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Preface

This volume contains the proceedings of the conference on the Legacy of the
Inverse Scattering Transform which was held at Mount Holyoke College in Mas-
sachusetts from June 17-21, 2001.

Current progress in the area of Solitons and the Inverse Scattering Transform
continues to be rapid and new applications are also multiplying, with current non-
linear optical technology moving so rapidly, larger and larger intensities becoming
more available, pulse widths becoming smaller and smaller, and relaxation times
and damping rates becoming less and less significant. As this limit is approached,
the exactly integrable soliton equations, such as 3-wave resonant interactions and
second harmonic generation become more and more relevant to experimental ap-
plications. Experimental techniques are currently being developed to use these in-
teractions to frequency convert high intensity sources into frequency regimes where
there are no lasers. Other experiments are using these interactions to develop
intense variable frequency sources, opening up even more new experimental possi-
bilities.

However, in regard to the mathematics of this area, the ‘easy’ problems have
been solved long since, and the field has attained a kind of intellectual adolescence.
As such, it was felt that it was a good time for taking stock of the current situation,
and seeing where the area might go next. We believe that such a reconsideration
of the numerous strands of activity which are the legacy of the Inverse Scattering
Transform can reveal much about where the field can go in the future, and can even
re-energize the field significantly. It will also bring lines of research which currently
are somewhat independent of each other closer together, and possibly even open
up new avenues of enquiry.

Thus, the conference provided a forum for the more general exposition and
assessment of recent developments in Nonlinear Waves and related areas and of
their potential applicability in various fields, and this is clearly reflected in the
articles in these proceedings. The present volume is thus expected to be of strong
interest to experienced and beginning researchers in the Mathematics, Physics, and
Engineering communities.

We express our sincere thanks to the American Mathematical Society for their
support of the Joint Summer Research Conference Series and the publication of this
volume, and to the U.S. Army Research Office for a generous supplemental travel
grant that enabled us to cover the travel expenses of all participants. Our greatest
single debt of gratitude is undoubtedly to Wayne Drady for his thoroughness and
sang-froid at all stages of the conference organization. We knew that we could
leave all the practical details in his capable hands and concentrate on enjoying the

v
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meeting. Our grateful thanks also to Chris Thivierge and Gil Poulin for all their
help and support on the many steps in the process of putting this volume together.
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The Legacy of the IST

David J. Kaup

ABSTRACT. We provide a brief review of some of the major research results
arising from the method of the Inverse Scattering Transform.

1. Introduction

I will give a brief review of several items in the Legacy of the Inverse Scattering
Transform. In no way is this to be a complete review, since the Legacy has become
so vast. However, I will treat those items with which I am most familiar, and try
to detail their significance and importance.

There is no doubt that the most important contribution was the famous clas-
sical Gardner, Greene, Kruskal and Miura (GGKM) work [1] of 1967 on the KdV
equation. This was the starting point. They had found a very strange and new
method for solving the initial value problem of a nonlinear evolution equation, the
KdV. At that time, and even for several years later, this strange new method was
considered to be only a novelty, since it would only work for that one equation, the
KdV. Shortly thereafter, as a prelude to what was to follow, Peter Lax [2] showed
that if given an appropriate linear operator, L, dependent on a potential, u(z), then
one could always construct an infinite sequence of evolution operators, B, each of
which would satisfy

(1.1) BL - LB = ,L.

This sequence of evolution operators could be generated by simply increasing the
order of the spatial differentials contained in B. Then from (1.1) one would obtain
additional nonlinear evolution equations, each of the form

(1.2) Owu = K(u)

where K was some (nonlinear) operator. All these additional higher order evolution
equations would be solvable by this same technique. This collection is now known
as the KdV hierarchy.

1991 Mathematics Subject Classification. Primary 01A65; Secondary 35Q51.

Key words and phrases. Solitons, Inverse Scattering Transform.
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2 DAVID J. KAUP

If we consider the eigenvalue problem for L,

(1.3a) Ly = =\,
where ) is the eigenvalue, and append to it the condition
(1.3b) O = By,

then it is easy to see that (1.1) is simply the integrability condition for (1.3).
Furthermore, as Lax pointed out for the KdV case, (1.1)-(1.3) also implies that the
eigenvalues, )\, in (1.3a) would be stationary,

(1.4) B\ = 0,

a relation that would occur time-and-time again as the study of integrable equations
would expand in the decades to follow.

