with the scattering theory of the Nonlinear Schrodinger (NLS) 
equation in one space dimension 

(1.1) 
(1.2) 

i'l/Jt = -'1/Jxx + F(l'l/JI 2 )'l/J, 
'lj;(x, 0) = 'l/Jo(x) 

xE~ 

where 'lj;(x, t) is complex-valued function. We suppose that it possesses solitary 
wave solutions of the form 

(1.3) 'lj;(x, t) = eiwt<p(x, w) 

where <p is the positive solution of the equation 

(1.4) <p11 - W<p - F( <p2 )<p = 0 

vanishing exponentially at infinity. The problem of (orbital) stability of solitary 
waves for nonlinear dispersive equations has been the object of numerous works 
[22] [4] [11] [19], [5]. 

The question we address here is their asymptotic stability that is the long-time 
behavior of solutions whose initial conditions are close to a stable solitary wave. 
In the case of integrable nonlinear equations (such as Korteweg-de Vries equa-
tion, cubic Schrodinger equation, Benjamin-Ono equation ... ), the inverse scattering 
method, under certain conditions, decouples the localized part and the dispersive 
part and provides an asymptotic decomposition of the solution into a sum of solitary 
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waves and a dispersive component. Here, we deal with non-integrable equations and 
the approach is completely different and local. 

The scattering theory of the NLS equation in JR.n 

(1.5) 

l > 1 + 2/n with respect to the free Schrodinger equation 

(1.6) i'l/Jt + ll'l/J = 0, 

has been extensively studied by various authors [9], [17], [12]. This case corre-
sponds to the absence of bound states. In dimension n = 1, the case l = 2 is 
somehow critical, with the potential term l'l/JI 2 rv 1/t being long range, leading to 
a log t phase shift for the asymptotic behavior of the solution [23], [7]. Deift and 
Zhou [8] considered a perturbation 

(1.7) 

of the defocusing one-dimensional cubic Schrodinger equation 

(1.8) 

Since (1.8) is completely integrable, they viewed (1. 7) as a perturbation of an infinite 
dimensional integrable system on the line. They proved that as t ---. oo, solutions 
of (1.7) behave like solutions of (1.8) and that the long-time behavior is universal 
for a large class of initial data. 

In [15], Soffer and Weinstein considered the NLS equation with a potential 
term 

(1.9) 

for x E JR.n, and 1 < m < (n + 2)/(n- 2). Under the assumptions that V(x) 
decays fast enough at infinity and that the operator -ll + V has exactly one 
bound state (isolated eigenvalue) in L2 (1Rn), with strictly negative eigenvalue E*, 
they proved that for a class of initial conditions, the solution of (1.9) is given 
by '1/J = e-iS(t)'PE(t) + f(t), e = J~ E(s)ds- -y(t), where 'PE is a spatially 
localized solitary wave and f a purely dispersive wave. As t ---. ±oo, E(t) ---. E± 
and -y(t) ---. 'Y±· The case where the operator -ll + V has 2 bound states was 
investigated recently by Tsai and Yau, using ideas of [16] developed in the context 
of resonance solutions of the nonlinear Klein-Gordon equation. In [20], they proved 
that, in the three-dimensional case, if the initial condition is sufficiently small and 
near a nonlinear ground state, then the solution approaches a certain nonlinear 
ground state as time goes to infinity. In subsequent papers [21], they consider the 
case of initial conditions near an excited state and give a sufficient condition on the 
initial data so that the solution approaches a nonlinear ground state as time goes 
to infinity. For certain finite codimension subset in the space of initial data, they 
also construct solutions converging to the excited states. 

The analysis presented here, was initiated in [1] and is based on the spectral 
decomposition of the solution on the eigenspaces associated to the discrete and con-
tinuous spectrum of the linearized operator near the solitary wave. It is convenient 
to rewrite the NLS equation in the vectorial form 

(1.10) 
(1.11) 

j'l/Jt = -'1/Jxx + F(l'l/JI2 )1/J, 
'1/J(x, 0) = '1/Jo(x) 
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where j = ( ~ ~ 1 ), 7/J = ( ~~ ), 7/Jl = Re 7/J, 'lj;2 = Im 7/J. For simplicity, we 

restrict ourselves to even solutions. 

(1.12) 

Assumption (NL): We suppose that the nonlinearity F(s) is a or-function 
of s :2: 0, such that s = 0 is a root of multiplicity r with r :2: 4, and that 
for s > 1, it satisfies the lower estimate 

Assumption (NL) ensures that for an initial condition 7/Jo in the Sobolev space 
H 1 (JR), the solution 'lj;(x, t) exists for all time as a continuous function oft with 
value in H 1 (JR). In addition, if initially x'lj;0 E L2 (JR), then x'lj;(x, t) remains in 
L2 (JR) for all time [9]. 

Assumption {SL): : Further assumption is made in terms of 

w 1 rtp2 
(1.13) U(cp) = - 2cp2 - 2 Jo F(s)ds. 

We assume that, for all w in an interval centered at some w0 , the 
mapping cp ~ U ( cp) has a positive root and the smallest positive root cp0 
is simple, with U'(cpo)-=/= 0. 

Under this assumption there exists a unique, even solution cp(x,w) of 'Pxx = -U'P, 
decreasing like A(w)e-v'Wx as x ~ +oo. Equation (1.10) has thus solutions in the 

form of solitary waves eiwt ¢, ¢ = ( cp( 6 w) ) . 

The linearized operator near the solitary wave ejwt ¢ is 

(1.14) 

where (. , . ) denotes the usual scalar product in C2 defined by ( u, v) = u11h + u2v2 . 

Let C = j - 1 B = j - 1 ( -Oxx +w) + V. In general, the spectrum of C is located on 
the real and imaginary axis. It is composed of the continuous spectrum located on 
the two half axis ( -ioo, -iw] U [iw, ioo), and a finite number of discrete eigenvalues. 
The corresponding invariant spaces are of finite dimension. The point 0 belongs 
to the discrete spectrum and the dimension of its invariant subspace is at least 2. 
Recall that we restrict the operator C to even solutions. We now assume more 
specific conditions: 

Assumption {SP): : There is no real eigenvalue except >. = 0, and the 
invariant subspace associated to the eigenvalue >. = 0 is of dimension ex-
actly 2. In addition, there are 2 simple eigenvalues ±iJ.L, which satisfy the 
property 2J.L > w. Their corresponding eigenspaces are of dimension 1. 
We assume the generic condition that the edges of the continuous spec-
trum ±iw are not resonances, or equivalently, that there are no solutions, 
bounded at infinity (virtual levels), nor bound states of Cu = ±iwu. We 
also assume that there are no embedded eigenvalues in the continuous 
spectrum. 

If assumptions (SL) and (SP) are true for a fixed value w0 , they are also true for 
values of w in a small interval centered at w0 • A detailed analysis of the spectral 
theory of the operator C was developed in [1]. A key point in the analysis of 
the non self-adjoint operator C is that the coefficients of the matrix-potential V 
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decrease exponentially fast at infinity. The hypothesis on the spectrum of C(w) 
ensures orbital stability of solitary waves. 

We consider initial conditions '1/Jo in the form: 

(1.15) '1/Jo(x) = ¢(x,wo) + (zou(x,wo) + zou*(x,wo)) + fo(x) 
where u(x, w0 ) and u* (x, w0 ) are the eigenvectors of C(wo) associated to the eigen-
values ±iJL(w0 ), and fo belongs to the eigenspace associated to the continuous 
spectrum of C(w0 ). We also assume a non-degeneracy condition. Let (·, ·) denotes 
the scalar product in £ 2 of C2-valued functions: (u,v) = JIR(u,v)dx, and E2[/,J] 
be the quadratic terms coming from the Taylor expansion of the nonlinearity: 

(1.16) 

The condition has the form 

(1.17) (E2[u, u], u(2iJLo)) =I 0, 

where u(2iJLo) is the eigenfunction associated to >. = 2iJLo = 2iJL(wo) of the contin-
uous spectrum. This condition expresses that the interaction of the term of double 
frequency 2JLo generated by the nonlinearity with the continuous spectrum is non 
trivial. It is sometimes referred to as a nonlinear version of the Fermi Golden rule. 

Let lzol = E1/ 2 and N = llfoiiHl + 11(1 + x2)/oll2 :::=; cE312 where cis a constant. 
For E sufficiently small, we construct a solution in the form 

(1.18) '1/J(x, t) = ej(J; w(s)ds+r(t)) ( ¢(x, w(t)) + w(x, t) + f(x, t)), 

where w(x, t) = z(t)u(x, w(t)) + z(t)u*(x, w(t)), and f(x, t) belongs to the subspace 
associated to the continuous spectrum of C(w(t)). The dependency on t of wand 'Y 
is defined by the structure of the solution. We show that, as t-+ +oo, w(t)-+ w+, 
and 
(1.19) 

'1/J(x, t) = ej<P+(t) [¢(x, w+) + z+(t)u(x, w+) + z+(t)u*(x, w+)] + er1 Lth+ + o(1) 

in £ 2, where o(1) is taken with respect to the variable t, 
(1.20) 

82 
w+, c+, k+ and 'Y+ are constants, k+ > 0, L = - ax2 , 

. t 
_ 1/2 (+e'~-'+ 

(1.21) z+(t)- E ( k )1/2 .8 , 
1 + +d -· 

JL+ = JL(w+), 8 a real constant, (+ = 0(1) as E-+ 0, and h+ E £ 2 is independent of 
t. Asymptotically f(x, t) reduces to a purely dispersive wave. We have, as t-+ oo, 

(1.22) llfll2 = llej- 1 Lth+ll2+o(1). 
If x is bounded (i.e when f is estimated in a norm with a decreasing weight) 

then f = 0 ( ( 1 ~€t) 312), while for large x (! is then estimated in £""-norm), 

f = 0 ( ( 1 ~,t) 112). Furthermore, we have, for the conservation of mass 

(1.23) 

and an analogous formula for the conservation of the energy. The result shows 
that in the neighborhood of a stable soliton state, the system is equivalent to the 
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direct sum of two systems: the first one is a Hamiltonian system with one degree 
of freedom and the second is the free Schrodinger equation. 

One of the difficulties is that the operator C(w) depends on w and thus is a 
operator depending slowly on time. To overcome this problem, we consider the 
problem in a finite interval of time [0, T], and replace the operator C(w(t)) by 
C(w(T)), including the correction in the remainder. We then establish estimates 
independent ofT, which allows us to consider limiting values as t ~ oo. Another 
difficulty is the fact that the projection Pc on the continuous spectrum does not 
commute with j. The object of Proposition 2.2 is to extract the leading terms that 
commute and estimate the correction. 

The case where the discrete spectrum is reduced to A = 0 was studied in [1]. 
In a subsequent paper [2] , the authors proved the asymptotic stability of solitary 
waves when the operator C(w0 ) satisfies the spectral properties (SP). Following 
their ideas, we developed in [3] a more transparent calculation of the splitting of 
motions, and give a detailed description and explicit formulas for the correction 
terms. In particular, we calculated the period of oscillations of the phase as well 
as of the amplitude of the solution. An heuristic analysis of the phenomenon of 
amplitude oscillations was developed in [14]. 

Cuccagna [6] extended the analysis of [1] to the case of spatial dimension larger 
or equal to 3. The method of decomposition of motion has been also used to inves-
tigate the blow-up properties of the NLS equation with critical power nonlinearity 
in one space dimension [13] (see [18] for a review of the properties of blowing-up 
solutions). 

In this paper, we present the main ideas of the analysis, putting emphasis on 
the explicit calculation of the leading terms and their correction, and leaving aside 
the precise estimates of the remainders that can be found in [3]. 

In Section 2, we recall basic facts about the decomposition of motions and the 
linearized operator, and we derive a system of equations for the various components 
of the solution in the form 

(1.24) 
(1.25) 

w = O(w, z, !), 
z = iJ.Lz + Z(w, z, !), 

'y = f'(w, z, !), 
j = C(w)f + F(w, z, !). 

It consists in 3 scalar ordinary differential equations for w(t), -y(t) and z(t), and a 
vector partial differential equation for f = (!I (x, t), h(x, t) ). We then separate the 
leading terms and the remainders in these equations. In Section 3, we transform the 
evolution equations to a simpler, canonical form using ideas of normal coordinates, 
with the purpose of keeping unchanged the estimates for the remainders. In Section 
4, we introduce the notion of majorants defined in terms of norms of w(t), -y(t), 
z(t), and J(x, t), with appropriate time dependent weights in a fixed interval of 
time [0, T] and state (without proof) uniform bounds independent ofT, for initial 
conditions sufficiently close to a solitary wave. In Section 5, we write the precise 
long time behavior of the various components of the solution. 

We conclude this introduction by discussing some natural extensions to this 
work One could drop the restriction to even solutions and consider general so-
lutions. This would lead to 2 additional equations to (1.24)-(1.25) for the center 
and the velocity of the solitary wave. One could replace the hypothesis 2J.L > w 
of Assumption (SP) by nJ.L > w. This would imply that the resonance occurs at 
higher order terms and thus modify the rate of decay. One can also allow more 
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than one pair of eigenvalues ±iJ.L. A more difficult problem is to allow the presence 
of resonances at the edge of the continuous spectrum. 

Finally, let us notice that in general, it is not easy in practice to check the 
spectral properties of a given operator. A numerical investigation of this problem 
was done by Grikurov [10] who studied the spectral properties of the linearized 
operator near a solitary wave associated to the NLS equation with a nonlinear 
damping term: 

(1.26) 

with p = 3, q = 6, for various small values of the coefficient a. He observed that the 
point spectrum is composed, in addition to the eigenvalue >. = 0, of two opposite 
real eigenvalues when a is smaller than a specific value a*, while for a> a*, it is 
composed of two complex conjugate imaginary eigenvalues. 

Notations All integrals are taken over lR unless indicated otherwise. Norms 
in LP(JR) spaces are denoted II · llv and II/IlP = IIPfll2 denotes the weighted norm 
in L 2 (p) with the decreasing weight p(x) = (1 + x2)-a, where a> 0 will be fixed 
later. 

2. Decomposition of motion 

2.1. Linearization near the soliton. The linearized operator near the soli-

tary wave ejwt¢>, ¢> = ( 6 ) , where <p is the positive solution, decreasing like 

A(w)e-v'Wixi at infinity, of 
d2 

(2.1) (- dx2 +w)<p+F(<p2 )<p=O, 

is 

(2.2) Bu = (-::2 + w + F(l¢12)) u + 2F'(I¢12)(u, ¢)¢. 

Equivalently, 

Bu = ( V1u1 ) , 
V2u2 

where V1 =- ::2 + w + F(l¢12) + 2F'(I¢12)1¢12, and V2 =- ::2 + w + F(l¢12). It 
is useful to define the operator 

(2.3) 0 = Fl B = Fl (- [)2 + w) + V = ( V2u2 ) . 
{)x2 -V1u1 

The spectrum of 0 has the structure described in Assumption (SP). We denote 
by X 0 the invariant space associated to >. = 0, and X1 and Xc, the eigenspaces 
associated to>.= ±iJ.L, and the continuous spectrum respectively. Let Xd = Xo + 
X 1 . Note that, if 0* is the adjoint operator of 0, we have O*j = -jO, while 

-00"3 = 0"30, where 0"3 = ( ~ ~ 1 ) · 

Define xo = j¢>. We have Oxo = 0. In addition, Xt = ~ = cl>w satisfies 
OXl = Xo· The invariant space Xo associated to >. = 0 is spanned by xo and Xl· 
The spectral projection P0 of a vector valued function f on X 0 is defined by 

(2.4) Pof = (¢,~w) ( (f,jc/>w)J¢> + (!, c/>)c/>w) · 
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Let u = ( ~~ ) be the eigenvector of C associated to iJ.t. We have 

(2.5) 

This implies that V 2V 1u 1 = J.t2u1 . Since 1J2V1 is a real operator, it is possible to 
choose the function u1 (x) real. From (2.5), we see that u2 is then purely imaginary. 

This will be our choice throughout this paper. We denote by u* = ( Ut ) , the -u2 
eigenvector associated to -iJ.t. The spectral projection P1 of an arbitrary vector-
valued function f on xl is 

(2.6) Pd = (!, ju) u + (!, ju*) u*. 
(u,ju) (u* ,ju*) 

Finally, the spectral projection Pc on Xc is Pc =I- Pd =I- Po- P1. It is easy 
to see that the projection operators satisfy the property 

(2.7) 

Denote by u(iA) and u*(iA) the solutions of 

(2.8) Cu = iAu, Cu* = -iAu*, 

where A> w. For f E Xc, we have the spectral representation 

(2.9) f = loo dA(O+(A)(f, ju(iA))u(iA) + (}_ (A)(f, ju*(iA))u*(iA)). 

The measures B±(A) are calculated as follows. By orthogonality 

(2.10) 
(u(iA), ju(iA')) 

(u* ( iA), ju* ( iA1 )) 

8(A- A1), 

8(A- A1 ). 

In the limit lxl - oo, up to terms exponentially decreasing at infinity, we have, for 
A>w, 

(2.11) Ut(iA) "'N(A) cos( VA- wlxl- '!9(A)) 

where N(A) is a real normalization constant, and '!?(A) a phase factor. For large 
x, u2 (iA) "'iu1 (iA). The smallest exponential rate j,Bj of the decaying remainders 
exp( -I,BIIxl) is equal to (2w) 112 . The normalization factors is (2.9) can be calculat-
ing if we take as f the functions u(iA) and u*(iA) and compute the singularities (in 
the sense of distributions) of the corresponding diverging integrals, with the help 
of the asymptotic formula (2.11). As a result, we get 

(2.12) with O(A) = 1 vx-=w· 27rN2 (A) A- w 

The spectral decomposition (2.9) takes the form 

(2.13) 1100 Pcf = i w O(A)dA((f,ju(iA))u(iA) + (f,ju*(iA))u*(iA)). 
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2.2. The dynamical equations. We look for a solution in the form 

(2.14) '1/J(x, t) = e1(J~w(s)ds+r(t))\lf(x, t), 

with 

(2.15) \ll =¢+X· 

In (2.15), ¢ = ( <p, 0), <p solution of (2.1) and X = w(x, t) + f(x, t) where w = 
z(t)u + z(t)u* E XI and f E Xc. Notice that u and u* depend on w and thus on t. 
Substituting (2.15) into (1.1), one gets 

(2.16) -'Y\ll + jljT = Bx + E[x], 
where B is the linearized operator defined in (2.2) and E[x] contains all the remain-
der terms which are at least quadratic in X as X --+ 0. Defining Q[x] = ri E[x], 
(2.16) is rewritten 

(2.17) ');j\ll + ljT = Cx + Q[x]. 

Applying successively the spectral projections Po, PI and Pc to (2.17) and using 
orthogonality relations, we get a system of coupled equations for w(t), ')'(t), z(t) 
and f(x, t) in the form 

PROPOSITION 2.1. The functions w(t), ')'(t), z(t) and f(x, t) satisfy the system 

(2.18) 

(2.19) 

(2.20) 
(2.21) 

. (PoQ, \ll) w = -:-:---'--'---'=-----,-
((¢w- PowX), \ll) 

. (jPo(¢w- PowX), PoQ) 
')'= 

((¢w- PowX), \ll) 
(u,ju)(z- iJ.Lz) = (Q,ju)- (ww- Piwf,ju)w- (x,u)'Y 
j = C f + PcQ[x] + wPcwX- i'Pc(jx). 

2.3. Effective equations. We separate in (2.18)-(2.20) the leading terms and 
the remainders. The nonlinear term F(I¢12)'1/.J near the solitary wave¢ is expanded 
in the form 

Recalling that r is the order of the zero of F(s) at s = 0, we expand E[x] as 

(2.23) 

where Ej is of order j in X· The quadratic terms have the form (1.16). It is also 
useful to define E 2 [XI, X2] as a symmetric quadratic form 

E2[XI, X2J = ~ F' (1¢1 2) ( (Xll X2) + (X2, XI))¢+ 2F" (1¢1 2)(¢, xi)(¢, X2)¢ 

(2.24) +F'(I¢1 2) ( (¢, X2)XI + (¢, xdx2), 

and to notice that it satisfies 

(2.25) 

where X, Y, Z are complex valued vector functions and X* =(XI, X 2). 
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After expansion of numerators and denominators in (2.18) and (2.19), one has 
. (E2(w, w] + 2E2(w, f], cf>w) 
"f=- (cf>,cf>w) 

-(¢, cf>w) - 2 [ ( (E3(w, w, w], cf>w)- (E2(w, w], Poww)) (¢, cf>w) 

(2.26) +(E2[w,wJ,cf>w)((Poww,cf>)- (w,cf>w))] +rR, 
and 

. (E2(w,w]+2E2(w,f],j¢) w = ...:.____:______:--,--_.,..:---=-.:.__:__;__:_ 

(cf>,cf>w) 

+(¢, cf>w) - 2 [ ( (E3(w, w, w], jcf>) + (E2[w, w], Po] X))(¢, cf>w) 

(2.27) +(E2(w, w],jcf>)((Poww, cf>)- (cf>w, w))] + flR. 

Notice that 

(2.28) (E2[w,w],jcf>) = z2(E2[u,u],j¢) + z2(E2(u*,u*],j¢) + 2zz(E2[u,u*],jcf>). 
Using the definition of E2, and that u = ( ub u2) with u1 real and u2 pure imaginary, 
we have that (E2(u,u*],j¢) = 0, and 

(E2[w, w],jcf>) (z2 - z2)(E2(u, u],j¢) 

(2.29) = 2(z2 - z2) (cf>,~w) j F'(lcf>l2)(u, cf>)(u,jcf>)dx 

is purely imaginary. 
Finally, we rewrite (2.20) in the form: 

. . (E2[w, w] + 2E2[w, f] + E3(w, w, w], u) 
Z- ZJ-tZ =- (u,ju) 

(2.30) (ww,ju)(E2[w,w],jcf>)- (w,u)(E2[w,wJ,cf>w) Z - + R (cf>,cf>w)(u,ju) · 
It is important to notice that 

(2.31) 
Indeed, 

(2.32) 

(u,ju) = i8, with 8 > 0. 

(u,ju) 

d2 
Since u2 is purely imaginary and cf> is the only eigenfunction of the operator - dx2 + 
w + F(l¢12) corresponding to the minimal spectral point 0, the integral is strictly 
negative. We know also, from the stability condition of the solitary wave that, d: lief> II§= 2(¢, cf>w) > 0 for w = wo and consequently for w close to wo. 

It can be proved that the remainders rR, nR, and ZR are of the form 

(2.33) 
where R(w, lzl + llflloo) is a quantity that remains bounded as long as w is in 
the vicinity of wo and lzl + llflloo is bounded. Estimates of the same type, with 
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sometimes different norms involved, can be obtained for all terms that we treat 
as remainders. We do not provide details here and refer to [3] for the detailed 
calculations. 

We now turn to equation (2.21) for f. One difficulty is that the projection Pc 
does not commute with j. We rewrite it in the form 

(2.34) 

where P± are respectively the projection on the positive and negative parts of the 
continuous spectrum, and FR is the remainder 
(2.35) 

FR = -Pcj (E[x]- E2[w, w])- wPdwX + "fPcr 1w + "; (Pcr 1 - i(P+- P_)) f. 
The last term in the expression for FR is estimated in terms of weighted norms: 

PROPOSITION 2.2. (2] For f E Xc, 

(2.36) 11(1 + x2)(Pcr1 f- i (P+- P_) !) ll2 :=::: K(w)II!IIP, 
where p( x) = ( 1 + x2 ) -a, a > 0 arbitrary, and K is a constant depending on w. 

3. Transformations of the equations 

Our goal is to transform the evolution equations for "(, w, z and f to a more 
simple, canonical form. It is based on the idea of normal coordinates where one 
extracts from the solution terms that can be explicitly calculated, trying at the 
same time, to keep unchanged the estimates for the remainders. 

3.1. Equation for w. Equation (2.27) for w has the form 

w = f22o(w)z2 + On(w)zz + Oo2(w)z2 + 03o(w)z3 + n2I(w)z2z + f2I2(w)zz2 

(3.1) +Oo3Z3 + z(f, O~o) + z(f, O~I) +OR. 

Notice that nij =fiji· Also, 

( ) - (E2[u, u],j¢) 2 j '(I !2)( )( . ) 3.2 n2o = no2 = (¢,¢w) = (¢,¢w) dxF ¢ ¢,u U,J¢ 

is purely imaginary and 

(3.3) n __ (E2[u,u*],j¢) _ O 
11- (¢,¢w) - . 

Using property (2.25), we find that the coefficients 0~ 0 and n~I are given by 

(3.4) n' - O' - 2E2[u* ,j¢] 
10- 01- (¢,¢w) • 

Following the classical method of normal coordinates, one proves that 

PROPOSITION 3.1. There exist coefficients bij(w) , 0 :=:; i,j :=:; 3, and vector-
functions b~j ( x, w), such that the new function WI defined as 
(3.5) 
WI = w+b2o(w)z2+bo2(w)z2+b3o(w)z3+b2I (w)z2 z+bi2zz2+bo3z3+z(f, b~ 0 )+z(f, b~ 1 ) 
obeys the differential equation 

(3.6) 

and~ will satisfy the same estimate (2.33) as OR. 
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If we apply the same calculation to equation (2.30) for z, a change of variables 
similar to (3.5) leads to a system of equations for coefficients Cij associated to z. 

The equation for c~ 1 has the form 

(3.7) (C* + 2iJ.L)c~ 1 = -iZ~ 0 • 

Note that -2iJ.L is a point in the continuous spectrum of C*, thus the function c~ 1 
does not vanish at infinity. This implies that in the expression for the new variable 
z1 , the term z(f, c~ 1 ) can have a complicated structure. The function f itself does 
not decrease well enough at infinity. To proceed with the equation for z, we have 
to analyze carefully the behavior of f. 

3.2. Transformation of the equation for f. A technical difficulty in the 
treatment of the evolution equation for f is that the operator C = C(w(t)) depends 
on time. This dependency is, naturally, quite slow and we can overcome this prob-
lem by fixing an interval of time [0, T], and approximate C(w) by its value at time 
t = T. This will allow us to estimate the value of the important quantity w(T), and 
as a result, to get a final closed system of the estimated quantities on the whole 
time axis for all the components of the solution. 

We decompose f into its projection on the discrete and continuous spectrum 
at timeT as 

(3.8) f = g + h g E X~, h E Xf, 
where X~ = P~X and Xf = PrX are the spectral spaces associated to the dis-
crete and continuous spectrum respectively, at time T, and we have denoted the 
corresponding projections Pr = Pc(w(T)) and P~ =I- Pr. The operator C(w) in 
the equation for f will now be replaced by Cr = C(wr) with wr = w(T), leading 
to additional terms in the remainders. Applying Pr to (2.34), we get 

(3.9) h = Crh + a(t)Prr1h- PrjE2[w,w] + Hk_ 
with a(t) = w- wr + "y. In the light of Proposition 2.2, we rewrite it as 

(3.10) h = CMh- PrjE2[w, w] + HR 
where 
(3.11) CM = CM(t) = Cr + ia(t)(P:j- Pi), 
or more explicitly, as 

(3.12) h = CMh + H2oz2 + Huzz + Ho2i2 +HR. 
Here, the coefficients Hij are defined by 

(3.13) H2o= -PrjE2[u,u], Hn = -2PrjE2[u,u*], Ho2 = -PrjE2[u*,u*]. 
We now introduce a new function h1 defined by 

(3.14) 
where 
(3.15) k = a2oz2 + auzz + ao2i2, ko = klt=o, and k1 = -eU~ CM(r)dr) ko, 
with some aij = aij(w, x) satisfying aij = liji· The purpose here is to extract from 
h the contribution which is quadratic in z. Note that h10 = h1(t = 0) = h0 . 

We look for coefficients aij such that the resulting equation for h1 has the form 

(3.16) 
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It is also convenient to replace in the equations for ai1 , the coefficient J-L(w) by 
/-LT = J-L(wr) and include the correction in the remainder. This will avoid later the 
differentiation of (Cr- 2iJ-L)- 1 with respect tot. After substitution of (3.15) into 
(3.12), we get 

(3.17) 

H2o - 2iJ-Lra2o 
Hn 

H02 + 2iJ-Lrao2 

-Cra2o 
-Gran 
-Crao2· 

The dependency in x appears here through the coefficients aij = aij ( w, x). Notice 
that the coefficients Hij E XY, are smooth, exponentially vanishing functions at 
infinity. The coefficient a 11 is obtained as 

(3.18) 

As a function of x, it is smooth and exponentially decreasing at infinity. Further-
more, we have to invert Cr ± 2iJ-Lr, with both points ±2iJ-Lr in the continuous 
spectrum of Cr. In general, the functions 

(3.19) a2o = -(Cr- 2iJ-Lr )-1 H2o, and a02 = ii2o = -(Cr + 2iJ-Lr )-1 Ho2 

do not decrease at infinity. They behave like solutions of the homogeneous equation 
(Cr- 2iJ-Lr )a= 0, and thus oscillate at infinity. Nevertheless, there exists a special 
choice for these inverse operators that leads to preferable properties of h1 . This 
choice is 

(3.20) a2o = -(Cr- 2iJ-Lr- 0)-1H2o, ao2 = ii2o = -(Cr + 2iJ-Lr- o)-1Ho2· 

Such property is reflected in Lemma 4.2 that claims that for t 2: 0, 

(3.21) lleCrt(Cr ± 2iJ-L- 0)-1 P-fhiiP:::; c(1 + t)-3 / 2(llhll2 + 11(1 + x 2)312hlll). 

It corresponds to the classical fact that ( i.\- o)- 1ei>.t -----> 0 as t-----> +oo, in the sense 
of distributions. The weight p(x) = (1 + x 2 )-a here must satisfy the condition 
a 2: 2. 

3.3. Transformation of the equation for z. When substituting in (2.30) 
the contribution off in terms of z, one gets 

z = i (J-Lz + Z2oz2 + Zn zz + Zo2.Z2 + Z3oz3 + Z21 z2 z + Z12z.Z2 + Zo3.Z3) 

(3.22) +i( Z~oz 3 + z~1z 2 z + z~2zz 2 + Zb3z3) + ZR 

where the coefficients Zij can be calculated explicitly and are real. We are especially 
interested in the coefficient z~1' which is given by the formula 
(3.23) 
. I (c-1 p, .E [ *] E2[u*' u]) ((C . o)-1p, .E [ l E2[u, u]) zZ21 =- T 2 T] 2 u, U , 2 ( . ) - r-2ZJ-Lr- T] 2 U, U, 2 ( . ) . 

U,JU U,JU 

Applying the method of normal coordinates like in Section 3.1, we have 

PROPOSITION 3.2. There exist coefficients Cij such that the new function z1 
defined by 

(3.24) 
satisfies an equation of the form 

(3.25) i1 = iJ-L(w)z1 + iK(w)lz1l 2 z1 + ZR 
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where h satisfies estimates of the same type as ZR, and 

(3.26) Re iK = Re iZ~ 1 . 

Notice that, by this change of variables, one can eliminate all quadratic and 
cubic terms in z except the term in the form of lzl 2z. 

PROPOSITION 3.3. Suppose that the non-degeneracy condition 
I(E2[u, u], u(2iJ.t))l 2 =F 0 is satisfied, then 

(3.27) Re iZ~ 1 < 0. 

This proposition is a key point in the analysis. It ensures that, when integrating 
the evolution equation for z1, the function z1 and thus z, remains bounded. We 
present below the main elements of the proof. 

PROOF. We first notice that the coefficient (CY,1 PTiE2 [u, u*], E 2[u, u*]) that 
appears in the expression (3.23) for iZ~ 1 is real. Indeed, E2[u, u*] is real, and all 
the operators in the above scalar product are also real. We know from (2.31) that 
(u,ju) = i8, with 8 > 0. It follows that 

(3.28) 

Using that Pr commutes with CY,1, we have CY,1 Pr = PrCY, 1 Pr. We have also 
that P,;, = r 1 Prj. Denoting a= PrjE2[u, u], we thus have 

2 
(3.29) Re iZ~ 1 = - 8Im ((Cr- 2iJ.tr- o)-1a,ja). 

From the spectral representation (2.9), we have, since a E Xr, 

((Cr- 2iJ.t- o)-1a,ja) 

= ~ 100 e(>.)d>. ((u(i>..),ja)(u(i>..),ja) (u*(i>..),ja)(u*(i>..),ja)) 
i w i>. - 2iJ.t - 0 + -i>. - 2iJ.t - 0 

(3.30) = -100 e(>.)d>. ((u(i>..),ja)(u(i>..),ja)- (u*(i>..),ja)(u*(i>..),ja)) 
w >. - 2J.t + iO >. + 2J.t - iO 

Using that >.: iO = p.v.~ - i1r8(>.), with p.v. the Cauchy principal value and 8 
the Dirac distribution, we have 

((Cr- 2iJ.t- o)-1a,ja) 

= -100 ()(>.)d>. ((u(i>..),ja)(u(i>..),ja) _ (u*(i>..),ja)(u*(i>..),ja)) 
w >. - 2J.t >. + 2J.t 

(3.31) +i7r()(2J.t) (u( i2J.t), ja) (u( i2J.t), ja). 

The integral term in (3.31) is real. Thus, 

(3.32) Im((Cr- 2iJ.t- o)-1a,ja) = Im(i7r()(2J.t))i(u(2iJ.t),ja)l2, 

with 

(3.33) 
1 

()( 2J.t) = ;;-27f--..j-n2r=J.t=-=w=:N;-;;2"( 2;:;-J.t') 
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Assuming the non-degeneracy condition I(E2[u, u], u(2iJ.L))i2 =f. 0, we get 

(3.34) Re iZ~ 1 = -~·rrt9(2J.L)I(E2[u, u], u(2iJ.L))I 2 < o. 
0 

We now replace the coefficient K(w) in (3.25) (which depends on t) by KT = 
K(wT ), and put the resulting additional term in the remainder. Equation (3.25) 
becomes -(3.35) i1 = ij.LZ1 + iKTiz1l2z1 + i;_. 
It is easier to deal with y = lz1l 2 rather that z1. Indeed, while both functions 
decrease at infinity, the function z1 oscillates at infinity. The equation satisfied by 
y is simply obtained by multiplying (3.25) by z1 and taking the real part: 

(3.36) iJ = Re( iKT )y2 +YR. 

3.4. Summary of transformed equations and canonical system. We 
summarize the main formulas of Sections 3.1-3.3. We have obtained a canonical 
system in the form 

(3.37) 
(3.38) 
(3.39) 
(3.40) 

Wl = nR, 
iJ = Re(iKT)Y2 + YR, 
h = CM(t)h- PTjE2[w, w] + HR, 

hl = CM(t)hl + 1&. 
where the operator eM= CT + iu(t)(Pj- Pi)· The operator CT = C(wT) does 
not depend on t and the structure of its spectrum is known. The function O" is a 
smooth, real-valued function oft and Re( iKT) < 0. 

An important part of the analysis that we have omitted in this presentation is 
the precise estimates of the remainders. Detailed calculations are given in [3]. 

3.5. Initial conditions. We suppose that at t = 0, 

(3.41) 
(3.42) 

z(O) = zo, lzol = E112 

f(x,O) = fo(x), N = llfoiiHl + 11(1 +x2)/oll2:::; cE3/2. 
Since lz1l 2 :S lzl2 + R(w, z)lzl3, we have also, denoting z10 = z1(0), 

(3.43) Yo= lz10l 2 :::; E + R(w, lzoi)E3/2. 

From the formula h = PT f = f + (Pd- P~)f, we have that 

(3.44) llhoiiHl + 11(1 + x2)holl2:::; CE312 + R(w)lwT- wlllfollp· 

4. Estimates of majorants 

4.1. Linear evolution. Defining the weighted norms 

(4.1) and 

we have two important lemmas on the evolution operator e0 rt [1] that are used to 
estimate the functions h and h1 solutions of (3.39) and (3.40). 
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LEMMA 4.1. 

(4.2) lle0 TtP-fall2 :S c(wT)IIall2, 

II GTt ± II ( ) { r 112 (llall2 + llallw) 
(4.3) e PTa co :S c WT (1 + t)-1/2 (llaiiHl + llallw) 

where llhllw stands for either llhllw1 or llhllw2 , and the constant c(wT) depends on 
CT and thus on WT. 

We have also 

(4.4) 

where p(x) = (1 + x 2 )-q, q 2: 2. 

LEMMA 4.2. 

(4.5) lle0 TtCz:;1 PfhiiP :S c(1 + t)-31211(1 + x2)hll2, 

(4.6) lle0 Tt(cT ± 2ij.L- o)-1 Pfhllp :S c(1 + t)- 312 [11hll2 + 11(1 + x2)312hll1]' 

where p(x) = (1 + x 2 )-q, q 2: 2. 

4.2. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Uniform estimates. We define the quantities 

Mo(T) = sup lwT -w(t)l (-1 f )-1 , 
O::;t~T + ft 

( ) 
-1/2 

M1(T) = sup lz(t)l -1 f , 
O~t~T + ft 

M2(T) = sup llf(t)lloo _f_ log-1(2 + ft), ( ) 
-1/2 

O::;t~T 1 + ft 

M3(T) = sup llh1(t)IIP _f_ log-1(2 + ft), ( ) 
-3/2 

O~t~T 1 + ft 

referred to as 'majorants', and denote M the 4-dimensional vector (M0 , ••• ,M3). 
The goal is to prove that if f is sufficiently small, all these quantities are bounded 
uniformly in T. All the tools are in place now and the analysis proceeds in several 
steps that we state below. 

First, one has to write the remainders in (3.37)-(3.40) in terms ofthe Mi. Then, 
one has to study the canonical system (3.37)-(3.40) with assumptions on the r.h.s. 
in the form of the remainder estimates. These estimates are a little technical and we 
refer to Sections 5.1 and 5.2 of [3] for the details. Notice that eq.(3.38) is a Ricatti 
equation. The Duhamel principle combined with Lemmas 4.1 and 4.2 provides 
estimates on hand h1 • This leads to upper bounds for the weighted quantities Mi, 
that can be combined in the form: 

(4.11) 

where F(r) is a function with finite power growth, and R(f112M) is a quantity 
that remains bounded as long as its argument is bounded. From this inequality, 
it follows, that, M is either bounded independently of f or M belongs to a set 
separated from the origin IMI > k(f), with k(f) ----. oo as f----. 0. However, since at 
t = 0, M(O) is bounded independently off, the second possibility cannot happen, 
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because it would lead to a discontinuity of M as a function of time. We conclude 
that, for E sufficiently small, 

(4.12) M(T)::; M 

with a constant M independent of T. 

PROPOSITION 4.3. The function w(t) has a limit w+ as t---+ oo. Furthermore, 
we have the estimates for all t > 0, 

(4.13) 
f 

lw+- w(t)l ::; Mo 1 + Et, 

(4.14) ( ) 
1/2 

lz(t)l ::; M1 1 : Et , 

(4.15) ( ) 
1/2 

llf(t)lloo::; M2 1 : Et log(2 + Et), 

(4.16) ( )
3/2 

llh1(t)IIP::; M3 1 : Et log(2 + Et). 

In particular, lwr- w(t)l ::; 1 E~t and thus lwr -w(t)l is a decreasing function 
oft. Applying this result to lw(t1)- w(t2)1, we see that w(t) is a Cauchy sequence. 
It thus has a limit, denoted w+. Let Mi the limiting value of Mi(T) as T---+ oo. 

Notice that in the decomposition (3.8), a fixed time T has been chosen, and 
all the components depend on w(T). From the above proposition, w(t) has a limit 
w+ as t ---+ oo. We can thus reformulate the decomposition by choosing T = oo 
and have the dependency of the various components of f on w+. Let us denote 
P00 = Pc(w+), P:fo = I- P00 • All the estimates previously obtained under the 
hypothesis that T is a fixed finite time can be carried out without modification 
with T = oo and wr = w+. 

THEOREM 4.4. Consider the NLS equation (1.1). 

(i) Assume that the nonlinearity satisfies assumptions (NL) and (SL) and 
that there exist solutions in the form of solitary waves eiwatcp(w0 ). 

(ii) Denoting B the linearized operator near the solitary wave, assume that 
C = j-1 B satisfies the condition (SP) describing the structure of its 
spectrum. 

(iii) Assume the non-degeneracy condition (E2[u,u],u(2iJ.to)) =/= 0. 
(iv) Assume an initial condition '1/Jo in the form of a perturbation of the soli-

tary wave '1/Jo = cp(x,wo) + (zou(x,wo) + zou*(x,wo)) + fo(x), satisfying 
lzol = £112 and N = llfoiiH1 + 11(1 +x2)foll2::; C£312 . 

For E small enough, one can write the solution in the form 

( 4.17) '1/J(x, t) = ei(J' w(s)ds+y(t)) ( cp(x, w) + z(t)u(x, w) + z(t)u* (x, w) + f(x, t)) 
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with the following properties. There exists a constant w+ such that w+ = limt---+oo w(t). 
In addition, for all t > 0, there exit constants M 0 , ... , M 3 such that 

(4.18) 
f 

lw+- w(t)l :S: Mo 1 + Et, 

(4.19) ( ) 
1/2 

lz(t)l :S: M1 1 ~ Et , 

(4.20) ( ) 
1/2 

llf(t) I leo :S: M2 1 ~ Et log(2 + tt), 

Furthermore, we write f = g + h, where g = P!,f, h = P00 f = k + k1 + h1, 
k = a2oz2 + auzz +ao2z2, ko = klt=o, and k1 = -exp (J~ C+(r)dr) ko. In the 
above equations, aij = aij(w+,x) are defined as in (3.18) and (3.20), and 

(4.21) C+ = C(w+) + i(w(t)- w+ + i')(P,!- P;;,). 

The function h1 satisfies the estimate 

(4.22) ( )
3/2 

llh1(t)IIP :S: M3 1 ~ Et log(2 + tt). 

5. Asymptotic behavior for large time 

Until now, the function 'Y did not play an essential role in our computations. 
However, we are interested in its long-time behavior. We can repeat the calculation 
performed for w in Section 3.1. Equation (2.26) is rewritten 

i' = r2o(w)z2 + ru(w)zz + ro2(w)z2 + r3o(w)z3 + r21(w)z2z + r12(w)zz2 

(5.1) +f03z3 + z(f, f~o) + z(f, f~1) + fR 
and rR satisfies the same estimate as OR. The only difference between the equations 
for wand 'Y is that, in general the coefficient f 11 (w) =/:. 0. There exist coefficients 
dij(w), 0:::; i,j:::; 3, and vector functions d~j(x,w) such that the function "(1 defined 
as 

(5.2) "(1 = "(+d2oz2 +do2z2 +d3oZ3 +d21Z2 z+d12zz2 +d03z3 ++z(f, d~o) + z(f, d~1) 
with dij = dji, is a solution of the differential equation 

(5.3) 

and~ satisfies the same estimate (2.33) as rR. Notice that r 11 (w) =- 2 ~;,[~w~*] 
is real. 

PROPOSITION 5.1. Under the hypotheses of Theorem 4.4, the functions w(t), 
z(t) and 'Y(t) have the following asymptotic behavior as t--+ oo 

b+E (5.4) w"' w+ + 1 k cos(2~-t+t + b1log(1 + k+tt) + b2), + +Et 

(5.5) 

(5.6) 'Y(t) = "(00 + c+ log(1 + k+tt) + 0 (-f-) . 
1 + Et 
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where b+, b1, b2, 'Y+, c+, k+, 'Yoo are some constants, k+ > 0, and J.L+ = J.L(w+)· 

We finally turn to the function f. We know from (4.20) and (4.22) that in 
norms II·IIP and ll·lloo, f tends to 0 as t ~ oo. However, this radiative part carries 
non-zero energy and other integrals of motion, and from this point of view it is not 
negligible. To control the contribution of f to the integrals of motion, we have to 
study its asymptotic behavior in the usual £ 2 norm. We recall the representation 

(5.7) 
and 

(5.8) 

The function h is solution of 

(5.9) 
where the operator c+ is defined in (4.21). 

PROPOSITION 5.2. We have the asymptotic formula 

(5.10) eC(w+)t'h = e00 th+ + o(1) 

as t ~ oo, where h+ = wii and w is a bounded operator in L2 (IR), that can 
be seen as a wave operator. It is the strong limit in £ 2 of e-CoteC(w+)t, with 
Co= r 1 ( -Bxx + w+)· 

Combining the asymptotic formulas for w, ')',z, and f, we get 

THEOREM 5.3. Suppose that the hypothesis of Theorem 4.4 are satisfied. Then 
for f small enough the solution of the NLS equation ( 1.10) have the following be-
havior as t ~ oo 
(5.11) 
'1/J(x, t) = ej(w+t+'"Y+(t)+~<) [¢(x,w+) + z+(t)u(x,w+) + z+(t)u*(x,w+)]+er 1 Lth++o(1) 

in £ 2 , where L = -Bxx and 

(5.12) J<i, = ~o= (w(h)- w+)dt1 + ')'00 , 'Y+(t) = c+ log(1 + k+ft). 

This result can be rewritten in terms of the original complex notation. As 
t ~ oo, the solution of the NLS equation (1.1) behaves as follows 
(5.13) 
'ljJ = ei(w+t+'Y+(t)+tt) [cp(x, w+) + z+(t)v+(x, w+) + z+(t)v_ (x, w+)] + e-iLth+ + o(1) 
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Finite-time Blow-up in the Additive Supercritical Stochastic 
Nonlinear Schrodinger Equation : the Real Noise Case 

A. de Bouard and A. Debussche 

ABSTRACT. We review some results concerning the apparition of finite time 
singularities in nonlinear Schri:idinger equations with a Gaussian additive noise 
which is white in time and correlated in space. We then extend the results 
to the case where the noise is real valued, which is the case in some physical 
situations. 

1. Introduction 

The nonlinear Shrodinger (NLS) equation is a generic equation describing the 
propagation of weakly nonlinear waves in strongly dispersive media. It is found in 
diverse fields of physics, such as hydrodynamics, plasma physics, nonlinear optics, 
or molecular biology, where it appears to be the continuum limit of certain discrete 
systems (see [2] and the references therein). 

Recently, interest has grown up in the influence of Gaussian white noise on the 
dynamical behaviour of solutions of this equation; especially, in the focusing case, 
propagation of soliton solutions in the presence of noise has been the subject of 
several investigations. 

A one dimensional NLS equation with additive Gaussian space-time white noise 
is e.g. considered in [7], with the aim of computing error probability in signal 
transmissions. 

Another example of NLS equation with noise is given in [1] and [2], where it 
describes energy transfer in monolayer molecular aggregates, and where the noise 
stands for thermal fluctuations. As explained in [2], this noise may be multiplicative 
if it describes process where excitation is not being created or destroyed and in this 
case the noise appears in the equation as a linear potential. It may also be additive 
in the case of and exciton that creates or absorbs a photon. In both cases, the noise 
is real valued and depends on space and time variables. 

Here, we consider the stochastic nonlinear Schrodinger equation 

(1.1) 
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184 A. DE BOVARD AND A. DEBUSSCHE 

in general dimension n. The noise ~ is an additive real valued Gaussian noise, which 
is white in time and correlated in space. The nonlinear term l7jJI 2a'ljJ is a supercritical 
power of the solution, and our aim is to investigate the possible blow-up of solutions. 

It is well known indeed that when there is no noise, i.e. ~ = 0 in equation (1.1), 
and when a satisfies ~ ~ a < n:_2 (a :::: ~ in dimension n = 1 or 2), a solution of 
(1.1) (with~= 0) starting from 'ljJ0 with a finite negative energy, that is with 

H('lj!o) = ~ J IY''lj!o(x)l2dx- 2a ~ 2 J i'lj!o(x)l 2a+2dx < 0 

cannot be globally well defined. More precisely, there is a positive t* such that 

(1.2) lim f IY''lj!(t, xWdx = +oo. 
t,/'t* }R.n 

The ingredient of the proof of such a fact uses what is sometimes called the 
"variance identity" (see [8], [11], [12]) which consists in computing the second order 
time derivative of the quantity 

V('lj!(t)) = r lxl 2 i'ljJ(t,xWdx. }Rn 
Using the equation satisfied by 'ljJ and the fact that the energy H is a conserved 
quantity for the deterministic equation, it is indeed possible to show that under the 
preceding conditions on a, 

(1.3) V('lj!(t)) ~ V('lj!o) + t! V('ljJ(t))lt=to + 8H('lj!o)t2. 