It was also about this time that the term “radiation” was introduced. We
haven’t said anything yet about solitons or solitary waves, but more will be said
later. For now, let us note that a remarkable feature of the GGKM method of so-
lution was the appearance of fully nonlinear solitary wave solutions, called solitons.
The other part of the solution has been called “radiation”, and is essentially linear-
like in its behavior. The asymptotics (long-time behavior) of the total solution are
generally that the radiation does disperse away, leaving the solitons traveling in a
sea of decaying radiation.

As to nomenclature, we shall refer to (L + A)1) as the eigenvalue problem, 1 as
the eigenfunctions, and B as the evolution operation. The pair [L + A, B] is known
as the “Lax pair”. For the KdV equation, the Lax pair is

(1.5a) (L+XNY=(02+u+Np=0

(1.5b) O = byp = (a — 40> — 6u0y — 3ug )V
where « is an arbitrary constant and the integrability condition is the KdV equation:
(1.5¢) Oyu + 83u + 6udu = 0.

We note here, given L and B, it follows that one can then obtain K (u). How-
ever, an important problem is given K(u), construct L and B. The solution of
this inverse problem is still an area of active research. One method that sometimes
works for this is called “Painlevé Analysis”. For a description of this aspect of the
Legacy, the reader is referred to Choudhury’s article in this same issue.

It was not until 1971, that the next physically significant integrable system
was uncovered by V. Zakharov and A.B. Shabat (ZS) [3], which was the focusing
Nonlinear Schrédinger Equation (NLS)

(1.6) 1Qt = —Qrg — 2(]*(]2.
This equation required a different eigenvalue problem,
(1.7a) v1g + 1V = qua
(17b) Vog — ing =TU1

where (v, v2) is the eigenvector, ¢ is the eigenfunction, and ¢ and r are the “poten-
tials”. For the focusing NLS case, one has r = —¢* and r = +¢* for the defocusing
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THE LEGACY OF THE IST 3

case. The time evolution operator, B, is given by [3]:
(1.8a) idyv1 = —i(4¢% + 2g7)v1 + (4(q + 2ig, )y
(1.8b) i0yvy = (4Cr — 2irg)vy + i(4¢% + 2qr)vs.

Exactly as was shown by Lax [2] for the KdV, one also has a hierarchy here, which
can be obtained by generalizing (1.8) to higher orders in ¢. In 1972, Wadati [4]
found the next member of this hierarchy, the “modified KdV” (mKdV)

(1~9) qt + Qrzz + 642% =0

which was also integrable. Its eigenvalue problem was again the ZS eigenvalue
problem, (1.7), but where now r = —¢q, and q real. Also, (1.8) had to be generalized
to be cubic in (.

By this time, it was becoming apparent to many researchers, that this strange
method found by GGKM was not simply a novelty. Rather, there was some-
thing very significant underlying all of this. This became even more obvious when
Ablowitz, Kaup, Newell and Segur (AKNS) presented a method of solution of both
the Goursat and Cauchy initial value problems of the sine-Gordon equation [5].
This was also based on the ZS eigenvalue problem, but with a very different form
for the B in (1.8): it was now inversely proportional to the spectral parameter,
¢. The sine-Gordon equation was well known at that time. It had a long history,
first occuring in 1853 in differential geometry, and was the first equation for which
Béacklund tranformations and N-solitons solutions were found. It was known in
solid state physics in the 1930’s, and in 1965 had found applications in optics.

The IST solution of the sine-Gordon equation was shortly followed by another
letter [6] pointing out how one could generate a large number of integrable equa-
tions, each of which were physically significant and important. With one general
approach, AKNS were able to reproduce all the Lax pairs found up to that time,
and were able to connect the form of the dependence of B on ¢ to the linear dis-
persion relation, w(k). (The linear dispersion relation relates how the frequency,
w, depends on the wave vector, k, in the linear limit, where plane waves, egilkz—wt)
are the natural solutions.) In 1974, they published their classic AKNS paper [7],
wherein they described in detail this new method of solution, calling it the method
of the Inverse Scattering Transform (IST). One of the major points of this classic
was that the IST could be viewed as a nonlinear extension of the method of the
Fourier Transform.