V('lj!) being a nonegative quantity, this inequality cannot remain true for all time if 
e.g. the energy H('lj!0 ) is negative, and it leads to (1.2). The condition H('lj!o) < 0 
is of course far from necessary in order that the solution blows up, and some much 
more precise criteria may be exhibited (see [10]). 

We have generalized in [5] this identity to the stochastic equation (1.1), where 
~ is a complex valued noise which is correlated in space and white in time. In this 
case, the solution is a random process, which is defined on a random time interval 
[0, r* ( 'lj!0 )), provided that 'ljJ is sufficiently correlated in space, as was proved in [4]. 
Assuming that for some deterministic t > 0, one hast< r*('lj!0 ) almost surely and 
that 

IE 1' (J..IV,P(s,x)l 2dx + (J..I,P(s,x)l2"+2dx) ';f,' ds) < +oo, 

we have proved that IE(V('IjJ(t))) satisfies an inequality of the form (1.3) where the 
right hand side is replaced by a third order polynomial in time; here, the expres-
sion IE( v) stands for the mathematical expectation, or mean value, of the random 
variable v. In this third order polynomial, the coefficient of t 3 depends only on the 
covariance operator of the noise, while the coefficient oft2 is 81E(H(7jJ0 )). Hence, by 
choosing 'ljJ0 such that IE(H(7jJ0 )) is sufficiently negative, again the inequality cannot 
remain true for all positive time because the right hand side takes negative values, 
and the solution necessarily blows up (see Proposition 2.3 for a precise definition 
of blow-up). 

This result does not make use of the fact that the noise is complex valued, and 
it is true with exactly the same proof in the present case of a real valued noise. 

We then made use in [5] of a control argument to show that if the noise is 
nondegenerate, the stochastic equation is irreducible in the sense that for any time 
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BLOW-UP IN THE STOCHASTIC NLS EQUATION 185 

T > 0, initial data '1/Jo and final data '1/JT, the solution of {1.1) with '1/J(O) = '1/Jo is close 
at time T to '1/JT with a positive probability. Choosing then '1/JT with sufficiently 
negative energy allowed us to apply the stochastic variance identity, to the solution 
of {1.1) starting from '1/JT at time T, so that this solution finally blows up. Hence, 
blow-up occurs for any initial data. 

Contrary to the variance identity, the control argument leading to the irre-
ducibility of the equation strongly uses the fact that the noise is complex valued, 
since in this case it is sufficient to control the equation with a complex valued de-
terministic forcing term. The aim of the present note is first to review the existence 
and blow-up results that were previously obtained and then to show that the con-
trol argument is still valid in the real valued case, implying the same result as in 
the complex valued case, that is any solution of (1.1) blows up in finite time if the 
noise is sufficiently correlated. 

Note that on the opposite case of a completely uncorrelated noise in space- that 
is a space-time white noise- even though we are not able to prove any theoretical 
result, some numerical computations have been performed in [6], which seem to 
indicate that if the noise is multiplicative and arises as a Stratonovitch potential 
then it will tend to prevent the blow-up phenomenon. 

We now describe more precisely the noise that we consider. We introduce 
a probability space (n, .1', JP>), endowed with a filtration (.1't)t?:o, and a sequence 
(f3k)kEN of independent real valued Brownian motions on JR+ associated to the 
filtration (.1't)t?:O· We then consider a complete orthonormal system (ek)kEN in 
the space of real valued square integrable functions on JRn, and a bounded linear 
operator <I> on this space. The process 

00 

W(t,x,w) = l:f3k(t,w)<l>ek(x), t ~ 0, x E lRn, wE !1, 
k=O 

is then a Wiener process on the space of real valued square integrable functions 

on JRn, with covariance operator t<I><I>*. We then set e = a:. Note that if <I> is 
defined through a real valued kernel JC, which means that for any real valued square 
integrable function u, 

<I>u(x) = f JC(x, y)u(y)dy, }R.n 
then the correlation function of the noise is given by 

with 

(aw aw ) IE at (t,x) at (s,y) =c(x,y)c5t-s 

c(x, y) = [ JC(x, z)JC(y, z)dz. }R.n 
We then write equation {1.1) as 

(1.4) 

Note that in the physical situations described at the beginning, the correlation 
function c(x, y) is !1 Dirac delta function, corresponding to space-time white noise 
(in this case, <I> is the identical operator). We are not able to treat that case for 
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186 A. DE BOUARD AND A. DEBUSSCHE 

two reasons. To understand them, one should consider the linear equation 

{ idz- flzdt = dW 
z(O) = 0 

whose solution is given by the stochastic integral 

(1.5) z(t) = lt S(t- s)dW(s) 

where S(t) = e-itLl is the group associated with the linear Schrodinger equation. 
Since S(t) is a unitary group in any Sobolev space H 8 (1R.n), it is easy to see that 
z(t) lies in H 8 (1R.n) almost surely if and only if lfl is a Hilbert-Schmidt operator 
from L2 (JR.n) into H 8 (1R.n). Note indeed the identity 

lz(t)I~•(JRn) =I t S(t- s)dW(s)l
2 = t11~PII~s(£2,H•) Jo H•(JRn) 

where II~PII~s(£2,H•) = Lk llfleki~.(JRn) is the Hilbert-Schmidt norm of lfl as an 
operator from L2 (JR.n) into H 8 (1R.n). 

However, it is easy to see that a convolution operator- i.e. an operator defined 
through a kernel K(x, y) = k(x- y) -will never be Hilbert-Schmidt from L2 (JR.n) 
into H 8 (1R.n), even if sis largely negative. This proves that the integral z(t) cannot 
live in H 8 (JR.n) if the noise is homogeneous. This is the first reason : homogeneity 
of the noise. 

The second reason is the irregularity of the correlations : even if one adds 
some localization in the correlations of the noise - e.g. if lfl is given by a kernel 
K(x, y) = k(x)8x-y -there is no hope that z(t) lies in a more regular space than 
H-ni 2 (JR.n). However, it has been proved (see [9]) that the deterministic conserva-
tive NLS equation is ill posed in any H 8 (1R.n) with negatives. 

This implies in particular that treating the stochastic term as a perturbation 
by using the integral z(t) will never lead to the existence of a strong solution of 
the stochastic equation with a space-time white noise, as long as we deal with H 8 

Sobolev spaces ; note that the H 8 spaces have revealed to be very natural spaces 
to handle the deterministic NLS equation. 

Anyway, we only consider correlated noise in this note, which means that we 
will require from lfl sufficient regularization properties, and the above mentionned 
problem will not appear here. 

The note is organized as follows : in Section 2, we recall the results proved in 
[4] and [5] concerning the existence of solutions and blow-up for some initial data. 
Those results were proved in the context of a complex valued noise, but they hold 
with exactly the same proof for equation (1.4) with a real valued noise, so that 
we do not recall the proofs. we will give for each particular result the minimal 
assumptions required on lfl, and on the initial data. In Section 3, we prove that 
the controlability problem allowing to deduce the irreducibility of equation (1.4) 
has a solution in the real valued case - and here the proof is different and more 
complicated than in the complex valued case. We then deduce the irreducibility as 
in [5] from this result and from the continuity with respect to the forcing term in 
the equation. Finally, irreducibility together with the blow-up result of Section 2 
implies as in [5] the blow-up for any initial data (see Theorem 3.1). 
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BLOW-UP IN THE STOCHASTIC NLS EQUATION 187 

2. Review of existence and blow-up for a restricted class of initial data 

We start with some local and global existence results. All these results are 
proved in [4]. 

2.1. Local and global existence results. 

THEOREM 2.1. Assume that 0:::; a < 2/(n- 2) if n 2 3 or 0:::; a for n = 1, 2, 
that ell is Hilbert-Schmidt from L 2 (IR.n) into H 1 (!R.n) and that the initial data 7/Jo is 
a F 0 measurable random variable with values in H 1 (!R.n); then there exists a unique 
solution 7/J to (1.4) with continuous H 1 valued paths, such that 7/J(O) = 7jJ0 . This 
solution is defined on a random interval [0, T* ( 7/Jo)), where T* ( 7/Jo) is a stopping time 
such that 

T*(7/Jo) = +oo or lim 17/J(t)IHl(JRn) = +oo. 
t/T*(</;0 ) 

Furthermore, T* is almost surely lower semicontinuous with respect to 7/J0 . 

In order to prove the global existence result in the subcritical case a < 2/n, the 
following invariant quantities of the deterministic NLS equation have been used in 
[4] : the momentum 

and the Hamiltonian 

H('ljJ) = ~ r I\77/J(x)l2dx- _1_ r I7/J(x)l2o-+2dx. 
2 }]Rn 2a + 2 }JRn 

The evolution of these quantities along the solutions of the stochastic equation ( 1.4) 
is described in the next proposition. 

PROPOSITION 2.1. Let 7jJ0 ,a and ell be as in Theorem 2.1. For any stopping 
time T such that T < T* ( 7/Jo) a. s., we have 

(2.1) M('ljJ(T)) = M(7/Jo)- 21m I: r r 7/J(x)cllee(x)dxdf3e(s) + T I: lclleell2 
W'J Jo }JRn £ 

where 7/J is the solution of (1.4) given by Theorem 2.1 with 7/J(O) = 7/J0 . 

Moreover, for any k E N, 

(2.2) lE[ sup Mk('ljJ(T))]:::; CklE[Mk(7/Jo)] 
tE[O,T] 

for a constant ck 2 0. 
In the same way, for any T such that T < T*(7/Jo) a.s. we have 

H('ljJ(T)) = H(7/Jo)- Im r r (D.{;+ I7/JI 2()"i{;)dWdx }JRn}o 
(2.3) +~I: r r l\7clleel2 dxds 

£ENJo }JRn 
-~L r { n [17/JI 2u lclleel 2 + 2ai7/JI2u-2(Re (if;cllee))2 J dxds 

£ENlo j!R 
where 7/J(·) is the solution of (1.4) given by Theorem 2.1 with 7/J(O) = 7jJ0 . 

Using the preceding proposition, the following global existence result was proved 
in [4] in the subcritical case. 
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188 A. DE BOUARD AND A. DEBUSSCHE 

THEOREM 2.2. !fin addition to the assumptions of Theorem 2.1, a< 2/n, then 
for any :F0 -measurable 7/Jo, the solution of (1.4) with 7/J(O) = 7/Jo given by Theorem 
2.1 is global, i.e. r*('I/Jo) = +oo a.s. 

Note that the result of Theorem 2.1 is still true with L2 solutions instead of 
H 1 solutions, if 0 :Sa :S 2/n and if If> is only Hilbert-Schmidt in L2 (1R.n). In this 
case, the solutions are global, due to the estimate (2.1) on the L2 norm. 

2.2. Blow-up for some initial data. The blow-up result for a restricted 
class of initial data, which is proved exactly as in [5], is based on Proposition 2.1, 
together with another identity, which we call the "stochastic variance identity" . 
This identity is proved in [5] in the case of a complex valued noise - the real noise 
case is proved exactly in the same way - and requires slightly more regularity on 
If> and 'lj.J0 . In order to state precisely the assumptions we need, we introduce the 
space 

PROPOSITION 2.2. Let 7/Jo, a and If> be as in Theorem 2.1, and assume further-
more that If> is Hilbert-Schmidt form L2 (1R.n) into~ and that 7/Jo lies almost surely 
in ~. Then for any stopping time T such that T < r*('I/Jo) a.s. the solution 7/J of 
(1.4) with 7/J(O) = 7/Jo belongs to L00 (0, r; ~) a.s. and satisfies 

V('lj.!(r)) = V('I/Jo) + 4G(7/Jo)r + 8H('I/Jo)r2 + 4 2 - a1n r (r- s)J'I/Jii~t_;2ds a+ Jo 

with 

for v E ~. and with 

G(v) = Im { v(x)x.Vv(x)dx }JRn 

c~ = L r lxl 2 ilf>e,d2dx and c~ = L IV¢>eeli2. 
lEN }JRn lEN 

Note that the first four terms in this identity already occur in the deterministic 
identity, and that the other terms vanish in the absence of noise. The last three 
terms are stochastic integrals and are responsible for technical difficulties. In the 
particular case where T = T is a deterministic time, the mean value of these last 
three terms vanishes. Let us denote 1En0 (/) = lE(/ln0 )/1P'(no) for f E L1(no) or f 
measurable and nonnegative on no, and no a Fo measurable set. 
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BLOW-UP IN THE STOCHASTIC NLS EQUATION 189 

In the preceding case of a deterministic T = T, and if we assume moreover that 

is finite, then Proposition 2.1 implies that 

for any t E [0, T]. Now, it is possible to choose 'l/Jo in such a way that the right hand 
side polynomial takes negative values for some t E [0, T], leading to a contradiction 
since the left hand side is nonnegative. More precisely, we have 

PROPOSITION 2.3. Assume that 2/n ::; a < 2/(n- 2), and that ll> is Hilbert-
Schmidt from L2 (JR?.n) into E. For each T > 0, V > 0, (; > 0, fh > 0, let fi2 be 
such that 

(2.4) 

then for each Fo measurable 'l/Jo with values in E and for any 0 0 E F0 with IP'(!10 ) > 
0 such that 

(2.5) 

then either 

(2.6) IP'(T*('l/Jo) < f') is positive 

or 

(2.7) lEna (1T (1V'l/J(s)l~2 + l'l/J(s)l~~~;2) ds) = +oo, 

where 'ljJ is the solution of (1.4) with 'l/J(O) = 'l/Jo given by Theorem 2.1. 

The possibility that (2.7) occurs instead of (2.6) is due to the fact that we had 
to choose a deterministic time T in the argument above in order to cancel the mean 
value of the stochastic terms in the stochastic variance identity. If instead we use 
a stopping time, then the expectation of those terms do not vanish. Under more 
restrictive assumptions on a and ll>, however, they may be handled and lead to the 
following result. 

PROPOSITION 2.4. Assume that 2/n < a < min(~, n~ 2 ), that ll> is Hilbert-
Schmidt from L2(JR?.n) into E, with moreover I::eEN I~Pecli_ 4 "+ 2 < oo, and bounded 
from L 2 (JR?.n) into H 2 (JR?.n) nL=(JR?.n ). LetT, V, G, fi1 , fi2 , !10 and 'l/Jo be as in Propo-
sition 2.2, with moreover, lEo0 (M('ljJ0 ) 1/(l-O')) < oo; then 

IP'(T*('l/Jo) < f') > 0. 

Note that the assumptions on the power a in Proposition 2.4 are compatible 
only when n ?: 4. 
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3. The controlability problem and blow-up for any initial data 

In this section, we prove the irreducibility of equation (1.4), or equivalently of 
the following equation : 

(3.1) v(t) = S(t)'l/Jo- i lot S(t- s) (lv + zl2a(v + z)) ds 

where z is given by (1.5), in the case where the noise is nondegenerate. (Note that 
if z is given by (1.5) and v satisfies (3.1), then 'ljJ = v + z is a solution of (1.4) 
with '1/J(O) = 'ljJ0 .) This is done by using the following controlability result, which 
was already proved in [5] in the case of a complex valued noise, together with some 
continuity property . The controlability result is more difficult to prove in the real 
valued case, because we have to control the NLS equation by using a real valued 
forcing term instead of a complex valued one, which means that we can act only on 
one of the two components of the solution. The result is also weaker in the sense 
that it requires more smoothness on the forcing term and on '1/Jo. Of course, this 
will affect the main result in consequence (see Theorem 3.1). 

We define some other spaces which are necessary to state the assumptions : for 
k, £ E N we define 

I:k,£ = { v E Hk+R(JR.n), lxllv E Hk(JR.n)} 

endowed with the natural norm 

lvl~k,t = lvl~k+t + llxl£vl~k 
and let Sn be the following space (recall that n is here the dimension of the space 
variable) : 

81 = I:, 82 = ua>o2:"'•1, Sn = 2:1·2 if n :;::: 3. 
In order to understand how Proposition 3.1 below is related to the controlability 

of the NLS equation by a real valued forcing, one only needs to note that u is a 
solution of 

(3.2) { 
idu - (.6.u + lul2a u) = df 

dt dt 
u(O) = '1/Jo 

if and only if u = v + z with z satisfying 

{ 
.dz _ df 

(3.3) z dt - .6.z = dt' 
z(o) = o, 

and v satisfies equation (3.1) with z replaced by z. In addition, f(t) is real valued 
if and only if iz(t)- J~ .6.z(s)ds is real valued. 

PROPOSITION 3.1. For any T1 > 0, '1/Jo E Sn n H 8 , s > n/2, for any real 
valued function b1 in Sn, there exists a z in C ([0, T1]; Sn) such that z(O) = 0, 
iz(t) - J~ .6.z(s)ds is real valued for any t E [0, T1] and such that the solution 
v(z, '1/Jo, ·) of {3.1} exists on [0, T1], with 

Im (z(T1) + v (z, '1/Jo, T1)) = b1. 
Moreover, for any o > 0, z may be chosen so that 

IRe (z(TI) + v (z, '1/Jo, TI))- Re ('1/Jo)lsn So. 
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REMARK 3.1. This result is weaker than what we proved in (5] for a complex 
valued noise in two ways. First, we are not able to choose z(·) such that z(T1 ) + 
v (z, '1/Jo, Tl) = u1 for some fixed u1; only the imaginary part can be controled exactly. 
However this is not a problem for our purpose as will be made clear later. Also, 
here we have to assume that '1/Jo, b1 have extra smoothness assumptions if n 2: 2: 
they are assumed to be in Sn n H 8 (IRn). This is the reason why Theorem 3.1 below 
is restricted to initial data in Sn n H 8 (!Rn). 

Proof of Proposition 3.1. It is convenient in this proof to decompose the solution 
of the nonlinear Schrodinger equation into its real and imaginary parts. We first 
construct the forcing f in (3.2) and then deduce z solution of (3.3) by the formula 

z(t) = -if(t) -1t S(t- s)(i6.)f(s)ds. 

We note that u solves 
.du (" _ + 

1
_

1
20" -) _ df z-- £..J.U u u --

dt dt 
for a real valued f if its real and imaginary parts a and b solve 

(3.4) 

and 

(3.5) db ( 2 2)0" df -- - A a - a + b a = -. 
dt dt 

The idea is to construct b explicitly such that b(O) = Im ('1/Jo), b (T1) = b1 and b = 0 
on a large interval in (0, T1). In that way ~~ = 0 in that interval and a (Tl) is close 
to a(O). 

Take k1 E N and denote by U(t) the semigroup on :E associated to the linear 
equation 

{ ~~ + ( -6.)k1w + lxl2klw = 0, 

w(O) = '1/Jo. 

X E !Rn, 

For c > 0 to be chosen, we set ! e~t U(t) Im ('1/Jo), 

b(t) = 0, 

t-T~ +e U (T - t) b e 1 1, 

t E [0, c], 

t E [c, T1- c] 

t E [T1 - €1, T1] . 

Clearly, for k1 large enough, b is inC ([0, T1]; Sn) n £ 1 (0, T1; H 8 (!Rn)) and Ab is in 
£ 1 (0, T1 ; Sn n H 8 (1Rn)). Then, for any 8 > 0, there exists c > 0 depending on '1/Jo 
and b1 such that (3.4) has a solution a inC ([0, c]; Sn n H 8 (!Rn)) such that 

and 

a(O) = Re ( '1/Jo) 

8 
Ia- a(O)Ic{[O,e];SnnH•) :0::::: 2· 

This can be proved by a fixed point argument. 
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192 A. DE BOVARD AND A. DEBUSSCHE 

Similarly, there exists a solution a of (3.4) on [T1- c, T1] such that a (T1- c) = 
a(c) and 

0 
Ia- a(c)lc([T1 -c,Tl];SnnH")::; 2· 

Then, since b = 0 on [c, T1- c], setting a(t) = a( c) on [c, T1 - c] we obtain a 
solution of (3.4) on [0, T1] such that 

Ia- Re (¢o)lc((O,T1 ];SnnH") ::; 0· 
We now define 

f(t) = -b(t) + b(O) -lot ~a+ (a2 + b2)" ads 

and 

z(t) =- f(t)- i lot S(t- s)~f(s)ds 
so that v = a + ib - z solves 

. dv A l-12a -z dt - uv = u u, 

with u =a+ ib, and for any t E [0, T1], iz(t)- I~ ~z(s)ds = f(t) is real valued. 
We can choose k1 in the definition of U(·) sufficiently large to ensure that 

lbl2a+l E L1 (0, T1; Sn). Moreover, since Sn n H 8 is an algebra, we also have 
lal 2,.+1 E L1 (0, T1; Sn). It follows that lul 2,. u E L1 (0, T1; Sn) and since (S(t))tEIR 
is strongly continuous in Sn and v(O) E Sn, v E C ([0, T1] ; Sn) . Since we know that 
u also belongs to this space, we have proved : 

z E C ([0, T1] ; Sn) , 
and this ends the proof of Proposition 3.1. 

The following corollary of Proposition 3.1 shows that it is possible to reach a 
state which leads to blow-up by controlling only the imaginary part of the solution. 

COROLLARY 3.1. For any 'i't, T > 0, ¢ 0 E Sn n H 8 (l~n) for some s > n/2, 
there exist V > 0, G > 0, fit > 0, fi2 > 0 satisfying (2.4} and there exists 
z E C ([0, T1]; Sn) such that z(O) = 0, iz(t) -I~ ~z(s)ds is real valued for any 
t E [0, T1], v(z, ¢ 0 , ·) exists on [0, T1] and u1 = z(T1) + v(z, ¢o, Tl) verifies 

2 1 - 1 - 1 - 2a+2 -
IY1u11£2::; 2H1, IG(ul)l::; 2G, V(u1) :S 2v, and lu11£2o-+2 2: 2H2. 

Proof. Assume first that Im(¢o) # 0 ; set U>. = Re(¢o) + i>.Im(¢o). Then the 
expression 

E - ( 2 1 2 +2 ) -2 4 1 -3 4V(u>.) + (16G(u>.) + c41 )T + 4 4IV7u>.b - 2(2a + 2) lu>-1£~0'+2 T + 3c41T 

is negative for >. large enough, say larger than >..a. Then, by Proposition 3.1 with 
b1 = >.0Im(¢0 ), given o > 0, we can find z with z(O) = 0, iz(t)- I~ ~z(s)ds is real 
valued for any t E [0, T1], v(z, ¢ 0 , ·) exists on [0, T1] and with moreover 

Im(z(T1) + v(z, ¢o, T1) = >.olm(¢o), 

and 
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BLOW-UP IN THE STOCHASTIC NLS EQUATION 193 

Now, the quantities JV'ui1,2, JG(u)J, V(u), Juii_~:;-; 2 depend continuously on u E Sn, 
so that choosing fJ small enough, and setting u(t) = z(t) + v(z, ¢ 0 , t), we have 

JV'u(T1)11,2 S 2jY'u.>.oli2, JG(u(TI))I S 2JG(u.>.0 )j, V(u(TI)) S 2V(u.>.0 ) 

and 
I (T )J2u+2 > 11 J2u+2 U 1 £2u+2 _ 2 U.>.o £2u+2 · 

Hence we obtain the result with fit= 4jY'u.>.oli2, G = 4JG(u.>.0 )j, V = 4V(u.>.0 ) and 
H- 11 J2u+2 2 = 4 U.>.o £2u+2· 

Assume now that Im( ¢ 0 ) = 0, and let us consider the solution u of (3.2) with 
f = 0; it is not difficult to see that the imaginary part of u cannot be identically 
zero on a whole time interval [0, t 0] with t 0 > 0; indeed, writting u as a+ ib with a 
and b satisfying respectively (3.4) and (3.5), this would imply that a is a stationary 
solution of the deterministic NLS equation on [0, to], but it is well known that there 
is no such solution in H 1(!Rn). Hence, for some positive t0 , one has Im(u(t0 )) I- 0, 
and we can reproduce the preceding argument by starting at time to from u(to) 
(which corresponds to taking z = 0 on [0, to]). 

We have now all the tools in hand to state and prove the main result. 

THEOREM 3.1. Assume that 2/n S a < n:_2 if n ~ 3, or 2/n S a if n = 1 or 
2, that <I> is Hilbert-Schmidt from L2(1Rn) into Bn and that the null space of <I>* is 
reduced to {0}. Then for any '1/Jo E Bn n H 8 for somes > n/2, and for any t > 0 
the solution 'ljJ(t) starting from '1/Jo and given by Theorem 2.1 satisfies either 

IP(T*('l/Jo) < T) > 0 

or 

lE (1f' (1Y'¢(s)Ji2 + 1'1/J(s)Ji~:;-;2) ds) = +oo. 

If furthermore <I> satisfies the assumptions of Proposition 2.4, then 'ljJ blows up with 
a positive probability. 

Proof of Theorem 3.1. The proof follows exactly the same lines as the proof of 
Theorem 2.1 in [5], once we have Corollary 3.1 in hand. We repeat shortly the 
arguments for the sake of completeness. Let f'1, T > 0, and '1/Jo E Sn n H 8 (!Rn) with 
s > n/2. Applying Corollary 3.1, we get V, G, H1, and H2 satisfying (2.4), and 
z E C ([0, T1]; Sn) such that if we set u(t) = z(t) + v(z, '1/Jo, t) then 

2 1 - 1 - 1 - 2u+2 -
IY'u(T1)1£2 s 2H1, IG(u(T1))1 s 2G, V(u(T1)) s 2 v, and Ju(T1)bu+2 ~ 2H2. 

Now, fortE [0, T1], the mapping z ~--+ v(¢0 , z, t) is continuous on a neighbourhood 
of z in C([O, T1], E) n U(O, T1; W 1•2,.+2) n £ 1(0, T1; Bn) with values in H 1(1Rn), and 
lower semi-continuous with values in E (see Proposition 3.4 and 3.5 in [5]). Hence, 
there is a ball B centered at z in the preceding space, such that for any z E B, 
u = z + v(z, ¢ 0 , ·) exists on [0, T1] and satisfies 
(3.6) 
IY'u(TI)Ii2 s fi1. IG(u(T1))1 s G, IV(u(TI))I s v, and lu(TI)Ii~:!}2 ~ fi2. 

The solution of (1.4) with ¢(0) = ¢ 0 is given by 'lj;(t) = z(t) + v(z, '1/Jo, t) with 

z(t) = 1t S(t- s)dW(s) 
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194 A. DE BOUARD AND A. DEBUSSCHE 

almost surely on [0,7*(7,00 )). Since([> is Hilbert-Schmidt from L2 (1Rn) into Sn, z is 
almost surely inC ([0, T1]; Sn) (see [3], Theorem 6.10). Moreover, it is shown in [4] 
that z is almost surely in Lr (0, T; W 1•2""+2). Since the null space of([>* is equal to 
{0}, ([> has dense range in sn and in W 1•2""+2 , we deduce that z is non-degenerate 
(note that z is a Gaussian process with values in Sn) and lP'(z E B) > 0; therefore 
the probability that 7* ( 7,00 ) 2: T1 and 7,b(T1) satisfies (3.6) is positive. We now set 

!11 ={wE !1, 7* (uo) 2: T1 and 'l,b(Tl) satisfies (3.6)} 
and note that 7,b(T1), 0 1, f', V, G, fh, fi2 satisfy the condition of Proposition 3.1, or 
Proposition 3.2. The result follows. 
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Method of symmetry transforms 
for ideal MHD equilibrium equations 

Oleg I. Bogoyavlenskij 

ABSTRACT. Method of symmetry transforms is developed for constructing 
ideal magnetohydrodynamics equilibria. The method is applicable to the sub-
sonic divergence-free plasma flows and to the ideal gas plasma. The symmetry 
transforms are presented in explicit algebraic form; they depend on all three 
spatial variables x, y, z and form infinite-dimensional abelian groups Gm. Ap-
plying the symmetry transforms gives both the exact MHD equilibria with 
non-collinear vector fields B and V and the global non-symmetric MHD equi-
libria that model astrophysical jets. 

1. Introduction 

As known, the inverse scattering transform method [1] was discovered as a result of 
the studies of the plasma physics problems connected with the controlled thermonu-
clear fusion, see the papers [2- 4]. In this paper, we study the main equations that 
are used to model controlled thermonuclear fusion and numerous astrophysical phe-
nomena - the nonlinear system of magnetohydrodynamics equilibrium equations. 
We present a new method of symmetry transforms for constructing ideal MHD 
equilibria. The method uses the recently discovered [5] continuous symmetries for 
these equations. By applying the symmetries to any known equilibrium solution 
we obtain infinite families of new MHD equilibria. 

The method of symmetry transforms is different from the method of Backlund 
transforms for the soliton equations such as the Korteweg - de Vries equation [1], 
the Kadomtsev- Petviashvili equation [6], the Sine- Gordon equation [7], etc. The 
method of Backlund transforms is based on resolution of certain auxiliary differ-
ential equations which usually can not be solved explicitly. All soliton equations 
depend only on a part of spatial variables (one for KdV and SG and two for KP). 

The method of symmetry transforms has the following features that distinquish 
it from that of Backlund transforms: 
i) The method of symmetry transforms produces new solutions in explicit algebraic 
form, 
ii) The symmetry transforms depend on all three spatial variables x = x, y, z, 
iii) The generic symmetry transforms break the geometrical symmetries of the field-
aligned MHD equilibria, 
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196 OLEG I. BOGOYAVLENSKIJ 

iv) The symmetries form infinite-dimensional abelian groups Gm that depend on 
the topology of the given MHD equilibria, 
v) The groups of symmetries Gm have an additional algebraic structure of modules 
over the associative algebras of functions. 

The existence of some Backlund transform usually implies integrability of the 
corresponding soliton equation. The existence of the symmetry transforms allows us 
to reduce the order of the ideal MHD equilibrium equations. However, the resulting 
equations are not integrable because they contain as special cases the non-integrable 
Grad-Shafranov equation [8, 9] and the non-integrable JFKO equation [10]. 

The symmetry transforms break the axial symmetry of the magnetic analog 
of Hill's spherical vortex [11] and produce a continuous family of non-symmetric 
MHD equilibria with closed magnetic field lines. These exact solutions depend on 
two arbitrary functions and have no geometrical symmetries. This result shows 
that Grad's 1985 conjecture [12], p.35, that states: "The proper formulation of the 
nonexistence statement is that, other than the stated symmetric exceptions, there 
are no families of solutions depending smoothly on a parameter" is not applicable 
to the MHD equilibria. By applying the method to the exact solutions of the 
papers [13, 14] we get the MHD eqilibria that model ball lightning with dynamics 
of plasma inside the fireball. 

Applying the symmetry transforms to the exact axially and helically symmetric 
plasma equilibria constructed in [5, 15, 16] we obtain infinite families of physically 
significant MHD equilibria. The constructed exact non-symmetric solutions satisfy 
the necessary physical conditions and model astrophysical jets outside of their ac-
cretion disks, for example the jet in the elliptic galaxy Messier 87 [17- 19]. In 
the papers [20, 21], the non-symmetric plasma equilibria were presented that blow 
up as x2 + y2 ____. oo. In Section 11, we derive non-symmetric and bounded exact 
solutions that describe the non-steady dynamics of viscous plasma. 

2. The symmetry transforms 

The system of ideal magnetohydrodynamics equilibrium equations has the form 
1 

(2.1) p(V · grad)V + -B x curlB =- gradP, 
I" 

(2.2) div(pV) = 0, div B = 0, curl(V x B) = 0, 

where B is the magnetic vector field, J.L is the constant magnetic permeability, V is 
the plasma velocity, p = p(x) is its density, x = (x, y, z), and Pis the pressure. 

We consider both the incompressible and compressible plasma flows. The con-
dition of incompressibility div V = 0 is widely used in the MHD literature [22 -
26]. For example, it is applicable with a high accuracy to the subsonic plasma 
flows with Mach number M < < 1, M 2 = V2 I ( '"Y pIp). Another application of the 
condition div V = 0 is to the dynamics of a perfectly conducting incompressible 
fluid with a variable mass density p(x). Then the continuity equation div(pV) = 0 
implies (V · gradp(x)) = 0. Hence the plasma density p(x) is constant on the 
plasma streamlines. 

For the compressible plasma flows, we suppose that plasma satisfies the ideal 
gas equation of state 

(2.3) P = p1 exp(Sicv), V ·gradS= 0, 
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where S(x) is the density of entropy and 'Y > 1 is the adiabatic exponent. We 
consider also the more general equations of state P = p' f(S). 

The third equation (2.2) implies the existence of either magnetic surfaces or a 
magnetic foliation. Indeed, equation curl(V x B) = 0 yields 

(2.4) v X B =grad 1/;(x), 1/;(x) = r (V X B). ds. lxo 
Hence we obtain that in any simply connected domain E c ~ 3 the surfaces 1/;(x) = 
const are magnetic surfaces because 

(2.5) B · grad1j; = 0, V · grad1j; = 0. 

In a non-simply connected domain D, the function 1/;(x) (2.4) is multivalued in 
general. However, the differential form d1/; is uniquely defined. Indeed, we have 

(2.6) d1/;(Y(x)) = (V(x) x B(x) · Y(x)) 

for any tangent vector Y(x) E ~ 3 . In view of the equation curl(V x B) = 0, the 
differential form d1/; (2.6) is closed. Hence the equation d1/;(Y(x)) = 0 defines an 
integrable foliation in ~ 3 that is generated by the vector fields B and V. For any 
solution to equations (2.1) - (2.2), the commutator of the vector fields B and V is 
proportional to B: 

(2.7) [B, V] = -p-1 (V · gradp)B. 

Formula (2.7) is proven in Section 10. 
For the case of toroidal domains D (which are the most important for the 

tokamak applications) the function 1/;(x) is defined up to a constant ni, where n is 
an integer and I is the integral (2.4) over the shortest non-contractable loop of the 
torus. 

Any given smooth non-field-aligned MHD equilibrium B, V, p, P in ~ 3 (B 
and V are non-collinear) defines a distribution of magnetic surfaces 1/;(x) = const 
in ~ 3 [24]. Let Em be the set of all divergence-free equilibria that have the same 
magnetic surfaces as the given one. We introduce the transforms S: Em ---t Em 
that depend on the arbitrary functions a(x) =/=- 0, b(x), c(x) that are constant on the 
magnetic surfaces 1/;(x) = const. The a(x), b(x), c(x) and p(x) are either arbitrary 
functions of 1/;(x) or, more generally, satisfy arbitrary equations F(a(x), 1/;(x)) = 0, 
G(b(x), 1/;(x)) = 0, H(c(x), 1/;(x)) = 0, R(p(x), 1/;(x)) = 0. For the MHD equilibria 
in a toroidal domain D (a tokamak), functions a= a(1j;), b = b(1/;), c = c(1/;) and 
p( 1/.J) are periodic with period I defined above. 

THEOREM 1. The magnetohydrodynamics equilibrium equations (2.1} - (2.2} 
for the divergence-free flows are invariant under the following transforms: 

(2.8) B1 = b(x)B + c(x) J t-tP(x)V, V 1 = c(x) B + b(x) V 
a(x) J t-tP(x) a(x) ' 

Pl(x) = a 2 (x)p(x), P1 = CP + (CB2 - BD/(2~-t), b2 (x)- c2 (x) = C, 
where C =/=- 0 is an arbitrary constant. 
Proof. We prove that transforms (2.8) define new solutions to the equilibrium 
equations (2.1) - (2.2). Let h(x) be any function that is constant on the magnetic 
surfaces, for example a(x), b(x), c(x), or p(x). Hence we have 

(2.9) V · grad h(x) = 0, B ·grad h(x) = 0. 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



198 OLEG I. BOGOYAVLENSKIJ 

Applying the classical identity B x curl B = -(B · grad)B + grad(B2 /2), we present 
the equation (2.1) in the form 

(2.10) p(V · grad)V- (B · grad)B/ f.L =- grad(P + B 2 /(2JL)). 

Substituting formulae (2.8) and (2.9), we derive 

P1(V1 · grad)V1- (B1 · grad)Bl/JL + grad(P1 + Bi/(2JL)) = 

(b2 - c2 ) (p(V · grad)V- (B · grad)B/JL + grad(P + B 2 /(2JL))) = 0. 
Thus the functions p1, B 1, V1, P1 satisfy equation (2.10) and therefore equation 
(2.1). X 

Equations div(p1 V 1) = 0 and div B 1 = 0 easily follow from equations (2.9) and 
div(p V) = 0, div B = 0. Substituting (2.8), we obtain 

curl(V1 x Bl) =curl (a~) V x B) =grad a~) x (V x B)+ a~) curl(V x B). 

Applying equations (2.9), we find that grad( C ja(x)) is collinear with the vector field 
VxB. Hence grad(C/a(x)) x (VxB) = 0. This fact and equation curl(VxB) = 0 
proves that curl(V 1 x B 1) = 0. Hence formulae (2.8) define a new solution to 
equations (2.1) - (2.2). D 
Remark 1. The new vector fields B 1 and V 1 (2.8) are linearly dependent on the 
original Band V. Hence the new MHD equilibrium B 1, V 1, p1, P1 has the same 
magnetic surfaces as the original one B, V, p, P. This property shows that the 
transforms (2.8) map the set Em into itself. For C =f. 0, the transforms (2.8) 
are invertible. We shall refer to the transforms S (2.8) as the symmetries of the 
divergence-free MHD equilibrium equations (2.1)- (2.2). In Section 4, we apply the 
symmetry transforms (2.8) to Grad's "transverse" flows [27] and obtain the more 
complex non-field-aligned MHD equilibria. 

The symmetries (2.8) have the following physical meaning. The difference 
between the plasma kinetic and magnetic energies is changed by a scalar multipli-
cation. Indeed, the transform (2.8) implies 

(2.11) -p1 V 1 - -B1 = C -pV - -B , 1 2 1 2 ( 1 2 1 2) 
2 2f.J, 2 2f.J, 

where C = b2 (x)- c2 (x) = const. Another consequence of transform (2.8) is the 
equation 

Hence we obtain yp;V1 x B 1 = CV'fJV x B, or yp;E1 = C,fPE. Here E = 
- V x B/c0 is the electric field for the plasma with a perfect electric conductivity; 
c0 is the speed of light. Hence the symmetries (2.8) have the vector field invariant 

yp;v1 X B1 - vPV X B 
P1 Vi - Bi/ f.J, - p V 2 - B 2 I f.J,. 

(2.12) 

Remark 2. In his 1962 paper [28], Newcomb proved that the (time-dependent) 
MHD equations (2.1) for divV = 0 follow from the variational principle 

(2.13) 1 2 1 2 L(B V p) = -pV - -B 
' ' 2 2f.J, ' 
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provided that the (time-dependent) equations (2.2) are satisfied. The symmetry 
transformations (2.8) preserve the equations (2.2) because the functions a(x), b(x) 
and c(x) are constant on magnetic surfaces. Equation (2.11) implies the following 
relation between the Lagrangians 

(2.14) 

Equation (2.14) means that the symmetry transforms (2.8) for div V = 0 preserve 
the Lagrangian of the Newcomb variational principle (2.13) up to a constant factor. 
Hence any extremum of the principle (2.13) is transformed into a new extremum. 
Thus we obtain the second proof of Theorem 1. The first proof above is direct and 
independent of Newcomb's 1962 variational principle [28]. 

3. The infinite-dimensional abelian groups of symmetries 

For C =1- 0, the transform (2.8) has the following inverse transform: 

(3.1) CB = b(x)B1- c(x)VILPl(x)VI, Cv _ -c(x) B b(x) V - I+-- 1, 
a1 (x) J p;p1 (x) a1 (x) 

where a1 (x) = 1/a(x). For C = 0, or b(x) = ±c(x), the transform (2.8) is not 
invertible and its range consists of the field-aligned solutions 

~ 1 2 B1 = ±y 1LP1(x)V1, P1 + -B1 =Co= const, 
2p; 

(3.2) 

that are the known Chandrasekhar equipartition equilibria [22]. 
We consider the set Gm of all transforms (2.8) with C =1- 0 for which the smooth 

functions a(x) =1- 0, b(x) and c(x) are constant on the magnetic surfaces for a given 
MHD equilibrium. It is evident that the set Gm is infinite-dimensional. These 
transforms (2.8) are defined on the domain Em that consists of all divergence-
free MHD equilibria that have the same magnetic surfaces as the given one. The 
invertibility of the transforms (2.8) for C =1- 0 and Remark 1 above prove that the 
range of these transforms is the same as their domain, Em. Hence the composition 
of the transforms is well defined. Let us show that the composition assigns on the 
set Gm the structure of an abelian group. For the transforms (2.8), we write 

(3.3) 

where a(x) is an arbitrary smooth function that is constant on the magnetic surfaces 
and T = ±1, a = ±1, k > 0. The second equation (3.3) is resolved in the form: 
a = 1 : b(x) = rykchj3(x), c(x) = rykshj3(x); a = -1 : b(x) = rykshj3(x), 
c(x) = rykchj3(x), where 7J = ±1 and j3(x) is an arbitrary smooth function that is 
constant on the magnetic surfaces. Hence all transforms (2.8) are represented by 
the sextuples (a(x),j3(x),k,T,a,ry). 

The composition of the transforms (2.8) is equivalent to the 3 x 3 matrix mul-
tiplication 

0 0 0 0 0 0 

0 X 0 0 f 

0 0 0 !If; 
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Here f = b1b2 + c1c2, g = c1b2 + b1c2 and P- g2 = (b~- c~)(b~- c~). In view of 
the known identities for the hyperbolic functions ch t and sh t, these formulae are 
equivalent to the following multiplication of the sextuples 

(3.4) (a1(x), .81(x), k1, 7t, a1, 171) · (a2(x), .82(x), k2, 72, a2, 112) = 

(a1(x) + a2(x), .81(x) + .82(x), k1k2, 7172, a1a2, 111112). 
The sextuple (0, 0, 1, 1, 1, 1) is the unit for the multiplication (3.4). The inverse 
transform (3.1) corresponds to the sextuple 

(3.5) (a(x), ,B(x), k, 7, a, 17)-1 = ( -a(x), -,B(x), k-\ 7, a, 17). 

Formulae (3.4) - (3.5) mean that the composition of transforms (2.8) defines on the 
set Gm the structure of an abelian group. Formula (3.4) proves that the group Gm 
is the direct sum 

(3.6) 

Here R+ is the multiplicative group of positive numbers k > 0. The Am is the 
additive abelian group of smooth functions on IR3 that are constant on the magnetic 
surfaces for the given MHD equilibrium. The group Am is also a linear space and 
an associative algebra with respect to the multiplication of functions. 

The group Gm (3.6) depends on the topology of the distribution of magnetic 
surfaces because the functions a(x) and ,B(x) (3.4) are constant on them. Hence 
there are infinitely many different infinite-dimensional groups Gm of symmetries of 
the MHD equilibrium equations. 
Remark 3. An additional algebraic structure. The group Gm has an additional 
structure that does not exist for the groups of symmetries of the soliton equations 
[1, 6, 7]. This group is a module over the associative algebra Am EB Am with the 
multiplication defined by the multiplication of functions in Am: 

(3.7) ('y(x), ((x)) · (a(x), ,B(x), k, 7, a, 17) = ('y(x)a(x), ((x),B(x), k, 7, a, 17). 

This operation results in the transform: a(x) -----+ 71a(x) I"Y(x), b(x) = 17k ch ,B(x) 
-----+ 17k ch( ((x),B(x) ), c(x) = 17k sh ,B(x) -----+ 17k sh( ((x),B(x)). 
Remark 4. Subgroups of the group Gm. The group Gm (3.6) has eight periodic 
elements which form the subgroup r v = Z2 EB Z2 EB Z2 c Gm and are defined by the 
sextuples (0, 0, 1, ±1, ±1, ±1). All other elements are non-periodic. The subgroup 
r v elements represent the eight components Gmi, j = 1, · · · , 8, of the group Gm. 
The scale and reflection symmetries form the subgroup r sr = REB R+ EB Z2 EB Z2 EB 
z2 c Gm that consists of the sextuples (r, 0, k, 7, a, 11), k > 0. The subgroup r sr 
does not depend on the considered MHD equilibria. 

Thus we have shown that the divergence-free MHD equilibrium equations (2.1)-
(2.2) have the infinite-dimensional abelian groups of symmetries Gm (3.6) and that 
these groups have the additional structure (3.7) of modules over the associative 
algebras of functions. 

4. Applications of the symmetry transforms 

I. In this Section, we apply the symmetry transforms (2.8) to obtain the new MHD 
equilibria with non-collinear vector fields B and V. We consider in the cylindrical 
coordinates (r, z, ¢) the differential rotation of a perfectly conducting ideal gas 
plasma around the axis z. Let w(r) be its angular velocity and H(r) be the vertical 
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magnetic field. Equations (2.1) - (2.2) have the exact solutions [27] that depend 
on the three arbitrary functions w(r), H(r), p(r) 2: 0: 

(4.1) B = H(r)ez, V = w(r)( -yex + xey), P(r) = F(r)- H 2(r)/(2p,), 

Here F(r) = J; tp(t)w2(t)dt. The vector fields B and V (4.1) are orthogonal. 
Solutions (4.1) satisfy the ideal gas equation of state (2.3) where density of entropy 
S(r) is defined from equations (2.3) and (4.1) for the arbitrary gas density p(r). 

Applying symmetry transform (2.8) to solutions (4.1), we obtain the new exact 
MHD equilibria 

(4.2) V1 = ~V + _c_Hez, a aVJIP 
where b2 (r)- c2(r) = C = const and P1 = CF- b2 H 2 /(2p,) - p(crw)2 /2. Exact 
solutions (4.2) also satisfy the ideal gas equation of state of the form (2.3) and 
depend on four arbitrary functions a(r), b(r), w(r), H(r). Their magnetic field 
lines and plasma streamlines are helices which rotate on the cylindrical magnetic 
surfaces x2 + y2 = r 2 = const. 

Solutions (4.2) describe, for example, the helical dynamics of plasma inside a 
cylinder 0:::; r:::; R, provided that c(R) = 0, p(R) = 0, w(R) = 0, H 2 (R) = 2p,F(R), 
b2H 2(r):::; 2p,CF(r)- p,p(crw) 2 , c(r)/p(r) < const. Then at the wall r = R, the 
plasma pressure P1(R) = 0, the density Pl(R) = 0 and velocity V1(R) = 0. The 
exact MHD equilibria ( 4.2) belong to the generic class of solutions with non-collinear 
vector fields B and V. 

II. Let us consider the 2-dimensional steady ideal fluid dynamics 

(4.3) (V · grad)V = -grad Po, div V = 0 

with constant density p = 1. As is known, any solution to equations ( 4.3) has the 
form 

dF( 1/J) 
1/Jxx + 1/lyy = ~' 

with an arbitrary smooth function F(1/;). Let f(x,y) be any first integral of the 
flow: (V · grad f) = /y1/lx - fx1/ly = 0. Then the orthogonal vector fields B = fez 
and V satisfy the equilibrium equations (2.1) - (2.2) with P = Po-P /(2p,) and 
p = 1 [27]. Applying the intrinsic symmetries (2.8) to these solutions, we derive 
the new MHD equilibria 

(4.4) 

where b2 - c2 = C = const, P1 = CP0 - BV(2p,). Here a(x, y), b(x, y) and f(x, y) 
are any first integrals of the flow V: ay1/Jx - ax1/Jy = 0, etc. Thus the symmetry 
transforms (2.8) produce from any 2-dimensional steady flow (4.3) with p = 1 
the 3-dimensional non-field-aligned MHD equilibria (4.4) which depend on three 
functions a, b, f and have a variable plasma density p1 = a2 (x, y). 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



202 OLEG I. BOGOYAVLENSKIJ 

5. The symmetry transforms for the field-aligned solutions 

For the field-aligned equilibria, the vector fields B and V are collinear and 
satisfy the equation 

(5.1) V = A(x) B 
VJ.Lp(x) , 

where A(x) is some smooth function on JR.3 • The first two equations (2.2) and 
equation divV = 0 imply B · gradp = 0 and B ·grad A= 0. The flows (5.1) are 
sub-Alfvenic for jA(x)j < 1 and super-Alfvenic for jA(x)j > 1. The Chandrasekhar 
equipartition solutions (3.2) [22] correspond to jA(x)l = 1, p(x) = const. 