This was also the start of the explosion in research on solitons and integrable
systems, because unbeknownst to most westerners, Faddeev, Zakharov and their
students were all very busy in the same direction. In the next few years, many
important papers were to be published on the IST and related issues.

2. The Legacy

Beginning in 1974, it becomes difficult to try to detail all the results. Never-
theless, we will now discuss in general terms, the legacy which followed from this.
In the following, we will list the general areas of the legacy, and briefly describe the
importance and the major contributions made to each one.

2.1. Method of Solution — the IST. Above all, the IST is a method of so-
lution for integrable nonlinear equations. It was the pioneering work of GGKM [1],
ZS [3] and AKNS [7] which made the most significant impact and set the tone which
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4 DAVID J. KAUP

followed. Consider what the IST allows one to do. One may take any reasonable
initial data, and by means of the direct scattering transform (the eigenvalue prob-
lem), transform the initial data into “scattering data”. For the KdV, the scattering
data consists of a reflection coefficient [p(k); —oco < k < o0], bound state eigenvalues
[kj;5 =1,2,..., N] and bound state normalization coefficients [C};j = 1,2,..., N]
where N is the total number of bound states, usually finite. Now, Lax [2] showed
that the eigenvalues, «;, would be independent of time, due to (1.1). GGKM showed
that if u(x,t) evolved according to the KAV equation, the reflection coefficient, p,
and the normalization coefficients, C;, would evolve according to

(2.1a) Op(k;t) = p(k; O)eSike't,
(2.1b) 8,C;(t) = C;(0)e= 85",

Thus it becomes a very simple matter to determine the scattering data at any later
time.

Next, one used the solution of the inverse scattering problem, which is the core
of this method of solution, to reconstruct the potential(s). One transforms (with
the IST) from the scattering data, at time ¢, back to the potential(s), at time ¢.
For the KdV, the necessary steps are to first construct

(2.2) F(z;t) = % /—0:0 p(k; t)e**dk + Jﬁl C;(t)e "%,
then one solves the linear integral equation

(2.3) K(z,y)+ F(z+y) + /oo K(z,s)F(s+y)ds =0,
for K(z,y;t). Lastly u(z,t) is constructed from

(2.4) u(z,t) = —QM.

dx

All integrable systems are solved by an IST of the above format, although there can
be a wide variation in the form of the formats. Some eigenvalue problems are higher
order and/or even multidimensional. But there is always some scattering problem
which maps the potential(s) into a set of scattering data (the Direct Scattering
Transform). There is always some evolution of the scattering data, as in (2.1).
There is always an Inverse Scattering Transform that allows one to map from the
scattering data back to the potential(s), as in (2.2)-(2.4).

One may describe this method of solution as a method for solving the initial
value problem of a nonlinear equation by using only linear techniques. Further-
more, one may also say that one solves these nonlinear problems by not solving the
nonlinear problem. Instead one solves two related linear problems.

To understand these comments, consider

(2.5) L(u,¢)-V =0,

where L is the eigenvalue problem in the Lax pair, as in (1.1)-(1.3) and ¢ is a spectral
parameter. Let the second component of the Lax pair be B(u,ug,...,(,0z,...),
where

(2.6) B-V =4V.

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



THE LEGACY OF THE IST 5

Now note that (2.5) determines the z-dependence of V' (z,t; (), whereas (2.6) de-
termines the t-dependence. Thus one function, V(z,t;(), is being determined by
two equations. In general, such would overdetermine V', and in order for a mutual
solution to exist, certain consistency conditions must be satisfied. This condition
is the single integrability condition, (1.2). When (1.2) is satisfied, then a mutual
solution exists for (2.3)-(2.6).

But if this integrability condition is nothing more than the nonlinear evolution
equation, it therefore follows that if, by some means, we can construct a single-
valued solution for V(z,t;(), for some u(z,t), which satisfies each component of
the Lax pair, then it follows that u(z,t) must satisfy the nonlinear evolution equa-
tion. So, one could say that the entirety of the method of the IST is based on not
solving integrable nonlinear equations (at least, not directly). Instead, we solve
them indirectly, exactly by the same format used in any transform method. This
is as follows. We satisfy (2.5) by mapping u(z,t) into scattering data and con-
structing the eigenfunctions. We can do this for certain classes of potentials (i.e.
L1 Lz). Then we always will have reflection coefficient(s), as a function of the
spectral parameter, ¢, and certain bound state data (eigenvalues and normalization
coefficients). This is a linear problem. We satisfy (2.6) by requiring the scatter-
ing data to evolve appropriately (as in (2.1) for the KdV). This is usually easy to
do, since scattering data is typically defined for x — oo, where potentials nor-
mally approach specified values (usually zero) in that limit. So one really only needs
B(xz — %00). This is also a linear problem. Therefore, by fixing the scattering data
to evolve appropriately, we have effectively forced u(z,t) to evolve by the nonlinear
evolution equation. To solve for u(z,t), we need to solve the inverse scattering
problem, which is also a linear problem. The construction of the kernel(s), F(z),
as in (2.2), is another linear problem. Equation (2.3) is a linear integral equation
for K(x,y). Then u is reconstructed as in (2.4) by a linear operation. Thus with
only linear techniques, we are able to solve these nonlinear evolution equations.

2.2. Soliton Solutions. One of the unique features of the IST is that it
allows one to construct an infinity of exact nonlinear solutions, called the N-soliton
solutions. These are also called reflectionless potentials because the scattering data
consists of only bound state scattering data, with all reflection coefficients set equal
to zero. In the case of the KdV equation, when the reflection coefficients vanish,
the function F(z + y;t) in Eq. (2.3), then separates into a finite sum of products
of known functions of z and y, allowing one to obtain K(x,y), also as a finite sum
of known functions. The same is true for all other cases integrable by the IST.

The value of these solutions is tremendous, since they allow one to study and
obtain exact results for these systems. The most important solution in this class is
always the one-soliton solution, since it is the basic building block of these solutions,
and also of any interactions between solitons and between solitons and radiation.
The 1-soliton solution of the KdV hierarchy is

2n?

~ cosh?{nfi — o(1)]}
and that of the NLS hierarchy is

(2.7 U

2ne—2i§[m—-zg(t)]e—i¢‘0(t)
cosh{2n[z — zo(t)]}

(2.8)
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6 DAVID J. KAUP

where the form of z((t) and ¢o(t) depends on the member of the hierarchy. The 2-
and 3-solitons solutions demonstrate soliton interactions and collisions. Typically
what happens in any soliton collision is that after the collision, the solitons separate
out according to their individual velocities, completely unscathed, except for a
possible phase shift in their positions and/or phase. There are two well known
exceptions to this. In the soliton decay case of the 3WRI [8], an initial soliton
in the high frequency wave can decay into its two daughter waves, transferring
its identity to them. In the vector NLS [9], similar inelastic type collisions occur
whereby a soliton in one mode (polarization), can flip to another combination of
modes. Bound states can occur in the sine-Gordon field, where one can have stable
2-soliton bound states, called “breathers” [5], which are localized oscillations of the
sine-Gordon field.

2.3. Hierarchies. Given any eigenvalue problem, Lax [2] had noted that one
could always take the eigenvalue problem (the first component of the Lax Pair), and
by simply extending the order of the evolution operator, B, one could generate an-
other nonlinear integrable equation. All these nonlinear integrable equations which
have a common eigenvalue problem in the Lax Pair, but different evolution oper-
ators, B, is called a “hierarchy”. Thus, there is a hierarchy for every one of these
eigenvalue problems. For the Schrédinger equation, the most important members
are the KdV equation, a 5th order KdV equation [10] and one-dimensional “cavi-
ton” equation [11] (the analogy of the sine-Gordon equation for the Schrodinger
eigenvalue problem). In the ZS problem, we have a “workhorse” as far as physical
equations are concerned. If we allow 7 in (1.7) to be in general independent from g,
then in addition to the NLS [3], the hierarchy contains the modified KdV [4], the
sine-Gordon [5], the sinh-Gordon equation [5], coherent pulse propagation and self-
induced transparency (SIT) [12], stimulated Raman scattering (SRS) [13], and the
defocusing NLS [14]. The hierarchy containing the three-wave resonant interaction
(3WRI) includes all three forms of this interaction (explosive, soliton decay, and
stimulated backscatter (SBS)) [8, 15, 16], as well as the Manakov vector NLS [9].