THEOREM 2. For the field-aligned solutions (5.1), the magnetohydrodynamics 
equilibrium equations (2.1) - (2.2) for divV = 0 possess the following intrinsic 
symmetries: 

(5.2) Pl(x) = ai(x)p(x), B1 = b1(x)B, Vl = cl(x) B 
a1 (x) J J.Lp(x) ' 

b2 (x) c2 (x) 
P1 + Bi/(2JL) = C1(P + B 2 /(2J.L)), 11 _ ~ 2 (~) = C1 = const, 

where smooth functions a1 (x) =f. 0, b1 (x), c1 (x), A(x), p(x) are constant on the 
magnetic field lines. 
Proof. It is evident that symmetries (5.1) preserve equations (2.2). For the field-
aligned solutions (5.1), equation (2.1), (2.10) takes the form 

(5.3) JL-1(A2 (x)- 1)(B · grad)B + grad(P + B 2 /(2J.L)) = 0. 

Applying transformation (5.2) and using formula (5.3), we obtain 

(5.4) P1(x)(V1 · grad)V1- (B1 · grad)BI/J.L + grad(P1 + Bi/(2J.L)) = 

J.L-1(ci(x)- bi(x))(B · grad)B + C1 grad(P + B 2 /(2JL)) = 0. 
Hence functions B1. V 1, Pl and P1 (5.2) satisfy equation (2.1) and therefore define 
the new exact MHD equilibria. 0 
Remark 5. The symmetries (5.2) for C1 =f. 0 form the infinite-dimensional groups 
Gm that have the same structure as (3.6) where Am is the algebra of smooth 
functions on JR.3 that are constant on the magnetic field lines (5.1). 

The functions a1(x), b1(x), c1(x), A(x), p(x) that are constant on the magnetic 
field lines are first integrals of the magnetic dynamical system 

(5.5) x = Bx(x, y, z), iJ = By(x, y, z), i = Bz(x, y, z), 

where Bx, By, Bz are components of the magnetic field B. The following three 
posibilities can be realized in different domains E c JR.3 : 

1) The magnetic field lines (5.5) are dense on some closed magnetic surfaces 
- then these surfaces topologically are tori '['2 [2] and first integrals a1 (x), b1 (x), 
c1 ( x), A ( x), p1 ( x) are constant on '['2 • Hence they are actually functions of one 
transversal variable. 

2) All magnetic field lines go to infinity or are closed curves - then the first 
integrals a1(x), b1(x), c1(x), A(x), p1(x) are arbitrary smooth functions of the two 
transversal variables and magnetic surfaces are not uniquely defined. 

3) The magnetic field lines are dense in some 3-dimensional domains E C IR.3 

- then in the domains E there are no magnetic surfaces and no first integrals of 
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system (5.5). In the paper [24], Moffatt proved that this can occur only for the 
"force-free" equilibria 

(5.6) V = c1B, p = c2, curlB =caB, P + pV2 /2 = c4, 
where Cj are constants. For these solutions, the intrinsic symmetries (5.2) degen-
erate into the constant scaling transformations. 
Remark 6. In Section 10 below, we present a general construction of the force-free 
magnetic fields that satisfy the equations curl B = o:B, div B = 0, where o: '7 const. 

Formulae (5.2) imply V1 = Al(x)Bl/VJ.tPl(x) where A1(x) = c1(x)/b1(x). 
The last formula (5.2) yields A~(x) = 1- C1 (1- A2 (x)) jb~ (x). Hence for C1 =f. 0 we 
have IA1(x)l = 1 if and only if IA(x)l = 1. Therefore the Chandrasekhar solutions 
(3.2), IA(x)l = 1, are invariant under transforms (5.2). 
Example 1. For any solution to the plasma equilibrium equations 

(5.7) curlB x B = J.tgradP, divB = 0, V = 0, 

the surfaces of constant pressure P(x) = const are magnetic surfaces [2]. Applying 
transformations (5.2) to any plasma equilibrium (5.7) (A(x) = 0), we obtain new 
field-aligned solutions 

(5.8) 

where bi{x)- c~(x) = C1 = const. Here p1(x) = a~(x) and b1(x) are arbitrary 
smooth functions that are constant on the magnetic field lines. 

Solutions (5.8) have the following physical property: the ratio of the plasma 
magnetic and kinetic energy 

(5.9) 

is constant on the magnetic surfaces P(x) = const; but it is variable in the space 
IR.3 . Note that neither magnetic nor kinetic energy separately are constant on the 
magnetic surfaces. If C1 > 0 then the kinetic energy is everywhere smaller then the 
magnetic energy (sub-Alfvenic flows); if C1 < 0, the converse is true (super-Alfvenic 
flows). The case C1 = 0 and Pl(x) = const corresponds to the Chandrasekhar 
equipartition solutions [22], see (3.2). 

6. Ball lightning model with dynamics of plasma 

In the papers [13, 14], a model of ball lightning is developed where a steady 
plasma with velocity V = 0 fills a spherical ball and the magnetic field B is axially 
symmetric inside the ball and vanishes outside of it. The model is based on an 
exact solution of the paper [13] which is given in terms of the spherical Bessel 
functions and the Legendre functions. In what follows, we generalize this model for 
the non-zero plasma velocity V =f. 0. . 

In the cylindrical coordinates r, z, ¢>, the axially symmetric magnetic field B 
has the form [2] 

B ~ZA ~TA IA 
= -er - -ez + -eq,, r r r (6.1) 

where ~(r, z) is a flux function, ~z = 8~/oz, ~r = 8'1/Jfor, I= I(r, z) describes the 
electric current density and er, ez, eq, are the coordinate unit orts. For the axially 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



204 OLEG I. BOGOYAVLENSKIJ 

symmetric solutions (6.1), the plasma equilibrium equations (5.7) are equivalent to 
the Grad - Shafranov equation [8, 9] 

Wrr -1/Jr/r + Wzz + I(1j;)I'(1/J) + J.Lr2p'(1/J) = 0, 

where I = !(1/;) and P = p(1j;) are arbitrary functions of 1/J and prime means 
the derivative with respect to 1/J. The authors of [13, 14] assume J(1j;) = a1j;, 
p(1j;) = p1 - c1jJ and construct a solution 1/;(r, z) that satisfies the overdetermined 
boundary conditions 1/Jiav = 0, grad 1/Jiav = 0 on a spherical boundary 8V: R =a, 
R = Jr2 + z2. Hence Blav = 0, Plav = P1 and the solution is continued in the 
outer spaceR> a by the trivial solution B(x) = 0, P(x) = Pl [13, 14]. The exact 
solution of [13] can be presented also in the form 

(6.2) 2 ( 3 - x~ 1 ( sin( aR))) 1/;(r, z) = mr 1 + -- 2R2 cos(aR)- R , COSX1 a a 

where m = CJ.L/ a 2 , (3 - x~) /cos x1 ~ -34.8145 and 0 ~ R ~ a = xd a. Here 
x1 ~ 5.763459 is the smallest positive root of the equation tanx = 3xj(3- x2 ) 

where x = aR. Inside the ball R ~ a, the generic magnetic surfaces 1/J(r, z) = const 
are toroidal. The singular magnetic surfaces are the segment r = 0, -a ~ z ~ a 
and the magnetic axis r = r 1 , z = 0, 0 ~ ¢ ~ 2n, that is defined by the conditions 
Wr = 0, 'l/Jz = 0. 

Let (3(1/J) be an arbitrary smooth function of 1/J, b1 = ch(3(1j;), c1 = sh(3(1j;), 
and a 1 ( 1/J) #- 0 be another smooth function. By applying the symmetry transforms 
(5.2) to the plasma equilibrium (6.1), (6.2) we obtain new field-aligned sub-Alfvenic 
MHD equilibria 

(6.3) B1 = ch(3(1j;)B, 1 2 2 P1 = Pl - c1/J - 2/h (3( 1/J )B , 

with the plasma density p1 (x) = a~(1j;(r, z)). The MHD equilibria (6.3) are defined 
inside the ball R ~a and satisfy the boundary conditions B1lav = 0, V1lav = 0, 
P1lav = Pl· Hence the equilibria are continued in the outer space R > a by 
the trivial solution B(x) = 0, V(x) = 0, P(x) = P1 = const, Pl(x) = a~(O) = 
const. The field-aligned equilibria (6.3) model ball lightning with the variable 
plasma density and sub-Alfvenic dynamics of plasma inside the fireball. The MHD 
equilibria ( 6.3) manifest also neutral modes for the stability analysis [14] of the ball 
lightning model [13, 14]. 

7. Breaking of the geometrical symmetries 

The symmetry transforms (5.2) have important applications connected with 
the breaking of the geometrical symmetries of the field-aligned MHD equilibria. 
Suppose that a field-aligned MHD equilibrium (5.1) possesses some geometrical 
symmetry - translational, axial or helical and that all magnetic field lines in a do-
main D either are closed curves or go to infinity. Then the symmetries (5.2) are 
defined by the first integrals a1 (x), b1 (x), c1 (x) of the system (5.5), which are func-
tions of the two transversal variables. These functions generically are not invariant 
with respect to the above geometrical symmetries. Hence the new equilibrium p1, 

B~, V 1 , P 1 (5.2) is non-symmetric. This means that the symmetry transforms 
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(2.8), (5.2) break the geometrical symmetry of the original field-aligned equilib-
rium p, B, V, P (5.1). In Section 8, we present the global non-symmetric MHD 
equilibria obtained by breaking of the helical symmetry. 

In this Section, we give an example of the axial symmetry breaking for a plasma 
equilibrium with toroidal magnetic surfaces and closed magnetic field lines. We 
consider the magnetic analog of Hill's spherical vortex [11] for which the magnetic 
field B is axially symmetric and pure poloidal: 

(7.1) B _'I/JzeA _'1/JreA 
- r z· r r 

The notations are the same as in (6.1), I= 0. Inside the ball R ~a, R = v'r2 + z2 , 

Hill's solution has the flux function 

(7.2) 
Outside of the ball, R > a, the flux function is 

(7.3) '¢(r, z) = Ar2 (R-3 - a-3 ), A= -a5cJ.L/15, p('¢) = Pl· 

The formulae (7.1) - (7.3) imply B(x) = B(x) for lxl = a. In the outer space 
R > a, the magnetic field B (7.1), (7.3) is potential: B = grad(Az(R-3 + 2a-3 )), 

and has a constant asymptotics B ----t 2a-3 Aez as R ----too. 

The magnetic field lines (7.1) have two first integrals: the '1/J(r, z) and the angle 
¢. Hence any smooth function f('!f;(r, z), ¢) also is their first integral. Inside the 
ball R ~a, the magnetic field lines are either closed curves '1/J(r, z) = C1, ¢ = C2 or 
the separatrix r = 0, -a< z <a or the rest points: r = aj../2, z = 0, 0 ~ ¢ ~ 271', 
where '1/J = -£, f = a4 cJ.L/ 40. 

Let a( '1/J, ¢) > 0 and /3( '1/J, ¢) be any smooth functions on the annulus -£ ~ '1/J ~ 
0, 0 ~ ¢ ~ 211' such that a(O, ¢) = 1 and /3(0, ¢) = 0. Applying the symmetry trans-
form (5.2) with functions a1(x) = a('¢,¢), b1(x) = ch/3('¢, ¢), c1(x) = sh/3('¢, ¢) 
where '1/J = '1/J(r, z) (7.2) to Hill's solution (7.1), we obtain new sub-Alfvenic MHD 
equilibria 

(7.4) B1 = ch/3('1/J, ¢)B, V 1 = sh/3('1/J, ¢) B 
a('¢, ¢)..;Ji ' 

Pl(x) = a 2 ('¢, cp)po, P1(x) = Pl- c'I/J- sh2f3('1/J, ¢)B2 /(2J.L) 
inside the ball R ~ a. On the sphere R = a, the equilibria (7.4) coincide with Hill's 
solution (7.1), (7.2) and hence are continued in the outer spaceR> a by the same 
Hill's plasma equilibrium (7.1), (7.3). It is evident that the equilibria (7.4) have 
toroidal magnetic surfaces '1/J(r, z) = const and closed magnetic field lines and are 
non-symmetric. Hence the symmetry transform (5.2) breaks the axial symmetry of 
Hill's solution. 

8. Graphs r and cellular complexes C 2 defined by the MHD equilibria 

I. Any smooth MHD equilibrium in JR3 with non-collinear vector fields B and 
V uniquely defines a family of magnetic surfaces '1/J(x) = const (2.4) which fibre the 
Euclidean space JR3 . For a single-valued flux function '1/J(x) (2.4), the regular mag-
netic surfaces are either smooth tori or cylinders or planes. The singular magnetic 
surfaces are points of bifurcations of the family of magnetic surfaces. A singular 
magnetic surface is either a !-dimensional magnetic axis or a 2-dimensional sur-
face with singularities or an asymptotic magnetic surface at infinity. Any complete 
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• • 
FIGURE 1. Graph r for the non-collinear MHD equilibria (4.1) and (4.2). 

family of magnetic surfaces is equivalent to a graph r. Indeed, let us denote each 
singular magnetic surface as a vertex of a graph r. Any 1-parametric family of 
regular magnetic surfaces connects certain two singular magnetic surfaces. Such 
1-parametric families form the edges of the graph r. For the symmetry trans-
forms (2.8), the functions a(x), b(x), c(x) and p(x) are constant on the magnetic 
surfaces. Hence they are actually continuous functions on the graph r that are 
smooth outside of the vertices. 

The cylindrically symmetric exact solutions (4.1) and (4.2) define the simplest 
possible graph r, see Figure 1. Here two vertices correspond to the singular mag-
netic surfaces that are the !-dimensional magnetic axis r = 0, -oo < z+oo, and the 
asymptotic magnetic surface at r ----too. The edge corresponds to the !-parametric 
family of regular magnetic surfaces - cylinders r = ro where 0 < ro < oo. 

For the exact field-aligned MHD equilibria (5.1), the magnetic surfaces are not 
uniquely defined in the domains Ej where all magnetic field lines go to infinity or are 
closed curves. Indeed, any smooth first integral f(r, z, ¢)of the magnetic dynamical 
system (5.5) in the domain Ej defines invariant magnetic surfaces f(r, z, ¢) =canst. 
The set of magnetic field lines in such a domain Ej is a 2-dimensional cell Cj whose 
boundary corresponds either to a singular magnetic surface Sk or to a !-parametric 
family of the magnetic field lines at infinity. In the domains Tm where the generic 
magnetic field lines are bounded and are not closed curves, the magnetic surfaces 
are uniquely defined as the closures of the magnetic field lines. In the domains T m, 

the magnetic surfaces form !-parametric families Im of tori 1!'2 • Therefore the filed-
aligned MHD equilibria define a 2-dimensional cellular complex C 2 that consists of 
the vertices, the edges and the 2-dimensional cells. The vertices correspond to the 
singular magnetic surfaces Sk. The edges correspond to the !-parametric families 
Im of the toroidal magnetic surfaces and the !-parametric families of the magnetic 
field lines at infinity. The 2-dimensional cells Cj correspond to the 2-parametric 
families of magnetic field lines in the domains Ej where all lines either go to infinity 
or are closed curves. 

For the symmetry transforms (5.2) for the field-aligned MHD equilibria, the 
smooth functions a 1 (x), b1 (x), c1 (x) and p(x) are constant on the magnetic field 
lines. Hence they are actually continuous functions on the corresponding 2-dimen-
sional cellular complex C 2 that are smooth outside of the vertices. In what follows, 
we present the non-isomorphic 2-dimensional cellular complexes C 2 that correspond 
to the exact field-aligned MHD equilibria derived in [5, 15]. 
II. In [15], we derived the following exact axially symmetric solutions to the plasma 
equilibrium equations (5. 7): 
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FIGURE 2. Periodic in the variable z level curves 7/J2(r, z) = const (8.4). 

where e,., ez, e¢ are unit orts in the cylindrical system of coordinates r, z, ¢ and 
flux functions 7/J(r, z) are parametrized by the integers N ~ 0 and have the form 

N-1 

(8.2) 7/JN(r, z) = e-f3r2 (aNL*N(y) + L L~(y)(an cos(wnz) + bn sin(wnz))). 
n=l 

Here Wn = y'8{J(N- n), y = 2{Jr2 , {3 > 0 and L~(y) are the primitive functions 
of the Laguerre polynomials [30], an and bn are arbitrary constants. Applying the 
symmetry transform (2.8) or (5.2) to these solutions, we obtain an infinite family 
of new exact MHD equilibria for C = k2 : 

(8.3) B 1 = kch{J(x)B, V 1 = ksh{J(x) B 
V/LPl(x) ' 

Here {J(x) and plasma density p1 (x) = a 2 (x) > 0 are arbitrary smooth functions 
that are constant on the magnetic field lines (8.1). 
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• • 
• • 

• • 
• • 

FIGURE 3. Cellular complex C 2 for the z-periodic MHD equilib-
rium (8.3), (8.4). 

Example 3. The simplest z-periodic plasma equilibrium (8.1) is defined for N = 2 
and has the flux function (8.2): 

(8.4) 'lj;2(r, z) = e-f3r2 ( -(3r4 + r2 + a1 sin( J8/3z)r2). 

The corresponding level curves 'lj;2(r, z) = const are shown in Figure 2 above for 
(3 = 0.1, a 1 = 0.1. There are three infinite in z domains E 1 , E2, E 3 , which are 
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filled with the unbounded magnetic field lines that go to the infinities z ---+ ±oo 
and two infinite families of bounded domains T1m and T2n which are filled with the 
magnetic field lines that lie on the toroidal magnetic surfaces ']['2 . These tori ']['2 are 
axially symmetric and are obtained from the closed curves in Figure 2 by rotating 
aroung the vertical axis z. The two families of domains T1m and T2n are bounded 
by the two singular surfaces 81 and 82. Each of the surfaces 81 and 82 contains 
an infinite set of saddle points of function '¢2 (r, z) (8.4). The exterior domain E3 
is bounded by the !-parametric family of the magnetic field lines at r ---+ oo. 

20 

18 

16 

14 

12 

10 z 
8 

6 

4 

2 

0 
0 

E1 E4 

2 3 4 5 6 r 7 8 9 

FIGURE 4. Quasi-periodic in the variable z level curves '¢3 (r, z) = 
canst (8.5). 

l 

10 

In the domains T1m and T2n, the generic toroidal magnetic surfaces are uniquely 
defined as the closures of the magnetic field lines (8.1). The cellular complex C 2 

describing the magnetic surfaces and the unbounded magnetic field lines for the 
exact solution (8.3) is shown in Figure 3. Here the 2-dimensional cells C1 , C2 , C3 
correspond to the 2-parametric families of the unbounded magnetic field lines in 
the domains E 1 , E2, E3. The boundaries of the cells C1 and C2 are the vertices 
that correspond to the two singular magnetic surfaces 81 and 82 • The boundary of 
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the cell C3 is the vertex 82 and the edge 100 that corresponds to the !-parametric 
family of the magnetic field lines at r -----+ oo. 

Each edge hm and hn in Figure 3 corresponds to a !-parametric family of 
toroidal magnetic surfaces that connect one of the singular surfaces 81 or 82 with 
a singular "surface" S1m or S2n that is the !-dimensional inner circular magnetic 
axis. The magnetic axes S1m and S2n correspond to the maxima and minima of 
the function 'l/;2(r, z) (8.4). 

FIGURE 5. Cellular complex C 2 for the MHD equilibrium (8.3), (8.5). 
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Example 4. The generic flux functions (8.2) are quasi-periodic in variable z because 
the frequencies Wn = .j8(3(N- n) are rationally independent. The simplest z-
quasi-periodic solution (8.2) is defined for N = 3 and has the form 

(8.5) '¢3 (r, z) = e-f3r2 (L3(y) + 210 sin(2.j2/3z)L2(y) + 2~ sin(4}fi(z- l))Li(y)). 

There are four infinite domains E 1 , E2, E3, E4 in Figure 4 that are filled with the 
unbounded magnetic field lines going to the infinity in the variable z. The magnetic 
field lines in these domains corresponds to the 2-dimensional cells 01, 02, 03, 04 
of the cellular complex 0 2 in Figure 5. 

The edges Ilk, 12m, fan of the cellular complex 0 2 correspond to the !-para-
metric families of the toroidal magnetic surfaces in the domains T1k, T2m, T3n and 
the edge 100 corresponds to the magnetic field lines at infinity r ______. oo. The 
toroidal magnetic surfaces are obtained by rotating the closed curves in Figure 4 
around the axis z. The non-periodicity in z of the exact solution (8.5) causes the 
appearance of infinitely many new singular 2-dimensional magnetic surfaces 81o:, 

82/3> 83"(> instead of the two singular surfaces 81 and 82 for the z-periodic solution 
(8.4). The corresponding vertices lie on the three vertical lines in Figure 5. 

The smooth functions a1(x), b1(x), c1(x) and p(x) that define the symmetry 
transforms (5.2) for the field-aligned MHD equilibria (8.3), are constant on the mag-
netic field lines (8.1). Hence they are actually functions on the cellular complexes 
0 2 shown in Figure 3 and Figure 5. 

The groups of symmetries Gm (3.6) depend on the topology of the graph r 
or the 2-dimensional complex 0 2 defined by the given MHD equilibrium because 
the functions a(x) and (J(x) (3.4) are continuous functions on the graph r or on 
the cellular complex 0 2 that are smooth outside of the vertices. Hence we have 
infinitely many different infinite-dimensional abelian groups Gm of symmetries of 
the MHD equilibrium equations which depend on the topological properties of the 
given equilibrium solutions, for example the exact solutions (8.1)- (8.2). 

9. Astrophysical jets as the global non-symmetric MHD equilibria 

I. We consider the following helically symmetric [10, 29] magnetic fields: 

(9.1) B _ ar'l/J +"('1/Jr 
2 - 2+ 2 ' r 'Y 

where er, ez, eq, are the unit orts in the cylindrical coordinates r, z, ¢ and '1/J = 
'1/J(r, u) is the flux function, u = z- "f¢, a = const, "( = const. In [5], we derived 
the exact helically symmetric plasma equilibria (9.1) that correspond to the flux 
functions 
(9.2) 

'1/JNmn = e-f3r2 (aNBoN(Y) + rm Bmn(Y)(amn cos(muh) + bmn sin(muh))), 

where N, m, n are arbitrary integers 2:: 0 satisfying the inequality 2N > 2n + m, 
andy= 2(3r2 , (3 > 0. The pressure Pin the plasma equilibrium equations (5.7) is 
P = Po - 2(32'¢2 / J-L. The polynomials Bmn (y) have the form 
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where Lp(Y) are the Laguerre polynomials [30] 

( ) _ 1 y dp ( -y P) _ ~ ( -1 )kp! k 
Lp y - p!e dyP e y - L...t (k!)2(p- k)!y . 

k=O 

For the exact solutions (9.1) - (9.2), the helically symmetric magnetic surfaces are 
defined by the equations WNmn(r,u) = const, where u = z- "'f¢. 

The simplest exact solution (9.2) is defined for N = 1, m = 1, n = 0. The 
corresponding flux function (9.2) has the form 

(9.3) '1/Juo(r, z, ¢) = e-i3r2 (1- 4{3r2 + a1rcos(zh- ¢)). 
II. Applying the symmetry transforms (5.2) to the exact solutions (9.1) - (9.2), we 
obtain an infinite family of new field-aligned MHD equilibria for C = k2 : 

2 k2 2 2 P1 = k P- -sh f(x)Bh. 
2t-t 

(9.4) 

Here f(x) and the plasma density p1 (x) = a~(x) are arbitrary smooth functions 
that are constant on the magnetic field lines (9.1). These lines go to infinity in 
the variable z. Hence functions f(x) and a 1 (x) are arbitrary functions of the two 
transversal variables and are not helically symmetric in general. Therefore the 
obtained exact solutions (9.4) are non-symmetric. 

For the exact solutions (9.1) that satisfy condition B1 > 0 for z = 0 and 
arbitrary r and ¢, all magnetic field lines are unbounded in variable z and are 
uniquely defined by their intersections with the plane z = 0. Hence the set of all 
distinct magnetic field lines is the plane ~ 2 • The cellular complex C2 for these 
helically symmetric solutions is the 2-dimensional disk shown in Figure 6 where the 
boundary circle corresponds to the magnetic field lines at infinity r -----+ oo. 

FIGURE 6. Cellular complex C 2 for the helically symmetric field-
aligned MHD equilibria. 

For the exact solutions (9.4), the magnetic surfaces are not uniquely defined. 
However there are special helically symmetric magnetic surfaces defined by the 
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constant levels of the flux function 1/JNmn(r, z, ¢) =canst. Figure 7 shows the level 
curves 1/Juo(r, z, ¢)=canst at z = 0 for a1 = -1, (3 = 0.1, "( = y'5(2. The function 
1/Juo(r, 0, ¢) (9.3) achieves its maximum at r = 0.8968, <P = 1r and minimum at 
r = 3.0168, ¢ = 0. The 2-dimensional helically symmetric magnetic surfaces are 
obtained from the curves in Figure 7 by simultaneous rotation in ¢ with angular 
speed 1 and translation in z with speed 'Y· 

8rr----.----~---.--~----.----.---,.---,----.--~ 

4 

0 

y 

-4 l 
-8~--~----~--~--~----~--~----~--~--~--~ 

0 X 4 8 -8 -4 

FIGURE 7. Section z = 0 of the helically symmetric magnetic sur-
faces (9.3). 

III. Solutions (9.4) are sub-Alfvenic because the ratio of the plasma kinetic and 
magnetic energies is 

(9.5) /-LPl VUB~ = th2 f(x) < 1. 

This ratio is variable in the space JR3 but is constant on the helically symmetric 
magnetic surfaces 1/JNmn(r, z) = const. For J(x) = ce'l/J'J,J:,r;:(x), Pl(x) = be'l/J'#mn(x) 
(9.4), £ > 0, m 2 0, the plasma magnetic and kinetic energies and its mass 
are finite in any layer c1 :::; z :::; c2 because 1/JNmn(r, u) ~ CNr2N exp( -(3r2) at 
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r ---+ oo. All magnetic field lines and plasma streamlines are bounded in the ra-
dial variable r because the leading term of the flux function '1/JNmn(r, u) (9.2) is 
bN(-2{J)N exp(-{Jr2)r2N jN! at r >> 1, bN = aN(1 + koN)· In view of the rapid 
decreasing of the magnetic field Bh(r, u) at r ---+ oo, the plasma magnetic and 
kinetic energies and its mass are concentrated near the z-axis r = 0. Therefore the 
obtained exact MHD equilibria (9.4) model the astrophysical jets outside of their 
accretion disks; for example the jet in the elliptic galaxy Messier 87 [17]. These ex-
act solutions satisfy the necessary physical conditions at r ---+ oo. The total plasma 
kinetic and magnetic energy and its mass are finite in any layer c1 < z < c2 . 

10. Symmetry transforms for the compressible gas plasma 

THEOREM 3. 1) Equations (2.1) - (2.3) possess the following intrinsic symme-
tries 

(10.1) 

P1 = b2 P, 81 = S + 2cv(ln lbl-1' ln ia(x)i), 
where a(x) #- 0 is an arbitrary smooth function that is constant on the magnetic 
surfaces for a given MHD equilibrium B, V, p, P and b =canst#- 0. Transforms 
(10.1) preserve the equation of state (2.3). 

2) Suppose that for some equation of state P = p"~ f(S) magnetic surfaces are 
closed in some domain E. Then the entropy density S is constant on the magnetic 
surfaces and there exist a symmetry (10.1) that transforms the MHD equilibrium 
in the domain E into an isoentropic equilibrium satisfying equation P1 = b2 Pi. 
Proof. 1) Equation (V · grada(x)) = 0 implies p1 (V1 · grad)V1 = b2 p(V · grad)V 
and div(p1V 1 ) = a(x)bdiv(pV) = 0. Hence equation (2.1) and the first equation 
(2.2) are satisfied. Equation curl(V 1 x BI) = 0 follows from the identity curl fU = 
grad f xU+ f curl U and the equation grad(a(x)) x (V x B) = 0 that is true for 
a(x) is constant on the magnetic surfaces. 

2) Let us prove that for any variable density p(x) vector fields p-1 B and V 
commute, [p- 1 B, V] = 0. Indeed, the known identity 

curl(X x Y) = (divY)X- (divX)Y + [Y, X] 

and the equation curl(V x B) = 0 imply 

(10.2) curl(pV x p-1B) = div(p-1B)pV- div(pV)p-1B + [p- 1B,pV] = 0. 

Substituting equation div(pV) = 0 into (10.2), we obtain 

(10.3) [p- 1B, pV] + pdiv(p-1B)V = 0. 

Equation div B = 0 implies 

(10.4) div(pp- 1B) = pdiv(p-1B) + p-1 (B · gradp) = 0. 

Equation (10.4) yields 

p[p- 1B, V] = [p- 1B, pV]- p-1 (B · gradp)V = [p-1B, pV] + pdiv(p-1B)V. 

Hence using equation (10.3) we obtain [p-1 B, V] = 0. If for the given MHD 
equilibrium B, V, p, P the magnetic surfaces are closed in some domain Ethan they 
are tori 11'2 [2] and the commuting vector fields p-1 B and V define the dense quasi-
periodic trajectories on almost all tori 11'2 . Hence any function that is constant along 
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the plasma streamlines is constant on the tori 1I'2 . Therefore equation (V ·gradS) = 
0 (2.3) implies that entropy S is constant on the magnetic surfaces. 

Suppose that plasma satisfies an equation P = p"'~ f(S). The function a 2 "'~(x) = 
f ( S ( x)) is constant on the magnetic surfaces 1I'2 • The corresponding intrinsic sym-
metry (10.1) transforms the equation of state P = p"'~ f(S) into the isoentropic 
equation P1 = b2 pJ. D 

Remark 7. The commutativity equation [p-1B, V] = 0 implies [B, V] = -p-1(V · 
gradp)B. This proves the formula (2.7). 

The symmetry transforms (10.1) form the subgroup Gom = AmEBR+EBZ2EBZ2 C 
Gm, see (3.6). Elements of Gom are the sextuples (a(x), 0, k, r, 1, ry). The subgroup 
Gom has an additional structure of a module over the associative algebra Am with 
the multiplication induced by (3.7). 

11. Exact solutions to viscous MHD and Navier-Stokes equations 

The previous results are connected with the steady dynamics of an ideal plasma. In 
this Section, we derive exact solutions for the non-steady dynamics of a non-ideal 
viscous plasma. The system of viscous magnetohydrodynamics equations has the 
form 

(11.1) 
av pat+ p(V · grad)V = f- gradP + vk V'2V + J x B, 

(11.2) ~ + div(pV) = 0, 

8B 1 -0 = curl(V x B)+ -V'2B, divB = 0, 
t ~a 

(11.3) 

where V is the vector field of plasma velocity, B is the magnetic vector field, J is 
the electric current density, f is the vector of external forces, P is the pressure, p is 
the plasma density and vk is the kinematic viscosity. The first equation of (11.3) is 
a consequence (for a constant product ~a') of the Faraday's, Ampere's and Ohm's 
laws: 

(11.4) 
8B 
fit+ curiE= 0, 

1 
J = -curlB, 

~ 
J = a(E + V x B). 

Here E is the electric field, ~ is the magnetic permeability and a is the electric 
conductivity. 

We assume that the plasma density p, the viscosity Vk and the product ~a are 
constant and f = -pgrad<P where <P(x,y,z) is an external gravitational potential. 
For B = E = J = 0, equations (11.1) - (11.3) are reduced to the Navier-Stokes 
(NS) equations that describe the dynamics of viscous fluid. The viscous MHD 
equations (11.1) - (11.3) and the NS equations were intensively studied, see [31 -
35]. However only highly symmetric exact solutions have been found. We derive 
new exact solutions to these equations that depend on all four variables t, x, y, z 
and are non-symmetric in general. 
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THEOREM 4. The viscous MHD equations with arbitrary constant parameters 
p, vk, J.La have infinite-dimensional linear spaces Sa of exact solutions 

(11.5) B(t, x) = C1 exp (- ;; t) (curlB1 + a-1 curlcurlB1), 

a a 
J(t,x) = -B(t,x), E(t,x) = -B(t,x), 

J.l J.La 

(11.6) B1 (x) = J fs2 cos( ak · x)A(k)dS, piP+ P + pV2 /2 = const, 

where a-::/= 0 is an arbitrary parameter, x = (x, y, z), k = (k1, k2, k3) and A(k) is a 
smooth vector field and the integral in ( 11. 6) is taken with respect to an arbitrary 
measure dB on the 2-dimensional unit sphere 8 2: k · k = 1. For C1 = 0, the 
formulae {11.5}- {11.6} define exact solutions to the NS equations. 
Proof. For the vector fields B 1 (x, y, z) (11.6), we have 

(11. 7) \72B 1(x) = -a2 J fs2 cos(ak · x)(k · k)A(k)dS = -a2B 1(x), 

because k · k = 1. Hence we get 

(11.8) 

We consider divergence-free vector fields 

(11.9) B2(x) = curlB1 + a-1 curlcurlB1. 
Applying the identity curl( curl U) = grad( div U) - \72U to the vector field U = 
curlB1 and using equation (11.8), we derive curlcurlcurlB1 = a 2 curlB1. Hence 
vector fields (11.9) satisfy the Beltrami equation 

(11.10) curlB2 = aB2. 
Equations (11.7) and (11.10) imply for the vector fields B(t,x) and V(t,x): 

(11.11) 
aB a 2 

\72B = -a2B, curlB = aB, divB = 0, ----B at - J.La ' 

(11.12) aV = _ a 2vky 
at P ' 

\72V = -a2V, curlV = aV, divV = 0. 

As is known, the viscous MHD equations (11.1) have also the form 

aV 1 
(11.13) P--;:;- = pV x curl V- grad(piP + P + pV2 /2) + vk \72V +-curl B x B. ut J.l 
Substituting the formulae (11.11) and (11.12), we see that the vector fields B(t, x) 
and V(t, x) satisfy equations (11.1) - (11.3) . For each a -::/= 0, the vector fields 
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B(t, x), V(t, x) (11.5) - (11.6) form an infinite-dimentional linear space So: and 
So: n 813 = 0 for a # (3. 0 
Remark 8. The vector fields B 2(x) (11.9) have the form 

(11.14) B2(x) = J fs 2 (sin(ak · x)T(k) + cos(ak · x)k x T(k)) dS, 

where T(k) = -ak x A(k) are arbitrary smooth vector fields tangent to the unit 
sphere S2. Using the Fourier method, we proved that any smooth solution to the 
Beltrami equation (11.10) has form (11.14). Formula (11.14) gives a more explicit 
form for the exact solutions B(t,x) = exp(-a2t/J.La)B2(x). For any smooth vector 
field A(k) and any smooth measure dS, the vector field B 2(x) (11.14) and the 
corresponding exact solutions (11.5) - (11.6) are smooth and bounded and decrease 
as C /lxl when lxl ----+ oo. 
Remark 9. Fort = 0, the formulae (11.5), (11.6) represent the arbitrary aligned 
Beltrami fields C1,2B2(x) (11.10). Hence we have derived the exact solutions to the 
Cauchy problem for the viscous MHD equations provided that the Cauchy initial 
data fort= 0 are aligned Beltrami fields and piP+ P + pV2 /2 = const. 

Remark 10. The derived exact solutions imply that any force-free plasma equilib-
rium is realized as a relaxation limit of a viscous MHD flow. Indeed, any force-free 
magnetic field B, curlB = aB, has form (11.14). The corresponding exact solution 
(11.5) - (11.6) for viscous plasma Vk =I 0 with perfect electric conductivity a = oo 
describes this relaxation. This result confirms the Taylor theory of plasma relax-
ation [34, 35]. For C2 = 0 and 0 <a< oo, the solutions (11.5)- (11.6) describe 
the force-free magnetic relaxation. 
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The p-system 1: The Riemann problem 

Robin Young 

ABSTRACT. The p-system is the prototypical system of nonlinear hyper-
bolic conservation laws. It is the simplest nontrivial system, and appears 
as a subsystem of nearly all larger systems of physical importance. Thus 
a good understanding of the p-system is critical to understanding most 
interesting systems. The Riemann problem is the building block of gen-
eral solutions, and many features of solutions are apparent in the simpli-
fied context of Riemann solutions. In this paper we solve the Riemann 
problem for the p-system with a minimum of constitutive assumptions; 
in particular we do not assume convexity. We deliberately avoid the 
use of Riemann invariants in the construction, in the expectation of 
extending our methods to larger systems. 

1. Introduction 

One of the major open questions in hyperbolic conservation laws is the 
global existence of solutions having large data. This question is highly de-
pendent on the number of equations: when there are three or more equations, 
solutions generally exist only for finite times. For 2 x 2 systems, the cele-
brated Glimm-Lax theory states that solutions decay, and provides strong 
global existence results. Our ultimate goal is to extend this theory to larger 
physical systems of conservation laws. Almost all of these physical systems 
contain the p-system as a subsystem. 

The Glimm-Lax theory [6] relies heavily on the use of Riemann invariant 
coordinates, which are not available for general systems. Our intention is to 
rewrite the theory in a manner that can be extended to larger systems. As 
such, we avoid the use of Riemann invariants, instead preferring to work in 
physical variables. Moreover, we wish to deal with strong waves, which are 
ruled out by the requirement that the supnorm of the data be small. 

All constructive methods for finding solutions of systems essentially de-
pend on G limm-type estimates for the total variation [5]. Apart from certain 
special classes of systems, these in turn rely on a potential which captures 
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220 ROBIN YOUNG 

future interaction effects. The central estimate in Glimm's method is an 
asymptotic estimate of the effects of wave interactions. This is the essen-
tial reason that the supnorm of the Cauchy data must be small in Glimm's 
method. 

Here we propose a new point of view in studying wave interactions, 
namely to treat interactions exactly rather than asymptotically. In particu-
lar, this will allow us to treat strong waves. As a first step in this program, 
in this paper we solve the Riemann problem for the p-system with arbitrarily 
large initial jump. 

Apart from the structural simplicity implied by the p-system, we work 
as generally as possible. The system consists of the two equations 

Vt- Ux = 0, Ut + Px = 0, 

where v is the specific volume of the fluid, u the velocity, and p the pressure. 
Here we are in the Lagrangian frame of reference, so x is a material coordi-
nate. The system is closed by prescribing a constitutive relation p = p( v). 
We make a minimum of assumptions on p: namely, we assume p is a C1 

function which decreases as a function of v. Specifically, we assume only 

p'(v) < 0, limp(v) = oo, 
v--+0 

and lim p(v) = 0. 
V--+00 

These assumptions describe hyperbolicity, no infinite compression, and a 
vacuum state, respectively. The Riemann problem is the Cauchy problem 
with piecewise constant initial data, 

U(x, 0) = {Uz, 
Ur, 

where U = (v u)t. 

if X< 0, 
if X> 0, 

All physical systems are endowed with a convex entropy function, which 
makes the system symmetric hyperbolic [4], and appears to be enough to 
rule out catastrophic blowup in amplitude [16]. In our case, the structure 
that helps us is somewhat stronger, and can be loosely described as giving 
a 'Hamiltonian-like' structure to the system. In fact, the entropy resembles 
a Hamiltonian energy, 

1 
H(u, v) = 2 u 2 + V(v), 

and leads to a system which, although fully nonlinear, is linear in one of the 
two variables. 

Although we do not assume convexity of the pressure, the role of con-
vexity becomes clear in our analysis. Indeed, our construction resembles 
Oleinik's construction for a scalar nonconvex conservation law [10]. Given 
volumes VI and v2 to be separated by a wave, we consider the upper or 
lower convex envelope of the function p, as appropriate. The slope of this 
envelope, which is monotone, is then the square of the local wave speed, and 
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the velocity change across the wave is the integrated wavespeed. All waves 
are concisely described by the relation 

(1.1) Ur- uz = g(va,vb), 
where the subscripts refer to the left, right, ahead and behind states, re-
spectively, and g is a given nonlinear function. By combining forward and 
backward waves, we get our first existence theorem. 

THEOREM 1. Given constant left and right states ( vz uz)t and ( Vr Ur )t, 
respectively, there is a unique solution to the corresponding Riemann prob-
lem, provided that the condition 

Ur- uz < g(vz, oo) + g(vr, oo) 
holds. Moreover, the intermediate state (v* u*)t (and hence wave strength) 
is a C1 function of the data. 

The failure of the one-sided condition above heralds the appearance of 
the vacuum: physically the particles are moving apart so rapidly that a 
vacuum is formed. Thus the density p vanishes, and v = 1/ p becomes 
infinite. In fact, to make sense of the vacuum consistent with the Eulerian 
picture [12, 14], we allow the specific volume v to be a Radon measure, 
whose singular part is supported on the vacuum region. Since the sound 
speed vanishes at vacuum, this is stationary, and the singular part takes the 
form 

vs = w(t) o(x), 
where the weight w(t) represents the width of the vacuum in physical space. 
By extending our class of solutions so that the specific volume is a Radon 
measure, while all other functions remain bounded, we get existence of so-
lutions to the Riemann problem for any choice of initial states. 

THEOREM 2. Given arbitrary states ( vz uz)t and ( Vr Ur )t, there is a 
unique self-similar solution (v(x, t), u(x, t))t to the Riemann problem, where 
the velocity u(x, t) is bounded, while v(x, t) is a Radon measure. Moreover 
this solution is Lipschitz continuous in time as a distribution in Lfoc· 

The advantage of obtaining an elementary description of waves and the 
solution of the Riemann problem is that we can use it to describe the results 
of wave interactions. Thus the states across a pair of waves which are about 
to interact are related by (1.1), and the interaction problem is the resolution 
of the Riemann problem connecting the extreme states. The interaction of 
a forward wave with a backward wave, say, thus is determined by the single 
nonlinear equation 

g(vw,vN) + g(vE,vN) = g(vs,vw) + g(vs,vE), 
in which vs, vw and VE are known, and we are solving for VN. Detailed 
studies of the interaction problem for large interacting waves are carried out 
in [18, 15]. It is expected that by our methods of exactly describing large 
waves, we will be able to reproduce the Glimm-Lax theory for systems with 
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large data. Also, We believe our approach is suitable for larger classes of 
systems, a study of which has begun in [20, 17]. 

2. The system 

We are interested in the Cauchy problem for the fully nonlinear wave 
equation 

(2.1) 

for w : R x R+ -> R, and the data w0 is large in some appropriate space. 
It is convenient to write our wave equation in the equivalent first order 

form 

(2.2) 

where pis a C 1 function satisfying -p'(v) = c2 (v). We shall refer to (2.2), 
which are the equations for isentropic gas dynamics in Lagrangian coor-
dinates, as the p-system. Here u is the fluid velocity, v = 1/ p is specific 
volume, p is the pressure, and c is the sound speed. The detailed dynamics 
and effects of nonlinearity are determined by the pressure law p = p( v) (or 
p = p(p) where p = 1/v is density). 

In this paper, we make only the following general assumptions, which are 
justified on physical grounds. First, the pressure increases with increasing 
density, or decreases as a function of specific volume, 

p' ( v) < 0, so that c( v) = J -p' ( v) 
is defined and positive for all v. Second, as the specific volume vanishes, the 
pressure becomes infinite, 

(2.3) p(v)-> oo as v-> 0, 

so that infinite compression can only be obtained by applying infinite force. 
Our final assumption is that the pressure vanishes at vacuum, when the 
specific volume becomes infinite (or density vanishes), as does the sound 
speed, 

lim p(v) = 0 so also lim c(v) = 0. 
V----+00 V----+00 

It is occasionally convenient to assume that the pressure is convex, p" ( v) > 0, 
but once the role of convexity has been established the condition is dropped 
with no penalty. 

Our assumption p' ( v) < 0 ensures that the system is everywhere hy-
perbolic, and the solution can thus be decomposed into superpositions of 
nonlinear waves. There are some examples in which the pressure may be 
non-monotone, as in a van der Waals gas or some models of nonlinear elas-
ticity. These equations of state have been used to model phase transitions, 
although their physical basis is not yet completely understood. The equation 
is elliptic in regions in which the pressure is increasing, and states within 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



THE p-SYSTEM I: THE RIEMANN PROBLEM 223 

this region are unstable. Moreover, the Riemann problem may fail to have 
a unique solution near the elliptic region [11, 1]. 

2.1. Further examples. The p-system is the basic prototype for sys-
tems, analogous to Burgers' equation for scalar conservation laws. It is the 
simplest nonlinear system, and possesses features common to the most im-
portant physical examples. Indeed, it can be regarded as a subsystem of 
many larger systems, and as such is fundamental to their study. 

The most obvious system of which it is a reduction is that of Lagrangian 
gas dynamics, 

( ~ ) + ( ~u ) = 0, 
!u2+e t up x 

(2.4) 

where e is the internal energy, and thermodynamic principles yield relations 

e = e(v, S), p = p(v, S) and c2 = c2(v, S). 
Here S is the entropy, which for smooth solutions satisfies the extra con-
servation law St = 0. The p-system is obtained by assuming the flow is 
isentropic ( S constant) and dropping the last equation. 

The p-system is equivalent to the Euler equations of isentropic gas dy-
namics [14], which is in turn a subsystem of the full 3 x 3 Euler equations. 
Apart from the obvious addition of an extra family of waves, the nonlinearity 
here appears as a function of two thermodynamic variables, which further 
complicates the analysis. Indeed, some structure needs to be assumed to ob-
tain a unique solution to the Riemann problem [11]. On the other hand, it 
is well known that the third family is linearly degenerate and that it weakly 
decouples (through the equation for entropy), so it is reasonable to expect 
that solutions to this system will generally be closely related to that of the 
p-system. In particular, we expect solutions to 3 x 3 gas dynamics to be 
stable [19]. 

Another system which reduces to the p-system is that of nonlinear elas-
ticity. By considering plane deformations in 3-D elasticity, one obtains the 
6 x 6 system 

(2.5) ( ~ ) t - ( T(u) ) x = O, 

where u and v are vectors, and T(u) is the reduced stress-strain relation [7, 
3]. A nonlinear string is modeled by the particular relation 

T(u) = T(u) u, where u = u ii 
is polar decomposition, and restricting to longitudinal motions of the string 
(ii constant) again yields the p-system [20, 17]. 

In the string system there are four wave families (two of which are de-
generate), but the nonlinearity again appears only as a scalar function of 
a single variable, T = T( u). Indeed, one can regard the evolution of the 
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'stretch' u in the full string system as satisfying a p-system with a collection 
of point sources on the right hand side [20]. 

We can similarly obtain (2.2) as a subsystem of many other physical 
systems, for example Maxwell's equations in a nonlinear medium, nozzle 
flow, and combinations of these, like MHD, etc. The point of view we 
adopt here is that we wish to extend our methods to these larger systems, 
so we develop methods that we expect will extend in a natural way. In 
particular, we avoid the use of Riemann invariants, and appeal to only one 
convex entropy as necessary. Previous studies of (2.2) rely either on Riemann 
coordinates or on infinitely many entropies [6, 2], which are unavailable 
for larger systems. Indeed, the use of physical variables leads to a better 
intuition for nonlinear wave phenomena. 

3. The nonlinear waves 

When written in quasilinear form, our system (2.2) becomes 

(3.1) 

with flux matrix 

(3.2) A(v) = ( p'~v) ~1 ) = ( -c~(v) -1) 0 . 

The eigenvalues of A are ±c, with corresponding right eigenvectors (1 =t=c)t. 
As such, the system is strictly hyperbolic, but degenerates at the vacuum. 
\Ve will refer to those waves with positive speed c > 0 as forward waves, 
and those with negative speed as backward waves. The left eigenvectors are 
also easy to calculate: they are the gradients of the Riemann invariants 

h(v) ± u, where h(v) = J c(v) dv. 

Although we do not use the Riemann invariants, the integrated sound speed 
h( v) will play a major part in our analysis. 

3.1. Rarefactions. The rarefaction curves consist of those states that 
can be connected to a given fixed state by a centered rarefaction wave, and 
are the integrals of the eigenvectors [8, 13]. The state is constant along 
characteristics, which are the curves 

dx 
dt = ±c(v(x, t)), 

while across the characteristics we have 

(3.3) ! ( ~ ) = ( =fC~ V) ) ' 
with c(v(t:)) = ±xjt. We use vas the parameter, and we get 

(3.4) u- uo = =f 1v c(v) dv. 
vo 
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The wavespeed must increase from left to right across the wave, so that the 
backward wave with left state ( vo uo)t must satisfy 

(3.5) -c(vo) ~ -c(v) ~ -c(v), 
for v between v0 and v. In case p(v) is convex, so c'(v) < 0, this yields 
vo ~ v. Similarly, the forward rarefactions (with p convex) are given by 
(3.4) with vo ~ v. In either case, the (absolute) sound speed c decreases as 
we traverse the wave from ahead state to behind state. 

We note that this explicit solution of the rarefaction curves does not 
depend on the size of the wave v- vo, and because (3.3) is autonomous, we 
can exactly piece together small rarefactions to get large waves. 

3.2. Shocks. In general the wavespeed cannot always increase from 
ahead states to behind, and we expect shocks to form. Jump discontinuities 
satisfy the Rankine-Hugoniot conditions [8, 13], which in this case are 

CT [v] = -[u] and 
(3.6) CT [u] = [p(v)] 
where as usual, [·] denotes the jump in a quantity and CT is the shock speed, 
so a centered jump is located on the ray xjt =CT. We easily solve to get 

u- uo -CT( vo, v) ( v - vo), where 

± p(vo)- p(v) (3.7) CT(vo,v) v- vo 
which we again regard as being parameterized by v. In the case of convex 
pressure, we use the Lax entropy condition, which states that the charac-
teristic speed be faster on the left, 

-c(vo) > - p(vo)- p(v) > -c(v), 
v- v0 

which yields vo > v for backward waves. Similarly, the forward shock curve 
is the branch of (3.7) with v0 < v. In both cases, the sound speed cis larger 
behind the shock. 

3.3. The convex case. We now combine the shock and rarefaction 
curves under the assumption that p is convex. It is convenient to define the 
function g : R 2 --+ R by 

{1v2 c(v) dv, for VI ~ v2, 
(3.8) g( VI, V2) = v1 

- yr7(p---;(-V2--,-) ---p---;( V-I-,-) ),-,(-VI ___ V2--,-), for VI ~ V2. 

The forward and backward wave curves can then be described by 

(3.9) Ur- Uz = g(va, vb), 
where the subscripts l and r refer to the left and right states, while a and 
b refer to the states ahead of and behind the wave, respectively (so a = l 
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for a backward wave). As expected, the wave is a shock if the sound speed 
behind the wave is faster, 

c(va) < c(vb), that is Va 2: Vb, 
while the opposite inequalities hold for rarefactions. Again we remark that 
this description holds exactly for waves having arbitrary strength. 

3.4. Composite waves. For general pressure which is not convex, the 
simple combination of shocks and rarefactions is not enough to fully describe 
the Riemann problem. In this case we refer to Liu's entropy criterion [9], and 
to Oleinik's construction for scalar equations [10, 2]. Analyzing the change 
of state across the integral curve (3.4), we see that (3.5) is not satisfied 
in general. This necessitates introduction of a 'characteristic shock', which 
propagates with speed cr which is equal to the sound speed on one or both 
sides of the jump [9]. For backward jumps, Liu's entropy condition is 

cr(vo,v) 2: cr(vo,v) 2: cr(v,v), 
for v between vo and v, where cr is given in (3.7). 

The composite waves consist of rarefaction waves adjacent to character-
istic shocks, pieced together in such a way that the wave speed increases 
continuously from left to right across the interior of the wave. If the wave 
has finite width, the extreme edges are one-sided shocks or characteristics. 

p 

X 

FIGURE 1. Composite wave 

We now give a more geometric description of the composite wave, and 
relate it to Oleinik's construction of solutions for scalar nonconvex equations. 
Dafermos describes a similar construction in his book [2]. To do this, we 
recall the definition of the wave speeds, 

(3.10) -c2(v) = p'(v) and - cr2(v0, v) = p(vo)- p(v), 
v- v0 

and observe that these are the slopes of the tangent and secant to the graph 
of p(v), respectively, as in Fig. 1. Now the requirement that the absolute 
wavespeed increases across the composite wave from the behind state to the 
ahead state becomes monotonicity of the slope as the wave is traversed. As 
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the state varies across the wave, these slopes (which are squared wavespeeds) 
trace out the upper or lower convex envelope of the graph of p. 

Moreover, referring to (3.8), for VI 2 v2 we rewrite 

1V2 
g( VI, v2) = Ia-( VI, v2) I ( v2 -VI) = Ia-( VI, v2) I dv, 

VI 

where a- is given in (3.7). Here we again interpret -a-2 as the slope of the 
upper convex envelope of p between VI and v2. 

For general pressure law, it is now clear how we should define the function 
g: namely identify the correct convex envelope, determine the sound speed, 
and integrate. Thus given VI and v2, denote by pn and Pu the upper and 
lower convex envelopes of p between v1 and v2, respectively, and set 

1 V2 1V2 
g(vi,V2)= J-fl(v)dv= c(v)dv, 

VI VI 
(3.11) 

where p = pn (resp. p = Pu) if VI 2 v2 (resp. VI ::; v2). Here the local sound 
speed c( v) is defined by 

c2 (v) = -p'(v), 
and our modified characteristics are given by 

dx ~( ) dt = ±c v. 

Note that on the intervals that p agrees with p, the composite wave will be 
a rarefaction, while if p and p differ on an interval, then c is the shock speed 
a-, which is constant on that interval. According to our construction, c (and 
so also v) is monotone, and the composite wave fills a fan centered at the 
origin. 

Similarly, across the composite wave, the change in state ( v u )t satisfies 

:E ( ~ ) = ( =fC~ v) ) ' 
which agrees with (3.4) and (3.7) across rarefactions and jumps, respectively. 
As before, we solve this equation to get 

(3.12) u- uo = =f 1v c(v) dv, 
vo 

where pis either pn or pu, as appropriate. Once p has been fixed, (3.12) is 
used to find the states inside the composite wave. 

Again, we concisely describe both forward and backward waves by the 
relation 

(3.13) Ur- uz = g(va, vb), 
where g is given by (3.11) and the subscripts refer to right, left, ahead and 
behind states, respectively. Recall that g depends on the choice of pn or Pu, 
which in turn depends on whether Va ::; Vb or Va 2 vb, respectively. 

We remark that on intervals that p is different from p, the state ( v u )t 
may change continuously, but this is not seen in the solution because the 
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modified characteristics coincide, all having speed ±c, which is constant 
because p is affine on the interval. We thus see that this description of 
composite waves is a direct generalization of our earlier description (3.9), 
(3.4), (3.7). Again note that this construction is global in that it works for 
waves having arbitrary strength. 

Our description of the forward and backward composite waves is a nat-
ural extension of Oleinik's construction for nonconvex scalar conservation 
laws, and it clarifies the role that convexity plays in describing nonlinear 
waves. Indeed, when viewed from this point of view, we need not distin-
guish between shocks and rarefactions. In a future paper, we show that the 
global effect of nonlinearity can be quantified by the difference between the 
upper and lower convex envelopes of the pressure [15]. 

4. The Riemann problem 

We now combine the above descriptions of forward and backward waves 
to solve the Riemann problem with arbitrary left and right states. Thus we 
are given two states ( vz uz)t and ( Vr Ur )t, and we must identify a middle state 
(v* u*)t, so that a backward wave joins (vz ud to (v* u*)t, and a forward 
wave joins ( v* u*)t to ( Vr Ur )t. To carry this out, we use the description of 
composite waves developed in the previous section. 

According to (3.13), if (vz uz)t is joined to (v* u*)t by a backward wave, 
then we have 

u*- uz = g(vz, v*), 

while if (v* u*)t is joined to (vr ur)t by a forward wave, then 

Eliminating u*, we get the equation 

(4.1) 

and we wish to solve for v*. It is clear from (3.11) that, for fixed vz and Vr, 
the function ¢ defined in ( 4.1) is differentiable and that 

where Pl and fir are appropriately chosen. Thus (4.1) can be uniquely solved 
provided Ur - Uz is in the range of ¢, which is clearly determined by that 
of g. 

Fix vo, and first consider v < vo. In this case p = pn, the upper convex 
envelope, and so p1 is decreasing on the interval [v, vo]. Thus for v E [v, voJ, 
we have 

J -p'(v) ~ J -p'(vo), 
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and 

1vo 
v J -fl(v) dv > dv 1vo -p'(v) 

v J-p'(vo) 
p(v)- p(vo) 

J -p'(vo) ' 
and therefore 

g(v v) < p(vo)- p(v) ---+ -oo as v---+ 0. 
o, - - I A'( ) y-p vo 

On the other hand, for v > vo, we have p = Pu, and 

g(vo,v) = 1v J-pu'(v) dv. 
vo 

As v ---+ oo, this integral may converge or diverge. If it diverges, then the 
range of the function ¢ is the entire real line, and ( 4.1) can always be solved. 
If the integral converges, which is more interesting physically, then the range 
of ¢ is bounded from above, 

cjJ(v*) < g(vl, oo) + g(vn oo). 
We have thus proved the following theorem. 

THEOREM 1. Given constant left and right states ( v1 ul)t and ( Vr Ur )t, 
respectively, there is a unique solution to the corresponding Riemann prob-
lem, provided that the condition 

(4.2) Ur- Ul < g(vl, oo) + g(vr, oo) 
holds. Moreover, the intermediate state (v* u*)t (and hence wave strength} 
is a C 1 function of the data. 

The fact that the intermediate states are C 1 functions of the data follows 
in the standard way by the implicit function theorem. It is clear that g (and 
so also ¢) is C 1 , and indeed g will be C 2 (but not C 3 ) if p is, as is well 
known. Note that even if the pressure pis not assumed to be differentiable, 
its convex envelope is absolutely continuous, and so we would gain some 
regularity in g. 

4.1. The vacuum. Physically, if the velocity difference Ur- u1 is large, 
particles move away from each other and the gas rarefies in between the two 
outgoing waves. However, if this difference is so large that the one-sided 
condition ( 4.2) is violated, then there is not enough gas 'between' the left and 
right states, and a vacuum develops. Due to scale invariance, this vacuum 
develops immediately and is present for all positive times. We extend our 
solution to include the vacuum, as follows. 

The vacuum corresponds to infinite specific volume, or equivalently van-
ishing density, pressure or sound speed. In our self-similar solution for the 
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Riemann problem, the vacuum will lie on the positive t-axis, i.e. along x = 0. 
For x # 0, and positive times, the specific volume should be given by 

±c(v(x, t)) = xjt, 
which is our equation for characteristics, and the velocity u(x, t) should be 
given by integrating the wavespeed 

c(v) = J -pu'(v), 
given by the lower convex envelope. 

We thus suppose that (4.2) is violated, and construct a solution contain-
ing the vacuum as follows. For x < 0, the gas rarefies along a (composite) 
backward wave, the volume and velocity is given in the wedge 

-c( Vt) t :S X < 0 

by 

c(v(x, t)) -xjt and 

1v(x,t) 
g(vt,v(x,t)) = c(v) dv. 

Vt 

(4.3) u(x, t)- ul 

For fixed t > 0, we therefore have 
-1 

Vx = -;:; > 0 and Ux = C Vx > 0, tc 
so both specific volume and velocity increase as functions of x < 0. 

Similarly, the forward wave is given in the wedge 0 < X ::; c( Vr) t by 

c(v(x, t)) xjt, and 

1v(x,t) 
(4.4) Ur- u(x, t) = g(vr, v(x, t)) = c(v) dv, 

so that 
Vr 

1 
Vx = -;:; < 0 and Ux = -c Vx > 0, tc 

and the specific volume decreases while the velocity increases for x > 0. 
On the t-axis x = 0, the velocity has a jump with left and right limits 

given by 

(4.5) 
u(O-, t) = u_ = Ut + g(vt, oo) and 
u(O+,t) = u+=Ur-g(vr,oo) 

respectively. Note that because ( 4.2) fails, we always have 

u_ = u(O-, t) ::; u(O+, t) = u+, 
and so u is monotone increasing and bounded as a function of x. 

However, the specific volume is infinite, and to take into account the 
jump in u, we take v to be a Radon measure, while the other variables remain 
bounded. This measure is singular only at the vacuum, so its singular part 
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is supported on the t-axis x = 0. Since v must be locally integrable, this 
singular part must be of the form 

(4.6) vs = w(t) o(x). 

Since the velocity u is defined (a.e.) above, we can find the weight w(t) by 
solving the equation 

Vt- Ux = 0 

in the sense of distributions. On the t-axis, this reduces to 

dw -;It =U+-U-, 

so that the singular part of v(x, t) is the measure 

(4.7) vs = (u+- u_) t o(x). 

Note that vs is self-similar since o(ax) = o(x)ja. 
Although the continuous part of v is unbounded, it is locally integrable. 

Indeed, fort fixed, 

1° v(x, t) dx = x v(x, t) i~c(vl) t -100 x dv 
-c(v1)t v1 

(4.8) 

where we have integrated by parts and used (4.3). This last integral is 
bounded, and since cis decreasing as a function of v > vo, for large V > vo 
we have 

c(V) v < c(vz) Vz + c(V) (V- vz) 

< c( Vz) Vz + 1V C dv 
Vl 

< c(vz) Vz + g(vz, oo), 

so the right hand side of ( 4.8) is bounded. The integral across the forward 
wave is similarly bounded, and since vs has mass ( u+ -u_) t, we have proved 
the following theorem. 

THEOREM 2. Given states (vz uz)t and (vr ur)t such that (4.2) fails, there 
is a unique self-similar solution (v(x, t), u(x, t))t to the Riemann problem, 
where the velocity 

u(x, t) E L 00 n BV n Lfoc 
is a bounded monotone increasing function, while v(x, t) is a Radon measure 
whose singular part is the Dirac measure (4. 7) and whose absolutely contin-
uous part is locally integrable. Moreover this solution is Lipschitz continuous 
in time as a distribution in Lfoc· 
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We compare our solution to that of the Euler equations of isentropic gas 
dynamics, 

( :u ) t + ( p u2 ~: p(p) ) x = 0, 
where X is the spatial coordinate. Equivalence of this system to the p-system 
is given by the map 

x = jx p(x, t) dx = jx v(~~t), 
so that x is correctly interpreted as a material coordinate. Weak solutions 
of the two systems are shown to be equivalent in [14], provided care is taken 
at the vacuum. 

We compare our solution to those constructed in [12] which also contain 
a vacuum. At the vacuum, the map X -+ x from Eulerian to Lagrangian 
coordinates is no longer 1-1, and so the inverse map x -+ X from Lagrangian 
back to Eulerian coordinates is not well defined. Since the density p vanishes, 
the solution of the Euler equations remains in L00 • The weight w(t) on the 
delta-function in Lagrangian coordinates corresponds to the width of the 
vacuum in Eulerian coordinates. According to our solution, the vacuum 
thus has width ( u+ - u_) t in Eulerian coordinates. This agrees with the 
solution obtained directly (for convex p) in [12, 11]. 

5. Concluding remarks 

Although our pressure law is not convex, our results are anticipated by 
the known solutions of the Riemann problem for Eulerian gas dynamics, 
together with the equivalence of Eulerian and Lagrangian formalisms estab-
lished in [14]. Our interest lies not in the actual solution of the Riemann 
problem, as much as in the elementary description thereof in terms of the 
scalar function g (VI, v2). In a forthcoming paper, we will use this function 
to exactly analyze wave interactions and obtain global bounds for solutions 
to the Cauchy problem [15]. 

Our solution of the Riemann problem for arbitrary data is a step towards 
the well-posedness of the Cauchy problem for the p-system with arbitrary 
data. In order to get results with large data, it is necessary to understand 
the Riemann problem and interactions of finite waves exactly, rather than 
asymptotically, as has been done in the past. This is intractable for general 
systems, and it is essential to use the structure of the equations as given by 
the physics. Indeed, many pathological phenomena have been found for Rie-
mann problems with large data, even for physical systems. This is generally 
because the Hugoniot locus may have complicated global geometry [11]. 

In the case of the p-system, the Hugoniot curves are well-behaved and 
allow us to express all waves in the simple functional form (3.13). Indeed, 
we can describe a general interaction of two waves of arbitrary strength: 
by resolving the left and right states in terms of both the incoming and 
outgoing waves, and eliminating the velocities, we get a single equation for 
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the interaction. Thus, the interaction of a forward and backward wave is 
described by 

(5.1) 

which is a single equation for the single variable Vn. This equation is exact 
for waves of arbitrary strength. Using such expressions, we can analyze 
many interactions and get bounds for general solutions which will allow us 
to obtain convergence and existence of solutions [15]. 

Equation (5.1) is not always solvable near the vacuum, in which case Vn 

would be infinite and some 8-function generated. However, it turns out that 
the vacuum does not form in finite time, so this difficulty can be resolved. 
Indeed, the vacuum can be characterized by vanishing sound speed c, and 
as this sound speed gets smaller, so the time during which the interaction 
takes place becomes larger, and in the limit becomes infinite [18]. 
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Statistical analysis of collision-induced timing shifts in a 
wavelength-division-multiplexed optical soliton-transmission 

system 

G.J. Morrow and S. Chakravarty 

ABSTRACT. A statistical analysis of optical soliton collisions in a two-channel 
wavelength-division multiplexed transmission system is performed. It is shown 
that the variance of the collision-induced timing shifts due to interactions 
between pulses in the adjacent channel can grow significantly with the length of 
the transmission line due to a certain resonance effect. In addition, a statistical 
model is developed which takes into account the effect on the main channel 
timing shifts arising from the interference due to four-wave mixing components 
generated during a two-channel collision. 

1. Introduction 

Considerable progress has been made in recent years in the field of fiber-
optic long-distance soliton data transmission with wavelength-division multiplexing 
(WDM). When compared to conventional single-channel systems, WDM offers the 
potential for a large increase in the total capacity of data transmission. Indeed in 
recent experiments trans-oceanic data transmission of over 1 Tbit/s on each fiber 
has been realized [7, 6]. However, the use of WDM raises a number of important 
issues. For example, due to the periodic distribution of amplifiers, a resonant insta-
bility created by the four-wave mixing (FWM) interactions can seriously degrade 
the signal. However, proper use of dispersion management can alleviate the nega-
tive effects of FWM to a certain extent. This issue was studied in Refs. [9, 1] for 
the classical solitons and more recently in Refs. [8, 4] for the dispersion-managed 
solitons. Another serious problem that arises in WDM soliton systems is caused by 
the permanent frequency shifts and the associated displacements in pulse arrival 
times created by the nonuniform soliton collisions in the presence of periodic loss 
and amplification [11]. For classical solitons a statistical theory was developed in 
Refs. [10, 3] to account for the cumulative effects of the timing shifts due to the 
large number of collisions taking place in a long-distance transmission link, and 
explicit expressions for the RMS timing jitter and bit error rate of a two-channel 
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WDM system were calculated for both with and without weak dispersion manage-
ment. Recently, using a similar approach a statistical analysis of collision-induced 
timing jitter in a two-channel WDM system with dispersion management was re-
ported in Ref. [12]. However, in addition to the impairment caused by the timing 
jitter between the main channels in a practical WDM system, it is also necessary 
to consider the effect of the FWM components colliding with the main channels. 
Even though an individual collision event may impart a very small temporal dis-
placement to the main channel pulses, it is possible that the accumulated effect 
of a significantly large number of such collisions on a main channel pulse may not 
be negligible in a high-capacity, multi-channel WDM system. To our knowledge, 
no comprehensive statistical analysis has been undertaken which takes into account 
the large number of collisions between the FWM components and the main channel 
pulses that occur in the fiber. Furthermore, no analytical expressions are known 
for the collision-induced timing jitter due to such interactions. 

In this paper we study the statistical properties of the timing jitter induced by 
the main channel collisions as well as the collisions between a main channel and 
the FWM pulses in a two-channel WDM system. The purpose for revisiting the 
statistical theory of timing jitter due to adjacent channel collisions is that we find a 
correction term in the root mean square timing jitter that was neglected in previous 
studies. The correction term is especially dominant if the average distance between 
successive collisions is an integer multiple (or very close to it) of the amplifier 
spacing. In order to simplify the discussion and to focus primarily on the statistical 
aspects of timing jitter we consider the case of classical soliton pulses in the presence 
of loss and amplification only. However the statistical framework developed here 
is equally applicable to any WDM system which includes the effects of dispersion 
management, frequency filtering or any other in-line control mechanisms. 

The paper is planned as follows. Section 2 consists of background material 
based on previously known results. Here we briefly discuss the set up for a two-
channel WDM system in the presence of loss and periodic amplification. Then 
we derive the frequency and timing shift formulas for a two-soliton collision with 
large channel spacing using standard soliton perturbation theory. In section 3, 
we perform a statistical analysis of the cumulative effect of the large number of 
collisions between the main channel pulses in a two-channel transmission line. We 
give explicit formulas for the mean and the root mean square timing jitter which 
exhibits a previously unnoticed resonance phenomenon. Finally in section 4, we set 
up a statistical model to estimate the net timing jitter of a main pulse due to its 
interaction with the large number of FWM components produced in a two-channel 
high bit-rate transmission link. 

2. Timing shifts for collisions between main channels 

In this section we recall the analytical results for the timing shift resulting 
from a single collision between two solitons in adjacent channels in a fiber with 
loss and amplification. The dynamics of the dimensionless field amplitude q is 
governed by the perturbed nonlinear Schri:idinger equation (NLS) with damping 
and amplification: 

(2.1) iqz + (1/2)D(z)qtt + lql 2 q = iP(z) q, 
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where P(z) is the periodic damping/amplification term to be described below, and 
the function D(z) describes the particular choice of dispersion. The variables z 
and t are the usual non-dimensional space and retarded time, normalized to the 
dispersion length z* and the characteristic time t*: z* = 27rd~/(>. 2 D) and t* = 
T /1.763, respectively, where >. = 1.550 JLm is the central wavelength, D is the 
average dispersion parameter, T is the full width at half maximum of the pulse 
intensity and c is the speed of light in vacuum. The typical values of various 
physical quantities are T = 20ps, D = 0.5ps/(nm · km) and z* = 201.94km. 

The effects of damping and amplification are described by taking P(z) to be 
00 

(2.2) P(z) = -r + (erza - 1) I: 8(z- nza), 
n=-(X) 

where r = "fZ* is the dimensionless damping coefficient and Za = la/ Z* is the 
dimensionless amplifier spacing, while 8(z) is the Dirac delta function. Typical 
experimental values for "' and la are 2"f = 0.20dB/km = 0.046km-1 and la = 
25 km. ForT = 20 ps these values yield r = 4.62 and Za = 0.12. As usual we rescale 
the field amplitude as q(z, t) = [g(z)pl2u(z, t), where the function g(z) denotes 
the periodic energy gain/loss cycle and varies on the length scale of the amplifier 
distance-which is small compared to the dispersion distance, since Za « 1. That 
is, g( z) is the periodic function 

(2.3) g(z) = a6exp[-2r(z- nza)], nza :::; z < ( n + 1) Za . 

The quantity a~ is chosen so that the average of g( z) is unity over an amplification 
cycle; i.e., 

2 2rza 
ao = 1 - exp( -2rza) · 

With the substitution q(z, t) = [g(z)pl 2u(z, t) eq. (2.1) becomes a perturbed NLS 
equation 

(2.4) . D(z) 2 
~Uz + - 2-utt + g(z)lul u = 0. 

The unperturbed NLS equation corresponds to the ideal case (lossless, constant 
dispersion): g(z) = D(z) = 1. In this article, we will only consider the case of 
constant dispersion, and set D(z) = 1 in in eq. (2.4). We note that a weakly 
dispersion managed system can be handled in a similar fashion by introducing the 
transformed coordinate ((z) = J0z D(z) dz so that eq. (2.4) becomes iu,+(1/2)utt+ 
G(((z))lul2u = 0, where G(((z)) = g(z)/ D(z) and D(z) is normalized so that its 
average (D(z)) = 1 over one amplification period. However, we will not pursue 
dispersion-management in this article. Instead we simply restrict our discussion to 
the constant dispersion D(z) = 1 case. 

When the solitons are widely separated in frequency space, to leading order we 
decompose u as u(z, t) "'u1 (z, t) + u2 (z, t) + O(E) (cf. Refs. [5, 2]), where 
(2.5) 
Uj = Aj sechSj exp(ixj)' Sj = Aj[t- nj(Z- Zo)]' Xi= njt- (n~- A~)z/2' 

with Si chosen so that two solitons collide at z = Z0 • We assume Aj and nj to be 
slowly varying functions of z with respect to the characteristic amplification period 
Za· We also set initially n2 = n and nl = 0, so that the dimensionless frequency 
separation is n. We also assume E = 1/0 « 1. 
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Next, by using soliton perturbation theory we obtain the variation (slow with 
respect to the amplifier period) of the quantities A1 and 01. Then, using the 
explicit expressions for u1,2 from eq. 2.5 and requiring that to leading order the A1 
be constant (normalized to 1) yields the following equation for 0 

(2.6) ddO = g(z) J lull2818u212 dt = g(z)dd f(z- zo)' 
Z -DO t Z 

where f(z) = [Oz cosh(Oz) -sinh(Oz)]/0 sinh3 (0z) expresses the frequency shift in 
an ideal collision. Here we compute the frequency shift for the slower soliton u1; the 
frequency shift for the soliton u2 is the negative of that of u1 and can be obtained 
by interchanging u1 and u2 in the integral appearing in eq. (2.6). Equation (2.6) 
can be integrated exactly to obtain the collision-induced frequency shift: 

(2.7) 
z d 

~O(z) =:_L g(z') dz' f(z' - z0 ) dz'. 

Note that the residual frequency shift defined as ~O(oo) is given by ~O(oo) 
J g(z)f'(z- z0 ) dz. The frequency shift ~O(z) due to collision at z = z0 induces a 
net shift in the pulse arrival time at a given position L in the fiber given by 

L L z d 
8t(zo) = J ~O(z)dz = J dz J dz' g(z')d'f(z'- Z0 ). 

-DO -DO -DO z 
(2.8) 

The relevant integrals in eq. (2.8) can be readily calculated. To a good approxima-
tion we can take 0 to be constant in the integrals. Since g(z) is periodic, all integrals 
involving g(z) can be written in terms of Fourier series. The Fourier coefficients are 

(2.9) m = 0, ±1, ±2, ... 

Next we substitute eq. (2.3) into eq. (2.8) and use eq. (2.9), together with the 
integral 

J e2mr:iz/za f(z)dz = (n2n4 /40 4 z~) csch2(mr2 /20za). 

In this way, after rearranging the terms in the summation, we can express the 
dominant contribution to 8t(z0 ) for L ~ 1 as a sine Fourier series: 

(2.10) 

where 

am= Cmlgml' 

and where 

DO 

8t(zo) = (L- zo) 2:: amsin[2mnzo/Za- ¢m], 
m=l 

cl>m = arg[gm] , 

arg[gm] = arctan[mn/(fza)]. 

Note that the timing shift depends on the position of the collision point Z0 , a fact 
that is important when computing the statistical averages. In the next section we 
discuss a statistical theory for computing the mean and RMS timing jitter in a 
WDM soliton system. 
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3. Statistical analysis of timing shifts 

The transmission of binary data is accomplished by sending trains of soliton 
pulses in each channel of the 2-channel WDM system considered here. We assume 
independent, random binary transmission sequences in each of channels 1 and 2, 
where the presence of a pulse is denoted by a 1 and the absence of a pulse by a 
0. We denote the sequence of pulses in channel 1 by { aj }~ 1 and in channel 2 
by {,Bj }~ 1 . Thus wehave two independent sequences of independent Bernoulli (0 
and 1 valued) random variables that have a common fair-coin-tossing distribution 
for all j: P(aj = 1) = P(,Bj = 1) = 1/2. It is assumed that the bit period T is 
the same for the data stream in each channel. Hence the binary data streams in 
channels 1 and 2 can be represented respectively as 

00 00 

(3.1) :E akut(t + kT, z) and :E ,6ku2(t + kT +to, z) 
k=l k=1 

where u 1 (t, z) and u 2 (t, z) are given by eq. (2.5). We assume also that the initial 
time delay t0 between the two channels is a random variable which is uniformly 
distributed on [0, T]. 

For the sake of concreteness, let us consider the first non-zero pulse in the slower 
channel1 to be a reference pulse. By re-indexing if necessary we can always label it 
as a 1 . (Note that here and in the following we refer without ambiguity to the various 
pulses by their designations as binary data). The information bit ,61 in the faster 
channel 2 will interact with the reference pulse a 1 at a location z1 given in terms 
of the initial time delay as z1 = t0 jr!. Note that since t 0 is random (within 1 bit 
period), the collision site z1 is also a random variable. Once the location z1 is given, 
any two subsequent adjacent bits ,Bk and ,Bk+1 will interact with the reference pulse 
a 1 at equally spaced locations Zk and Zk+l respectively along the fiber. The distance 
between the successive interactions is given by Zk+l - Zk := z8 = T /0 where T is 
the bit period and 0 is the channel spacing. The total number of collisions in the 
fiber can be estimated as N = L/z8 , where Lis the non-dimensional system length 
(in physical units L ,......, 104km). Thus the site Zk where the interaction between ,Bk 
and a 1 takes place can be expressed as 

(3.2) Zk = [U + (k- 1)]zs, k = 1. .. N, 

where U is a uniformly distributed random variable on [0, 1]. Then the total timing 
shift imparted to the reference pulse a1 by the ,Bk in channel 2 is the sum of all the 
individual shifts due to collisions occurring over the total length L of the system: 

N 
(3.3) D..t = :E ,Bk8t(zk). 

k=l 
Sometimes the expression for D..t is called the absolute timing jitter in contrast 
to the relative timing jitter studied for main channel collisions in Refs. [3, 12]. 
In eq. (3.3) we treat ,Bk and 8t(zk) as independent random variables. For ,Bk the 
randomness stems from the arbitrary encoding of data in the channels as mentioned 
earlier; for 8t(zk) it comes from the arbitrariness of the location of the first collision 
point z1 depending on the initial time delay between the bit streams in the two 
channels. That is, each collision is characterized by a random value of Zk as given 
in eq. (3.2). As a result, the values of 8t(zk) will also be random. 

First we calculate the mean of the total timing jitter D..t. By the independence 
of the random variables ,Bk and Zk and the fact that the mean (,Bk) = 1/2, we have 
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(f3k8t(zk)) = (f3k)(8t(zk)) = (8t(zk))/2. Hence the mean timing shift is given by 
1 N 1 N 1 

(f).t) =- 2:::: (8t(zk)) =- 2:::: I 8t[(U + k- 1)z8 ]dU 
2k=l 2k=l 0 

which is to be calculated by using the expression of 8t(zk) from eq. (2.10) (with 
z0 replaced by Zk)· To illustrate the statistical computations involved we choose 
only one Fourier component from the infinite sum in eq. (2.10) in our subsequent 
analyses. That is, we simply take 

8t(zk) = (L- zk)amsin[2m7rzk/Za- ¢m] 

corresponding to the mth Fourier mode. We emphasize that our choice is motivated 
by simplicity since the method developed here can be easily extended to the full 
Fourier series in eq. (2.10). 

Substituting the (simplified) formula for 8t(zk) into the equation for (f).t) above, 
changing the integration variable inside the sum and using the relation L = N Z 8 , 

we obtain 
N k N 

(f).t) = Zsam 2:::: I (N- x) sin(27rpx- ¢m)dx = Zsam I(N- x) sin(27rpx- cPm)dx, 
2 k=l k-1 2 0 

where p = mz8 / Za· The last integral can be explicitly evaluated to yield the 
folbwing expression for the mean timing jitter: 

(3.4) (f).t) = 4Zs~m 2 [27rN pcos¢m- sin(27rN p- cPm) + sin¢m]· 
7rp 

Note that the mean value of the timing jitter is nonzero; in fact we find (from the 
first term in eq. (3.4)) that (f).t) rv O(N) so that the mean timing jitter grows 
linearly with system length L. 

We next calculate the mean square of the total timing jitter ((f).t) 2) and then 
the variance var(f).t) = ((f).t)2)- (f).t) 2 • From eq. (3.3), we note that i).t is a sum 
of products of pairwise independent random variables. So ( ( i).t) 2 ) can be expanded 
as a double sum of the expectation values of quadratic terms as follows: 

N N N N 
((f).t)2 ) = 2:::: 2:::: (f3kf3t8t(zk)8t(zt)) = 2:::: 2:::: (f3kf3t)(8t(zk)8t(zt)) 

k=ll=l k=ll=l 
1 N 1 N N 

= 2 k'fl (8t(zk) 2 ) + 2 k~ 1~ (8t(zk)8t(zt)) 
k<t' 

where we have used the standard facts (f3kf3t) = (f3tf3k) = 1/4, k "# l and ({3~) = 1/2 
for a Bernoulli random variable. In order to compute the remaining expectations 
involving the uniformly distributed random variable Zk we use eq. (3.2) in above to 
compute the sum over k. After making appropriate change of variables, we obtain 

lN IN-IN 
((f).t)2) = 2 I 8t(x) 2dx + 2 2:::: I 8t(x)8t(x + j)dx 

0 j=l 0 

where 8t(x) = z8 am(N- x)sin(27rpx- ¢m) and p = mz8 /za as defined earlier. 
After evaluating the above integrals and using eq. (3.4) for (f).t) we finally obtain 
the variance of timing jitter 

(3.5) 
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The first two terms in eq. (3.5) are the dominant contributions to the variance for 
large system length (equivalently for large number of collisions, N » 1). There are 
two cases to be distinguished here. 

Non-resonant case: When pis sufficiently away from an integer value, the sum 
of the cosines in the second term of eq. (3.5) is small (0(1)) compared toN. The 
variance in this case turns out to be 

(3.6) 

and the root mean square timing jitter (At)rms "'0(£312) which is consistent with 
earlier results. 

Resonant case: If p is equal or close to an integral value, cos(2npj) ~ 1 and 
the sum of the cosines becomes O(N). Specifically, when pis exactly an integer, 

z2a2 
(3.7) var(At)r = ~ 2m [N4 + O(N3 )]. 

The root mean square timing jitter (At)rms "' 0(£2), so it grows considerably 
faster than the non-resonant case for large system length. For a high data rate 
transmission system (T « 1) with large to moderate channel spacing 0, it is possible 
that p = mT jOza ~ 1 is close to the resonance condition even for the first Fourier 
mode (m = 1) (cf. eq. (2.10)). In such a situation, the variance may be unusually 
large. 

4. Statistical model for FWM-main channel collisions 

In addition to causing permanent frequency shifts, collisions between the soli-
ton pulses in adjacent channels give rise to spurious frequency components known 
as four-wave mixing (FWM) sidebands. In the lossless case, the four-wave contri-
butions grow temporarily from a vanishing background during soliton interactions, 
and then decay back to zero when the solitons re-emerge from the collision. How-
ever, when loss and amplification are included in the theory, the amplitude of the 
FWM terms grows to become an order of magnitude larger than in the lossless case, 
and it saturates at its maximum value after the collision is completed. In Ref. [1] 
the growth and saturation of four-wave mixing components in the presence of pe-
riodic damping and amplification was studied analytically. It was shown that the 
final amplitude and the frequency location of the four-wave mixing terms depend 
on the underlying periodicity of the amplification process and on the frequency 
separation between channels. In particular, for certain combinations of amplifier 
spacing and channel spacing, a resonance appears. 

In this section we develop a statistical model for the timing shifts of the main 
channel pulses due to their interactions with the four-wave-mixing (FWM) compo-
nents. The collision between a pulse from channel 1 with frequency 0 1 = 0 with a 
pulse from channel 2 with frequency ~h = 0 generates two FWM components with 
center frequencies Ou2 = 201 - 02 = -0 and 0221 = 202 - 01 = 20. Recall from 
section 3 that binary data is encoded in the two channels according to eq. (3.1). 
For simplicity, we will only consider the timing jitter effect due to FWM collisions 
with the a-pulses in channel 1. As before, we fix a 1 at the leading edge of the data 
stream to be the reference pulse and note that it will only be affected by the faster 
moving (frequency= 20) FWM components. In order to estimate the total number 
of FWM pulses hitting the reference pulse a 1 we first need to carefully examine the 
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launching points and the subsequent trajectories of FWM pulses generated due to 
the interaction of the a and f3 pulses in the fiber. It is convenient to introduce the 
following schematic diagram of the collisions indicating the various trajectories of 
the main channel and FWM pulses. 

a3 a2 al 

a4 

FIGURE 1. Pulse trajectories in a two-channel collision. Solid lines: 
channel 1 pulses; dashed lines: channel 2 pulses; dotted lines: 
FWM pulses. z1 is the collision point of /31 with the reference 
pulse a 1; x1, x 2 , ... are the collision sites of the FWM pulses with 
C¥1. 

A FWM pulse is generated at the collision point z = Zpq of the pulses ap and 
/3q where their phases Sj (cf. eqs. (2.5,3.1) coincide. This amounts to 

(4.1) t + pT = t + qT +to- Oz =} z = Zpq = Z1 + (q- p)zs' 

where z1 = t 0 /0 and z8 = T /0 were defined in section 3. We denote the corre-
sponding FWM pulse by its bit value '"'/pq = ap/3q and its phase is given by 

(4.2) Sfwm = t + pT- 20(z- Zpq). 

where Zpq is given by eq. (4.1). Note that p ::=:; q since the trailing /3-pulses which 
are to the left of ap (see figure above) can only collide with ap. The FWM pulse 
'"'/pq with frequency 20 travels from its origin at Zpq along the fiber and collides with 
the reference pulse a 1. These collision sites are determined by equating the phase 
S fwm of '"'/pq from eq. ( 4.2) with the phase t + T of a 1, and are given by 

(4.3) x(p, q) = z1 + (2q- p- l)ZJ ,p::::; q, 

where ZJ = T/20. The collision sites are equally spaced starting from x(1, 1) = z1 
and the spacing between the successive sites is z f. The total number of FWM 
collision sites for a system length L is then estimated to be N4 = L / z f which 
is twice the number of main channel collisions N = L/z8 • However, the actual 
number of FWM collisions with the reference pulse a1 is in fact much more than 
N4 because multiple FWM collisions occur at a given site. Here we do not take 
the first site x(l, 1) into account because in the present analysis we neglect any 
"self-interaction" contribution of the FWM pulse 'Yll generated at that site to the 
timing shift of the reference pulse a 1. Thus if we relabel the collision sites simply 
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as Xk = z1 + kzt, k = 1, 2 ... , N4 then the total number of FWM pulses "(pq 

colliding with the reference pulse a 1 at the site Xk is determined by the condition 
x(p, q) = Xk· Using eq. (4.3) we see that the possible values of p, q for the FWM 
pulse "(pq at Xk satisfy the constraint 

2q - p = k + 1 or , 
(4.4) 

q = k + 1 - j, p = k + 1 - 2j, j = 0, 1, ... , m- 1, 

Thus there are m FWM collisions at xk, k = 1, 2, ... , N4. 
The permanent residual frequency shift and timing jitter of the reference pulse 

a 1 due to its collision with a single FWM component can be calculated using soliton 
perturbation theory. In the presence of loss and periodic amplification, the timing 
shift is periodic with period Za, which is represented by a Fourier series as in the 
case of main channel collisions. In this paper, we omit the details of perturbation 
analysis and derivation of the timing shift formula for the main channel-FWM 
interaction; they will be reported elsewhere. Moreover, as in the main channel 
case we proceed to obtain the qualitative statistics of timing jitter due to FWM 
interference by assuming the simplified case of just one Fourier mode. That is, once 
again we take 

(4.5) 

corresponding to the nth Fourier mode. Unlike the inter-channel collisions, the 
FWM-main channel interaction is dispersive. Therefore the FWM pulse will lose 
a fraction of its energy during each collision with a main channel pulse. If the 
FWM pulse collides with a 1 at position x after having made a total of J.L (non-zero) 
collisions with main pulses from either channel1 or channel 2, then we assume the 
timing shift to a 1 will be c~-'t5t(x), for some damping parameter 0 < c :::; 1. The 
parameter c depends on the net energy loss of the FWM pulse during a collision 
and is assumed to be constant for all collisions. The details of the energy transfer 
mechanism are not necessary in the present context of statistical analysis, it will be 
discussed elsewhere. To take into account the damping effect we need to calculate 
the number of "pre-collisions" J.L experienced by a FWM pulse "'pq before it reaches 
the reference pulse a1. From the phase diagram it can be easily seen that before 
it arrives at the collision site Xk, the FWM pulse "(pq collides with all channel 1 
pulses: ai, i = 2 .. . p- 1 which are to its right. But it does not collide with all 
the channel 2 pulses to the right of (3p. Using eqs. (4.2) and (4.4), we find that 
the collision between such a "(pq (with phase Stwm) and a channel 2 pulse f3i with 
phase S2 = t +iT- O(z- zl) occurs at the locations 

z = Z1 + (k- i)zs where Zpq < Z < Xk, 

along the fiber. The inequality above is due to the fact that the "(pq can only collide 
after it is generated at Zpq and before it arrives at Xk. From this condition, it follows 
that (k/2) + 1 < i < q for those f3i that are colliding with "(pq before it reaches Xk· 

When k is even, k = 2m, f3i, i = m + 2, m + 3, ... , q- 1 while in the odd case, 
k = 2m - 1, f3i, i = m + 1, m + 2, ... , q - 1. Thus the total number of pre-collisions 
for the FWM pulse "(pq arriving at the collision site Xk is given by 

p-1 q-1 
(4.6) J.L(p,q) = 2:: ai + 2:: f3i 

i=2 i=k-m+2 
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where m = l ( k + 1) /2 J. Finally, the total timing jitter tl.t4 experienced by the 
reference pulse a 1 due to all the FWM pulses: 

N 
tl.t4 = I: ot(xk) I: c~-'(p,q)ap(3q 

k=1 p,q 
(4.7) 

N m-1 
= I: Ot(xk) I: c~-'(j,k)ak+1-2jf3k+1-j 

k=1 j=O 

where the second equality and the expression for the quantity J.L(j, k) is obtained 
from eq. (4.6) with p, q parametrized according to eq. ( 4.4). Using the explicit form 
of J.L(j, k) in eq. (4.7), we can express the mean timing jitter as 

N4 m-1 
(tl.t4) = I: (ot(xk)) I: (X(j, k))(Y(j, k)), 

k=1 j=O 

where X(j, k) and Y(j, k) are independent random variables defined as 
k-2j j 

X(j, k) = ll:k+1-2jc~-'"', J.la. = I: ll:i and Y(j, k) = f3k+1-jc~-' 13 , J.L/3 = I: f3k-i . 
i=2 i=m-2 

We first compute the inner sum in the above expression for (tl.t4). This is the 
expected number of FWM pulses arriving at the collision site Xk· Denoting this 
average by Ilk and defining.;:= (1 + c)/2, we get 

m-1 ,;k+m-2 m-1 
Ilk:= j~O (X(j, k))(Y(j, k)) = 4 j~O C 3j, 

so that, 

(4.8) 

.;k-2m+1(1- em) 
Ilk = 4(1- .;3) ' 

m L(k + 1)/2J 
4 4 

when.;< 1 

when.;= 1. 

In order to calculate (ot(xk)) next, we recall that Xk = z1 +kzJ = (k+2U)zJ where 
U = t0 jT is the uniformly distributed random variable on [0, 1]. Thus substituting 
eq. (4.8) and eq. (4.5) into eq. (4.7) yields, 

(4.9) 

N4 1 N4 
(tl.t4) = I: Ilk J ot[(k + 2U)zJ] dU = I: 11k(Uk+2- Uk) 

k=1 0 k=1 

Uk = ZJbn f (N4- x) sin(27r7]X- On), 
2 0 

where, 

The sum over kin eq. (4.9) for (tl.t4) can be rearranged by summation by parts as 
follows 

N4 
(f:l.t4) = I: (llk-2- llk)Uk + (11N4 UNd2 + 11Nr1UN4+1- IIQU2- 11-1U1) · 

k=1 
We note from eq. (4.8) that v0 = v_1 = 0 for all values of.;. Consequently the 
last two terms vanish identically in the above expression for (tl.t4). We split the 
remaining calculations into two cases. For convenience we also take On = 0 (On =f. 0 
case can be handled in a similar way). We consider first the case .; = c = 1. From 
eq. (4.8) we obtain vo = 11-1 = 0, IIN4 = L(N4 + 1)/2J/4 and that llk-2 -Ilk= -1/4 
for all k when.;= 1. Substituting these into the expression for (tl.t4) below eq. (4.9) 
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and calculating the integral for Uk explicitly, we obtain the mean timing shift for 
~ = 1: 

(4.10) 

where 

S(N4)= l(N4+1)/2J (2cos27rry(N4+2)-sin 2 7r~~~ 4 + 2 )) 

( sin 27rry(N4 + 1)) 1 N4 + l(N4/2)J cos21rry(N4 + 1)- +- I: sin27rryk 
27r7] 27r7] k= 1 

Note that S(N4) is an O(N4) term for all values of 'Tl· Moreover the trigonometric 
sum in eq. (4.10) is precisely 

I: (N4- k)cos(27rryk) =- N4 + ~ (sin~ry(N4))2 
k=l 2 2 sm 7r7J 

Thus when 77 is not an integer value (away from resonance), the above sum is 
O(N4) and we have (b.t4) = O(N4). Therefore, the mean timing jitter in this case 
increases linearly with system length L. But for integer values of 7], the quantity 
sin 1r77(N4)/ sin 7r7J "' O(N4). So at resonance the mean timing jitter turns out to 
be 

NJbnZJ 
(b.t4) = 327r7J + O(N4) . 

Next we consider the case when~< 1. In this case eq. (4.8) gives Vk-2- Vk = 
-em-2 /4 when k =2m and vk-2 - vk = -em-3 /4 when k =2m -1. Hence it is 
convenient to decompose the sum over kin the expression for (D.t4) into even and 
odd parts. Furthermore, when N4 » 1, VN4 and VNrl become 0(1) terms after 
we neglect the exponentially small contribution due to eL(N4+1)/2J. Thus we have 

z b [ LN4/2J L(N4+1)/2J l 
(b.t4) = 16 ~ 77e 3 ~ m~l (N4- 2m)Am + m~l (N4- 2m+ 1)Bm + 0(1) 

where Am = em cos 47r7Jm and Bm = em cos 27rry(2m - 1). The Dirichlet type 
sums involving Am, Bm and mAm, mBm can be computed in a straight-forward 
way. After dropping all the exponentially small terms involving eL(N4+1l/2J and 
eLN4/2J from these sums, they become 0(1) quantities for all values of 7] # 0 
(integer or non-integer). Therefore the mean timing jitter in the~< 1 case is given 
by 

(4.11) 

Thus we find that the mean timing jitter does not exhibit any resonance and grows 
linearly with system length L if the damping effect due to energy loss of the FWM 
pulses is taken into consideration. 