2.4. Inverse Scattering. Another aspect of the legacy is the wide variety of
inverse scattering problems solved. In 1967, the IST of the Schrodinger equation
had just recently been obtained [17, 18], and it was only in 1972 that the IST of
the ZS eigenvalue problem had been solved [3]. Since that time, there has been a
multitude of other and even more complex scattering problems solved.

The next one was the solution of the third-order eigenvalue problem for the
three wave resonant interaction (3WRI) [15, 16], which interaction we shall return
to later. This one differed from the ZS significantly only in the additional order
of the problem. An important subcase of this was the inverse scattering solution
for the eigenvalue problem for the vector nonlinear Schrédinger (VNLS) equation,
solved by Manakov [9]. This VNLS equation is a very important and key equation
for several studies of nonlinear optical pulses propagating in optical fibers [19, 20].
The generalization of the order 3 problem to order n has been done by Gerdjikov
and Kulish [21].

More complex forms have also been done. The first one of these was the eigen-
value problem for the sine-Gordon equation in laboratory coordinates [22, 23].
Here one has the spectral parameter distributed among various potential terms,
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THE LEGACY OF THE IST 7

and is
(2.9a) Vg + ( ¢— g cos u) v, = [@ sinu — 1 (uz + ut)] Vo
(2.9b) ( ¢ - 8 cosu) [8§ sinu — ! (Ux + ut)] V1.

One notes that due to this form, one cannot easily express this equation in the
standard form as L -V = AV where L is a nondegenerate differential operator, V'
is the eigenvector and A is the eigenvalue. However, in spite of this, one still can
solve the direct and inverse scattering problems for such systems. Further examples
of such eigenvalue problems are the eigenvalue problems for the massive Thirring
model [24], and the derivative NLSL [25]. A more standard form is the cubic
generalization of the Schrédinger equation {10, 26],

which appeared as the eigenvalue problem for the Boussinesq, Sawada-Kotera equa-
tion and the Kaup-Kuperschmidt equation. There is also the inverse scattering for
multidimensional problems, such as the 3D form of the 3WRI [27], the KPI and II
equations [28], as well as the DSI and II equations [29]. Several aspects of these
are still of current research interest.

2.5. Perturbations and Closure. Once one has an exact method for the
solution of a system, it then becomes possible to develop perturbation methods, to
study nearby systems. This work was first done in 1976 for the ZS eigenvalue prob-
lem for the one-soliton solution [30], with a general summary of the perturbation
method being given in 1978 [31].

Key to this, is the concept called “closure” or “completeness”, which itself arises
from the one-to-one nature of the direct scattering transform and the IST [32].
What this simply means is that given any potential in the appropriate class, there
exist a unique set of scattering data that can be associated with it by the eigen-
value problem of the Lax pair, and vice versa for the IST. Thus for any potential
whose evolution is slightly perturbed away from its integrable value, by the direct
scattering transform, it will be mapped into some other scattering data near the
initial integrable scattering data. The perturbation problem is then to determine
how this scattering data in the perturbed case evolves in time. Once its evolution
is known, then by the IST, one may map back to the potentials and then obtain
their evolution.

One solves this by relating variations in the potentials to variations in the
scattering data, with the transformation from the former to the latter being ac-
complished by the so-called “squared eigenfunctions”. Then with these squared
eigenfunctions, one may obtain the evolution of the scattering data under a given
perturbation.