Next we need to calculate the variance of the total timing shift b.t4. Proceeding 
in a similar way as for the main channel collisions (cf. section 3), we first compute 
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the mean square timing jitter using eq. (4.7). This is given by the formula 
N4 mk-1 mz-1 

((~t4) 2 ) = L (c5t(xk)c5t(xl)) L L (X(j1, k)X(j2, l))(Y(j1, k)Y(j2, l)), 
k,l=1 i1=0 j2=0 

where mk = l(k + 1)/2J, m1 = l(l + 1)/2J and X, Yare the independent variables 
introduced earlier. However, since the calculations involved are extremely lengthy 
we omit all the details and summarize only the main results: 

We find that in the absence of damping (~ = c = 1), the variance var(~t4) ,....., 
O(Ni) in the non-resonant case, that is, when 'T] is not an integer. However, 
var(~t 4 ) ,....., O(N2) when 'TJ is an integer. Consequently, there is a sharp increase 
in the variance in the resonant case. Finally, when damping is taken into ac-
count (that is, when~ < 1), var(~t4) ,....., O(Nl) in the non-resonant case, whereas 
var(~t 4 ) ,....., O(Nt) at resonance. 

5. Conclusion. 

We have studied a statistical model of collision-induced timing shifts generated 
by both main channel and four wave mixing in a two channel WDM optical commu-
nication system with damping and amplification. In this model we have assumed 
that the collisions between the pulses have a random component which is inherited 
from the randomness of the encoded data and the initial time delay between the 
bit streams in the adjacent channels. In addition to the main channel interactions, 
we have also considered the interference between a main channel pulse with the 
FWM noise. Such events are estimated to be twice as frequent as the main chan-
nel collisions. We have calculated the mean and the variance of the timing jitter 
experienced by a pulse propagating through the FWM noise field. The mean and 
variance have a power law dependence with system length L in both cases of inter-
channel and FWM-main channel interactions that are considered here. However, 
we have also found a resonance phenomenon that takes place when the distance 
between successive collisions (zs for main channels and ZJ for FWM) with a given 
pulse is an integer multiple of the amplifier spacing. At resonance, the mean and 
variance grow faster (larger exponent in the power law) with system length than in 
the non-resonant case. In this article we have concentrated mainly on the statistical 
computations involved in a two-channel collision process. We have simplified our 
calculations by replacing the actual Fourier sum expressions for the timing shifts 
by only one Fourier mode although it does not affect our statistical analyses in any 
essential way. We expect to report the details omitted here in a future publication. 
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Cuspons and peakons vis-a-vis regular solitons and collapse 
in a three-wave system 

Roger Grimshaw, Georg A. Gottwald, and Boris A. Malomed 

ABSTRACT. We introduce a general model of a one-dimensional three-component 
wave system with cubic nonlinearity. Linear couplings between the components 
prevent intersections between the corresponding dispersion curves, which opens 
two gaps in the system's linear spectrum. Detailed analysis is performed for 
zero-velocity solitons, in the reference frame in which the group velocity of 
one wave is zero. Disregarding the self-phase-modulation (SPM) term in the 
equation for that wave, we find an analytical solution which shows that there 
simultaneously exist two different families of generic solitons: regular ones, 
which may be regarded as a smooth deformation of the usual gap solitons in 
the two-wave system, and cuspons with a singularity in the first derivative at 
the center, while their energy is finite. Even in the limit when the linear cou-
pling of the zero-group-velocity wave to the other two components is vanishing, 
the soliton family remains drastically different from that in the linearly uncou-
pled system: in this limit, regular solitons whose amplitude exceeds a certain 
critical value are replaced by peakons. While the regular solitons, cuspons, and 
peakons are found in an exact analytical form, their stability is tested numer-
ically, showing that they all may be stable. In the case when the cuspons are 
unstable, the instability may trigger onset of spatia-temporal collapse in the 
system. If the SPM terms are retained, we find that there again simultane-
ously exist two different families of generic stable soliton solutions, which are 
regular ones and peakons. The existence of the peakons depends, in this case, 
on the sign of certain parameters of the system. Direct simulations show that 
both types of the solitons may be stable in this most general case too. 

1. Introduction 

1.1. Gap-soliton models. Gap solitons (GS) is a common name for solitary 
waves in nonlinear systems which feature one or more gaps in their linear spectrum 
[1]. A soliton may exist if its frequency belongs to the gap, as then it does not 
decay into linear waves. 

Gaps in the linear spectrum are a generic phenomenon in two- or multicompo-
nent systems, as intersection of dispersion curves belonging to different components 
is, generically, prevented by a linear coupling between the components. Excluding 
cases when the zero solution in the system is unstable [2], the intersection avoidance 
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alters the spectrum so that a gap opens in place of the intersection. Approximating 
the two dispersion curves, that would intersect in the absence of the linear cou-
pling, by straight lines, and assuming a generic cubic nonlinearity, one arrives at a 
generalized massive Thirring model (GMTM) for two wave fields u1,2(x, t): 

(1.1) . aul aul ( 2 2) z( at - ax) +u2 + alull + lu21 ul = 0, 

(1.2) 

where the group velocities of the two waves are normalized to be ±1, the linear-
coupling constant and the coefficient of the nonlinear cross-phase-modulation (XPM) 
coupling may also be normalized to be 1, and a ;::: 0 is the self-phase-modulation 
(SPM) coefficient. 

The model based on Eqs. (1.1) and (1.2) with a= 1/2 has a direct, and very 
important, application to nonlinear optics, describing co-propagation of left- and 
right-traveling electromagnetic waves in a fiber with a resonant Bragg grating (BG) 
written on it [3, 4, 1]. The version of the model corresponding to a ---> oo, i.e., 
with the SPM nonlinearity only, 

. aul aul 2 
(1.3) z( az - aT ) + U2 + lull Ul = 0' 

(1.4) 

may also be realized in terms of nonlinear fiber optics, describing propagation of 
light in a dual-core fiber with a group-velocity mismatch between the cores (which 
is normalized to be 1), while the intrinsic dispersion of the cores is neglected [5]. In 
Eqs. (1.3) and (1.4), the evolutional variable is not time, but rather the propagation 
distance z, while the role of xis played by the so-called reduced time, T = t- zjV0 , 

where Vo is the mean group velocity of the carrier wave. 
It had been demonstrated more than twenty years ago that the massive Thirring 

model proper, which corresponds to Eqs. (1.1) and (1.2) with a = 0, is exactly 
integrable by means of the inverse scattering transform, and, moreover, it can be 
explicitly transformed into the sine-Gordon equation [6]. On the other hand, it was 
also demonstrated that GMTM with any a -!=- 0 is not integrable (this conclusion 
follows, for instance, from an early observation that collisions between solitons 
are inelastic if a -!=- 0 [4]). Nevertheless, the general model (1.1), (1.2) with an 
arbitrary value of a has a family of exact GS solutions that completely fill the gap 
in its spectrum. Gap solitons, first predicted theoretically [3, 4], were observed in 
experiments with light pulses launched into a short piece of the BG-equipped fiber 
[7] (in fact, optical solitons that were first observed in the BG fiber [8] were, strictly 
speaking, not of the GS type, but more general ones, whose central frequency did 
not belong to the fiber's bandgap). 

Models giving rise to GSs are known not only in optics but also in other areas, 
for instance, in hydrodynamics of density-stratified fluids, where dispersion curves 
pertaining to different internal-wave modes can readily intersect. Taking into regard 
the nonlinearity, one can easily predict the occurrence of GS in density-stratified 
fluids [10]. 
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1.2. Introducing a three-wave model. In this work, we aim to study GSs 
in a system of three coupled waves, assuming that the corresponding three dispersion 
curves are close to intersection at a single point, unless linear couplings are taken 
into regard. Of course, the situation with three curves passing through a single 
point is degenerate. Our objective is to investigate GS not for this special case, 
but in its vicinity in the parameter space. We will demonstrate that families of GS 
solutions in the three-wave systems is drastically different from that in the two-
wave GMTM. In particular, generic solutions will include not only regular solitons, 
similar to those known in GMTM, but also cuspons and peakons, i.e., solitons with 
a divergence or jump of the first derivative, but, nevertheless, with finite amplitude 
and energy. Moreover, we will demonstrate that a part of the cuspon and peakon 
solutions are completely stable ones. Another principal difference of the three-wave 
system from its two-wave counterpart is that the former one may give rise to spatia-
temporal collapse, i.e., formation of a singularity of the wave fields in finite time. 
We will demonstrate that, in the cases when cuspons or peakons are unstable, their 
instability may easily provoke the onset of the collapse [9]. 

Three-wave systems of this type can readily occur in the above-mentioned 
density-stratified flows [11], and are also possible in optics. For instance, this 
case takes place in a resonantly absorbing BG, which are arranged as a system of 
thin (,....., 100 nm) parallel layers of two-level atoms, with the spacing between them 
equal to half the wavelength of light. This system combines the resonant Bragg 
reflection and self-induced transparency (SIT), see Ref. [12] and references therein. 
A model describing the BG-SIT system includes equations for three essential fields, 
viz., local amplitudes of right- and left-traveling electromagnetic waves, and the 
inversion rate of the two-level atoms (which, obviously, has zero group velocity in 
the laboratory reference frame). This model indeed produces a linear spectrum 
with three dispersion curves close to intersecting at one point, so that two gaps 
open in the system's spectrum. 

Another realization of gaps between three dispersion curves is possible in terms 
of stationary optical fields in a planar nonlinear waveguide equipped with BG in 
the form of parallel scores [13]. In this case, the resonant Bragg reflection linearly 
couples waves propagating in two different directions. To induce linear couplings 
between all the three waves in the system, it is necessary to have a planar waveguide 
with two different BG systems of parallel scores, oriented in different directions. 
Postponing a consideration of this rather complicated model to another work, we 
here give a simple example for a case when the single BG is aligned along the axis 
x, perpendicular to the propagation direction z. Two waves u 1,2 have opposite 
incidence angles with respect to the BG, while the third wave u3 has its wave 
vector parallel to x, see Fig. 1 in Ref. [13]. Then, assuming that the size of the 
sample is much smaller than the diffraction length of a broad spatial beam, but is 
larger than a characteristic length induced by strong artificial diffraction induced 
by BG, normalized equations governing the spatial evolution of the fields in the 
planar waveguide with the usual Kerr nonlinearity are 

( ) . oul oul ( 11 12 2 2) 1.5 ~(oz- ox)+u2+ 2u1 +lu2l +lu31 u1=0, 
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where k0 is a wavenumber mismatch between the third and first two waves. 

(a) (b) 
5.------.------.------.-----. 5.-----~------,------.r-----~ 

a o 

-1 

-5~----~------~----~~----~. -5~----~------~----~~----~ 
0 2 3 4 0 2 3 4 

k k 

FIGURE 1. Dispersion curves produced by Eq. (2.1) in the case 
,., = 0.5: (a) w0 < 1- K2 ; (b) w0 > 1. The dashed line in each 
panel is w = w0 . The case with 1 - K2 < w0 < 1 is similar to the 
case (a) but with the points w+ and 1 at k = 0 interchanged. 

The model based on Eqs. (1.5) - (1.7) represents a particular case only, as 
it does not include linear couplings between the waves u 1,2 and u3 . We aim to 
introduce a generic model describing a nonlinear system of three waves with linear 
couplings between all of them. We assume that the system can be derived from 
a Hamiltonian, and confine attention to the case of cubic nonlinearities. Taking 
into regard these restrictions, and making use of scaling invariances to diminish the 
number of free parameters, we arrive at a system 

aul aul ( 2 2 2) (1.8) i( at - ax)+ U2 + KU3 + Q acr1\u1\ + a\u2\ + \u3\ U1 = 0, 
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(1.9) 

(1.10) 

Here, we consider the evolution in the temporal domain, unlike the spatial-domain 
evolution in Eqs. (1.5) - (1.7), and without loss of generality, we use a reference 
frame in which the third wave u3 has zero group velocity. Note that the coefficient 
of the linear coupling between the first two waves is normalized to be 1, while K 

accounts for their linear coupling to the third wave, and it may always be defined 
to be positive. 

We assume full symmetry between the two waves u 1,2 , following the pattern of 
the GMT model; in particular, the group velocities of these waves are normalized 
to be :r=L However, we note that this assumption is not essential, and we shall 
comment later on the case when the group-velocity terms in Eqs. (1.8) and (1.9) 
are generalized as follows: 

au1 au1 au2 au1 
(l.ll) ax - -C1 ax ' + ax - +c2 ax ' 
where c1 and c2 are different, but have the same sign. Note that the symmetry of the 
system's dispersion law w = w(k) is assumed with respect to the sign of k, but not 
of w. To this end, the parameter wo was added to Eq. (3). This parameter breaks 
the "w-symmetry", that, unlike the "k-symmetry", does not have any natural cause 
to exist. 

The coefficients a1,3 and a in Eqs. (1.8) - (1.10) account for the nonlinear SPM 
and XPM nonlinearities, respectively. In particular, a is defined as a relative XPM 
coefficient between the first two and the third waves, hence it is an irreduceable 
parameter. As for the SPM coefficients, both a 1 and a 3 may be normalized to be 
±1, unless they are equal to zero; however, it will be convenient to keep them as 
free parameters, see below (note that the SPM coefficients are always positive in 
the optical models, but in those describing stratified fluids they may have either 
sign). 

Equations (1.8) - (1.10) conserve the norm, which is frequently called energy 
in optics, 

(1.12) l+oo 
N = L -oo lun(x)l 2 dx, 

n=1,2,3 

the Hamiltonian, 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

H = Hgrad + Hcoupl + Hrocus, 

Hgrad ~ /_:
00 

( ui ~: 1 - u; ~: 1 ) dx + c.c., 

Hcoupl 

Hrocus 
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and the momentum, which will not be used here. In these expressions, the asterisk 
and c.c. both stand for complex conjugation, Hgrad, Hcoupl and Hfocus being the 
gradient, linear-coupling, and self-focusing parts of the Hamiltonian. 

1.3. Solitons in the three-wave models. Our objective is to find various 
types of solitons existing in the generic three-wave system (1.8) - (1.10) and inves-
tigate their stability. The existence of various types of the solitons is considered in 
section 3. Focusing first on the case (suggested by the analogy with GMTM) when 
the SPM term in Eq. (1.10) may be neglected (i.e., 173 = 0), we will find a general 
family of zero-velocity solitons in an exact analytical form. We will demonstrate 
that the family contains solutions of two drastically different types: regular GSs, 
and cuspons, i.e., solitons with a cusp singularity at the center, while their energy 
is finite (this singularity assumes that the function remains finite at the cusp point, 
while its first derivative diverges). Cuspons are known to exist in degenerate models 
without linear terms (except for the evolution term such as 8uj8t), a well-known 
example being the Camassa-Holm (CH) equation [17, 18]. As well as the massive 
Thirring model (1.1), (1.2) with 17 = 0, the CH equation is exactly integrable by 
means of the inverse scattering transform. Our nonintegrable model, as well as 
the CH one, gives rise to coexisting solutions in the form of regular solitons and 
cuspons. However, the cause for the existence of cuspons in our model is very 
different: looking for a zero-velocity soliton solution, one may eliminate the field 
u3 by means of an algebraic relation following, in this case, from Eq. (1.10). The 
subsequent substitution of this result into the first two equations (1.8) and (1.9) 
produces a non-polynomial (in fact, rational) nonlinearity in them. The correspond-
ing rational functions feature a singularity at some (critical) value of the soliton's 
amplitude. If the amplitude of a formal regular-soliton solution exceeds the critical 
value, it actually cannot exist, and, in the case when 173 = 0, it is replaced by a 
cuspon, whose amplitude is exactly equal to the critical value. 

In the limit "'---> 0, which corresponds to the vanishing linear coupling between 
the first two and third waves, the cuspon resembles a peakon, which is a finite-
amplitude solitary wave with a jump of its first derivative at the center. Note that 
peakon solutions, coexisting with regular solitons (they also coexist in our model), 
are known in a slightly different version of the CH equation (which is also integrable 
by means of the inverse scattering transform), see, e.g., Ref. [17, 19, 20]. 

Then, we show that, when the SPM term in Eq. (1.10) is restored in Eq. (1.10) 
(i.e., 173 =I 0; the presence or absence of the SPM term ex: 171 in Eqs. (1.8) and (1.9) 
is not crucially important), the system supports a different set of soliton families. 
These are regular GSs and, depending on the sign of certain parameters, a family of 
peakons, which, this time, appear as generic solutions, unlike the case 173 = 0, when 
they only exist as a limiting form of the solutions corresponding to "' ---> 0. As far 
as we know, the model formulated in the present work is the first non-degenerate 
one (i.e., a model with a nonvanishing linear part) which yields both cuspons and 
peakons. 

1.4. Stability of the solitons and spatiotemporal collapse. As concerns 
the dynamical stability of the various solitons in the model (1.8) -(1.10), in this 
work we limit ourselves to direct simulations, as a more rigorous approach, based 
on numerical analysis of the corresponding linear stability-eigenvalue problem [21], 
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is technically difficult in the case of cuspons and peakons. In fact, direct simula-
tions of perturbed cuspons and peakons is a hard problem too, but we have checked 
that identical results concerning the stability are produced (see section 3 below) 
by high-accuracy finite-difference and pseudo-spectral methods (each being imple-
mented in more than one particular form), which lends the results credibility. A 
general conclusion is that the regular solitons are always stable. As for the cuspons 
and peakons, they may be both stable or unstable. If the cusp is strong enough, 
instability of the cuspon initiates formation of a genuine singularity, i.e., onset of a 
spatiotemporal collapse [9] in the present one-dimensional model. 

Note that a simple virial-type estimate for the possibility of collapse can be 
made, assuming that the field focuses itself in a narrow spot with a size L(t), 
amplitude N(t), and a characteristic value K(t) of the field's wavenumber [9]. The 
conservation of the norm (1.12) imposes a restriction N2L"' N, i.e., L"' N/N2 • 

Next, the self-focusing part (1.13) of the Hamiltonian (1.13), which drives the 
collapse, can be estimated as 

(1.18) 

On the other hand, the collapse can be checked by the gradient term (1.14) in the 
full Hamiltonian, that, in the same approximation, can be estimated as Hgrad "' 

N2 KL "' NK. Further, Eqs. (1.8) - (1.10) suggest an estimate K ,....., N2 for a 
characteristic wavenumber of the wave field (the same estimate for K follows from 
an expression (2.7) for the exact stationary-soliton solution given below), thus we 
have Hgrad "'NN2 . Comparing this with the expression (1.18), one concludes that 
the parts of the Hamiltonian promoting and inhibiting the collapse scale the same 
way as N --+ oo (or L --+ 0), hence a weak collapse [9] may be possible (but not 
necessarily) in systems of the present type. In the models of GSs studied thus far 
and based on GMTM, collapse has never been reported. The real existence of the 
collapse in the present one-dimensional three-wave GS model is therefore a novel 
dynamical feature, and it seems quite natural that cuspons and peakons, in the 
case when they are unstable, play the role of catalysts stimulating the onset of the 
collapse. 

2. Analytical solutions for solitons 

2.1. The dispersion relation. The first step in the investigation of the sys-
tem is to understand its linear spectrum. Substituting u 1,2 ,3 ,....., exp(ikx- iwt) into 
Eqs. (1.8 -1.10), and omitting nonlinear terms, we arrive at a dispersion equation, 

(2.1) (w2 - k2 - 1)(w- wo) = 2~ 2 (w- 1). 
If~ = 0, the third wave decouples, and the coupling between the first two waves 
produces a commonly known gap, so that the solutions to Eq. (2.1) are w1,2 = 
±v'1 + k2 and w3 = w0 • If ~ #- 0, the spectrum can be easily understood by 
treating ~ as a small parameter. However, the following analysis is valid for all 
values of ~ in the range 0 < ~ 2 < 1. 

First, consider the situation when k = 0. Then, three solutions of Eq. (2.1) are 

(2.2) w = 1, w = W± = (wo -1)/2± J(w0 + 1) 2 /4+2~ 2 . 
It can be easily shown that w_ < min{wo, -1} :::; max{wo, -1} < w+, so that one 
always has w_ < -1, while w+ > 1 if 1-w0 > ~ 2 , and vice versa. Next, it is readily 
seen that, as k2 --+ oo, either w2 ~ k2 , or w ~ w0 . It can also be shown that each 
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branch of the dispersion relation generated by Eq. (2.1) is a monotonic function of 
k 2 . Generic examples of the spectrum are shown in Fig. 1, where the panels (a) 
and (b) pertain, respectively, to the cases w0 < 1- "'2 with w+ < 1, and w0 > 1 
with w+ > 1. The intermediate case, 1- ,.2 < w0 < 1, is similar to that shown in 
panel (a), but with the points w+ and 1 at k = 0 interchanged. When wo < 1, the 
upper gap in the spectrum is min{w+, 1} < w < max{w+, 1}, while the lower gap 
is w_ < w < w0 • When wo > 1, the upper gap is wo < w < w+, and the lower one 
is w_ < w < 1. 

2.2. A generic family of gap solitons. The next step is to search for GS 
solutions to the full nonlinear system. In this work, we confine ourselves to the case 
of zero-velocity GS, substituting into Eqs. (1.8) - (1.10) 

(2.3) un(x, t) = Un(x) exp( -iwt), n = 1, 2, 3, 

where it is assumed that the soliton's frequency w belongs to one of the gaps. In fact, 
even the description of zero-velocity solitons is quite complicated. Note, however, 
that if one sets "' = 0 in Eqs. (1.8) - (1.10), keeping nonlinear XPM couplings 
between the first two and third waves, the gap which exists in the two-wave GMT 
model remains unchanged, and the corresponding family of GS solutions does not 
essentially alter, in accord with the principle that nonlinear couplings cannot alter 
gaps or open a new one if the linear coupling is absent [14]; nevertheless, the 
situation is essentially different if "' is vanishingly small, but not exactly equal to 
zero, see below. 

First, the substitution of (2.3) into Eqs. (1.8) and (1.9) leads to a system of 
two ordinary differential equations for U1(x) and U2(x), 

(2.4) iU{ = wUl + u2 + K,u3 +a (aaliUII2 + aiU21 2 + IU312) u1, 

(2.5) -iU~ = wU2 + u1 + ,.u3 +a (aa1IU212 + aiU112 + IU312) u2, 
where the prime represents djdx. To solve these equations, we substitute U1,2 = 
A1,2(x) exp (i¢1,2(x)) with real An and <Pn· After simple manipulations, it can be 
found that (A~- AD' = 0 and (¢1 + ¢2)' = 0. With regard to the condition that 
the soliton fields vanish at infinity, we immediately conclude that 

(2.6) A~(x) = A~(x) = S(x); 
as for the constant value of ¢1 + ¢2, it may be set equal to zero without restriction 
of the generality, so that ¢ 1 (x) = -¢2(x) = ¢(x)/2, where ¢(x) is the relative phase 
of the two fields. After this, we obtain two equations for S(x) and ¢(x) from Eqs. 
(2.4) and (2.5), 

(2.7) ¢' = -2w- 2cos¢- 2a2 (1 +at) S- s-1Ui (wo-w- a3Ui) , 

(2.8) 

and Eq. (1.10) for the third wave U3 takes the form of a cubic algebraic equation 

(2.9) U3(wo-w-2aS-a3IU3I 2) = 2,.-.../Scos(¢/2), 
from which it follows that u3 is a real-valued function. 

This analytical consideration can be readily extended for more general equa-
tions (1.8) and (1.9) that do not assume the symmetry between the waves u1 and 
u2 , i.e., with the group-velocity terms in the equations altered as per Eq. (1.11). 
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In particular, the relation (2.6) is then replaced by c 1 A~(x) = c2AHx) = S(x). It 
can be checked that results for the asymmetric model are not qualitatively different 
from those presented below for the symmetric one. 

Equations (2.7) and (2.8) have a Hamiltonian structure, as they can be repre-
sented in the form 

(2.10) 

with the Hamiltonian 

dS 
dx 

8H d¢ 
8¢' dx 

3 
(2.11) H = 2S cos¢+ a? (1 +at) S 2 + 2wS + Ui (wo-w- 2aS)- 2a3Ui, 

which is precisely a reduction of the Hamiltonian (1.13) of the original system (1.8) 
- (1.10) for the solutions of the present type. Note that H is here regarded as a 
function of Sand¢, and the relation (2.9) is regarded as determining U3 in terms 
of S and ¢. For soliton solutions, the boundary conditions at x = ±oo yield H = 0, 
so that the solutions can be obtained in an implicit form, 

(2.12) 2S cos¢+ a 2 (1 +at) S 2 + 2wS + Ui (wo - w- 2aS) - (3/2) a3Ui = 0. 

In principle, one can use the relations (2.9) and (2.12) to eliminate U3 and ¢ and 
so obtain a single equation for S. However, this is not easily done unless a 3 = 0 
[no SPM term in Eq. (1.10)], therefore we proceed to examine this special, but 
important, case first. Recall that the zero-SPM case also plays an important role 
in the case of the two-wave GMTM based on Eqs. (1.1) and (1.2), as precisely in 
this case (which corresponds to the massive Thirring model proper) the equations 
are exactly integrable by means of the inverse scattering transform [6]. 

2.3. Cuspons in the zero-self-phase-modulation case (a3 = 0). Setting 
a3 = 0 makes it possible to solve Eq. (2.9) for U3 explicitly in terms of S and ¢, 

(2.13) u3 = 2,.,..f§ cos (¢/2) . 
wo-w -2aS 

For simplicity, we also set a 1 = 0 in Eqs. (1.8) and (1.9) and subsequent equations, 
although the latter assumption is not crucially important for the analysis devel-
oped below. If a 1 # 0 is restored, the conclusions of this subsection will not be 
substantially altered. 

As the next step, one can also eliminate ¢, using Eqs. (2.12) and (2.13), to 
derive a single equation for S, 

(2.14) (dSjdx) 2 = 4S2 F(S), 

(2.15) F(S):=(1-w-~a 2 S)[2(1+ ""2 s) -(1-w--2
1a 2S)J. 2 wo-w- 2a 

The function F(S) has either one or three real zeros S0 . One is 

(2.16) S01 = 2 (1- w) ja2 , 

and the remaining two, if they exist, are real roots of the quadratic equation, 
(2.17) (2 + 2w + a 2 So)(wo- w- 2aSo) + 4,.,2 = 0. 
Only the smallest positive real root of Eq. (2.17), to be denoted S02 (if such exists), 
will be relevant below. Note, incidentally, that F(S) cannot have double roots. A 
consequence of this fact is that Eq. (2.14) cannot generate kink solutions, which 
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have different limits as x ----> ±oo. Indeed, if S(x) ----> const = S as x ----> ±oo, 
then one needs to have dS/dx"' (S- S) in the same limit, which implies that the 
function F(s) in Eq. (2.14) must have a double zero at S = S. 

For a soliton solution of (2.14), we need first that F(O) > 0, which can be 
shown to be exactly equivalent to requiring that w belongs to either the upper or 
the lower gap of the linear spectrum. We note that the coupling to the third wave 
gives rise to the rational nonlinearity in the expression (2.15), despite the fact that 
the underlying system (1.8) - (1.10) contains only linear and cubic terms. Even 
if the coupling constant "' is small, it is clear that the rational nonlinearity may 
produce a strong effect in a vicinity of a critical value of the squared amplitude at 
which the denominator in the expression (2.15) vanishes, 

(2.18) Scr = (Wo-w) /2a. 

As it follows from this expression, one must have a(w0 - w) > 0 for the existence 
of the critical value. 

If Scr exists, the structure of the soliton crucially depends on whether, with an 
increase of S, the function F(S) defined by Eq. (2.15) first reaches zero at S = S0 , 

or, instead, it first reaches the singularity at S = Scr, i.e., whether 0 < So < Scr, or 
0 < Scr < S0 . In the former case, the existence of Scr plays no role, and the soliton 
is a regular one, having the amplitude ..;'"So. This regular soliton may be regarded 
as obtained by a smooth deformation from the usual GS known in GMTM at "' = 0. 

As the soliton cannot have an amplitude larger than VB;;, in the case 0 < 
Scr < So the squared amplitude takes the value Scr, rather than So. The soliton 
is singular in this case, being a cuspon [see Eqs. (2.24) and (2.25) below], but, 
nevertheless, it is an absolutely relevant solution. If Scr < 0 and So > 0 or vice 
versa, then the soliton may only be, respectively, regular or singular, and no soliton 
exists if both So and Scr are negative. Further, it is readily shown that for all 
these soliton solutions, S(x) is symmetric about its center, which may be set at 
x = 0, that is, S(x) is an even function of x. For the cuspon solutions, and for 
those regular solutions whose squared amplitude is Sm, it can also be shown that 
the phase variable '!j;(x) = ¢(x) - 1r and U3 (x) are odd functions of x, while for 
those regular solutions whose squared amplitude is So2 the phase variable ¢(x) and 
U3 (x) are, respectively, odd and even functions of x. 

It is now necessary to determine which parameter combinations in the set 
(w, w0 , a) permit the options described above. The most interesting case occurs 
when w0 > w (so that w belongs to the lower gap, see Fig. 1) and a > 0 (the 
latter condition always holds in the applications to nonlinear optics). In this case, 
it can be shown that the root S02 of Eq. (2.17) is not relevant, and the options 
are determined by the competition between S01 and Scr· The soliton is a cuspon 
(0 < Scr < Sot) if 

(2.19) a(wo- w) < 4(1- w). 

In effect, the condition (2.19) sets an upper bound on a for given w0 and w. In 
particular, the condition is always satisfied if 0 < a < 4. 

If, on the other hand, the condition (2.19) is not satisfied (i.e., 0 < Sm < Scr ), 
we obtain a regular soliton. In a less physically relevant case, when again w0 > w 
but a < 0, cuspons do not occur [as this time Scr < 0, see Eq. (2.18)], and only 
regular solitons may exist. 
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Next we proceed to the case wo < w, so that w is located in the upper gap of 
the linear spectrum. For a > 0, we have Scr < 0, hence only regular solitons may 
occur, and indeed it can be shown that there is always at least one positive root 
S0 , so a regular soliton exists indeed. If a < 0, then we have Scr > 0, but it can 
be shown that, if w0 < 1- K,2 (when also w < 1), there is at least one positive root 
So< Scr; thus, only a regular soliton can exist in this case too. On the other hand, 
if a < 0 and w0 > 1- /'\,2 (and then w > 1), there are no positive roots S0 , and so 
only cuspons occur. 

Let us now turn to a detailed description of the cuspon's local structure near 
its center, when Sis close to Scr· From the above analysis, one sees that cuspons 
occur whenever w lies in the lower gap, with wo > w and a > 0, so that the criterion 
(2.19) is satisfied, or when w lies in the upper gap with 1- /'\,2 < wo <wand a< 0. 
To analyze the structure of the cuspon, we first note that, as it follows from Eq. 
(2.12), one has cos¢= -1 (i.e.,¢= 1r) when S = Scr, which suggest to set 

(2.20) Scr - S ==: 8 · /'\,2 R, 1 +COS¢ ==: 8 · p, 

where 8 is a small positive parameter, and the stretched variables R and p are 
positive. At the leading order in 8, it then follows from Eq. (2.12) that p = p0 R, 
where 

(2.21) 

As it follows from the above analysis, p0 is always positive for a cuspon. We also 
stretch the spatial coordinate, defining x = 8312K,2y, the soliton center being at 
x = 0. Since S(x) is an even function of x, it is sufficient to set x > 0 in this 
analysis. Then, on substituting the first relation from Eq. (2.20) into Eq. (2.14), 
we get, to the leading order in 8, an equation 

(2.22) R (dR/dy) 2 = p0 S;r/a2 = K 2 , 

so that 

(2.23) R = (3Ky/2)2/ 3 • 

In the original unstretched variables, the relation (2.23) shows that, near the cusp, 

(2.24) Scr- S(x) ::=::: (3KK,x/2) 213 , 

(2.25) dSjdx:::::: (2/3) 113 (K/'\,) 2/ 3 · x-113 , 

and it follows from Eq. (2.13) that U3 is unbounded near the cusp, 

(2.26) U3 :::::: (Scr/a)(2apoK2 /3K,x) 113 . 

In particular, Eq. (2.25) implies that, as KK, decreases, the cusp gets localized in a 
narrow region where lxl ;:: K 2 K,2 (outside this region, jdSjdxl is bounded and shows 
no cusp). Note that this limit can be obtained either as /'\,2 --+ 0, or as p0 --+ 0 [recall 
Po is defined in Eq. (2.21)]. 

It is relevant to mention that, very close to the cusp, the underlying physical 
model, which is based on the paraxial approximation in the application to optical 
systems, or on a long-wave expansion in the case of internal waves in stratified fluids, 
may become irrelevant. However, this circumstance will lead to a modification of 
the structure of the physical fields inside the cuspon only in a very small vicinity 
of the singular point (for instance, on a scale of the order of the light wavelength 
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in optical systems, or the layer's depth in the fluids). Thus, the cuspon solutions 
are quite relevant to applications, provided that they are stable. 

An example of the cuspon is shown in Fig. 2. Although the first derivative 
in the cuspon is singular at its center, as follows from Eq. (2.25) [see also Fig. 
2(a)], it is easily verified that the Hamiltonian (1.13) (and, obviously, the norm 
(1.12) too) are finite for the cuspon solution. These solitons are similar to cuspons 
found as exact solutions to the Camassa-Holm (CH) equation [17, 18], which have 
a singularity of the type lxl 113 or lxl 2/ 3 as lxl -+ 0, cf. Eqs. (2.24) and (2.25). The 
CH equation is integrable, and it is degenerate in the sense that it has no linear 
terms except for 8uj8t (which makes the existence of the solution with a cusp 
singularity possible). Our three-wave system (1.8)- (1.10) is not degenerate in that 
sense; nevertheless, the cuspon solitons are possible in it because of the model's 
multicomponent structure: the elimination of the third component generates the 
non-polynomial nonlinearity in Eqs. (2.4), (2.5), and, finally, in Eqs. (2.8) and 
(2.14), which gives rise to the cusp. It is noteworthy that, as well as the CH model, 
ours gives rise to two different coexisting families of solitons, viz., regular ones and 
cuspons. It will be shown below that the solitons of both types may be stable. 

In the special case K « 1, when the third component is weakly coupled to the 
first two ones in the linear approximation, a straightforward perturbation analysis 
shows that the cuspons look like peakons; that is, except for the above-mentioned 
narrow region of the width lxl ,...., K2 , where the cusp is located, they have the shape 
of a soliton with a discontinuity in the first derivative of S(x) and a jump in the 
phase ¢(x), which are the defining features of peakons ([17, 19]). An important 
result of our analysis is that the family of solitons obtained in the limit K -+ 0 is 
drastically different from that in the model where one sets K = 0 from the very 
beginning. In particular, in the most relevant case, with w0 > w and a > 0, the 
family corresponding to K -+ 0 contains regular solitons whose amplitude is smaller 
than ,fS;;; however, the solitons whose amplitude at K = 0 is larger than,[S;;, i.e., 
the ones whose frequencies belong to the region (2.19) [note that the definition of 
Scr does not depend on Kat all, see Eq. (2.18)], are replaced by the peakons which 
are constructed in a very simple way: drop the part of the usual soliton above the 
critical level S = Scr, and bring together the two symmetric parts which remain 
below the critical level, see Fig. 2(b). It is interesting that peakons are known as 
exact solutions to a version of the integrable CH equation slightly different from 
that which gives rise to the cuspons. As well as in the present system, in that 
equation the peakons coexist with regular solitons [19]. In the next subsection, we 
demonstrate that the peakons, which are found only as limit-form solutions in the 
zero-SPM case 0"3 = 0, become generic solutions in the case 0"3 # 0. 

2.4. Peakons, the case a 3 # 0. Before proceeding to the consideration of 
dynamical stability of various soliton solutions found above, it is relevant to address 
another issue, viz., structural stability of the cuspon solutions. To this end, we 
restore the SPM term in Eq. (1.10), that is, we now set a3 # 0, but assume that 
it is a small parameter. Note that, in the application to nonlinear optics, one 
should expect that a3 > 0, but there is no such a restriction on the sign of a3 in 
the application to the flow of a density-stratified fluid. We still keep a 1 = 0, as 
the inclusion of the corresponding SPM terms in Eqs. (1.8) and (1.9) amounts to 
straightforward changes in details of both the above analysis, and that presented 
below. On the other hand, we show below that the inclusion of the SPM term in 
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FIGURE 2. The shape of the cuspon for a: = 2.0, w0 = 0.1, 
w = -0.5, and (a) r;, = 0.5, i.e., in the general case, and (b) r;, = 0.1, 
i.e., for small r;,, In the case (b) we also show the usual gap soliton 
(by the dashed line), the part of which above the critical value 
S = Scr (shown by the dotted line) should be removed and there-
maining parts brought together to form the peakon corresponding 
to por;,2 --t 0. 

' .... .... 

8 

Eq. (1.10) is a structural perturbation which drastically changes the character of 
the soliton solutions. 

In view of the above results concerning the cuspons, we restrict our discussion 
here to the most interesting case when S(x) is an even function of x, while '1/J(x) = 
</>( x) - n and U3 ( x) are odd functions. In principle, one can use the relations 
(2.9) and (2.12) to eliminate <P and U3 and so obtain a single equation for S (a 
counterpart to Eq. (2.14)), as it was done above when 0'3 = 0. However, when 
a 3 i= 0, this cannot be done explicitly. Instead, we shall develop an asymptotic 
analysis valid for x --t 0, which will be combined with results obtained by direct 
numerical integration of Eqs. (2.7) and (2.8), subject, of course, to the constraints 
(2.9) and (2.12). Since singularities only arise at the center of the soliton (i.e., at 
x = 0) when a3 = 0, it is clear that the introduction of a small a3 i= 0 will produce 
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only a small deformation of the soliton solution in the region where x is bounded 
away from zero. 

First, we consider regular solitons. Because the left-hand side of Eq. (2.9) is 
not singular at any x, including the point x = 0 when o-3 = 0, we expect that 
regular solitons survive a perturbation induced by o-3 =f. 0. Indeed, if there exists 
a regular soliton, with S0 = S(x = 0), and ¢(x = 0) = 1r and U3 (x = 0) = 0, it 
follows from Eq. (2.12) that the soliton's amplitude remains exactly the same as it 
was for o-3 = 0, due to the fact that the regular soliton has U3 (x = 0) = 0. 

Next, we turn to the possibility of singular solutions, that is, cuspons or 
peakons. Since we are assuming that S0 = S(x = 0) is finite, and that ¢(x = 0) = 1r, 

it immediately follows from Eq. (2.9) that when o-3 =f. 0, U3 must remain finite for 
all x, taking some value U0 =f. 0, say, as x---+ +0. As it has been established above 
that U3 is an odd function of x, and U3 (x = +0) = U0 =f. 0, there must be a dis-
continuity in u3 at X= 0, i.e., a jump from Uo to -Uo. This feature is in marked 
contrast to the cuspons for which U3 is infinite at the center, see Eq. (2.26). Fur-
ther, it then follows from Eq. (2.8) that, as x ---+ 0, there is also a discontinuity in 
dSjdx, with a jump from 2KUoVSO to -2KUoVSO- Hence, if we can find soliton 
solutions of this type, with U0 =f. 0, they are necessarily peakons, and we infer that 
cuspons do not survive the structural perturbation induced by o-3 =f. 0. 

Further, if we assume that U0 =f. 0, then Eq. (2.9), taken in the limit x---+ 0, 
immediately shows that 

(2.27) 

(recall that Scr is defined by Eq. (2.18)). Next, the Hamiltonian relation (2.12), 
also taken in the limit x ---+ 0, shows that 

(2.28) 

where we have used Eq. (2.27) (recall that p0 is defined by Eq. (2.21)). Elimination 
of Uo from (2.27,2.28) yields a quadratic equation for S0 , whose positive roots 
represent the possible values of the peakon's amplitude. 

We recall that for a cuspon which exists at o-3 = 0 one has p0 > 0, i.e., the 
amplitude of the corresponding formal regular soliton exceeds the critical value 
of the amplitude, see Eq. (2.21). Then, if we retain the condition p0 > 0, it 
immediately follows from Eqs. (2.27) and (2.28) that no peakons may exist if the 
SPM coefficient in Eq. (1.10) is positive, o-3 > 0. Indeed, Eq. (2.27) shows that 
Scr - So > 0 if o-3 > 0, which, along with Po > 0, leads to a contradiction in the 
relation (2.28). 

Further, it is easy to see that a general condition for the existence of peakons 
following from Eqs. (2.27) and (2.28) is 

(2.29) 

hence peakons are possible if o-3 < 0, or if we keep o-3 > 0 but allow p0 < 0. In the 
remainder of this subsection, we will show that peakons may exist only if p0 > 0. 
Hence, it follows from the necessary condition (2.29) that peakons may indeed be 
possible solely in the case o-3 < 0. On the other hand, regular solitons do exist 
in the case o-3 > 0 (i.e., in particular, in nonlinear-optics models), as they have 
Uo = 0, hence neither Eq. (2.27) nor its consequence in the form of the inequality 
(2.29) apply to regular solitons. The existence of (stable) peakons for o-3 < 0, and 
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of (also stable) regular solitons for o-3 > 0 will be confirmed by direct numerical 
results presented in the next section. 

To obtain a necessary condition (which will take the form of p0 > 0) for the 
existence of the peakons, we notice that existence of any solitary wave implies the 
presence of closed dynamical trajectories in the phase plane of the corresponding 
dynamical system, which is here based on the ordinary differential equations (2. 7) 
and (2.8), supplemented by the constraint (2.9). Further, at least one stable fixed 
point (FP) must exist inside such closed trajectories, therefore the existence of such 
a stable FP is, finally, a necessary condition for the existence of any solitary wave. 

The FP is found by equating to zero the right-hand sides of Eq. (2.7) and (2.8), 
which together with Eq. (2.9) give three equations for the three coordinates ¢, S 
and U3 of the FP. First of all, one can find a trivial unstable FP of the dynamical 
system, 

"' w+r;,2 j(wo-w) cos 'I' - - --,---:::-=-,,-;--=----c-- 1 + r;,2 / ( wo - w) ' s = 0, 

which does not depend on o-3 • Then, three nontrivial FPs can be found, with their 
coordinates ¢*' s* and u3* given by the following expressions: 

(2.30) 1- w 1 u(l) = 0 ~ 2So1, 3* , 

(2.31) ¢~ 2 ) = 71", (2-o-3)8~ 2 ) = 2Scr- ~3 Sm, (2-o-3) [a::uJ~lr = Po-a3Scr, 

(2- a3)S~ 3 ) = 2Scr- ~o-3801 +:, (2- o-3) [a::uJ~lr =Po- a::3Scr- a::2 r;,2 , 

(2.32) cos ( ¢i3l /2) = - ~ r;,UJ~l I /S[j) . 
To be specific, we now consider the case of most interest, when both Sm > 0 

and Scr > 0. In this case, the FP given by Eqs. (2.30) exists for all 0"3 and all Po· 
However, for small o-3 (in fact o-3 < 2 is enough) and small r;,, the FPs given by Eqs. 
(2.31) and (2.32) exist only when Po > 0. Indeed, they exist only for Po > a::3Sm 
and Po > a::3Sm + r;,2 , respectively, or, on using the definition (2.21) of po, when 
Sm > 2Scr and Sm > 2Scr + r;,2 /a::, respectively. 

Let us first suppose that p0 < 0. Then there is only the single non-trivial FP, 
namely the one given by Eqs. (2.30). This FP is clearly associated with the regular 
solitons, whose squared amplitude is Sm. Hence, we infer that for Po < 0 there 
are no other solitary-wave solutions, and in particular, no peakons (and no cuspons 
either when o-3 = 0, in accordance with what we have already found in subsection 
2.3 above). Combining this with the necessary condition (2.29) for the existence of 
peakons, we infer that there are no peakons when o-3 > 0, thus excluding peakons 
from applications to the nonlinear-optics models, where this SPM coefficient is 
positive. However, peakons may occur in density-stratified fluid flows, where there 
is no inherent restriction on the sign of o-3 . This case is considered below, but first 
we note that in the case p0 < 0 and o-3 > 0 (which includes the applications to 
nonlinear optics), the same arguments suggest that there may be periodic solutions 
with peakon-type discontinuities; indeed, our numerical solutions of the system 
(2.7,2.8) (not displayed in this paper) show that this is the case. 

Next, we suppose that p0 > 0. First, if Sm < 2Scr. then there again exists the 
single non-trivial FP given by (2.30). But now, by analogy with the existence of 
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cuspons when p0 > 0 and a 3 = 0, we infer that the solitary-wave solution which is 
associated with this fixed point is a peakon, whose squared amplitude So for small 
a3 is close to Sen while the FP has S~l) = S01 /2 < Scr· 

If, on the other hand, S01 > 2Sm the FPs given by Eqs.(2.31) and (2.32) 
become available as well. We now infer that the peakon solitary-wave solution 
continues to exist, and for sufficiently small a 3 and "' it is associated with the FP 
given by Eq. (2.31). Although Eq. (2.31) implies that si2l ~ Scr, and the peakon's 
squared amplitude S0 , determined by Eqs. (2.27) and (2.28), is also approximately 
equal to Sm we nevertheless have S0 > si2l as required. Note that, in the present 
case, the FPs given by Eqs. (2.30) and (2.32) lie outside the peakon's homoclinic 
orbit. In Fig. 3, we show a plot of a typical peakon obtained, in this case, by 
numerical solution of Eqs. (2.7) and (2.8). 
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FIGURE 3. The shape of the peakon in for the case when a 3 < 0. 
The parameters are a 3 = -0.01, "' = 0.1, a = 2.0, w0 = 0.1, and 
w = -0.5. In this case, p0 = 4.8. 

3. Numerical results 

3.1. Simulation techniques. The objectives of direct numerical simulations 
of the underlying equations (1.8) - (1.10) were to check the dynamical stability 
of regular solitons, cuspons, and peakons in the case a 3 = 0, and the existence 
and stability of peakons in the more general case, a 3 =f. 0. Both finite-difference 
and pseudo-spectral numerical methods have been used, in order to check that 
identical results are obtained by methods of both types. We used semi-implicit 
Crank-Nicholson schemes, in which the nonlinear terms were treated by means of 
the Adams-Bashforth algorithm. 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CUSPONS AND PEAKONS IN A THREE-WAVE SYSTEM 265 

The presence of singularities required a careful treatment of cuspon and peakon 
solutions. To avoid numerical instabilities due to discontinuities, we sometimes in-
troduced a weak artificial high-wavenumber viscosity into the pseudospectral code. 
We have found that viscosities "'w-5 were sufficient to avoid the Gibbs' phenom-
enon in long-time simulations. When instabilities occur at a singular point (cusp 
or peak), it is hard to determine whether the instability is a real one or a numeri-
cal artifact. Therefore, we checked the results by means of a finite-difference code 
which used an adaptive staggered grid; motivated by the analysis of the vicinity of 
the point x = 0 reported above, we introduced the variable ~ = x 213 to define an 
adaptive grid, and also redefined U3 = ~fJ3. In these variables, the cusp seems 
like a regular point. We stress that this approach was solely used to check the 
possible occurrence of numerical instabilities. 

In the following subsections we present typical examples of the numerical results 
for both cases considered above, viz., a 3 = 0 and a3 < 0, when, respectively, the 
cuspons and peakons are expected. 
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FIGURE 4. The shape of an initially perturbed regular soliton in 
the case a3 = 0 at t = 5, which illustrates the stabilization of the 
soliton via the shedding of small-amplitude radiation waves. The 
plot displays the field ReU1 (x). The parameters are"'= O.Ol,a = 
1.0, w0 = 0.2, and w = 0.9. 

60 

3.2. The case a3 = 0. First, we report results obtained for the stability of 
regular solitary waves in the case a3 = 0. As initial configurations, we used the 
corresponding stationary solutions to Eqs. (2.7) and (2.8). To test the stability 
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of the regular solitary waves, we added small perturbations to them. As could be 
anticipated, the regular solitary wave sheds off a small-amplitude dispersive wave 
(radiation) and relaxes to a stationary soliton, see Fig. 4. If, however, regular 
solitons are taken at parameter values close to the border of the cuspon region, an 
initial perturbation does not make the soliton unstable, but it excites persistent 
internal vibrations in the soliton, see an example in Fig. 5. These and many other 
simulations clearly show that the regular soliton is always stable, and, close to the 
parameter border with cuspons, it has a persistent internal mode. 

023 r-------~-------,--------~-------,--------~-------,--------· 

0.22 

0.21 

t 

FIGURE 5. Internal vibrations of an initially-perturbed regular 
soliton, which was taken close to the border of the cuspon region. 
The plot shows the squared amplitude a = !U1(x = 0)1 2 of the 
ul (x) field vs. time. The parameters are ,., = 0.01, a = 1.9, Wo = 
1.5, and w = 0.5, with Po= 0.095 [see Eq. (2.21]. 

It was shown analytically above that Eqs. (2.4) and (2.5) (with a3 = 0) support 
peakons when p0 > 0 and Po'""2 is very small. Direct simulations show that the 
peakons do exist in this case, and are stable. In Fig. 6, we display the time 
evolution of a typical stable peakon. 

An essential result revealed by the simulations is that cuspons may also be 
stable, a typical example being displayed in Fig. 7. A moving weak singularity 
seen in this figure is, actually, a small shock wave which is initially generated at 
the cuspon's crest. It seems plausible that this shock wave is generated by some 
initial perturbation which could be a result of the finite mesh size in the finite-
difference numerical scheme employed for the simulations. We have observed that 
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FIGURE 6. An example of a stable peakon. The plot shows the field 
Im ul vs. X and t. The parameters are '"" = 1.0, a = 1.95, Wo = 1.5, 
and w = 0.5, with Po = 0.04875. 
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the emission of a small-amplitude shock wave is quite a typical way of the relaxation 
of both cuspons and peakons to a final stable state. 

However, unlike the regular solitons, which were found to be always stable, 
the cuspons are sometimes unstable. Typically, their instability triggers onset of 
the spatiotemporal collapse, i.e., formation of a singularity in a finite time (see 
a discussion of the feasible collapse in systems of the present type, given in the 
Introduction). Simulations of the collapse were possible with the use of an adaptive 
grid. A typical example of the collapse is shown in Fig. 8, the inset illustrating the 
fact that the amplitude of the solution indeed diverges in a finite time. In some 
other cases, which are not displayed here, the instability of peakons could be quite 
weak, giving rise to their rearrangement into regular solitons by shedding small 
amounts of radiation. 

3.3. The case a3 =/: 0. The predictions of the analysis developed above for 
the most general case, when the SPM terms are present in the model (a3 =/: 0), 
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1.0 

0.5 

0.0 
-4 -2 0 2 4 

FIGURE 7. An example of a stable cuspon. The plot shows the field 
Im ul vs. X and t. The parameters are "' = 1.0, a = 1.0, Wo = 1.5, 
and w = 0.5, with Po = 0.5. The moving "defect" is a small-
amplitude shock wave. 

were also checked against direct simulations. As a result, we have found, in accord 
with the predictions, that only regular solitons exist in the case aa > 0, while in the 
case a3 < 0 both regular solitons and peakons have been found as generic solutions. 
Further simulations, details of which are not shown here, demonstrate that both 
regular solitons and peakons are stable in this case. 

4. Conclusion 

In this work, we have introduced a generic model of three waves coupled by 
linear and nonlinear terms, which describes a situation when three dispersion curves 
are close to intersection at one point. The model was cast into the form of a system 
of two waves with opposite group velocities that, by itself, gives rise to the usual gap 
solitons, which is further coupled to a third wave with the zero group velocity (in the 
laboratory reference frame). Situations of this type are possible in various models of 
nonlinear optics and density-stratified fluid flows. The consideration was focussed 
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D 0.0011 0.00.3 0.0041i 
t 

-2 -1.5 -1 -0.5 0 0.6 u; 2 
X 

FIGURE 8. The spatial profile is shown for an unstable (collapsing) 
cuspon in terms of Im U1 at t = 10-3 . The transition to collapse 
is additionally illustrated by the inset which shows the growth of 
the amplitude of the field \U1 \2 with time. The parameters are 
/'i. = 0.01,a = 1.1,wo = 0.1, and w = -0.3, with Po= 2.618. 

on zero-velocity solitons. In a special case when the self-phase modulation (SPM) 
is absent in the equation for the third wave, soliton solutions were found in an exact 
form. It was shown that there are two coexisting generic families of solitons: regular 
solitons and cuspons. In the special case when the coefficient of the linear coupling 
between the first two waves and the third one vanishes, cuspons are replaced by 
peakons. Direct simulations have demonstrated that the regular solitons are stable 
(in the case when the regular soliton is close to the border of the cuspon region, it 
has a persistent internal mode). The cuspons and peakons may be both stable and 
unstable. If they are unstable, they either shed off some radiation and rearrange 
themselves into regular solitons, or, in most typical cases, the development of the 
cuspon's instability initiates onset of spatiotemporal collapse. To the best of our 
knowledge, the present system gives the first explicit example of the collapse in 
one-dimensional gap-soliton models. 

The most general version of the model, which includes the self-phase modulation 
term in the equation for the third wave, has also been considered. Analysis shows 
that cuspons cannot exist in this case, i.e., cuspons, although being dynamically 
stable, are structurally unstable. However, depending on the signs of the SPM 
coefficient and some combination of the system's parameters, it was shown that a 
generic family of peakon solutions may exist instead. In accord with this prediction, 
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the peakons have been found in direct simulations. The peakons, as well as the 
regular solitons, are stable in the system including the SPM term. 

The next step in the study of this system should be consideration of moving 
solitons, which is suggested by the well-known fact that the usual two-wave model 
gives rise to moving gap solitons too [1). However, in contrast to the two-wave 
system, one may expect a drastic difference between the zero-velocity and moving 
solitons in the present three-wave model. This is due to the reappearance of a 
derivative term in Eq. (1.10), when it is written for a moving soliton, hence solitons 
which assume a singularity or jump in the U3 component, i.e., both cuspons and 
peakons, cannot exist if the velocity is different from zero. Nevertheless, one may 
expect that slowly moving solitons will have approximately the same form as the 
cuspons and peakons, with the singularity at the central point replaced by a narrow 
transient layer with a large gradient of the U3 field. However, detailed analysis of 
the moving solitons is beyond the scope of this work. 
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First integrals and gradient flow for a generalized 
Darboux-Halphen system 

S. Chakravarty and R.G. Halburd 

ABSTRACT. First integrals are explicitly constructed for a third-order system 
of ODEs that arises as a reduction of the self-dual Yang-Mills equations and in 
the theory of hypercomplex manifolds. These first integrals are branched func-
tions of the phase space variables, even in cases for which the general solution 
is single-valued. This branching is characterized in terms of the monodromy of 
the hypergeometric equations. The first integrals are then used to formulate 
a Nambu-Poisson structure of the system. A representation of the generalized 
Darboux-Halphen system as a gradient flow is also given. 

1. Introduction 

The system 

(1.1) 

where 

w2w3- w1(w2 + w3) + T 2 , 

w3w1- w2(w3 + w1) + T 2 , 

w1w2- w3(w1 + w2) + T2, 

T2 = a 2(w1- w2)(w3- w1) + {P(w2- w3)(w1- w2) + -l(w3- w1)(w2- w3), 

was first studied by Halphen [14] as a natural generalization of the classical Darboux-
Halphen (DH) system, which corresponds to setting T = 0 in equation (1.1). The 
classical Darboux-Halphen system first arose in Darboux's study of triply orthog-
onal surfaces [11] and was later solved by Halphen [15]. The classical DH system 
has also appeared in studies of self-dual Bianchi-IX metrics with Euclidean signa-
ture [4, 13] and in reductions of the associativity equations on a three-dimensional 
Frobenius manifold [12]. Furthermore, if (w1ow2,w3) is a solution of the classical 
Darboux-Halphen system, then 
(1.2) 
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274 S. CHAKRAVARTY AND R.G. HALBURD 

satisfies the Chazy equation, 

(1.3) d3y d2y (dy)2 
dt3 = 2y dt2 - dt 

In [3] it was shown that y defined by equation (1.2) solves the generalized Chazy 
equation, 

(1.4) 

where the wi's solve the generalized Darboux-Halphen system for the special choices 
of parameters (o:, (3, "!) given by (2/n, 2/n, 2/n) and (1/3, 1/3, 2/n), et eye. Note 
that equation (1.3) corresponds to the limit n -+ oo in equation (1.4). Equations 
(1.3) and (1.4) were first studied by Chazy in [8, 9, 10]. 

The system (1.1) arises in the study of the equation 

(1.5) M = (adj M)T + MT M- (Tr M)M, 

for a 3 x 3 matrix valued function M(t) where adj M is the adjoint of M satisfying 
( adj M) M = ( det M)I, MT is the transpose of M and the dot denotes differenti-
ation with respect to t. Equation (1.5) was obtained in [6] as a reduction of the 
self-dual Yang-Mills equations with an infinite dimensional gauge group of diffeo-
morphisms Diff(S3) of the three-sphere. Equation (1.5) also describes a class of 
self-dual Weyl Bianchi IX space-times with Euclidean signature [5]. More recently, 
equation (1.5) was used to describe SU(2) invariant hypercomplex 4-manifolds [16]. 

In section 2 we will review the reduction of equation (1.5) to the generalized 
DH system (1.1). The general solution will be constructed and a special case will 
be studied. In section 3, first integrals and "action-angle" variables are given for 
equation (1.1). The first integrals involve hypergeometric functions and are non-
meromorphic, even in cases where the general solution is single-valued. 

2. The solution of the generalized Darboux-Halphen system 

In this section the solution of equation (1.5) is given by a factorization method 
which first appeared in [1]. The solution can also be obtained via associated linear 
problems. In [2], the solution was obtained via an evolving monodromy problem 
that arises as a reduction of the isospectral problem for the self-dual Yang-Mills 
equations. In [16], the solution was obtained via an isomonodromy problem which 
describes the Riccati solutions of the sixth Painleve equation. Degenerate cases 
were discussed in [3]. 

We begin by decomposing the matrix Minto its symmetric (Ms) and antisym-
metric (Ma) parts. Furthermore, the eigenvalues of M 8 are assumed to be distinct, 
so that it can be diagonalized using a complex orthogonal matrix. Thus we have 

(2.1) M = Ms + Ma = P(d + a)P- 1, 

where PES0(3,C), d = diag(w1,w2,w3) with Wi =/: Wj, i =/: j, and the elements 
3 

of the skew-symmetric matrix a are given by aij = L E:ijkTk, where E:ijk is totally 
k=l 

skew-symmetric in its indices and e123 = 1. Using the transformation (2.1), the 
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A GENERALIZED DARBOUX-HALPHEN SYSTEM 275 

diagonal part of equation (1.5) yields the system (1.1), where r 2 = r[ + r:j + rl. 
The skew-symmetric part gives 

(2.2) i-1 = -r1(w2 + w3), i-2 = -r2(w3 + w1), T3 = -r3(w1 + w2), 
and the off-diagonal symmetric part gives 

(2.3) F= -Pa, 
which is a linear equation for P. 

Taking differences of equations in system (1.1) gives 
d 

(2.4) dt (w1- w2) = -2w3(w1 - w2), et eye. 

Using equations (2.2) and (2.4), we can solve the ri's in terms of the w/s as 

(2.5) r[ = o?(w1- w2)(w3- w1), 

where a, (3, and 'Y are integration constants. 
In terms of the cross ratio 

(2.6) S := W1 - W3 
W2 -W3 

it follows from equation (1.1) that the w/s can be parameterized as 
1d 8 1d 8 1d 8 

(2.7) w1=---ln , w2=---ln--, W3=---ln-. 2 dt s( s - 1) 2 dt s - 1 2 dt s 
where s satisfies 

(2.8) d ( s) 1 ( s) 2 
82 dt ~ - 2 ~ + 2 v ( s) = 0 ' 

with 

d (s) 1 (s) 2 
{s,t}:=dt ~ -2 ~ 

being the Schwarzian derivative and V is given by 
1 _ (32 1 _ 'Y2 (32 + 'Y2 _ a2 _ 1 

(2·9) V(s) = -s2- + (s- 1)2 + s(s- 1) · 

Equation (2.8) is the Schwarzian equation, which describes the conformal map-
pings of the upper-half s-plane to the interior of a region of the complex sphere 
bounded by three regular circular arcs. If a, (3, and 'Y are non-negative real num-
bers such that a+fJ+'Y < 1, then the angles subtended at the vertices s = 0, s = 1, 
and s = oo of this triangle are mr, (Jrr, and "(7!". Furthermore, if a, (3, and 'Y are 
chosen to be either reciprocals of integers or zero, then s is analytic on the interior 
of a circle on the complex sphere and cannot be analytically extended across this 
circle, which is a natural barrier [19]. 

The general solution of equation (2.8) is given implicitly by 

(2.10) t(s) = u1(s), 
u2(s) 

where u1 ( s) and u2 ( s) are independent solutions to the Fuchsian equation 
d2u 1 

(2.11) ds2 + 4v(s)u = 0. 
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276 S. CHAKRAVARTY AND R.G. HALBURD 

Equation (2.11) is equivalent to the hypergeometric equation, 

d2x dx 
(2.12) s(1- s) ds2 + [c- (a+ b + 1)s) ds - abx = 0, 

where a= (1 +a- !3- 'Y)/2, b = (1- a- !3- 'Y)/2, c = 1- /3, and 
(2.13) u(s) = sc/2 (1- s)(a+b-c+l)/2x(s). 

A fifth order reduction 
We will now consider the case in which M has the special form 

(2.14) M = (Z~~ z~~ ~ ) . 
0 0 M33 

This special form of M was considered in [5, 2), where equation (1.5) was analyzed 
using an associated evolving monodromy problem. Here we will show that quantities 
that arise naturally from this monodromy analysis can be obtained in a straight-
forward manner from the factorization method described above. 

Consider the factorization of M given by equation (2.1) where M is given by 
equation (2.14). Due to special block structure of M, its symmetric part can be 
diagonalized by an orthogonal matrix of the form 

(
cos'¢ sin'¢ 0) 

P = -sin'¢ cos'¢ 0 , 
0 0 1 

(2.15) 

where '¢ is a (generally complex) function oft to be determined. That is, Ms = 
PdP- I, where d = diag(w1, w2, w3). Furthermore, the skew-symmetric part of M 
is unchanged by the adjoint action of P. So 

1 ( 0 T3(t) 0) 
a= p-lMaP = Ma = 2(M- MT) = -T3(t) 0 0 , 

0 0 0 
(2.16) 

where T3(t) = !(M12- M21). Since T1 = T2 = 0 in this case, the wi's are given by 
equation (2.7) where s solves equation (2.8) with a= !3 = 0. From equation (2.5) 
and equation (2.7), we have 

h s 
T3(t) = 2 y's(s- 1), 

where 'Y is a constant. With the T3(t) given above, equation (2.3) can be readily 
integrated to give 

'¢ = i; log ( ~ ~ ~) + '¢o, 

where '¢0 is a constant. Finally, the matrix M in (2.14) is reconstructed from the 
various components P, d and a according to equation (2.1). Note that in order to 
obtain any solution of equation (1.5) where M is given by (2.14) we must fix the 
two constants 'Y and '¢0 and choose a solution to equation (2.8) with a = !3 = 0 
and the fixed value of 'Y· 

In [5) the general solution of equation (1.5) with M of the form (2.14) was found 
via a different method which involved the analysis of a certain evolving monodromy 
problem. This led to the following combination of the matrix elements of M 

a±= (Mn- M22) =f i(M12 + M21), R2 = a+a_, 
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A GENERALIZED DARBOUX-HALPHEN SYSTEM 277 

together with the conserved quantity 

2 (M12- M21)2 
a = R2 2 -w 

In the factorization method outlined above, these variables arise naturally from the 
component matrices P, d and a as follows 

R = w1 - w2, a± = Re"Cf2i.P, w = (w1 - w3) + (w2 - w3), M12 - M21 = 273, 

and a= 'Y· 

3. First Integrals 

In this section, following [7], we will use the method of solution given in section 
2 to construct first integrals for equation (1.1). We begin by constructing explicit 
first integrals for the Schwarzian equation (2.8), as the formulas are much simpler 
in this case. Let u1 and u2 be two linearly independent solutions of equation (2.11) 
satisfying the Wronskian condition W(ut, u2 ) = u 1 u~-u 2 u~ = 1. Then any solution 
to equation (2.8) is given implicitly by 

(3.1) ( ) J2u1(s)- J1u2(s) 
t s - --:::--....::....:--:----,::-=-~7-

- hut(s)- Itu2(s)' 

where Ik and Jk, k = 1, 2, are constants satisfying 

(3.2) 

Hence any three of the constants h, h, J1, h can be taken as independent first 
integrals. 

Differentiating equation (3.1) with respect tot gives 

(3.3) 

Differentiation of equation (3.3) gives 

(3.4) 

Solving the system (3.3-3.4) for It and h gives 

(3.5) I _ d¢k 
k- dt ' k = 1,2. 

The constants J 1 and J 2 are given by the solution of equations (3.1), (3.5) and the 
normalization condition (3.2). This yields Jk = th- ¢k, k = 1, 2. 

In terms of the gDH variables, we have 

(3.6) h 
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278 S. CHAKRAVARTY AND R.G. HALBURD 

Using the new variables </Jk and h instead of the gDH variables wi's, equation (1.1) 
can be formulated as a Hamiltonian system 

(3.7) 
. {)H 
h = - 8¢k = 0 ' 

H= I[+I~ 
2 

k = 1,2, 

together with the constraint 

(3.8) 

Although h and h are constant functions of t, they are multivalued functions 
of {w1 , w2, w3 } and of the Schwarzian variables { 8, s, s}. In terms of the solutions 
X1, x2 of the hypergeometric equation (2.12), the first integrals are given by 

(3.9) [h h] 
where 

= CT [A 1] [X1(8) 
X~ (8) 

X2(8)] 
x~(8) ' 

. .. a+b+1-c8 s cr(8,s)=8cf2 (1-8)(a+b-c+1)12s112 , and A-(8,8,8)= ( ) ---;-2 . 
28 1- 8 28 

Next we will discuss the dependence of hand I2 on 8, s, and s. Clearly Ik, k = 1, 2, 
is single-valued as a function of s and has square-root branch points as a function 
of s about s = 0 and s = oo. In fact, the conserved quantities I[ and I~ are single-
valued as functions of s. Holdings and s fixed, I 11 can only admit branch points at 
8 = 0, 8 = 1, and 8 = oo. Let /'o and 1'1 be two closed curves with a common base 
point in the finite complex 8-plane enclosing the points 8 = 0 and 8 = 1 respectively, 
and traversed once in the positive direction. Analytic continuation of a along /'o 
and /'1 gives 

/'O : a f--.> ei1rca, /'1 : a f--.> ei7r(a+b-c) CT. 

Analytic continuation along /'o and /'l transforms the fundamental matrix of solu-
tions of equation (2.12) according to 

( X1(8) 
x~(8) 

X2(8)) f--.> (X1(8) 
X~(8) X~ (8) 

X2(8)) M 
x~(8) 11 ' J.-t = 0, 1. 

For generic values of a, b, c, and for the choice of basis solutions: x1 = F(a, b, c; 8), 
X2 = F(a, b, a+ b- c + 1; 1- 8) of the hypergeometric equation, the monodromy 
matrices M 11 are given by [20] 

- (1 e-27rib - e-27ric) ( e-27ri(a+b-c) 
Mo - 0 e-27ric and M1 = 1 - e-27ri(a-c) 

So under analytic continuation, the first integrals h, h transform as 

/'O: [h I2] f--.> [h h] Moei1rc' /'1 : [h I2] f--.> [h h] M1ei1r(a+b-c). 

Analyic continuation around 8 = oo is equivalent to a loop around 8 = 0 and 8 = 1. 
Hence the branching of the first integrals h and I 2 is characterized in terms of the 
monodromy group for the hypergeometric equation. 

The first integrals in equation (3.9) for the classical DH system (a = (3 = 
1' = 0) are expressed in terms of the special hypergeometric equation (2.12) with 
a= b = 1/2, c = 1. In this case, the monodromy matrices are given by 
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relative to the choice of basis X1 = F(1/2, 1/2, 1; s) and X2 = iF(1/2, 1/2, 1; 1- s). 
Note that in this case, h and !2 are still branched, even though the solution itself 
is single-valued. The non-existence of meromorphic first integrals for the classical 
Darboux-Halphen system was proved in [17]. We show by explicit construction 
that the first integrals do indeed exist but they are non-algebraic and multi-valued. 

4. Nambu-Poisson Structure and Gradient flow 

The gDH system (1.1) can also be viewed as a complex dynamical system given 
by (w1,w2,w3) =X where the vector field 

X= (w2W3 - W1W2 - W3W1 + 7 2 , W3W1 - W2W3 - W1W2 + 7 2 , W1W2 - W3W1 - W2W3 + 7 2 ) . 

The generalized DH flow given by the integral curves of X lie on the intersection 
of the level sets of the first integrals ( h = constant and h = constant) in a three-
dimensional complex manifold M 3 ·- C \ {wi #- Wj, i #- j}. Since the h's are 
conserved under the gDH flow, 

dh dt = X · '\1 h = 0, k = 1, 2, 

it follows that the vector field X is proportional to '\1 h x '\1 I 2 • Explicit calculation 
shows that, 

where 
~ = (w2- w3)(w3- wl)(w1- w2). 

The gDH equations can be expressed as 

Wj =X. '\lwj = { (4~)- 1 '\1 h · ('\lwj x '\!II) =: {wj, hh, 
-(4~)- 1 '\lh · ('\lwj x '\lh) =: {wJ,hh-

It can be verified that the brackets 

B1(g,h) = {g,h}l 
B2(g, h)= {g, h}2 

= (4~)- 1 '\1]2 · ('\lg X '\lh), 
-(4~)- 1 '\lh · ('\lg X '\lh), 

are Poisson (i.e., they are bi-linear, anti-symmetric and satisfy the Jacobi identity). 
So X is a Hamiltonian vector field with respect to the two Poisson strucures B1 

and B2 with Hamiltonians h and h respectively. 
The Poisson structures B1 and B2 are degenerate (rank 2) and admit Casimir 

functions h and h respectively. This is easily verified by using the vector triple 
product identity 

{h,gh 
{h,g}2 

(4~)- 1 '\112 · ('\lh X '\!g)= (4~)- 1 '\lg · ('\112 X '\112) = 0, 
(4~)- 1 '\lh · ('\lh X '\!g)= (4~)- 1 '\lg · ('\lh X '\!h)= 0, 

for any smooth function g on M. Furthermore, since {h, 12h = {h, hh = 0, the 
integrals of the gDH system are in involution. The Poisson structures B 1 and B2 
are compatible in the sense that 

is also a Poisson structure for gD H with a Hamiltonian H ( h, h) satisfying 
aH aH 

>.1 8h + >.2 812 = O. 
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Thus the gDH system is hi-Hamiltonian. 
The symmetric representation of the gDH system using both Hamiltonians h, 

!2 is 

• ( )-1 ( ) ( A)-1 O(Wi,h,h) { } Wj = 4.6. \lwj · \lh X \1!2 = 4u !'l( ) =: Wj,h,J2 . 
u W1,W2,W3 

This is an example of a Nambu-Poisson bracket similar to rigid body dynamics in 
three dimensions [18, 21]. 

The Darboux-Halphen system (1.1) is also a gradient flow. In terms of local 
coordinates Wi, it can be written as 

3 .. a<P 
Wi = Lg'l-, 

j=l OWj 

where gii is a constant contravariant metric and <P is a potential function. The 
metric is given by 

(
m(a, (3, 'Y) x; + 4'Y2 x; + 4(32 ) 

(gij) = x; + 4'Y2 m((J, 'Y, a) x; + 4a2 , 
x; + 4(32 x; + 4a2 m('Y, a, (J) 

where 

and 
m(a, (3, 'Y) = (1- a 2 + ((3 + 'Y)2)(1- a 2 + ((3- 'Y) 2). 

The potential <Pis a homogeneous polynomial of degree 3 in thew/sand is invariant 
under the simultaneous cyclic permutation of {w1,w2,w3} and {a,fJ,'Y}. In terms 
of the function 

F(w1, w2, w3; a, (3, 'Y) = [(1- a 2)(3a2 - 2(32 - 2'Y2 + 1) + ((32 - 'Y2)2] x 

w1 [a2w? + 3(3 2 w~ + 3'Y 2 w~ + (1- a 2 - 3(32 - 3'Y2)w2w3], 
the potential is expressed as 

4 
<P =- 3 d ( .. ) [F(w1, w2, w3; a, (3, 'Y) + F(w2, w3, w1; (3, 'Y, a)+ F(w3, WI, w2; 'Y· a, (3)]. et g•J 

With respect to the metric gii, the constant <P surfaces are orthogonal to the curves 
obtained by the intersection of the constant h and !2 surfaces. 

In the classical Darboux-Halphen case (a= (3 = 'Y = 0), we have 

gij = (!1 ~ 1 =~) and iP = w1W2W3. 
-1 -1 1 

For the fifth order reduction (a = (3 = 0) discussed in section 2, 

( 
(1 + 'Y2)2 'Y4 + 4'Y2 - 1 'Y4 - 1 ) 

gij = 'Y4 + 4'Y2 - 1 (1 + 'Y2)2 'Y4 - 1 
'Y4 - 1 'Y4 - 1 (1 - 'Y2)2 

and the corresponding potential function is given by 
<P _ 'Y 2 w~[3(1- 'Y2)(w1 + w2) + (1 + 3'Y2)w3] + 3(1- 'Y2)2w1w2w3 

- 3(1 - 'Y2)3 . 
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Blow-ups of the Toda lattices and their Intersections with 
the Bruhat Cells 

Luis Casian and Yuji Kodama 

ABSTRACT. We study the topology of the set of singular points (blow-ups) in 
the solution of the non periodic Toda lattice defined on real split semisimple Lie 
algebra g. The set of blow-ups is called the Painleve divisor. The isospectral 
manifold of the Toda lattice is compactified through the companion embedding 
which maps the manifold to the flag manifold associated with the underlying 
Lie algebra g. The Painleve divisor is then given by the intersections of the 
compactified manifold with the Bruhat cells in the flag manifold. In this paper, 
we give explicit description of the topology of the Painleve divisor for the 
cases of all the rank two Lie algebra, A2, B2, C2, G2, and A3 type. The results 
are obtained by using the Mumford system and the limit matrices introduced 
originally for the periodic Toda lattice. We also give a Lie theoretic description 
of the Painleve divisor of codimension one case, and propose several conjectures 
for the general case. 

1. Introduction 

It is well-known that the generalized (nonperiodic) Toda lattices asociated with 
semisimple Lie algebra g of rank l possess l polynomial invariants, the Chevalley 
invariants, which provide their integrability [4, 12]. The isospectral manifold de-
termined by those polynomials defines a [-dimensional affine variety, and it can be 
compactified by adding the points associated with the blow-ups in the solution of 
the Toda lattice. Those points are defined as the zeros of r-functions giving an 
explicit solution of the Toda lattice (13], and the set of zeros is sometimes called 
the Painleve divisor. The number of r-functions is given by the rank of the algebra, 
and each r-function can be labeled by a dot in the corresponding Dynkin diagram. 
Then the Painleve divisor consists of l components {e{k} : k = 1, · · · , l}, and each 
e { k} is associated with a root ak in the Dynkin diagram. As in the case of periodic 
Toda [1], the singularities of the divisor are canonically associated with the Dynkin 
diagrams, i.e. 8J = nkEJ8{k} for a subdiagram J C {1, · · · , l}. 

In [8], Flaschka and Raine considered a companion embedding map of the 
isospectral manifold into a flag manifold, and identified the Painleve divisor as the 
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284 LUIS CASIAN AND YUJI KODAMA 

intersection with certain Bruhat cells in the Bruhat decomposition, 

GjB+ = U N-wB+ jB+, 
wEW 

where G is the Lie group with g =Lie( G), B+ the Borel subgroup, N- the unipo-
tent subgroup and W the Weyl group of G. Then the compactification of the 
isospectral manifold can be obtained by gluing the Painleve divisor in the flag 
manifold. 

On the other hand, the real part of the compactified isospectral manifold was 
studied in [5], where the manifold was constructed by extending the work ofKostant 
in [12]. Theorem 3.2 in [12] describes part of the isospectral manifold of the Toda 
lattice in terms of one connected component of a split Cartan subgroup of G. 
There is a total of 21 connected components which are labeled by a set of signs 
E = (t:~, · · · , t:z). In [5] instead all the connected components of a Cartan subgroup 
are involved. The upshot is that now a split Cartan subgroup HJR, with all its con-
nected components, becomes an open dense subset in the compactified isospectral 
manifold. This manifold is then described as a union of convex polytopes r, glued 
as in [6], and each connected component with the sign E of the Cartan subgroup is 
the interior of the corresponding polytope r,. The convexity of the polytope r, can 
be shown by Atiyah's convexity theorem [3] with the torus embedding (conjugate 
to the companion embedding) in the flag manifold. 

In this paper, we study the topological structure of the Painleve divisor as the 
blow-ups of the Toda lattice on the polytopes. In Section 2, we provide a back-
ground information necessary for the present study which includes the isospectral 
manifold, the companion embedding to the flag manifold, the r-functions and the 
Painleve divisor. 

In Section 3, we define the limit matrices to parametrize the Painleve divi-
sor. The limit matrix was first introduced in [2] for the periodic Toda lattice for a 
parametrization of the Birkhoff strata of the hyperelliptic Jacobi variety, and the 
existence of the limit matrix was shown based on Sato's theory of universal Grass-
mannians. We here give a direct proof of the existence of the limit matrix by using 
a factorization of the unipotent subgroup N- (Proposition 3.2), and show that the 
companion embedding maps the limit matrix to the corresponding Bruhat cell. 

In Section 4, we define the Mumford system for the Az Toda lattice, which 
may be considered as an extension of the system used to parametrize the moduli 
space associated with the hyperelliptic Riemann surface and its Jacobian. The 
Mumford system gives an explicit coordinate for the Painleve divisor through the 
limit matrix. Then we prove a topological equivalence between the top cell of Ak 
and certain Painleve divisor of A3 with j > k (Proposition 4.2). 

In Section 5, we provide several explicit results for the Toda lattices on the Lie 
algebra g of all rank 2 cases, A2, B2, C2, G2, and of type A3. 

Then in Section 6, we give a Lie theoretic description of the Painleve divisor 
based on the results in [5, 6]. We first review the details of the construction of 
the compactified manifold by gluing the polytopes r, of the Cartan subgroup HIR, 
and it is worth keeping in mind that HIR is not necessarily a Cartan subgroup in 
G but rather in another Lie group G defined in Notation 6.2. We then define an 
"algebraic"version of the Painleve divisor, denoted by S{i}' in terms of the simple 
root character Xa, defined on the Cartan subgroup. The characters Xak can be 
expressed in terms of the characters Xw, associated to the fundamental weights 
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wi which have similar properties to the T-functions. Then we give Conjectures 
6.5 and 6.18 that e{i} and B{i} become homeomorphic if small modifications on 
B{i} are introduced. These conjectures about the structure of the Painleve divisors 
are verified in all the rank 2 cases as well as in A3 discussed in Section 5. The 
homology of the spaces constructed in terms of the root characters is computable 
with the same methods used in [5]. Conjectures 6.5 and 6.18 then would allow the 
computation of the homology of the Painleve divisors. 

2. Toda lattices and Painleve divisor 

The generalized ( nonperiodic) Toda lattice equation related to real split semisim-
ple Lie algebra g of rank l is defined by the Lax equation, [4, 12], 

(2.1) 
dL dt = [A,L] 

where the Lax pair (L, A) are given by 
l l 

L(t) = L)i(t)ha, + L (ai(t)e-a, + eaJ 
(2.2) i=l i=l 

l 

A(t) =-L ai(t)e-a, 
i=l 

Here { ha,, E±a,} is the Cartan-Chevalley basis of the algebra g with the positive 
simple roots II = { a 1 , · · · , a 1} which satisfy the relations, 

[ha,,haJ = 0, [ha,,E±a1 ] = ±Cj,iE±a1 , [ea.,e-a1 ] = 15i,jha1 , 

where ( Ci,j) is the l x l Cart an matrix of the Lie algebra g. The Lax equation (2.1) 
then gives 

(2.3) { 
dbi --a· dt - ' 
dai 
dt 

The integrability of the system can be shown by the existence of the Chevalley 
invariants, {h(L): k = 1, · · · , l}, which are given by the homogeneous polynomial 
of { ( ai, bi) : i = 1, · · · , l}. Then in this paper we are concerned with the topology 
of the real isospectral manifold defined by 

Z(!')JR = { (a1, · · · , az, b1 · · · , bz) E lR21 : Ik(L) = '"'/k E JR., k = 1, · · · , l}. 

The manifold Z(!')JR can be compactified by adding the set of points corresponding 
to the blow-ups of the solution. The set of blow-ups has been shown to be charac-
terized by the intersections with the Bruhat cells of the flag manifold G j B+, which 
are referred to as the Painleve divisors, and the compactification is described in the 
flag manifold. In order to explain some details of this fact, we first define the set 
:F"', 

:F"' :={LEe++ B- : h(L) = '"'/k, k = 1, · · · , l}, 

where e+ = I:!= I ea,, and s- is the Lie algebra of B-. Then there exists a unique 
element n0 E N- such that L E F"' can be conjugated to the normal form C"', 
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286 LUIS CASIAN AND YUJI KODAMA 

L = n 0C-yn01 [11]. In the case of g = sl(l + 1,JR), C-y is the companion matrix 
given by 

0 1 0 0 
0 0 1 0 

C-r = 

0 0 1 
( -1)1')'! -')'1 0 

where the Chevalley invariants are given by the elementary symmetric polynomials 
of the eigenvalues of L. Then we define: 

DEFINITION 2.1. [8]: The companion embedding of F-y is defined as the map, 

where L = noC-yn01 with no E N-. 

The isospectral manifold Z('Y)~ can be considered as a subset of F-y with the 
element L in the form of (2.2). The Toda lattice (2.1) then defines a flow on F-y 
which is embedded as follows: 

PROPOSITION 2.1. [8] The Toda flow maps to the flag manifold as 

C-y : L(t) f----+ n01n(t) 
= ni)letLo 

mod B+ 
mod B+ 

where L 0 = n 0 C-yn01 , and n(t) E N-, b(t) E B+ are given by the factorization of 
etL0 = n(t)b(t). 

This Proposition is based on the solution formula using the factorization, i.e. 

(2.4) 

However one should note that the factorization is not always possible, and the 
general form is given by the Bruhat decomposition, 

It has been also shown in [8, 1] that for a subset J of {1, · · · , l} the blow-up of the 
solution L(t) at t = tJ corresponds to the case 

where WJ =f. id , 

where WJ is the longest element of the Weyl subgroup WJ associated with the 
Dynkin diagram labeled by J. Thus the Toda flow meets only those Bruhat cells, 
and we see that the Painleve divisor, denoted by 'D J, characterizes the intersec-
tion of the Bruhat cell corresponding to the longest element WJ E W with the 
compactified isospectral manifold Z ( 'Y )~, i.e. 

(2.5) 'DJ = Z('Y)~ nN-wJB+ jB+, with W0 = id. 
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BLOW-UPS AND BRUHAT CELLS 287 

Here Z ('y )IR is the closure of the image of the isospectral manifold under the com-
panion embedding c'Y in (2.1), and it has a decomposition (intersection with the 
Bruhat decomposition), 

Jc {1,-·· ,!} 

The analytical structure of the blow-ups can be obtained by the r-functions, 
which are defined by 

(2.6) 
l 

ak = a2 IT (rj)-ck,i, 
j=l 

From (2.3), the tau-functions then satisfy the bilinear equations, 

(2.7) TkT~- (r~)2 = ITh)-Ck,i, 
j=f.k 

where T~ = d2rk/dt2 and T~ = drk/dt, and To = 1, T!+2 = 0. Then the Painleve 
divisor V J can be defined as 

(2.8) c'Y(L(t)) E 'DJ ~ Tk(t) = 0, iff k E J. 

We also define the set 8 J as a disjoint union of V J', 

eJ := U vJ'· 
J'2J 

Then we have a stratification of Z('y)IR, 

Z('y)IR = e<o) ::::J e<l) ::::J ••• ::::J e(l) = c'Y(C'Y), with e<k) = u eJ. 
IJI=k 

The irreducibility of the Painleve divisors 8{k} was shown in [7], where the analog 
of Riemann's singularity theorem for the compactified complex manifold Z('y)c was 
also discussed. 

In the case of a given matrix (adjoint) representation, one can construct an 
explicit solution for {aj(t)} in the matrix L(t). First we have the following Lemma: 

LEMMA 2.1. The diagonal element bi,i of the upper triangular matrix bE n+ 
in the factorization (2.1) is expressed by 

b· ·(t) _ Dj[exp(t£0 )] 
J,J - Dj-l[exp(t£0 )] 

where Dj[exp(t£0 )] is the determinant of the j-th principal minor of exp(t£0 ), i.e. 

with the standard basis { vi}~=l of 'Rn with some n. 

Then using the formula in (2.4), we can obtain the solution ai (t) and the explicit 
representation of the r-functions in terms of the determinants Dj[exp(t£0 )]. Thus 
the r-functions are the entire functions of t given by polynomials of exponential 
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288 LUIS CASIAN AND YUJI KODAMA 

functions exp(Akt) with the eigenvalues Ak of £ 0 . In fact, one can show that the 
Dj[exp(t£0 )] can be expressed as the Hankel determinant, 

D1 D' D(j-1) 1 1 

D~ D~ npl 
j = 1, 2, · · · ,n, 

D(j-1) D{2j-2) 
1 1 

where D1 = D![exp(t£0 )] = 2::~= 1 Pi exp(Ait) for some Pi E ~ \ {0}. With this 
formula, one can study a detailed behavior of the T functions [9]. 

REMARK 2.2. On any Cartan subgroup of G there is another set of functions 
having similar properties to the T functions. These are the root characters Xw; 
associated to fundamental weights Wi. For example, the simple root characters 
Xi := Xa; can be expressed in terms of the Xw; with the inverse of the Cartan 
matrix of the Lie algebra g. This is the same relation that exists between the ai 

in (2.2) and the T functions. The signs of the characters Xi change when chamber 
walls Xi = -1 are crossed in a Cartan subgroup in analogy to what happens to the 
signs of the ai when a Painleve divisor is crossed. If xi denotes the root character of 
the simple root ai corresponding to each separate chamber in the Cartan subgroup, 
then xi is continuous through ai walls and through some aj walls. The points on 
a Cartan subgroup where xi + 1 = 0 are called the ai-negative wall [5], which 
defines an "algebraic" version ofthe Painleve divisors e{i} in terms of the functions 
Xi· This set is compactified and gives rise to a topological space E>{i} (see Section 
6). 

3. Limit matrices, Painleve divisors and the companion embedding 

Here we show that Painleve divisors can be parametrized using limit matrices. 
These were first introduced in [2] for the case of the periodic Toda lattice. The main 
result in [2] is to show the existence of the limit matrix, say LJ, which is constructed 
by conjugating the Lax matrix L(t) with a matrix inN- and taking the limit t ---t tJ 
corresponding to the factorization etJLo = n(tJ)wAJ(tJ) for n EN- and bE B+. 
In our case of the nonperiodic Toda lattice limit matrices arise as a consequence of 
Theorem 3.3 of [8]. 

DEFINITION 3.1. For fixed J C {1, · · · , l} we let PJ denote the parabolic sub-
group of G containing B+ and associated to J. One can define a projection 

'TrJ: G/B+ ---t G/PJ. 
The group N- factors as N- = N:J Nj with Ny := N- n WJN±w-/. Hence any 
n E N- can be written as n = uy with u E N:J and y E Nj unique elements. We 
thus obtain factorizations (notation of Proposition 2.1): n01n(t) = u(t)y(t), and 
'TrJ(u(t)y(t)B+) = u(t)PJ. 

Since the limit n01n(t)B+ as t ---t tJ exists (see Proposition 2.1), it is of the 
form u(tJ )wJB+ for some u(tJ) E N:J. Then we have 

PROPOSITION 3.1. With notation as in Definition 3.1, the limit of u(t) as t ---t 

tJ exists, 
lim u(t) = u(tJ) E N:J. t-+tJ 
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Proof Since limt-.tJn01n(t)B+ = ft(tJ)WJB+ with ft(tJ) E N:J, by applying 
1r J we obtain 

lim n01n(t)PJ = ft(tJ)PJ. t--+tJ 

On the other hand 7l"J(n01n(t)B+) = 7l"J(u(t)y(t)B+) = u(t)PJ. Therefore, since 
the top N- orbit in G / P J can be identified with N:J we then obtain a limit inside 
this group: limt--+tJ u(t) = ft(tJ ). D 

DEFINITION 3.2. A limit matrix of L is an element LJ in the set :F7 of the 
form, 

Let u(t) = ft(tJ)u(t). Then limt--+tJ u(t) = e, withe the identity, and we have 

PROPOSITION 3.2. The limit matrix is also expressed as 

lim Ad(y(t))L(t) = LJ(tJ). t--+tJ 

Proof We have 

L(t) = Ad(n-1(t)n0 )C7 = Ad(y-1(t)u- 1(t))C7 = Ad(y-1(t)u- 1(t)u- 1(tJ))C7 

Hence Ad(y(t))L(t) = Ad(u(t))LJ. We now take limit and use that u(t) ~ e to 
conclude. D 

The result can be summarized in the diagram, 

L(t) c'Y n01n(t) modB+ ---t 

1 1 
Ad(y(t))L(t) ---t u(t)y(t) modB+ 

t--+tJ 1 1 t--+tJ 

LJ(tJ) ~ ft(tJ )wJ modB+ 

REMARK 3.3. For each set J we can define a function ¢J: Z('Y)JR ~ Ad(N:J)C7 
given by ¢J(L) = Ad(y)L. A limit matrix LJ is then an element in the bound-
ary ¢J(Z('y)JR) \ ¢J(Z('Y)JR). The closure takes place inside Ad(N:J)C7 . This gives 
another description of V J which allows one to define the compactification of the 
isospectral manifold Z('Y)JR using only the limit matrices. The companion embed-
ding then takes a simple form. First note that any limit matrix LJ is contained in 
the N:J orbit of C7 . Hence LJ = Ad(u-1 (tJ))C7 where ft(tJ) E N:J is unique. For 
J = 0, we just set ft(t) = n01n(t). The companion embedding then maps LJ to 
ft(tJ )wJB+. 

REMARK 3.4. In all our examples y(t) = YJ(t) can be replaced with x:J 1(t) an 
element in N:J defined below in terms of a companion matrix associated to a Levi 
factor. 
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In the following, we determine the limit matrices for the case of g = sl(l + 1, JR) 
(the general case will be discussed elsewhere). Let consider the set J be given by s 
consecutive numbers, say { i+ 1, · · · , i +s }, (i+s :::; l). Then from (2.8) this implies 
that the divisor V J consists of the points corresponding to the zeros of r-functions, 
Tk = 0 for all k E J. On the other hand, from (2.7), we can show 

LEMMA 3.1. For each j E J = { i + 1, · · · , i + s}, Tj ( t) has the following form 
near its zero t = tJ, 

(3.1) Ti+k(t) ~ (t- tJ)mk + · · ·, with mk = k(s + 1- k), 1:::; k:::; s. 

Proof Substituting (3.1) into (2.7), and using Ti(tJ) I 0, we have mk 
k(m1 + 1- k). Then Ti+s+l(tJ) I 0 implies m1 = s. D 

Then using (2.6) one can find the blow-up structure of the functions (aj,bj)· 
We note here that this structure is the same as the case of the smaller system 
sl(s + 1, JR) with the total blow-up. The Lax matrix of this smaller system is just 
the submatrix (here the b-variables are modified from the original form in (2.2), 
e.g. bk - bk-1 --+ bk), 

bi+l 1 0 0 
ai+l bi+2 1 0 

L'= 

0 bi+s 1 
0 ai+s bi+s+l 

Then one can put this matrix into a companion matrix by a unique element x~ E 
N-, the set of ( s + 1) x ( s + 1) lower triangular matrices with 1 's on the diagonals. 
The companion matrix c~ = x'-; 1 L'x~ and X~ are given by 

0 1 0 
0 0 1 

c~ = 
0 0 

(-1) 8 ~s+l -6 

0 1 
0 * 

X~= 

1 
6 * 

0 

1 

... 

0 

1 0 
* 1 

where ~k 's are the polynomials of ( aj, bj) in the Lax matrix. Since the Toda lattice is 
isospectral, those polynomials stays constants even when all of the elements ( aj, bj) 
blows up. Then the limit matrix LJ is obtained by the limit of the conjugation of 
L with XJ E Nj, 

LJ = lim Ad(x:J1 (t))L(t), with XJ = 
t->tJ 

1 0 
0 1 

0 

Let us now give an example to illustrate the construction: 

x' J 

0 
0 

1 
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EXAMPLE 3.5. The A3 Toda lattices: The Lax matrix is given by 

L = (~: : 2 ~ ~) 
0 a2 b3 1 ' 
0 0 a3 b4 

k=1 

The limit matrices LJ are determined as follows: 
a) J = {1}: Then T1 (t) "'t* = (t- t{l}) implies that a1 "'t;2,a2 "'t*,b1 "' 

t-; 1 , b2 "' t-; 1 and others are regular. The limit matrix is then obtained by 
the limit x{1\Lx{l} --> L{l} as t* --> 0, 

( 
0 1 

L _ -6 6 
{1} - 171 0 

0 0 

( 
1 0 0 0) . -b1 1 0 0 

W1th X{l} = O O 1 O 

0 0 0 1 

where 6 = b1 + b2, 6 = b1b2 - a1, 111 = -a2b1 are the parameters for the 
divisor V {1}. 

b) J = {2}: With T2 "'t* = (t- t{2}), we have a1 "'t*,a2 "'t;2,a3 "'t*,b2 "' 
t-; 1 ' b3 rv t-; 1 ' and the limit matrix is given by 

1 
0 

-6 
172 

0 0) 1 0 
6 1 ' 
0 b4 

with (
1 0 
0 1 

X{2} = 0 -b2 
0 0 

0 0) 0 0 
1 0 
0 1 

where 6 = b2 + b3, 6 = b2b3 - a2, 171 = -a1b3, 112 = -a3b2 are the 
parameters for the divisor V{2}· 

c) J = { 3}: This case is similar to the case J = { 1}, and we have 

d) 

0 0) 1 0 
0 1 ' 

-6 6 
with x{3} = (

1 0 
0 1 
0 0 
0 0 

0 0) 0 0 
1 0 

-b3 1 

where 6 = b3 + b4, 6 = b3b4- a3, 171 = -a2b4 are the parameters for the 
divisor 1){3}· 
J = {1, 2}: We construct £{1,2} from £{1} with x{l, 2}, 

Lu,,J ~ (I 1 0 

~} X{''}~ ( ~ 
0 0 

~) 0 1 with 1 0 
-~~ ~~ -6 1 

17~ 0 0 b4 0 0 

where~~ = 6 + b3, ~~ = 6 + 6b3, 17~ = 171 + 6b3 with ~1, 6,111 in £{1} are 
then the parameters for the divisor V{l, 2}. This can be of course done with 
a matrix x{2, 1} from £{2}· 

e) J = {2, 3}: This is similar to the previous case d), and we have 

(
b1 1 
0 0 

£{2,3} = 0 0 

17~ ~~ 

with x{2,3} = (~ ! ~ :
1
) 

0 6 -6 

0) 1 0 
0 1 ' 

-~~ ~~ 

0 
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292 LUIS CASIAN AND YUJI KODAMA 

where e~ = e1 + b2, e~ = 6 + e1b2, 17~ = 111 + 6b2 with 6, e2, 111 in L{2} are 
then the parameters for the divisor 'D{2,3}. 

f) J = {1, 3}: We construct the limit matrix L{1,3} from L{l} by using x{1,3} = 
X{3}· 

( 
0 1 

-6 6 
L{1,3} = 0 0 

11~ 0 

0) 1 0 
0 1 ' 

-e~ e~ 

0 

4. The A1 Toda lattice and the Mumford system 

In [14], Mumford gave a parametrization of the theta divisor for a hyperel-
liptic Jacobian with triples of polynomials determined by the factorization of the 
corresponding hyperelliptic curve. This is related to the periodic Toda lattice, but 
the idea can be also applied to the present case of nonperiodic Toda lattice on 
g = sl(l + 1, JR.): 

DEFINITION 4.1. The Mumford system for the spectral curve F1(..\) = det(..\1-
L) of degree l + 1 is the triples of polynomials (ud(..\), vd(..\), wd(..\)) determined by 

F1(..\) = ud(..\)wd(..\) + vd(..\), 

where ud is a monic polynomial of degree d, Vd is a polynomial of degree less than 
d with the condition vd(J.J-k) = Fl(J.J-k) for the roots of ud(..\) = 0, and Wd is a monic 
polynomial of degree l + 1 - d. 