Under perturbations, one no longer has the simple evolution of the scattering
data as in (2.1). Rather, one has a slow mixing of the various elements of the
scattering data: solitons will decay and/or be pumped, transforming some of their
energy into radiation and/or absorbing energy from the perturbations. In addition,
radiation modes will similarly grow and/or decay. Many aspects of this have been
covered in the review of soliton perturbations done by Kivshar and Malomed [33]
as well as in Ref. [31].
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However, whenever the eigenvalue problem has a singular structure, one has
difficulties. The classical example is the perturbation theory of the KdV, where the
Schrodinger eigenvalue problem is singular at £ = 0. What happens is that for a
pure one-soliton solution, p(k) = 0 at k = 0. But if there is just even the smallest
amount of radiation present, we have p(k = 0) = —1. Now, the width of this
region in k-space can be very small (proportional to the radiation density), so this
region could be vanishingly small and one might have to look very close to k =0
in order to see it. However, due to this singular behavior, any perturbations of the
KdV soliton which will create any radiation, will always have secular terms [34].
Physically what is occurring is that a shelf or a depression is forming due to the
perturbation [31], and this action does generate a finite shift in the scattering data
as the perturbation vanishes.

2.6. General Integrable Evolution Equations. Given a linear dispersion
relation, what are the possible integrable evolution equations for that system? Well,
for any integrable system solvable by the ZS IST or the Schrédinger IST, that answer
has been given by Newell and Kaup [35]. They showed that the most general system
is any of the AKNS polynomial forms [7], coupled with a generalized SIT system.
Using the properties of the ZS squared eigenstates and their closure, they were
able to construct the most general evolution equation, given the linear dispersion
relation. In other words, the dispersion relation of the linear theory determines the
nonlinear terms, given the eigenvalue problem. The same could be done for any
other hierarchy.

Now, a burning question has always been “Is it ever possible for an exactly inte-
grable system to have evolving eigenvalues (i.e. for soliton amplitudes to evolve)?”
In general, the answer to this is “No”. However, Kaup and Newell did find ex-
ceptions. Such equations can indeed be constructed, but potential applications for
them seem to be remote.

2.7. Optical Systems. One question which arose naturally after a few years
is “Why are so many of the physical integrable systems related to nonlinear optical
systems?” As one goes down the list, one has the sine-Gordon equation (which
applies to two-level atoms and is the sharp line limit of SIT), nonlinear Schrédinger
(focusing and defocusing — the NLS is almost always the weakly nonlinear limit of
any almost monochromatic envelope [36]), self-induced transparency (SIT — also
more generally referred to as two-level coherent propagation), three-level coherent
propagation [37], three-wave resonant interactions (3WRI) [15, 16, 8], second
harmonic generation (SHG) [38], the three-dimensional form of the 3WRI [39, 40,
41], stimulated Raman scattering (SRS) [13, 42, 43], two photon propagation
(TPP) [44, 45, 46], and degenerate TPP (DTPP) [47]. This is not meant to be
a comprehensive list, but it does include the major integrable nonlinear optical
systems.

Of these, the 3WRI was the first system to demonstrate a major departure
from the accepted and expected soliton behavior. The first deviation was that the
radiation would never asymptotically vanish. Also after any and all collisions, nor
would the radiation separate out from the solitons. The reason for this is that
the 3WRI has no dispersion, and therefore solitons will never separate from the
radiation present. They each have the same velocity. One could now ask what is
the significance of the 3WRI solitons, when they differ so much from KdV or NLS
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solitons? To answer that the best we can say is that in the 3WRI, any solitons
seem to simply represent a “packet” of something. It is a unit which cannot be
broken up. Although there are certain exchange rules for the exchanging of solitons
between the three envelopes [16, 8], nevertheless solitons in the 3WRI do seem to
be some robust and coherent part of the envelope. On the other hand, the radiation
component of any envelope has no such finite “packet” size, but rather can always
be subdivided and redistributed among the three envelopes, subject only to the
Conservation of Action laws [8].