One can write ud and Vd in the form, 

l ud(..\) = IT(..\- J.l-k), 

vd(..\) = t Fl(J.J-k) IT ..\- J.l-i 
k=1 jf.k J.l-k - J.l-j 

When d = l (the rank of the matrix), the J.J--variables can globally parametrize the 
isospectral manifold Z('Y)JR by taking an explicit relation with the original variables 
(ak, bk) in L, for example, choose the l-th principal minor of L to be u1(..\). One 
can also define an integrable system for the Mumford system as 

(4.1) l 1~ dt 
dw 
dt 

=v, 

where [f(..\)]+ indicates the polynomial part off(..\) (see [14, 15] for the periodic 
case). The integrability is a direct consequence of the isospectrality, i.e. fixing the 
curve F1(..\) = uw+v. It is also interesting to note that the system has a Lax form, 

d:: = [M,B], with M = (~ ~h), B = 2~ (~ ~), 
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where h2 = v and b = [vwful+· Then the first equation in (4.1) gives the system, 

df..lk Fl(f..lk) - k= 1,··· ,d. 
dt Ilj#(f..lk- J.lj)' 

Using the Lagrange interpolation formula, 

~ J.L'k = { 0 if n < d- 1, 
~ IJ (u u ) 1 if n = d- 1. k=1 j-f-k ,..-k - d 

we obtain, after integration, 

n < d -1, 
n=d-1. 

with some constants f..lo and Ck, k = 1, · · · , d - 1. In particular, the system with 
d = 1 gives 

df..l1 
dt = -F!(J.L1), 

whose solution has l + 1 fixed points at J.L1 = >..k fork= 1, · · · , l + 1, and blows up 
when J.L1 > max(>..k) or f..l1 < min(>..k)· One can also show the following Proposition 

k k 
on the topology of certain !-dimensional Painleve divisors eJ(Ak) of the Ak Toda 
lattice: 

PROPOSITION 4.1. Let Jk_ 1 C {1, · · · , k} be either {1, · · · , k-1} or {2, · · · , k}. 
Then the Painleve divisors eJk_ 1 (Ak) are all homeomorphic to circle, i.e. 

eJk_ 1 (Ak) ~ 8 1, for k = 1, 2, ... , 

where Jo = 0. 
Proof Since the homeomorphism between the divisors with J = {1, · · · , k -1} 

and J = {2, · · · , k} is obvious, we consider the case with J = {1, · · · , k - 1 }. In 
this case, the limit matrix has the form, 

LJ = 

0 1 
0 0 

0 
( -l)k-1~k 

0 
1 

0 
0 

1 0 
6 1 

'rJ 0 0 bk+l 

where ~i are the coefficients of the polynomial I>..J- £'1 = >..k + L:7= 1 (-l)i~i>..k-i 
with L' given by the first k x k part of the Lax matrix L, and rJ = -akb1 · · · bk_1 (in 
the limit t--+ tJ). Then from the Mumford system Fk(>..) := I>..J -LJI = u1w1 +v1, 
we have 

'T} = -Fk(J.Ll), with f..l1 = bk+1, 

where v1 = -ry. This indicates that the Painleve divisor VJ(Ak) has just one 
connected component of IR, and adding the highest divisor e{l,.·· ,k}(Ak) we see 
that the closure eJ(Ak) is homeomorphic to 8 1. This completes the proof. D 

We can also show the following on higher dimensional divisors, 
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PROPOSITION 4.2. Let J~ C {1, · · · , k+n} be either {1, · · · , n} or {k+1, · · · , k+ 
n}. The Painleve divisors D Jk ( Ak+n) are all homeomorphic to the top cell of the 
Ak Toda lattice, i.e. n 

D0(Ak) ~ 1J J!: (Ak+n), for n;::: 1. 

Proof Let J be {1, · · · , n}. Then the limit matrix LJ is given by 

LJ = (~~ ~~)' 
where A 1 is the (n + 1) x (n + 1) companion matrix of the corresponding block 
in the matrix L, A2 is the (n + 1) x k matrix having zero entries except 1 at the 
bottom left corner (i.e. (k, 1)-entry), A 3 is the k x (n+1) matrix having zero entries 
except TJ at the top left corner ((1, 1)-entry), and A4 is the k x k submatrix of Lax 
matrix, 

bn+2 1 0 
an+2 bn+3 1 0 

A4 = 

0 bk+n 1 
0 ak+n bk+n+l 

Then from the factorization of Fk+n(.X) = IAI- LJI = uk(.X)wk(.X) + vk(.X), we have 
the Mumford system, 

Uk = IAI- A4l, Vk = -ryiAI- B41, Wk = IAI- All, 
where B4 is the (k- 1) x (k- 1) submatrix of A4 by deleting the first row and 
column vectors. Thus we have 

TJIJLjl- B4l = -Fk+n(JLj), for j = 1, · · · , k, 

The left-hand side of this equation has the same form for all the cases with fixed 
k, and the right-hand side gives a real one-dimensional affine curve for each P,j E 
lR of degree k + n. This implies that all the divisors DJk(Ak+n) have the same 
parametrization, so that they are all homeomorphic. D n 

Since the boundaries of each 1J Jk ( Ak+n) seems to have the same structure for 
n 

n ;::: 1, we expect 

CONJECTURE 4.2. The Painleve divisors e J!: (Ak+n) for n :::: 1 are all homeo-
morphic, i.e. 

5. Examples for rank 2 and 3 

5.1. The A2-Toda lattice. The Lax matrix is a 3 x 3 matrix given by 

L = (!~ b~ ~) , with t bk = 0, 
0 a2 b3 k=l 

and the spectral curve F 2 (.X) = det(AJ- L) is 

F2(.X) = .X3 + h.X- h 
where the Chevalley invariants Ik(L) are given by 

h(L) = b1b2 + b2b3 + b1b3- a1- a2, I2(L) = b1b2b3- a1b3- a2b1. 
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FIGURE 1. The A2 hexagons r£1€2' The numbers 1 and 2 mark the 
Painleve divisors 8{1} and 8{2}. The center point (double circle) 
in r -- indicates the divisor e{1,2}· 
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To parametrize the isospectral manifold Z('yh~., we consider for example the follow-
ing Mumford system with the choice of the triples, · 

Then in terms of (f.lb f.1.2) the Chevalley invariants are given by 

/1 = -(f.ll + f.l2) 2 + f.l1f.l2 - a1, /2 = -f.llf.l2(f.ll + f.l2) - a1b3, 

which leads to 

al(f.lk- b3) = -F2(f.lk), k = 1,2. 

Also from ( 4.1), we have the Toda flow in the variable (f.l1, f.1.2), 

df.lk = (-1)k F2(f.lk), k = 1,2, 
dt f.ll- f.l2 

which is also obtained by setting a1 (f.lk-b3) = ( -1)k+1(f.ll- f.l2)df.lk/dt. The system 
has 6 fixed points with (f.l1, f.l2) = (.Xi, Aj), 1 :S i =f. j :S 3, and for each set of the 
signs (t:1, E2) with Ei = sign(ai(O)) the integral manifold gives a hexagon, denoted 
by f, 1 , 2 as in Fig.l. In particular, one can easily see that there is no blow-up in 
r ++ (note that h(L) = 'Yl makes all the variables be bounded, if both a1 and a2 
are positive). Those four hexagons are glued together along with their boundaries 
according to the standard action of the Weyl group 83 on the signs (t:1,t:2), and the 
compactified manifold is topologically equivalent to a connected sum of two Klein 
bottles lK [9]. This can be seen by counting the Euler characteristic, 6(vertices)-
12(edges) + 4(hexagons) = -2 and the nonorientability (see [5] for the general 
argument on the compactification based on the Weyl group action). 

The Painleve divisor V{l} corresponding to r 1 = 0 can be parametrized by the 
limit matrix, 

(5.1) 
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where ~1 = b1 + b2, 6 = b1b2- a1 and 'f/1 = -a2b1. The matrix L{l} is obtained by 
the limit, 

L{') ~ ,!.!,']', x{,'J ( t)L(t)xp l ( t), with xp) (t) ~ ( ~b ! D · 
Then the spectral curve F2(>.) gives the algebraic relations (the Chevalley invari-
ants), 

6 + b3 = 0, h(L{l}) = 6 + 6b3, 12(L{l}) = 'f/1 + 6b3, 
which leads to 

D{l} = {(6,6,'f/l,b3) E 1R4 : 6 = -b3,h = 1'1.12 = /'2} 
= { (rJl, b3) E IR2 : 'r/1 = -F2(b3) = -b~- /'1b3 + /'2}. 

We thus show that the closure of D{l} is homeomorphic to a circle 8 1 , and it 
intersects with three subsystems corresponding to (a2 = 0, b3 = Ak) for k = 1, 2, 3. 
The Mumford equation (4.1) can be used to provide a dynamics on D{l} with 
J.L1 = b3 and 'f/1 = dJ.Ld dt, 

dJ.Ll 
dt = -F2(J.Ll)· 

In Figure 1, e{l} is shown as a curve with the label "1". The 8{2} has the similar 
structure. Thus we obtain: 

PROPOSITION 5.1. The compactified manifold Z(!')JR and the Painleve divisor 
have the following topology, 

Z(!')JR = e0 9:! oc ~ oc , e{l} 9:! e{2} 9:! s1 . 

We also note by taking out the divisors e{l} and e{2} from Z(/')JR that the 
top cell D0 = Z ( ')' )JR n N-B+ / B+ is diffeomorphic to a torus '][' with a hole of a 
disk IIJ), i.e. 

5.2. The C2 Toda lattice. Since the B2 Toda lattice has the same structure 
as the C2 case, we discuss only the latter one. The Lax matrix for C2 Toda lattice 
is given by a 4 x 4 matrix, 

L _ (!~ b~ ~ ~ ) 
- 0 2a2 -b2 1 

0 0 a1 -b1 

whose spectral curve F2(>.) = det(>.J- L) is 

F2(>.) = >.4 - h>-2 + 12 
with the Chevalley invariants h(L), 

h = b~ + b~ + 2a1 + 2a2, /2 = (b1b2 - a1)2 + 2b~a2. 
The corresponding polytope r € 1 €2 with the signs Ek = sign(ak) is given by a octagon 
with eight vertices associated with the fixed point of the system, a1 = a2 = 0. Those 
vertices are expressed as (b1, b2) =(alAi, a2>.j) for O"k E {±},if. j E {1, 2}. Gluing 
those octagons along their boundaries, we find that the compactified manifold Z ( ')' )JR 
is topologically equivalent to a connected sum of three Klein bottles K Again just 
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I I I 

r+- r-+ r_ 
FIGURE 2. The c2 octagons rflf2 and the Painleve divisors 
8{1}' 8{2} and 8{1,2}. 
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count the Euler characteristic, 8( vertices) - 16( edges) + 4( octagons) = -4, and 
the nonorientability leads to the result. 

The Painleve divisor 8{1} is now parametrized by the limit matrix 

( 
0 1 

-6 6 
L{l} = 0 0 

"11 0 

0 
1 
0 

-6 
where 6 = b1 + b2, 6 = b1b2- a1 and "11 = -2a2br Then the Chevalley invariants 
h ( L) are expressed by 

from which we obtain 
1 2 2 "11 = 4((~1 -h) - 4h). 

This implies that the 8{1} is homeomorphic to 8 1 and intersects with four subsys-
tems corresponding to ~ 1 = a(A1 ± A2 ) with a E { ±1} and with the divisor 8{2} in 
r __ (see Figure 2), 

Unlike the case of A2 Toda lattice, the divisor 8{2} has a different structure. 
The corresponding limit matrix £{2} is given by 

where 6 = b~ + 2a2, "12 = a1b2. The invariants Ik are then given by 

h=b~+6, J2=6b~-2,2b1, 
and we obtain 

1 
"12 = - b1 F2(b1). 

Because of the singularity in this equation at b1 = 0, the 8{2} is shown to be 
homeomorphic to a figure eight, where each circle intersects two subsystems corre-
sponding to either b1 = IAkl or b1 = -IAkl with k = 1, 2. The node of the figure 
eight corresponds to the divisor 8{1,2} (see Figure 2). We thus obtain, 
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PROPOSITION 5.2. The topology of the isospectral manifold oJC2 and the Painleve 
divisor is given by 

Zb)R. 9:! K ~ K ~ K , 8{1} 9:! 8\ 8{2} 9:! 8 1 v 8 1. 

The B2 Toda lattice has the same structure, but 8{1} and 8{2} have the 
opposite structure. 

5.3. The G2 Toda lattice. We use the following one for the Lax matrix, 
b1 1 0 0 
a1 b2 1 0 0 
0 a2 b1- b2 1 0 0 

L= 0 0 2a1 0 1 0 0 
0 0 2a1 -b1 + b2 1 0 
0 0 a2 -b2 1 
0 0 a1 -b1 

The spectral curve is then given by 
F2(.X) = .X(.X2(_x2 + lt)2 +h), 

where It and h are the Chevalley invariants given by homogeneous polynomials of 
(a1, · · · , b2). Each polygon r, 1 ,,2 in the isospectral manifold has 12 vertices corre-
sponding to a1 = a2 = 0 which is also the order of the Weyl group. Those polygons 
are glued to obtain the compactified manifold which is topologically equivalent to 
a sum of five Klein bottles. The Euler characteristic is 12(vertices)- 24(edges) + 
4(polygons) = -8. 

The Painleve divisor V{1} is parametrized by the limit matrix £{1}• 

0 1 0 0 
-6 6 1 0 0 

0 0 0 1 0 0 
£{1}= 0 0 0 0 1 0 0 

rJ 0 0 ~r -46 0 1 0 
0 0 0 0 0 0 1 
0 0 -ry 0 0 -6 -6 

where 6 = b1 + b2, 6 = b1b2 - a1 and rJ = 2b1a1a2 in the limit t -+ t{l} with 
r1(t) ""t- t{l}· Here we have used the conjugating matrix x{1} as, 

1 0 0 0 
-b1 1 0 0 0 

0 0 1 0 0 0 
X{l}= 0 0 b2- b1 1 0 0 0 

0 0 -2a1 b2- b1 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 -b1 1 

which can be obtained from the structure of r-functions in (2.6). Then the invari-
ants It, h are given by 

~t = 36- ~r. h = (46- ~D~~ + 2ry6. 
Eliminating 6, we obtain 

rJ = 2~1 (- 217(~r + ~t)2(~r +4ft)+ !2). 
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I r_ 
FIGURE 3. The G2 polygons r €1€2 with the Painleve divisors 
e{l}l e{2} and e{1,2}· 
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which has two connected components, and each component intersects three times 
with the boundaries of the polytopes r +-, r -+ and r __ (see Figure 3). 

The limit matrix corresponding to the Painleve divisor 1J{2} is given by 

6 1 0 0 
0 0 1 0 0 
'fJ -6 6 1 0 0 

L{2}= 0 -2ry 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 2ry -6 -6 1 
0 0 0 0 -ry 0 -6 

with the conjugating matrix x{2}, 

1 0 0 0 
0 1 0 0 0 
0 -b2 1 0 0 0 

X{2} = 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 bt- b2 1 0 
0 0 0 0 0 0 1 

Here the new variables are 6 = bt, 6 = b2(b1 - b2) - a2 and 'fJ = a1b2 in the 
corresponding limit with r 2 (t) ---> 0. With those variables, the invariants are 

from which we have two curves 'fJ = 'fJ± ( 6), 

Those curves indicate that there are two connected components of the divisor 1J{2} 
and each component has three intersections with the subsystems. Topologically 
then the divisors D{t} and 1J{2} are the same, and adding the divisor 1J{1,2} one 
can conclude that the closure of both divisors are topologically equivalent to a figure 
eight. Thus we have 
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PROPOSITION 5.3. The topology of the G2 Toda isospectral manifold and the 
divisor is given by 

5 

z('-r)JR ~ ~, 8{1} ~ 8{2} ~ si v s 1. 

5.4. The A3 Toda lattice. In the example 3.5, we gave the limit matrices for 
the Painleve divisors. Here we discuss the topology of the divisors by computing 
explicitly the isospectral sets of those matrices, i.e. 

F3(.A) = .A4 + h.A2 - 12.A + h 
where the Chevalley invariants h(LJ ), k = 1, 2, 3 are now expressed in terms of 
the parameters in the limit matrices. Here we use the same parametrizations in 
Example 3.5: 

a) J = {1}: We take the polynomial u2(.A) in the Mumford system as u2(.A) = 

lA- b3 , - 1b I' i.e. f.LI + /12 = b3 + b4 = -6, /-LI/12 = b3b4- a3. Then the -a3 A- 4 
Chevalley invariants are given by 

{ 
h = 6 - (/11 + /12)2 + /11/12, 
h = 7)I - /11/12(/-LI + /12) + 6(/-LI + /12), 
13 = 6/11/12 + 7]1b4. 

Eliminating 6, we find 

"71(/-Lk- b4) = -F3(f.Lk), k = 1,2. 

As was shown in Proposition 4.2, comparing this with the top cell of the A2 
Toda lattice in Subsection 5.1, one can see 

v{l} ~ 1!' \ lDJ. 

b) J = {2}: We take u2(.A) =(.A- bi)(.A- b4), i.e. /11 = bi, /12 = b4. Then we 
have, using 6 = -(/11 + /12), 

which lead to 

= /11/12 - (/11 + /12)2 + 6, 
= 6(/-LI + /12)- /-LI/12(/-LI + /12) + 7)I + 7]2, 
= /11/126 + /-LI"72 + /127]I, 

TJk = ( -1)k F3(f.Lk) . 
/-LI- /12 

c) J = {3}: This case is similar to the one with J = {1}, and we have the same 
formulae of the Chevalley invariants in the variables /11, /12 which are defined 

asu2(.A)= ~.A-b 1 , - 1b I, i.e. /-LI+f.L2=b1+b2=-~1, /11f.L2=bib2-ai. -a3 A- 2 

d) J = {1, 2}: Here we take u1 (.A) = A - b4 for the Mumford system, i.e. 
/-LI = b4 and VI = -7]~. Then the Chevalley invariants are 

h = ~~- f.Li, h = ~~ + ~~f.Ll, h = ~~/11- 7]~, 
and from VI = -7]~, we obtain 

TJ~ = -F3(f.LI), 

which implies that v{l,2} intersects with four boundaries of the polytopes, 
and the closure, 8{1,2} is homeomorphic to a circle. 
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FIGURE 4. The A3 polytopes r. marked by E = (E1E2E3) and the 
Painleve divisors e{l} (the solid grey curves), 8{2} (the dotted 
curves) and 8{1,2} (the double circles). 
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e) J = {2, 3}: We get exactly the same result as the previous case with /Ll = b1. 
f) J = {1, 3}: The Chevalley invariants are given by 

h = 6~~ + 6 + ~~. h = 6~~ + 6~~. h = 6~~ -ry~. 
Using 6 + ~~ = 0 and eliminating ~~, ~~, we obtain 

11~ = 4 ~~ (~~(~~ + r1)2 - r:n - h 

This equation indicates that D{1,3 } has two connected components, each 
of which intersects with three boundaries of the polytopes. Each boudary 
corresponds to a point ( 11i = 0, >..i + >.. j) for i -=/=- j. Then we can see 

e{1,3} ~ B1 v B1 . 

The results are summarized in Figure 4 where the Painleve divisors 8{1}• 8{2} and 
8{1,2} are shown as the solid grey curves, the dotted curves and the double circles. 
The 8{3 } has a similar structure to the 8{1}· One can see from this Figure that 
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each portion of the 8{1} on a r, is homeomorphic to either hexagon or octagon, 
and we have 4 hexagons in r, with E = ( + + -), (- + +), ( + - -), (- - +), and 3 
octagons with E = ( + - +), (- + -), (- - -). Then the Euler characteristic can be 
computed as follows: The total number of vertices are given by 12 = ( 4 x 6+3 x 8) /4 
by identifying 4 vertices of the polygons, the edges are 24 = (4 x 6+3 x 8)/2 in total, 
and we have 7 faces, i.e. the Euler characteristic is 12 - 24 + 7 = -5. One can also 
see the non-orientability of the divisor, so that the 8{1} is topologically equivalent 
to a connected sum of 7 real projective planes JP> (or 3 Klein bottles plus a projective 
plane). For 8{2}, we have 4 squares and 4 hexagons. However two squares in r __ _ 
are attached at a point of the divisor 8{1,2,3}> and thus the 8{2} gives a singular 
variety. By detaching those two squares, one can compute the Euler characteristic 
in the same way as above, and we obtain 12- 24- 10 = -2. This shows that 
the desingularized variety of 8{2} is homeomorphic to the compactified manifold 
Z('y)IR for the A2 Toda lattice (in the next section we give a further discussion on 
the desingularization in Lie theoretic point of view). Thus we have 

PROPOSITION 5.4. The Painleve divisors for the A 3 Toda lattice have the fol-
lowing topology, 

8{1} ~ 8{3} ~ lK tt lK tt lK tt JP>, 812} ~ lK tt JK, 
8{1,2} ~ 8{2,3} ~ S1, 8{1,3} ~ s v S1, 

where 8{2} is the desingularization of 8{2} by a resolution at the divisor 8{1,2,3}. 

The singular structure on the divisor 8{1,3} has been also found in the case of 
periodic Toda lattice [10]. 

6. An algebraic version of the Painleve divisor 

Here we discuss the Painleve divisor in the framework of the Lie theory. We 
first review and summarize some Lie theoretic notation. 

6.1. Notations and Definitions. 

NOTATION 6.1. Lie algebras: Recall that g denote a real split semisimple Lie 
algebra of rank l and we are fixing a split Cartan subalgebra ~ with root system ~. 
a positive system ~+ determining the Borel subgroup B+ of G. The corresponding 
set of simple roots is II := { o:i : i = 1, · · · , l} as in Section 2 where we just denoted 
II={k=1,···,l}. 

The Weyl group W is thus generated by the simple reflections sa;, i = 1, · · · , l. 
For any S C II, we define the subgroup generated by S, 

W S = ( Sa; : O:i E S ) 
This is the Weyl group of a parabolic Lie subgroup and it is standard to refer to 
W s as a parabolic subgroup of W. 

NOTATION 6.2. Lie groups: We let Gc denote the connected adjoint Lie group 
with Lie algebra gc and G the connected Lie subgroup correspondintg to g. Denote 
by G the Lie group {g E Gc : Ad(g)g C g}. A split Cartan of G with Lie algebra~ 
will be denoted by HJR; this Cartan subgroup has exactly 21 connected components 
and the component of the identity is denoted by H = exp(~). We let Xi := Xa; 
denote the roots characters defined on HR.. 
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EXAMPLE 6.3. If G = Ad(SL(n, JR.)), then G is isomorphic to SL(n, JR.) for n 
odd and to Ad(SL(n, JR.)±) for n even. This example is the underlying Lie group 
for the Toda lattices as shown in [5]. 

DEFINITION 6.4. The negative walls: Recall that the compactified isospectral 
manifold Z(/')JR of the Toda lattice is described in [5] as a closure in G j B+ of a 
generic HIR orbit. Hence there is an embedding f: HJR--+ Z('Y)JR C GjB+. 

The exponential map exp : f) --+ H separates H, and consequently every con-
nected component of HJR, into chambers. If Xi is a simple root characters relative 
to a fixed dominant chamber then Xa:, can be extends to an adjacent chamber by 

-C. saiXa, = Xa,Xai '' 3 • This defines a single function xi on an open dense subset of 
HIR which equals Xw(a:;) on each w-chamber for wE W (denoted by ¢w,i in Defi-
nition 5.4 of [5] ). The functions lxil are well defined and continuous throughout 
HIR and the xi are well defined and continuous at all the ai walls and some of the 
aj walls. For example, if a is a permutation, then the corrersponding chamber in 
SL(3,JR.) looks like {(r,.(l),ru(2),ru(3)) : lr1l > hi > hi} and xi= ru(l)r,;(~)' 

* -1 X2 = r u(2) r u(3) · 

The functions xi + 1 = 0 on HJR then determine a topological subspace of Z ( 'Y )JR 
whose closure we denote 8{i}· Similarly a subset J c II determines a topological 
space 8J by equations Xi + 1 = 0 for ai E J. We call 8J the negative wall 
associated with the set J (see Subsection 6.3 for another definition in the language 
of [6] which does not explicitly involve the Cartan subgroup). 

CONJECTURE 6.5. There is a surjective continuous map f : 8J --+ 8]. This 
map is a homeomorphism in an open dense subset of 8J. Whenever 8] happens 
to be homeomorphic to a non-singular manifold then f is a homeomorphism. 

EXAMPLE 6.6. In the case of .sl(3) all 8{i} and 8{i} are homeomorphic. They 
are both homeomorphic to a circle (see Example 6.15 below). For .sl(4) again 8{i} 

is homeomorphic to 8{i} for i = 1, 3 (details in Example 6.12 and Proposition 
5.4). However 8{2} and 8{2} are not homeomorphic. The situation is described in 
Example 6.19 together with Proposition 5.4 and is as follows. It is possible to desin-
gularize 8{2} so that the compact connected surface e{2} which is obtained is non-
orientable with Euler characteristic -2. Then there are maps S{2} --+ 8{2} --+ 8{2} 

and 6{2} now resolves the singularities of both 8{2} and 8{2}. Conjecture 6.5 needs 
to be sharpened by modifying 8] slightly so that one always has homeomorphisms. 
Below we propose such a modification for the case when J consists of one simple 
root. 

It is now easy to see that 8{1} and 8{1} agree in the case of A3 . Figure 4 shows 
the eight polytopes r € corresponding to 21 connected components of HJR. In fact 
what is shown is the boundary of each polytope and the intersection of 8{i} for 
i = 1, 2. However, the negative walls are also depicted by the same picture. The 
only modification consists in drawing the dotted lines or the solid grey lines through 
the center of the hexagons. The actual negative walls are obtained by joining the 
dotted line or solid grey line to the center of the polytope through straight lines 
generating cones. Hence 8{1} intersected with each polytope consists of a disk in 
the form of a cone joining the center of the polytope with the path described on 
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the boundary of the polytope by the solid grey line. Gluings are described in detail 
in Definition 6.9. What results is a smooth compact surface. 

In order to introduce modifications to Sj we need to describe its structure in 
more detail. We do this by using the description of a manifold M given in [6] which 
is homeomorphic to Z(1)JR. We review the construction of M and then define new 
topological spaces 8] in the case when J conists of one simple root. 

DEFINITION 6.7. Let£ be the set of signs£= {(~:1,· .. ,E!): EkE{±}}. Then 
we define an action of Won£ by setting SiE = E1 where 

1 Cj,i 
Ej = EjEi , 

which can be deduced from the W -action on the root character Xi with Ei = 
sign(xi)· The fact that this defines an action which corresponds to the action 
of W on the set of connected components of a split Cartan subgroup of the real 
semisimple Lie group G can be found in [5]. 

For any S c II we let lDl(S) denote the set of all Dynkin diagrams that have 
the simple roots in S marked by + or -. We also define an action of the group 
Ws on this set by making w E Ws act on the signs associated to the simple roots 
inS as prescribed above. For example o_- o+- o E lDl(S) with S = {a1 ,a2} and 
s 1 ( o_ - o_ - o) = o_ - o+ - o. 

We now obtain actions of Ws on£ x Wand on lDl(S) x W given by a(t:, w) = 
(at:, wa- 1 ) and a(c5, w) = (ac5, wa-1). The orbits of theWs action on (t:, w) E £xW 
and (c5, w) E lDl(S) x W are denoted by [~:, w]s and [c5, w])s respectively with the 
sub-index S dropped when the set S is clear from the context. These Ws orbits 
in the case of lDl(S) x W are the full set of colored Dynkin diagrams introduced 
in section 4 of [5]. The orbits of Ws on£ x W with S = {ai} are used below 
to parametrize the walls xi ± 1 = 0 intersected with a fixed polytope. The walls 
xi± 1 = 0 in Zb)IR can be parametrized by lDl(S) x W with S = {ai}. 

6.2. Review of the description of Zb)IR in terms of the polytopes 
r ,. Here we discuss the detailed description of negative walls in the connection to 
the Painleve divisors 8 J. Let us first summarize the construction of the isospectral 
manifold of the Toda lattice given in [6]. Starting with a polytope r, other polytopes 
r, are constructed where E E £. These polytopes then form a compact smooth 
manifold when they are glued together through their boundaries. We now review 
the details. 

In terms of the description given in [5], each r, has interior that can be made 
to correspond to a connected component of a split Cartan subgroup of the real 
semisimple split Lie group G. Chambers and walls then refer to the action of Won 
a Cartan subgroup, and the internal chamber walls in the polytopes r, correspond 
to walls of this action (xi± 1 = 0). When xi= -1 then the chamber at the other 
side of the wall need not be the one obtained by application of Sa; = si. 

DEFINITION 6.8. Consider r a convex polytope consisting of the convex hull of 
a w orbit of a regular element Xo in~· We first denote c~ the dominant chamber in~ 
intersected with r and C' e the corresponding closure, and also denote C:V = w( C~). 
We define Cw = { w} x C:V and its closure C w = { w} x C' w. The ,, ... will refer to 
subsets of r, and we have the convention: 

{ } ... { } { }'"' ... = W X ... 
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in all our notation concerning walls. For each simple root o:i we may consider the 
corresponding O:i (internal) chamber wall intersected with C' w· Denote this set 
by [w]',<>;,IN. Each external wall of the convex hull of Wx0 is parametrized by a 
simple roots o:i. We denote an external wall of r by [w]''<>;,OUT if it intersects all 
the internal chamber walls except for [w]''a,,IN. 

For any J C II we define the subsets of C' w of dimension III \ Jl, 

{ 
[w]',J,e = n [w]'' 0 '' 9 ' if J -=1- 0 ' 

o;EJ 

[w]',J,e = c:n ' if J = 0 ' 
where e is either OUT or IN. Thus we have the decomposition, 

C' w = U (w]',J,e. 
JCTI 

SE{OUT,IN} 

DEFINITION 6.9. We will need to use the action of Won the set of signs£ of 
Definition 6.7. We now define gluing maps between the chamber walls denoted by 
{t:} x (w]· .. = {t:} x {w} x [w]' ... as follows: For the internal walls, we define 

{ } [ la;,IN 
9w,i,IN : € X W { } [ la;,IN 

----+ Sa; € X WSa; 

(t:,w,x) 1----+ (Sa; €, WSa;, X) 

where note ws0 , w-1x = x. For the external walls, we define 

9w,i,OUT : { €} X (wt;,OUT ----+ { €(i)} X (wt;,OUT 
(') (t:,w,x) ~------+ (t:t ,w,x) 

where t:(i) = (t:l, · · · , -t:i, · · · , €!)· 
We denote M the disjoint union of all the chambers endowed with different 

signs, 

M = U {wt:} X Cw-1. 
wEW 
<EE 

We also denote M the topological space obtained from the disjoint union in M by 
gluing along the internal and external walls using the maps 9w,i,IN and 9w,i,OUT· 
There is then a map 

z:M~M. 

6.3. The negative walls. We now give a precise definition of the negative 
wall. Let us first define: 

DEFINITION 6.10. First denote 

f\ = U {wt:} X Cw-1 . 
wEW 

We now let r, denote the image of r, in M. Then after the identifications in M, 
this space becomes a copy of r. 

NOTATION 6.11. Set t:' = w- 1t: and recall the action of Wand its subgroups on 
pairs (t:', w) where t: E £and wE W (Definition 6.7). Note that an o:i wall [wt',IN 
which is the intersection of two closed chambers { t:'} x Cw and {Sit:'} x Cws; can be 
simply parametrized by the coset of w in [w] E W / < si >. To keep track of signs 
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we need to consider the two pairs (E1,w) and (siE1,wsi)· This constitutes the orbit 
of (E1,w) under the action of W{s;}· We have already denoted this orbit by [E1,w] 
in Definition 6.7 and now this orbit [w- 1 E, w] will also be used as a parameter to 
denote the corresponding internal wall in r,. This wall is called negative for ai if 

1 _ ( I I) h I- 1 f - E1 , ... , E1 as fi - - • 

For a set J c II one can also consider the orbit of WJ denoted [E1 , w]J which 
will now denote the intersection: 

This parametrizes an intersection of several walls. We call this J multi-wall inter-
section J- negative or just negative if it is such that for all ai E J there is 0' E W J 

such that ( O'E1)i = -1 where ( E1, w) is a representative where w has minimal length 
in its coset in W /W J. 

For any ai E II we consider the set R,,J given by 

R,,J = {[€1, w] : [E1, w] is negative } 

When J = { ai} we will just write R,,i 

Consider the subspace of M given by 

EXAMPLE 6.12. We can now describe the topology of S{1}. Since S{l} is 
smooth it will suffice to compute its Euler characteristic. That S{l} is not orientable 
will follow. 

Walls in a fixed r, are parametrized as in Notation 6.11. If we want to param-
etrize walls independently of each separate polytope, we consider colored Dynkin 
diagrams as in [5]. Intersections of walls are obtained by coloring more simple roots 
with -s or +s. Thus we consider walls as parametrized by the full set of colored 
Dynkin diagrams (Definition 6.7). 

The negative walls in 8{1} can then be listed: [o_ - o- o, e], [o_ - o- o, 2], 
[o_ - o- o, 3] [o_ - o- o, 23],[o_ - o - o, 12] , [o_ - o- o, 32], [o_ - o- o, 312] 
[o_-o-o, 123], [o_-o-o, 232], [o_-o-o, 1232], [o_-o-o, 2312], [o_-o-o, 12132]. 

Now boundaries must be considered. For example the boundaries of [o_- o-
o, e] are [o_ -o_ -o, e], [o_ -o-o_, e], [o_ -o+ -o, e], [o_ -o-o+, e]. Therefore all 
these walls are part of 8{1}· However [o_- o- o, 2] produces [o_- o_- o, 2]. Since 
the Weyl group Ws now includes s2 then we can write this wall as [o+- o_- o, e] 
because s2 ( o_ - o_ - o) = o+ - o_ - o. Therefore the wall [o+ - o_ - o, e] must 
also be included in S{l}. Taking this into account we can easily count all the cells 
of S{l}· All the 1-cells of the form [o,1 - o,2 - o,w] except E1 = f2 =+appear. 
This gives 3 x !W/W{s1 ,s2 }/ = 3 x 4 such cells. We also get all the cells of the form 
[o_- o- o±, w] , a total of 2 x jW/W{s1 , 83 }/ = 2 X 6. Hence a total of 24 cells of 
dimension one. Finally there are 7 cells of dimension 0. The Euler characteristic 
obtained is 12- 24 + 7 = -5. Since S{l} is homeomorphic to a smooth compact 
surface, this completely describes its topology. 
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Note that the actual boundary maps involved in a homology computation are 
as described in section 4 of [5]. 

6.4. A graph associated to the negative walls in r e• Let us define a 
graph to describe the negative walls for a fixed ai E II. 

DEFINITION 6.13. The graph G(t:): 
We consider a graph G(t:) having vertices (t:',w) with t:' = w-1t:. 

(a) If all fj =-then all the pairs (t:', w), (8jE1, W8j) are edges. 
We now describe the edges when not all fj are negative. 
First for all semisimple Lie algebras of rank l :::; 3: 
(t:', w), (8jf1 , W8j) is an edge if and only if one of the following is satisfied: 

(b) i =fj, Ci,i =f -2, t:j = + 
(c) i =fj, Cj,i = -2, t:j =-
(d) i =fj, Ci,i = 0, t:~ =-
Note that if we fix i and j then the corresponding subdiagram of the Dynkin 

diagram has rank two. We will show below that these conditions lead to the correct 
description of the divisors ei in the rank two cases. The condition d) of Definition 
6.13 will correspond to the case of A1 x A1. If we consider only Lie algebra of types 
A, D, E and G2, the conditions simplify to: 

(a') ai E II(t:) 
(b') i =fj, t:j = + 
(c') i =f j, 8j commutes with 8i and f~ =-

The case ai = a2 in B2 is some kind of exception which requires a separate rule 
given in condition c). 

In general,if the rank is n given a subset S C II and f E £ we denote t:s the 
restriction formed by the ordered lSI-tuple consisting only of the fk with ak E S. 

We assume that all the edges of the graph have been defined for rank lSI < n. 
The pair (t:',w), (8jE1 ,W8j) is an edge if there isS C II with lSI< n, 8i,8j E Sand 
there is a E Ws with w = w1a, l(w1) + l(a) = l(w) and (t:8, a), (8jfs, a8j) form 
an edge in the case of the split Lie subalgebra determined by S. 

We now break up Re,i as a disjoint union of subsets consisting of negative walls 
belonging to the same connected component of the graph G(t:). We thus obtain a 
set I(t:) consisting of subsets of Re,i· The disjoint union UaEJ(e) a equals Re,i· 

DEFINITION 6.14. The graph G: We now define a graph whose vertices are the 
elements a E J(t:) for f E £. If a E J(t:1) and (3 E J(t:2) , then there is an edge 
joining a to (3 if and only if there is w such that 

(i) [w-1t:1,w] E a, [w-1t:2,w) E (3 
(ii) Denoting w-1t:1 = t:' then we have: w-1t:2 = (t:')(i) 

EXAMPLE 6.15. Consider the case of A2 and J = {al}. Iff=(--) condition 
a) in Definition 6.13 applies; however, as it turns out, condition b) alone will suffice 
in this case. We have the following edges indicated by --+ connecting the only two 
negative walls. ((--),e)--+ ((-+),81)--+ ((-+),8182). We have the following 
set of negative walls R(--),1 = {[(--),e),[(-+),8182]}. We obtain that I(--) 
consists of one single element a-- = {[(--),e), [( -+ ), 8182]}. 

Fort:=(-+) weobtainR(-+),1 = {[(-+),e),[(-+),82]} and!(-+) consists 
of one single element a-+= {[(-+),e), [(-+),82)} 
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308 LUIS CASIAN AND YUJI KODAMA 

ForE=(+-) we have Rc+-),l = {[(--),82]----+ [(--),8182]} and again there 
is one single element a+-. 

The graph G consists of a "cycle" a:-- ----+ a-+ ----+ a+- ----+ a:--. For example, 
there is an edge a:-- ----+ a-+ because [( -+), e] E a:-- n a:-+. If one consider 
the topological space consisting of the corresponding walls then what results is a 
circle in agreement with what was found in Propopsition 5.1. This corresponds to 
Figure 1 where the divisor indicated by the number 1 is replaced with two walls 
-straight lines- joining at the center of the hexagons. The edges of G correspond to 
intersections with the boundaries of the hexagons r €) that is with "subsystems". 

EXAMPLE 6.16. Consider the case of G2 and J = {81} withE=(+-). The 
negative walls are parametrized by 

Note that [( --), 82], [( -+ ), 828182] are in the same connected component of 
G(E) since 

( --, 82) ----+ ( -+, 8281) ----+ ( -+, 828182); 

where ----+ indicates an edge. However this process reaches a dead-end when we 
apply 81 once more since one obtains ( --, 82818281) but 82 cannot be applied at 
this point because E2 = -1. The connected component of the graph G( +-) which 
contains [( --), 82] then consists of 

( --, 82) ----+ ( -+, 8281) ----+ ( -+, 828182) ----+ ( --, 82818281). 

From here 
a+-= {[(--),82], ((-+),828182]} 

and similarly there is another set of negative walls 

{3+- = {[( --), 8182], [( -+ ), 81828182]} · 

We have I(+-) = {a+-, f3+- }. 
ForE=(-+), II(E) = {81} one obtains a:-+= {[(-+),e],[(-+),s2]}, f3+- = 

{[( --), 81828182], [( --), 8281828182]}. For E = ( --) all the negative walls are 
in a single connected component. However, here, unlike what happens in the 
A2 example one requires condition a) of Definition 6.13 with II(--)= {s1,82}. 
This allows the application of 82 independently of the sign E~. We have a:-- = 
{[(--),e], [(-+),81,82], [(---),828182], [(-+),8281828182]} and I(--)= {a:--}. 

The graph G has nodes given by {a:+- .{3+-, a:-+, {3-+, a:--}. The edges are 
a+- ----+ a-+, f3+- ----+ {3-+ and a:-- ----+ x for x = a+-, f3+-, a:-+, {3-+. This gives 
a total of six edges. 

When one considers the topology of the sets of walls involved and the edges 
are regarded as the only gluings: a:-- consists of two intersecting line segments 
and all the others consist of segments. What then results is a figure 8. The 6 
edges are the intersection of this figure 8 with the boundaries of the polytopes r f 
(subsystems). Note that segments associated to a+- and f3+- are being regarded 
as disjoint. However the two segments forming a:-- are not disjoint because they 
form part of one single connected component of G( --). The topological space 
associated to these graphs and the negative walls will be made precise below for a 
general semisimple Lie algebra. 
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EXAMPLE 6.17. We now consider the case of B2, J = { s2} and E = ( +,-). 
We have edges (+-,e)~ (+-,sl) ~ (+-,s1s2) but (+-,s1s2) is a dead-end 
because s1 cannot be applied since E1 = + and C1,2 = -2. We also have an edge 
(+-,e) ___. ( +-, s2) which leads to a dead-end for the same reason. This gives 
a set a+- = {[( +-), e], [( +-), s1]}. Another connected component of the graph 
produces (3+- = {[( +-), s2s1], [( +-), s1s2s1]}. 

ForE=(--) one obtains a--= {[(--),e], [(--),s1s2s1]} and forE=(-+) 
a-+ = {[( -+), s1], [( -+ ), s2s1]}. Hence a graph results with edges a-- ~ x and 
a-+ ~ x where x =a+-, (3+- giving a total of four edges in G. Again we consider 
the topology of the sets of walls involved and, as in the previous examples, the 
edges in G are regarded as the only gluings between these segments. We obtain 
four segments corresponding to the elements in J(E) giving rise to a circle that 
intersects the boundaries of the r, at four points (the edges of the graph G). This 
corresponds to 8{1} in Proposition 5.2. 

6.5. The spaces of negative walls 8i. Fix an element a E J(E). We con-
sider the disjoint union 

U {a} x [w-1E,w]. 
aEl(•),[•' ,w]Ea,fE£ 

We define gluings for any pair a, (3 which are joined by an edge of the graph G. 
g: (a, [E', w]) -----? [((3, E'(i)wa-1]) 

(a, E1, w, x) ~ ((3, E1(i), w, x) 

CONJECTURE 6.18. There is a homeomorphism g: 8i ~ 8i. 
EXAMPLE 6.19. The topology of 8{2} in the case of A 3 can be computed ex-

plicitly and shown to correspond to 8{2}· We first compute the Euler characteristic 
of E>{2} using the method in Example 6.12. One obtains twelve 2-cells, twenty four 
2 cells and seven 1-cells giving the same Euler characteristic as in the case of E>{l}. 
However the sets I (E) for E = ( + - +) and E = (- + -) contain two elements. This 
can be seen in Figure 4 where the corresponding paths of dotted lines are discon-
nected. The recipe for the construction of 8{2} corresponds to separating the two 
cones obtained by joining these paths to the center of each of these polytopes. This 
introduces two additional points! Hence the Euler characteristic for 8{2} becomes 
-3. 

One now notes that 8{2} remains singular as can be seen in Figure 4 where 
in the boundary of the polytope r --- there are two disconnected paths of dotted 
lines. It is possible to resolve this singularity by simply separating the center of 
this polytope into two separate points. This gives rise to a compact surface of 
Euler characteristic -2 since one additional point is added. The resulting surface 
can be seen to be non-orientable. We thus obtain that 8{2} is homeomorphic to 
8{2}. The compactification of the isospectral manifold of A2 reappears but only as 
a resolution of singularities of the Painleve divisor. 
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ABSTRACT. Linear waves are often represented as linear superposition of har-
monics ei(kx-wt). In this paper nonlinear analogues of both the functions 
ei(kx-wt) and the concept of superposition are considered. The parameters 
introduced provide a generalization of the concept of scattering data to so-
lutions of integrable systems for which classical scattering data do not make 
sense. 
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0. Introduction: linear waves and their properties 

The most important aspect in the theory of linear differential equations 
is that of linear superposition. Its formulation is quite simple: if Ut and u2 are 
solutions of a linear partial differential equation then so are their linear combina-
tions. That naturally leads to the problem of finding a minimal set of solutions of 
a partial differential equation whose linear superpositions would produce all or, at 
least, a sufficiently large class of solutions of that equation. Such a minimal set is 
often referred to as basis. For a sufficiently large class of equations used to describe 
miscellaneous linear waves, the basis is often comprised of oscillatory solutions of 
the type 

cos (.B(A) +A · x + wt) (O.la) 

where ,B(A) E lR is the phase, x ElRn is the space coordinate, A ElRn is the 
momentum, t is time and w is the energy which itself is often a function of A 
whose exact form 

w=w(A) 
is known as the dispersion relationship. 

(O.lb) 

By taking finite and infinite linear combinations of (0.1) 

L cos (.B(AA:) +Ale· x + w(A~c)t)u~c, 
l:EN 

311 

(0.2a) 
@ 2002 American Mathematical Society 
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312 MIKHAIL KOVALYOV 

one may construct a fairly large class of real functions in the form of trigonometric 
sums/series (0.2a). Taking 

N = lNn' >.k = k.6..A, Uk = u(>.k).6..A n 

with a small parameter .6-.A and some, possibly generalized, function u(>.) and 
passing to the limit as .6-.A ----t 0 , one obtains Fourier integrals 

j cos (13(>.) + >. · x + w(>.)t )u(>.) d>., d>. = d.A1 ... d.An. (0.2b) 
JRn 

Linear superposition and formulas (0.2a,c) are mathematical facets of what in 
physics is known as interference and/ or diffraction of linear waves, [Fey 1], which 
in this paper will be referred to as linear interference and linear diffraction. 

Although nowadays linear interference and diffraction are often taken for granted 
without much forethought, their role in physics and natural sciences cannot be un-
dervestimated. At the dawn of quantum mechanics, when physicists had to come 
to grips with the concept of wave-particles, the phenomena of linear interference 
and diffraction essentially served to define a wave as a motion exhibiting linear 
interference and diffraction. Wave-particles then were defined as localized packets 
of waves or wave-packets. 

Linear diffraction was first observed for light by the primeval man in the form 
of a rainbow, then for X-rays by Max Von Laue and later for electrons by Clin-
ton J. Davisson and George P. Thomson. It occurs when a wave interacts with an 
object producing waves of the type pei(~·x+wt+cp), p > 0. Two such waves 

pei(>:·x+wt+<P) and pei(>:·x+i;;t+~) 

in turn interact with each other, provided 

.A = .A, w = w, and ¢ - ¢ = 1rn 

to produce a wave 

(0.3a) 

(0.3b) 

(0.3c) 
The latter interaction of the two waves, which is exactly what linear interference 
is, can result in amplification or annihilation of the wave motion in certain regions 
of space providing numerous diffraction patterns known in physics [Fey 1]. 

Fig. 2 

That the resulting wave (0.3c) is an exact sum of the interacting waves (0.3a) 
subject to conditions (0.3b) is far from obvious and there is no apriory reason why 
it should be so. It has been observed experimentally for some waves and serves as 
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SUPERPOSITION PRINCIPLE 313 

a physical proof that the equations describing such waves must be linear. Fig. 2 
illustrates linear interference with waves (0.3a) shown in thicker broken lines and 
the resulting wave (0.3c) shown in thinner solid line. 

Linear interference, as given by formulas (0.3), underlies the very existence of 
the Fourier integrals (0.2b). Indeed, for a sufficiently smooth u(.~) the integral 
(0.2b) is defined to be the limit of Fourier sums, which in one-dimensional case 
may be taken in the form 

2NN 

SN =Z::cos (.B(A.N,k) + AN,kX + wt)u(A.N,k)~A., AN,k = TNk, ~A.= TN. (0.4a) 
k=l 

Fig. 3 

-~ 
_,/" 

.,/'" - I 

For the sequence SN of Fourier sums to converge as N ~ oo, one must have 

~ t. cos (fl( A2N,2k-,) + >.,N,2k-,x + wt) U( A2N,2k-')] ~ G (0.4b) 

as shown in Fig. 3, i. e. for large N the term cos (.B(A.N,k) + AN,kX + wt) u(A.N,k) 

must be linear superposition of ~cos (.B(A.2N,2k) + A.2N,2kx + wt)u(A.2N,2k) and 

~cos (.B(A.2N,2k-d + A2N,2k-1X + wt )u(A.2N,2k-t), in accordance with (0.3). 
About the most popular of all linear equations describing a variety of waves 

arising in mechanics of fluids and solids, electro-magnetic theory, theory of relativ-
ity, etc. is the classical wave equation 

(0.5a) 
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314 MIKHAIL KOVALYOV 

Functions (0.1) subject to an implicit dispersion relation 

w2 = 1~1 2 (0.5b) 

satisfy (0.5a). A broader class of solutions of (0.5a) is furnished by (0.2a,c) subject 
to (0.5b). 

Note that for the wave-equation, as for most other equations describing linear 
waves, multiplication of the basic solution (0.1a) by energy w (momentum Aj , 

resp.) and application of the operator ~ ~ ( ~ fla , resp.) yield the same result, 
Z ut Z UXj 

i.e. 

1 a 
w=--

i at 
1 a 

and Aj = -:-~, 
Z UXj 

when applied to (0.6) 

Unfortunately, once one moves from linear to nonlinear phenomena the gov-
erning equations become nonlinear and the linear superposition principle as well 
as the concepts of linear interference, linear diffraction and even that of a basic 
solution lose their meanings. Remarkably, a class of nonlinear partial differential 
equations known as integrable systems, albeit nonlinear, exhibit behavior that in 
many aspects is identical to that of linear systems. For, at least, some of them 
nonlinear analogues of basic solutions (0.1a), linear interference described by(0.3) 
and the superposition formulas (0.2a,c) exist. 

1. Derivation of the KP and KdV equations 

Most integrable equations/systems appear in the same manner, that will be 
illustrated here on the KP /KdV equations. To derive them one may start with a 
two-dimensional long wave of the form 

ei(wt+>..lx+>..2y) 
' 

that is almost one-dimensional, that is 

(1.1a) 

(1.1b) 

The dispersion relationship is assumed to be of the form w2 = n(l~l 2 ) which 
generalizes the dispersion relationship (0.5b) for the classical wave-equation. Re-
quirement that the function n be sufficiently smooth to be well-approximated for 

00 

small >.. by its McLaurent series L nniA.I 2 and no = n(o) = 0 allow one to 
n=O 

simplify the dispersion relationship to the form 

w2 :::=! n1(>..~ + >..~) + n2(>..~ + >..~) 2 , n1 > 0. 
Since w is a two-valued function of 1~1 , for a fixed value of ~ the dispersion 

relationship incorporates two waves of the form (1.1a) moving with speed l~lw- 1 

in the directions of ± I~ I~- After appropriate re-scaling 
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SUPERPOSITION PRINCIPLE 315 

if necessary, and restriction to the wave moving towards -oo along the x- axis, 
the dispersion relationship becomes 

2 2 2 ( 2 2)2 ( 1 3) A~ A1w ~ A1 A1 + A2 + 3a 2 A1 + A2 ~ A1 A1 + 3a 2 A1 + 2 (1.1c) 

Due to (0.6), a wave (0.1) satisfies the dispersion relationship (1.1c) if and only 
if it satisfies the equation 

(1.1d) 

To accommodate certain conservation laws usually arising in applications a non-
linear term (6uux)x is added to the left hand side yielding 

1 1 
( Ut - Ux + 6uux - 3a 2 Uxxx)x = 2Uyy· 

The change of variables 

1 2 2 
Uo!d = 3a 2 Unew• told= -3a tnew, Xold = Xnew + 3a tnew, 

turns equations (1.1d,e) into 

(ut + Uxxx)x = -3a2Uyy, a 2 = ±1. 

(ut + 6uux + Uxxx)x = -3a2 uyy, a 2 = ±1. 

(1.1e) 

lKP 

KP 
known respectively as the linear Kadomtsev-Petviashvili equation and the Kadom-
tsev-Petviashvili equation. Properties of some solutions of KP are determined by 
the sign of a 2 so to distinguish between the two cases, the KP ( lKP, resp.) 
equation is often called KPI ( lKPI, resp.) if a 2 = -1, i.e. a = i and KPII 
( lKPII, resp. ) if a 2 = +1, i.e. a = 1. As far as the solutions considered in 
this paper are concerned, the difference between KPI and KPII is minimal and the 
insertion of a into formulas will take care of it. So no distinction will be made 
between KPI and KPII. 

Solutions of KP and ZKP, that are independent of y and decay to 0 as 
x --4 oo satisfy correspondingly 

Ut + Uxxx = 0, 

Ut + 6uux + Uxxx = 0, 

lKdV 

KdV 
known respectively as the linear Korteweg-de Vries equation and the Korteweg-de 
Vries equation. Equations lKdV and KdV may be viewed as specific cases of 
lKP and KP equations corresponding to exactly one-dimensional waves, i.e. when 
(1.1b) is replaced with A2 = 0. 

The basic solutions (0.1a) of lKP take form 

cos2A[!3). + x + 4(A2 - 3a2JL2)t] cos4AJL[!3~-' + y], phases /1>.,/11-' E IR (1.2a) 

with simplified notations 

IR2 3 ,\ = {,\1, A2} = {A, JL}, i.e. A1, A2 are written as simply A, JL. 

Basic solutions (0.1a) of lKdV 

cos 2A [!3>. + x + 4A2t], phase !3>. E IR (1.2b) 
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are obtained by taking 

or by setting 11 = 0 in (1.2a). 
Since, in applications at least, u is small, the term 6uux is much smaller 

than the rest of the terms in KP (KdV, resp.) and thus KP (KdV, resp.) itself may 
be viewed as a nonlinear perturbation of lKP ( lKdV , resp.) by the term 6uux. 
Since the very derivation of KP (KdV, resp.) starts with functions (1.1a), which 
are, of course, equivalent to (1.2a) ( (1.2b), resp.), for a physical model described by 
KP (KdV, resp.) to be valid it must admit solutions whose local behavior, at least, 
is very close to that of the functions (1.2a) ( (1.2b), resp.). Such solutions may be 
viewed as nonlinear perturbations of (1.2a) ( (1.2b), resp.) by 6uux. Note also 
that linear combinations of (1.2a) ( (1.2b), resp.) are solutions of lKP (lKdV, 
resp.) and, since the very derivation of KP (KdV, resp.) is based on lKP (lKdV, 
resp.), for a physical model described by KP (KdV, resp.) to be valid, it must admit 
solutions whose local behavior, at least, is very close to that of linear combinations 
of (1.2a) ( (1.2b), resp.). Such solutions may be viewed as nonlinear perturbations 
of solutions of lKP (lKdV, resp.) representable as linear combinations of (1.2a) 
( (1.2b), resp.). 

2. Basic solutions of KdV 

Since (1.2b) play the role of basic solutions of lKdV so should their nonlinear 
analogues for KdV and thus the latter should be sought in the form of the simplest 
components comprising more general solutions of KdV. 

Decaying at infinity solutions of KdV are usually constructed by first setting a 
function, [Kov 1 J, + N oo 

F(x, t) = L 2J1je11-i<l>i+8JJ-Jt-JJ-ix + 2~ J r(k)ei(8k3t+kx)dk, 
J=l 

(2.1a) 
-00 

subject to 

/lj > 0, /ljc/Jj are either real or real ± ~i, lr(k)l < 1, r( -k) = r(k), (2.lb) 

and then solving the integral equation 
+oo 

K(x, y, t) + F(x + y, t) + j K(x, z, t)F(y + z, t)dz = 0. 
X 

The corresponding solution of KdV then is obtained via 
d 

u(t, x) = 2 dx K(x, x, t). 

(2.1c) 

(2.1d) 

If r(k) = 0 the procedure yields the well-known class of multi-soliton solutions 

u (N-soi) = 2 d2 ln det A (N-soi) (2.2a) 
dx2 ' 

A~,:;,soi) = 8mn+ 2~ e~-'"cf>,+JL,.cf>,.+4(JJ-~+JJ-~)t-(JLn+JJ-m)x,n,m = 1, ... ,N (2.2b) 
/ln +/1m 
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SUPERPOSITION PRINCIPLE 

with each term of the sum 
N 

F(x, t) = L 2f..L1e8J.LJt-J.LjXel'j'''j 
j=l 

317 

(2.2c) 

generating a soliton. The multi-soliton 
solution (2.2a,b) itself may be interpreted 
as a nonlinear superposition of N soli-
tons. It is convienient to picture each 
soliton as generated by a charge eJ.Lj</>j 
placed at if..Lj as shown in Fig. 4. Each 
soliton corresponds to a term in the sum 
in the right hand side of (2.2c) and thus 
nonlinear superposition of solitons is equiv-
alent to addition of corresponding terms 

in (2.2c). The solution (2.2a,b) is obtained by substituting (2.2c) into the integral 
N 

equation (2.1c) and using anzats K(x, y) = 2::: Kn(x)e-J.LnY to solve (2.1c). 
n=l 

If all ¢1 = -oo, the sum in (2.1a) drops out and only the integral term is left: 
+oo 

F(x, t) = 2~ J r(k)ei(Bk3 t+kx)dk, lr(k)l < 1, r( -k) = r(k). (2.3) 
-oo 

By analogy with multi-soliton case, one may view the corresponding solution of 
KdV as a nonlinear superposition of some basic solutions generated by functions 

(2.4a) 

(2.4b) 

as E -----* 0. Substituting (2.4) into (2.1c), solving the obtained integral equation 
just the same way it is done for the multi-soliton case and letting E -----* 0, one 
obtains, [Kov 1]: 

[ ..\sin2..\('y- 4..\2t- x) ] 
u( t, x) = 8..\ 2..\(p- 12..\2t - x) - sin 2..\('y - 4..\2 t - x) -

,\2 [ cos2..\('y-4..\2t-x)-1 ] 2 

8 2..\(p- 12..\2 t - x) - sin 2..\('y - 4..\2t - x) 

(2.5) 

Formula (2.5) gives the required nonlinear analogues of basic solutions (1.2b) of 
lKdV, the functions (2.5) will be referred to as harmonic breathers. Evolution of a 
typical harmonic breather is shown in Fig. 5. To construct nonlinear superposition 
of basic solutions (2.5) one should note that such superposition should be consistent 
with that for multi-soliton solutions. So it is only reasonable to define nonlinear 
superposition of the solutions of KdV generated by 

N 
F6 (k) = LE[ePF'+2i>.ni+8(i>.j+E)3 t + ePjc-2i>.j-o+8(-i>..i+") 3 tJ (2.6a) 

j=l 

(2.6b) 
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318 MIKHAIL KOVALYOV 

as e --t 0. Substituting (2.6) into (2.lc), solving the obtained integral equation just 
the same way it is done for the multi-soliton case and letting e --t 0 one obtains 

d2 
u(t,x) = 2 dx2 lndetV, Vis anN x N matrix, (2.7a) 

{ 
sin(r n - r m) sin(r n + r m) 
_...,:-.....:..:..-:---'-c:...:... - , n =1- m, 

Vnm = An - Am An + (..m2r 
2 Sln n 

T n = Pn - 12An t - X - 2An , n = m, 
(2.7b) 

r n = Anbn- 4A~t- x). (2.7c) 

Fig. 5 

l~;;d!bbd 
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 

_~~~----0 ...... 1 ..... 9 ------;;d.....--..------::1 .16 bJ 
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 

_lG.....---O.lr---2 --.----.---J;;d.---~ _jb/:\ ~ 
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 

~~~t ·-0.06 ----.------r---d~ ~~ ~ 
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 

-~~~t--0.02? ____,.....----;;]~ !6;\ ~ d 
-15 -10 -5 0 5 10 15 -15 -10 -5 5 10 15 

Jh:dl~ 
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 

Time evolution of a single harmonic breather with >. = 1, "Y = 0, p = 0. The last frame 
contains graphs of the solution for all values of time from the interval -1 < t < 1 
superimposed on the same frame. 

Formulas (2.7) describe superposition of N harmonic breathers. It is conve-
nient to picture each harmonic breather in (2.7) as generated by a pair of charges 
ePic+2>.i'"Yii ePic-2>.i'"Yii placed correspondingly at i"" ·-A· ie ·-A· as e --t 0 , "'J J> J J , 
as shown in Fig. 6. For the case of arbitrary r(k) in (2.3), the sums (2.6) may be 
viewed as approximations of the integral in (2.3), as shown in Fig. 7. One would 
expect the solutions generated by (2.6) to approximate, in a certain sense, solutions 
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SUPERPOSITION PRINCIPLE 319 

generated by arbitrary r(k) , subject, of course, to the standard restrictions usually 
imposed on this function [Dei 2], such as conditions of smoothness, r(O) = -1 , 
etc. For illustrative purposes the reflection coefficient is ahown as a real function, 
while it is in fact complex. 

Fig. 6 

Fig. 7 

For N;::: 1 and large Pi - 12.\]t- x 's, (2.7) immediately implies, [Kov 1]: 

N 
'"""' >.i . ( 2 ) ( 1 ) u = 4 L.....- 12>.2 sm 2.\i 'Yi - 4\t- x + o 12>.2 
i=lPi- it-x Pi- it-x 

(2.8a) 

If in addition t, x are restricted to some bounded space-time domain whose size 
is much smaller than the absolute values of all Pi 's, the previous estimate can be 
further simplified to 

u = 4 t >.J sin 2.\i('Yi- 4>.]t- x) + o(~). 
i=l PJ PJ 

(2.8b) 

The formula shows that if all IPi I 's are large, in the space-time domain whose 
dimensions are much smaller than all IPi I 's, the functions given by the superposi-
tion formula (2.7) essentially become Fourier sums. A sequence of such functions, 
may, under appropriate conditions, converge to a nonlinear analogue of the Fourier 
integral, similarly to how finite Fourier sums (0.2a) converge to Fourier integrals 
(0.2b). Recall that as shown in (0.4) the physical phenomenon behind such conver-
gence of Fourier sums to Fourier integrals is linear interference described by (0.3). 
Remarkably, a similar phenomenon exists for (2.7). To see it consider (2.7) with 
N=2: 
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320 MIKHAIL KOVALYOV 

As .A2 -t .A1, .A2'Y2 -t Al/'1 , solution (2.9a) degenerates into a single harmonic 
breather 

d2 1 [ 2 \ 2 sin2.A1('Y1- 4-A~t- x)] u = 2-dx-2 n P12- 1 A 1t- x- ------'-2-=-.x-1---''----'- (2.9b) 

where P12 satisfies 
1 

(2.9c) 

If IP1I, IP2I, IPd are large and the term lim >. 2 l 2 ::::~m can be neglected, the .x2 -.>.. 1 2 1 

formula simplifies to 
1 1 1 
-~-+-. 
P12 P1 P2 

(2.9d) 

Formula (2.9a) is a nonlinear superposition of two harmonic breathers whose as-
ymptotic behavior for large IPj - 12-A~t- xl (large IPjl and small x, t, resp.) 
is given by (2.8): 

4.A·sin2.A·("~· -4.A2t-x) 4.A·sin2.A·("'· -4.A2t-x) J J IJ J ~ J J IJ J . 1 2 
Uj ~ 2 ~ ' J = ' . Pj-12\t- x Pj 

(2.10a) 

Due to (2.9b) as A2 -t .A1, A2/'2 -t Al/'1 their superposition has the asymptotic 
behavior for large IP12- 12-A~t- xl (large IPd and small x, t, resp.) 

4.A1 sin2.X1('Y1- 4-A~t- x) 4-Al sin2.X1('Y1- 4-A~t- x) 
U12 ~ 2 ~ P12-12.A1t- X P12 

(2.10b) 

Formula (2.8b) suggests that - 4Aj play the role of nonlinear Fourier coef-
Pj 

ficients, in which case (2.9a) becomes the nonlinear analogue of (0.3c), that is, 
formulas (2.9) represent nonlinear analogue of linear interference described in §0, 
which will be referred to as nonlinear interference. 

Tails of harmonic breathers seem to possess all the properties required for 
modulation, that is creation of more general functions by means of nonlinear su-
perposition. Some examples of that were constructed in [Kov 2]. Yet the use of 
the tails of harmonic breathers for such constructions is not very satisfactory due 
to the following reasons: 
1) the amplitude of harmonic breathers does not stay constant but decays in x 

as x -t ±oo; 
2) the standard Riemann-Hilbert problem approach to finding solutions of KdV 

does not relate to the method of harmonic breathers; 
N A 

3) there is an ambiguity in the formula u = 4 E __.!!:. sin 2-An('Yn- 4-A;,t- x) + 
n=1 Pn 

a(~), as changing Pk -t -pk, Ak/'k -t Ak/'k + ~ leaves the right hand-side 
Pn 2 

invariant, leading to non-uniqueness of the parameters pj, Aj/'j . 

3. Double layers of harmonic breathers 

To remedy the problems mentioned at the end of the previous section, define 
a double layer of harmonic breathers to be superposition of harmonic breathers 
obtained from (2.7) by 
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SUPERPOSITION PRINCIPLE 

replacing N with 2M, 
1f 

choosing A2n/'2n = A2n-1/'2n-1 + 2' 
choosing P2n = -P2n-1· 

In addition assume that A2n - A2n-1 are sufficiently small to allow 

321 

(3.1a) 
(3.1b) 
(3.1c) 

free interchange of >.2n-1 and >.2n, as well as r 2n-l + ~ and r 2n. (3.1d) 

If the values of all IP1 I 's are sufficiently large and t « m~n IPj I, then the real 
J 

axis can be broken up into part 1R = T1 U 81 U k U Sr U Tr as shown in Fig. 8, 
where 81, Sr are correspondingly the left and right singular sets containing all 
singularities of a double layer given by (2.7, 3.1), Tl, Tr support the left and right 
tails that satisfy asymptotics (2.8a), the set K will be referred to as core and 
G is the buffer zone between the singular sets 81, Sr and the core. 

Fig. 8 

____ • -~- _ +--S-t_,.. _ _.G..._....,._ _ __.K...._ __ +-_G.....,.-+__.S;;.;.,.~ _ -~- __ _ 

Within the core, double layers are smooth, do not decay in x and behave very 
much like functions (1.2b). Consider for simplicity's sake the simplest double layer 
of harmonic breathers that consists of just two components and may be called a 
harmonic couple: 

U= 2 d~2 ln{[Pl- 12..\~t- X- sin2..\1(~..\~4..\~t-x)j[Pl + 12..\~t +X+ sin2..\2(~..\~4..\~t-x)j 

[ sin ( ..\1 b1 -4.>.7t--.x) --· ..\2 b2 -4..\~t---x)) sin ( ..\1 ( '"n--4..\~t--x)+..\2( '1'2 -4..\~t---x))] 2} + .>., -.>.2 .>.1 +.>.2 . (3.2a) 

Due to (3.1) asymptotic, (2.8a) in K takes form: 

u = ~ 1 sin2>.1(/'1- 4>.it- x) + o(P~) + o(1>.2- >.1!) (3.2b) 

The graph of a typical harmonic couple inside core is shown in Fig. 9 and time 
evolution of the core of a typical harmonic breather is shown in Fig. 10. A double 
layer in general may be viewed as nonlinear superposition of harmonic couples. 
Since a single harmonic couple is just a nonlinear superposition of two harmonic 

Fig. 9 

-1.5 -1 

A harmonic couple with ..\1 = 11, >.2 = 11.01, 1'1 = 0, ')'2 = ~' Pl = 33, P2 = -33. 
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322 MIKHAIL KOVALYOV 

Fig. 10 

1~1~Ld 
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 

_[~~;;~ j~bd 
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -1 0 0 1 0 20 30 40 

_1bd~U W~I~W 
-40 -30 -20 -10 0 1 0 20 30 40 -40 -30 -20 -1 0 0 10 20 30 40 

_1~~~6~ 
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 

1~1~ 
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 

l~W_ll~b:J 
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 

Time evolution of a single harmonic breather with .>.. = 1, 1 = 0, p = 0. 

breathers, harmonic couples also exhibit nonlinear interference and satisfy as-
ymptotic expansion (2.8a), which, due to (3.1) takes form 

N 

u = 8 L A2j-l sin 2A2j-l('Y2j-1- 4>.~j-lt- x) + lower order terms (3.3) 
j=l P2J-l 

that is somewhat similar to (2.8b) but is valid on larger space-time domains. 
As shown in [Kov 1] the operator 

~ 2 ax2 '¢(k, t, x) + u(t, x)'¢(k, t, x) = -k '¢(k, t, x), lim '¢(k, t, x) = 0 (3.4a) 
X -tOO 

with u given by (2.7),(3.1) has 2M eigenfunctions '1/Jn(t, x) that satisfy the 
equation 

2M 

LVmn'l/Jm=sinrn, n=1, ... ,2M 
m=l 

where Vmn is given by (2.7b) subject to conditions (3.1). 

(3.4b) 
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SUPERPOSITION PRINCIPLE 323 

The potential u itself is expressible in terms of the eigenfunctions as 
d 2M d 2M 

u = 2 dx lndet D = 2 L (D- 1)mndx Dmn = -4 L (D- 1)mn sinr n sinr m = 
n,m=l n,m=l 

2M d M 

-4 L 1Pm sinr m = -4 dx L [ sinr2m-11P2m-1 + sinr2m 1P2m J 
m=l m=l 

(3.4c) 

As shown in [Kov 1], formulas (3.4) may be viewed as discretization of the 
operator 

[)2 
ox2 ¢> + v(t, x)¢> = -k2 ¢> (3.5a) 

with continuous spectrum, the Riemann-Hilbert problem 

- ikx _1_ /+oo r(()c/>(()eikat+i(k+()x 
¢>(k,t,x)-e +27Ti k+(+iO d(, ¢>(k,t,x) "'eikx as x--> +oo. 

-oo 
(3.5b) 

corresponding to (3.5a) and the formula expressing the potential v in terms of the 
solutions ¢> 's of the Riemann-Hilbert problem 

v(t,x) ~ ! { ~ Tr(()¢(x,()e;'''N"d( }· 
-oo 

(3.5c) 

Thus inside the core K, double layers of harmonic breathers do not have 
the drawbacks mentioned at the end of the previous section. For a given physical 
space-time domain of finite but otherwise arbitrary dimensions, one can construct 
double layers whose cores contain the physical domain. Within the physical do-
main the double layers can modulate more complicated functions just like basic 
functions (1.2b) do so by means of the Fourier sums/integrals (0.2a,c). Figs. 11-14 
show examples of such nonlinear modulation. Nonlinear modulation by harmonic 
breathers/ harmonic couples is remarkably similar to linear modulation by func-
tions (1.2b), exhibiting even nonlinear analogue of the Gibbs phenomenon, [Kov 
1]. Note that the modulation is valid only inside bounded physical domains, that, 
though, is not a drawback for in applications all physical domains are bounded. 

For an arbitrary function u satisfying the standard conditions of the Inverse 
Scattering Theory, [Dei 2], one may construct a sequence Ue: of double layers 
generated by (2.6) subject to (3.1) with c = log~ 2N and all other parameters 
determined by (2.6) and (3.1). The sequence Ue: should, in a certain sense, converge 
to u. The nature of such convergence is far from clear and, at the moment, there 
is no theoretical justification behind it. Yet numerical experiments suggest that 
for, at least some, u the approximating sequence does converge to u and it does 
so somewhat similarly to how the sequence of trigonometric sums (0.4a) converges 
to the corresponding trigonometric integral. As c --> 0, the singular sets Sn St 
move to ±oo, the core of Ue: gets larger and larger approaching ffi and the space-
time domain where Ue: well approximates u gets larger and larger approaching 
ffi 2 3 { x, t}. Since the elements Ue: of the approximating sequence are given by 
(2.7) subject to (3.1), u itself may be viewed as some sort of nonlinear integral 
whose role is similar to that of (0.2b) in linear theory. 
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Fig. 11 

J::: ,~::: : l 
-10 -B -6 -4 -2 0 2 4 6 B 10 

A nonlinear analogue of an approximation to -0.1x(x) where x(x) is the characteristic 
function of [-1,1]. Obtained by taking N =56, An= 0.25n, A2n-1/'2n-l = A2n"Y2n-% = 

1!:_ p = (-1)n+l X ~Onn 2 • 
4 n sin 0.5n 

Fig. 12 Fig. 13 1· ·""""' ~ 0 I ~:11- _t_=_-_o._oo-2---~ 

~:l ..... t_·_-_0 ._000-!S _ __.~_,._' ___ __,j 1• ·0 0000 ?!i-· -----li 
::'.-1,-.--s-e-o-os--~..,.o·~-, ~=====:j Jl--t_=_-o_. oo-02--f-------li 

-5 0 5 -5 0 5 

]i---t. ------.~~----- ____,-----11 J '., 1...._1 
Jr-t-·-se--oo-s --i""'0,...-_-_ -----_-_-_-_.....,-11 1·" "'"' i~------li 

l· "'"" ~r--------li J·" """~-------li 
05-5 5 o.5i.~.::~~~:llllll/\/\ ~ sl .f" ''"''·~-------.~1 ~:C"••vv--------1 

-5 -5 0 

Time evolution of resonances with short life-span. The left column is obtained by taking N = 
1r 2n2 ( n ) -l 120, An= 0.25n, An"Yn = -, Pn = . 1- / . The right column is obtained 
4 sm0.05An N + 1 3 

. 2.7n2 ( n )-l by takmg N = 90, An = 0.3n, An"Yn = 0, Pn = 1- . 
1- cos0.15An N + 1/3 
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Fig. 14 

+:·'":-: : ~ l:' : t : : l 
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1 
[ t := -0 1-H~--• : • AAA:J;J 1 .= 0 025 O ~ O : 

0 r : m~m ~v."~ ~ 
-1 -1 L...-...___......___;,_._ _ _._ _ __,___. 

-20 -10 0 10 20 -20 -10 0 10 20 

J::·: : ~J:'"'t: : :1 
-20 -10 0 10 20 -20 -10 0 10 20 

_:~· ,. : ;.~ : I : : , ! . . . 
-20 -10 0 10 20 -20 -10 0 10 20 

l:_,,.: :+ : I:~ : :·~ I 
-20 -10 0 10 20 -20 -10 0 10 20 

J:~,,.: t: : I :F: :--: :1 
-20 -10 0 10 20 -20 -10 0 10 20 

Time evolution of a wave-packet with N = 64, An = 3 + 0.05(n- 31.5), A2n-1 /'2n-1 = 0, 
A2n/'2n = ~. Pn = (-l)n X 80Ane4(An- 3l2 . 

2 

4. KP equation. 

325 

Following the ideas of the previous section one can compute two-dimensional 
version of (2.7), [Kov 3]: 

fP 
u(x, y, t) = 2 ax2 ln det K, 

cos2f 
Knn =-(en+ X- 2J..LnY + 12[A~- a 2 J..L~]t) + 2An n 

( 4.la) 

(4.lb) 
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326 MIKHAIL KOVALYOV 

( 4.1c) 

f n = 'Yn + AnX- 2An/-lnY + 4An(A;- 3a.2p,;)t. (4.1d) 
subject to the physical conditions (1.1a,b) used in the derivation of KP in the form 

max P,j « min Aj « 1. ( 4.1e) 
J J 

Functions given by formulas (4.1a-d) satisfy KP for arbitrary values of the constants 
An's, 1-ln 's, 'Yn 's, l!n 's. However, in order for ( 4.1a-c) to be nonlinear analogues 
of the Fourier sums of basic solutions (1.2a) of lKP 

u = L Uj,k cos2Aj [.B>.,j + x + 4(AJ- 3a. 2 p,~)t] cos4Aj/-lk [,eJL,k + y], (4.2) 
j,k 

their parameters must satisfy the additional assumptions that 

N=2LM 

and for all l = 1, ... , L, m = 1, ... , M, [Kov 3], 

A(2m-2)L+l = A(2m-l)L+l =At, l!(2m-2)L+l = l!(2m-l)L+Z. 

l-l(2m-2)L+l = -P,(2m-l)L+l = /-l(2m-2)L+l which, for simplicity's sake 

(4.3a) 

(4.3b) 

will be denoted hereafter as simply P,m, (4.3c) 

'Y(2m-2)L+l = Az,B>. l + 2Az 1-lm ,81' m, 'Y(2m-l)L+l = At.B>. l- 2Az 1-lm ,81' m· (4.3d) 
Also define 

Azm = Az.B>. z+Azx+4An(Af-3a. 2 p,~)t, Mm = P,m(,BJL m-y). ( 4.3e) 

A nonlinear analogue of the two-dimensional basic motion (1.2a), that will be 
referred to as a two-dimensional harmonic breather, is obtained by taking L = 
M = 1 in (4.2). Fig. 16 shows a picture of a typical two-dimensional harmonic 
breather. For L, M > 1 formula (4.2), subject to (4.3), may be viewed as nonlinear 
superposition of LM two-dimensional harmonic breathers. 

If x, y, t are restricted to a finite region 

Ox,Y,T = {(x,y,t)llxl :'S: X, IYI :'S: Y, ltl :'S: r} (4.4a) 

and 
1 

len I »X, Y, T, 2An, !Cnk, for all n, k ( 4.4a) 

then the functions (4.1) subject to (4.3) satisfy 

u(x,y,t)= L 1 cos2Azmcos4AzMzm+0 --,-2----L,M 8A ( 1 ) 
!,m=l l!2(m-l)L+l {!2(m-l)L+n 

(4.4c) 

which is the two-dimensional analogue of (2.8b). Just like corresponding solutions 
of KdV, basic motions of KP exhibit nonlinear interference as shown in [Kov 3] and 
thus can be used to generate more complicated solutions of KP, two examples are 
shown in Figs. 17, 18. 

Just like for KdV, due to the presence of singularities, formula (4.1) cannot 
be used to construct localized non-singular solutions of KP in all of 0 <Xl,<Xl,<Xl = 
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{ (x , y, t) llxl ~ +oo, IYI ~ +oo, It I ~ +oo} . Instead, for an apriory given domain 
Dx,Y,T of finite but otherwise arbitrary size, one may select parameters in 

Fig. 15 
ur-~ ------~--~--~-, 

4 y = 15.0 4 y = 15.0 

2 2 

u u 

A two-dimensional harmonic breather of KPII equation with >.1 = >.2 = 1.0, 
J.ll = - J.12 = 0.2, 'Yl = 'Y2 = 0.0 , {21 = {22 = 5.0 at time t = 0 . 

(4.1) , (4.3) to keep the singularities outside the domain while producing a solution 

localized within Dx,Y,T· Formula (4.1) subject to (4.3) thus provides a method of 

constructing solutions of KP localized within Dx,Y,T· Since, except for a few trivial 

ones, there are no solutions of KP localized in n oo ,oo ,oo ' localization within nx, Y,T 

is second best, for in applications all physical space-time domains are bounded. 

Generally, the solutions generated by ( 4.1) subject only to conditions ( 4.3) will 

have drawbacks similar to those of the solutions of KdV described at the end of 

§2 so additional conditions similar to (3.1) need to be imposed to remedy these 

drawbacks. Such additional conditions would lead to two-dimensional analogues of 

double layers (2.7) ,(3.1). The construction of two-dimensional analogues of double 

layers though has not been carried out. 
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Fig. 16 
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Scattering at truncated solitons and 
inverse scattering on the semiline 

H. Steudel 

ABSTRACT. Consider a Zakharov-Shabat potential q(x) with one complex 
eigenvalue in the upper half-plane of the spectral parameter, and with a zero 
reflection coefficient. We then truncated the potential at x = 0, and set the 
potential equal to zero for x < 0. The potential truncated in this way gives 
rise to a rational reflection coefficient with exactly one pole. However, the lo-
cation of this pole depends on the location of the soliton center, and may even 
move into the lower half plane. It is explicitly shown how such a truncated 
potential can be recovered by solving the Gelfand-Levitan-Marchenko equa-
tions. More generally, we show that a truncated N -soliton potential leads 
to a rational reflection coefficient with exactly N poles. This explains how a 
recently developed method for solving initial-boundary problems for hyper-
bolic integrable evolution equations can be understood as an approximation 
in terms of truncated N -soliton solutions. 

1. Introduction 

In its classical form- see, e,g., [1, 2]- the inverse scattering method solves the 
initial value problem on the full x-axis for some evolution equations. However for 
many physical systems, one does not require the entire interval. Instead one has to 
solve the initial-boundary value problems on a finite x-interval or on the semiline, 
and there has been considerable mathematical effort in this direction, see [3, 4] 
and references therein. However, when restricted to a certain subclass of integrable 
evolution equations the problem becomes much easier, and a constructive solution 
method was established in a series of recent papers [5, 6, 7, 8] which are based 
on some former suggestion by Kaup [9]. In order to characterize this subclass we 
recall the pioneering paper of Ablowitz et al. [2] which starts from a simultaneous 
system of differential equations ¢x = U(q, r, ()¢ , 1Jt = V(q, r, ()¢ where U is a 
matrix function of the typical AKNS-form, see eq.(l) below. The matrix function 
V may be of a much more general form. With the restricting assumption that it 
is either a) polynomial in the spectral parameter ( or b) polynomial in 1/( the 
compatibilty of those linear equations leads to the simplest but, nevertheless, most 
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332 H. STEUDEL 

famous integrable evolution equations. The Korteweg-de Vries and the nonlinear 
Schrodinger equations belong to the subclass a) while the sin-Gordon equation and 
the equations of second harmonic generation [10] belong to class b). The method 
of solving initial-boundary value problems that we have in mind here applies to 
the subclass b) and cannot be applied to the subclass a) of the AKNS class of 
integrable evolution equations. Here we will not give a review of this method 
but only stress some new features. By this method [5, 6], the solution in a finite 
space-time region typically is given in terms of an N -pole solution approximating 
the exact solution for N ~ oo. It is the motivation of the present paper to achieve 
a better understanding of these N -pole approximations. We have the result that 
they are just N -soliton solutions in the usual sense but truncated at x = 0 and 
are physical for x > 0 only. 
The scattering at a truncated one-soliton potential is considered in detail in section 
2. We will see how the motion of the pole depends on the location of the soliton 
center. A related discussion of scattering at a truncated soliton was given by Lamb 
[11] but otherwise, apparently, the direct and inverse scattering for truncated 
potentials has not been discussed elsewhere in the literature. Quite independent 
of section 2 in section 3 we solve the inverse problem, i.e., we construct a potential 
whose reflection coefficient c( () is rational in the spectral parameter ( with exactly 
one pole ( 1 and a prescribed residuum c1 . In section 4 it is shown that a truncated 
N -soliton solution gives rise to a rational reflection coefficient. Some conclusion 
with respect to N -pole approximations for solving initial-boundary problems is 
drawn in the final section 5. 

2. The direct scattering problem 

First, we will establish the scattering matrix for a truncated soliton. We do 
this by taking the solution on the infinite interval and then obtaining the scattering 
data for the truncated potential. Let us write the AKNS scattering problem in 
the form 

(1) 
with 

(2) J= 

cPx = (J( + Q(x))¢ = U¢ 

( -i 0 ) ( 0 q(x) ) 
0 i ' Q(x) = r(x) 0 

and, more particularly, specify to the Zakharov-Shabat problem r = f.q* , f.= ±1 
where the star denotes the complex conjugate value. In order to treat both types 
characterized by the sign f. on an equal footing it is of advantage to introduce two 
functions, 

A,(y) = eY + f.e-Y 
={ 

coshy f.=+1 
2 sinhy f.= -1 

(3) B,(y) = A,(y)jA_,(y) ={ 
cothy ' f.=+1 
tanhy f.= -1 

Then the well known potential with one complex eigenvalue ( = ( 0 = ~ 0 + iry0 , TJo > 
0 is given as 

(4) 
Clearly, on the infinite interval the potential is singular for f.= +1. Next, the wave 
function corresponding to ( 4) may be derived from the Darboux transformation 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



TRUNCATED SOLITONS 333 

(see [12, 13]) and can be written explicitly. It is convenient to introduce the 
matrix function 

(5) W((, x) = ((- ~o)J- 'T]oBe(2ryo(x- xo))1 + Q[1l(x)/2 
where 1 is the unit matrix. Below we also use the abbreviations 

( ) E( ) = ( exp(y) 0 ) 
6 Y - 0 exp( -y) ' 

(7) 
As it can be confirmed by direct verification, the matrix-valued function 
(8) <I>f1l((,x) = W((,x)E(-i(x) 

then solves (1) with the potential Q[11 and fulfils 

(9) <I>[11 ---+ Z(()E( -i(x) for x---+ +oo. 
Now, let us consider how to obtain the scattering data for the truncated potential. 
Generally, for any potential q(x) that vanishes outside of some interval Xi< x < Xf 
and for <I>(x) being any non-singular matrix-valued solution the scattering matrix 
may be defined as 
(10) S(() = E(i(xt)<I>((,xt)<I>-1 ((,xi)E(-i(xi). 

It is independent of the particular solution <I>((,x). If we write 

(11) ( a -b) S(() = b a · 
our notation is in agreement with that of [2] though the S-matrix has not been 
used explicitly there. 
Now we introduce the truncated soliton as 
(12) qi;L(x) = O(x)qf1l(x) 

where O(x) denotes the Heaviside step function. Clearly qi;L is nonsingular for 
E = -1 and also nonsingular forE= 1, x0 < 0. For this potential, from (8,9,10) we 
obtain the scattering matrix for the truncated potential. It is 

(13) sJ;L(() = [E(i(x)<I>r1l((,x)L-.oo [<I>r1l((,o)r1 = zw- 1 ((,o). 

For definiteness we take the limit for real ( and afterwards continue sJ;L to the 
complex plane. 
The reflection coefficient for this truncated potential is found to be 

(14) c[1] (~') = b( () (- )[1] 
tru ., - a(() tru 

Obviously there is a pole at 
(15) 

(16) 
with its residuum being 

(17) 
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334 H. STEUDEL 

Note that- up to a constant factor- the residuum is just the value of the potential 
at the truncation point. From (16) and (17) with the definitions (3) one obtains 
the connection 

(18) 2 2 I 12 171 - 'flo = t: c1 . 

The scattering matrix (13) now can be written explicitly in the form 

(19) s[1J (i) = (- (o ( ~ 
tru '> -t:c* (-to 

A complete soliton is characterized by the phase a, the frequency ~ 0 , the location 
x0 of its center and the inverse width ry0 . The truncated soliton - truncated at 
x = 0 and taken for x > 0- is characterized by the same parameters. From (16,17) 
we get a biunique mapping between the soliton parameters and the scattering data 
for the truncated soliton, 

(20) ((o = ~o +iryo,TJo > O,xo) ~ (c1,(1 = ~o +iry1,TJI- t:lc1l 2 > 0). 

Thus the parameters of the truncated soliton are also characterized just as well by 
((1, c1, a). 
Summarizing we state: 
For x0 __. +oo , q(x) approaches an untruncated soliton while c1 goes to zero. 
When x0 goes from +oo to -oo, the eigenvalue (1 = ~1 + iry1 of the truncated 
soliton is moving from the pole ( 0 of the untruncated soliton to the complex 
conjugated value (0. For t: = -1 this motion is downward, crossing the real axis 
for x0 = 0. On the other hand, for t: = + 1 the motion goes upward to ~o + ioo and 
then from ~o - ioo to (0. Earlier, see [7], solutions corresponding to poles in the 
lower (-plane were called virtual solitons. From the present considerations we see 
that for both cases of t: = ±1 a virtual soliton corresponds to a soliton with its 
center being outside of the physical domain x > 0. For t: = + 1 such a conclusion 
is contained already in [7]. 

3. The inverse problem 

In the above, we constructed the scattering data for a truncated 1-soliton po-
tential. Now, we will address the inverse problem. Given the scattering data for 
the above truncated 1-soliton potential, can we reconstruct the potential? Specif-
ically we will now consider the problem: Can we construct a potential Q(x) in the 
scattering problem (1), such that the reflection coefficient, c((), is analytic in the 
entire (-plane, except for one pole at (1, and with its residue being c1 ? Let us 
try to take ( 1 and c1 as arbitrary complex numbers. Thus we write 

(21) c1 
c(() = (- (1 ' 

and we define the functions 

(22) 

(23) 

G(z) = 2~ J c(()e-iC:zd( = -iO(z)c1e-iC:1 z, 

c 

G(z) = -t:G*(z) 
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TRUNCATED SOLITONS 335 

which appear as kernels in the Gelfand-Levitan-Marchenko equations (4.39a,b) 
from [2]. For inversion about x = -oo, these are 

X 

L1(x, y) + G(x + y)- J L1(x, s)G(s + y)ds 0 
-oo 

X 

(24) + J L1 (x, s)G(s + y)ds = 0. 
-()() 

Restricting the above to our present example at first we see that for x < 0, y < 
-x both solution functions L(x, y), L(x, y) vanish identically so that we get the 
potential 

(25) ql(x)=2L(x,x)=:O, x<O. 
Now we assume x > 0 , y > -x and find that then the system (24) may be 
rewritten as 

e''" L,(x, y) + ic, [ -e-'''" + l L,(x, ')e-''"d'] 0 

(26) 
X 

+ it:ci J L1(x, s)e;c;;sds 
-y 

It has to be solved with the initial conditions 

(27) 

We introduce the notation 

(28) L(x, y) = (L1(x, y), L1(x, -y)f, 

0. 

and take ( 1 = 6 + i7]1. Then by differentiation of (26) with respect to y we arrive 
at a homogeneous system of ordinary differential equations, 

(29) (i8y- 6)Ly = ML , 

with M denoting the constant matrix 

(30) C1 ) 
-i1]1 . 

Its general solution is easily found as 

(31) L(x, y) = e-i6y ( 1 cosh 1JoY- ; 0 M sinh 1JoY) Lo(x) . 

with 

(32) 

L0 is determined by the initial conditions (27). ForE= +1 now we introduce the 
constraint ic1l 2 < 1J~ in order to get real7Jo. Finally we find the potential to be 

q1(x) 2L(x,x) 
-2icl exp( -2i6x) (33) 

cosh(27Jox)- (1Jl/1Jo) sinh(27Jox) 
X> 0. 
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One may readily verify that the potentials (33) and (4) coincide for x > 0, upon 
using (16,17) and the addition theorem 
(34) A,(x- y) = A,(x) cosh y- A_,(x) sinh y . 

Thus we have recovered exactly the truncated solitons of section 1. Excluding sin-
gular potentials from our present discussion we state that nonsingular potentials 
are found 
i) for E = -1, c1 f 0, 111 arbitrary and 
ii) forE= +1, c1 I- 0, 1]1 < -lc11· 

Alternatively, the inversion can also be done just as well and in a straightfor-
ward and explicit manner by inverting about x = +oo, upon using those GLM 
equations given in [2]. We will not give the details here but only point out the 
essential qualitative features. What now is required as the reflection coefficient is 
bja, i.e., the quotient of the (12)- and the (H)-elements of the S-matrix (19). 
This gives 

(35) 
b(() 
a(() 

-Eci (- (0 
(- (1 (- (o · 

In stark contrast to bja, given in (14), the singularities of b and of a do not 
cancel. ( = ( 0 is a singularity of b/a, but it is not a zero of a(() and, therefore, 
is not an eigenvalue of the potential. Thus it and its residue must not be used in 
constructing the kernel F. It is not difficult to rediscover q~;L(x) for x > 0. A bit 
more effort is required to prove that the potential vanishes for x < 0. 
Note that the manner of construction of a truncated soliton from its scattering 
data differs essentially from the construction of a genuine (untruncated) soliton, 
where the reflection coefficient is zero everywhere. 

4. Scattering at a truncated N -soliton state 

Now we will draw some conclusions for N -soliton states as they may be 
generated from the vacuum solution by successive application of Darboux trans-
formations. According to the polynomial method of Neugebauer and Meinel [12] 
the resulting wave function <Jl[N] may be written in the form 

(36) <JllNl((,x) = PN((,x)<P((,x) 

where PN is a polynomial of N-th order in (. By Darboux transformation the 
vacuum potential q = 0 is mapped to a potential which asymptotically for x ---+ oo 
approaches vacuum. The Darboux transformation (36) works for any vacuum 
solution <P with the same PN. In particular we may choose for <P the diagonal 
matrix E( -i(x) withE defined by (6). The general matrix wave function fulfilling 
(1) with vacuum potential then is E( -i(x) multiplied from the right by a constant 
matrix C. Thus we get a relation 

(37) [PN]x--+oo = E( -i(x)CE(i(x) . 

The off-diagonal elements of the matrix at the righthand side of this equation are 
C12 exp(2i(x) and C21 exp( -2i(x). Since PN is assumed to be a polynomial in(, 
it follows c12 = c21 = 0 or, in other words, PN asymptotically becomes diagonal. 
In order to get the S-Matrix for an N -soliton potential which is truncated both 
at x = Xi and at x = Xf > Xi we have to substitute (36) into (10). Then we 
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specify Xi = 0, take the limit x f ----t oo and take into account that the S-matrix 
for the seed solution is the unity matrix. In this way we arrive at 

(38) 

Because the first factor at the right-hand side is diagonal it does not affect the 
reflection coefficient and we get 

(39) 

Thus the reflection coefficient cl~'J is rational in(. More precisely, due to [12], we 
may state that it is a polynomial of order N- 1 over an N-th order polynomial 
so that it is vanishing of order 1/( at infinity. 

5. Conclusion - Connection to inverse scattering on a semiline 

Treating a soliton truncated from the left at x = 0, we have found the rational 
reflection coefficient c(() = ci/((- ( 1 ) and have shown how the potential may be 
recovered by inversion about x = -oo. 
For N -soliton states truncated at x = 0 and taken to be nonzero only at the 
semiline 0 < x < oo the S-matrix elements all become rational functions of(, 
and the reflection coefficient c( () is regular at infinity. 
In the papers [5, 6, 7, 8] quoted in the introduction a method for solving initial-
boundary problems in a finite or semi-infinte interval has been developed. In 
short, the temporal dependence of an effective scattering matrix is determined 
by taking into account only the known boundary values at the left-hand end 
of the considered interval, say at x = 0. The corresponding effective reflection 
coefficient then typically has an infinity of moving poles in the complex (-plane. 
For a finite number N of such poles together with their respective residues then 
the Gelfand-Levitan-Marchenko equations can be solved explicitly. In general, 
there is no guarantee that this procedure converges with N ----t oo. However, 
for some problems with given model initial data, we were able to show that it 
works. In particular we investigated second harmonic generation or- with another 
physical interpretation - resonant two-photon propagation in the low-excitation 
limit [6, 7], and there we were able to demonstrate that with increasing N indeed 
the numerical solution is approached. 
In the light of our present consideration we get a very natural interpretation of 
those N -pole approximation. It means that at any fixed time, the solution of the 
considered initial-boundary problem is approximated by states of N truncated 
solitons with increasing N. 
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