It was the SRS system that first brought to the forefront certain ambiguities
with the IST on finite intervals. The first solution of the finite interval case, by
using an infinite interval IST, was given in [45], where the general IST for SRS
was developed, and features of the solution were discussed. Numerics of SRS have
been studied by Hilfer and Menyuk [48], the asymptotical form of the solution was
described by Kaup [49], and was later solved as a Riemann-Hilbert problem by
Fokas and Menyuk [43]. In the meantime, by analytically solving a model initial
value problem, Menyuk and Kaup essentially found that for all these integrable
nonlinear optical problems (except NLS and 3WRI), one could just as easily describe
the solution as “an infinity of solitons with no radiation”, as well as by the usual
description of “a finite number of solitons in a sea of radiation”. Briefly, why this
could happen is basically the same reason as why a Fourier transform on a finite
interval has a variety of forms. There one could use either a cosine series, or a sine
series, or the exponential series to represent the function. For a given function, the
coefficients in each of these series is quite different. Another way to look at this, is
that on a finite interval, there is an infinite number of ways to take and combine
plane waves to reconstruct some function inside the finite interval. Similarly for
the IST, on a finite interval, there is no unique form for the scattering data.

Pursuing this further, consider the case where solitons are forbidden, as in the
ZS r = +q* case. Now, what is going to happen in this case where no solitons
are allowed on the infinite interval, if we try to represent the solution on the finite
interval with no reflection coefficients, and only with solitons? What happens to
this system on a finite interval? Well, we again find something surprising. Taking
SHG as an example case of these defocusing systems, we find that the solution
of a simple initial value problem can also be given in terms of no radiation, but
now (since regular solitons are forbidden) an infinity of what is called “virtual
solitons” [50]. These are indeed interesting objects.

The possibility of their existence was noted way back in 1974 [7]. However, no
known application was then known for them. In the ZS IST, the typical soliton for
the focusing case (r = —¢*) is of the form

2ne—2i5(z—x0)e—i¢o

2.11 =
(2.11) a cosh[2n(z — zo)]

Now, if one simply assumes that the defocusing case (r = +¢*) has one bound state
in the scattering data, one obtains the “virtual soliton” solution

_ 2n
~ sinh[2n(z — x0)] ’
which clearly will always be singular on any infinite interval. However, on a finite or

a semi-infinite interval, as long as x( lies outside the physical region, the solution
is perfectly valid. Thus a virtual soliton is the singular, ZS, r = +q¢*, soliton.

(2.12) q
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(For certain technical reasons, they also were first found in the lower half complex
plane [50], which is another reason for the prefix “virtual”. For more details on
this, see Steudel’s contribution in this same series.)

As to my first question as to why so many nonlinear optical systems are in-
tegrable, perhaps the principle reason for this is the vast orders of magnitude dif-
ference between the speed of light and other velocities in these physical systems
(which are typically acoustic velocities, and/or electronic drift velocities). Due to
this disparity in velocities, one can then expect a multiple-scale expansion to give
quite good results. Also one would then expect to see the higher order terms scaling
like some power of this velocity ratio, and therefore rapidly vanishing.

2.8. Benjamin-Ono Equation. Although we could perhaps have included
the Benjamin-Ono (BO) equation in the section on eigenvalue problems, it is unique
enough to justify some additional comments. First it is a one dimension eigenvalue
problem but it is also a nonlocal eigenvalue problem [51]. Actually it can be
formulated as an electrostatics problem (Poisson’s equation) in two dimensions,
since it can be stated in terms of Hilbert transforms and their analytical properties.
This is probably the simplest explanation as to why Fokas and Ablowitz [51] could
term the BO equation as a “pivotal equation for multidimensional problems”. It
indeed does contain this multidimensional flavor. It also should be noted that there
are now two versions of its IST [51, 52]. This is not entirely surprising, since the
multidimensional 3D-3WRI [41] also contains a multitude of different forms of the
IST. The multidimensional flavor of the BO equation stands out even more when
one considers its closure property, its perturbation theory, and its Hamiltonian
structure [53].

2.9. Reduction Problems. It seems that almost any integrable system can
be found in the Yang-Mills field, if one knows how to find the right reduction [54].
However, there is another quite useful direction that one can take in reducing
integrable systems. Let us first note that if one simplifies, or reduces the number
of degrees of freedom of an integrable system by some set of constraints, consistent
with the integrable flows, then the reduced system will also be integrable. As one
example, consider the propagation of N solitons in an optical fiber. It is very
important to maintain the spacings of these IV solitons over long distances. So
a key question is the stability of such an arrangement, which is simply an N-
soliton solution. However, to try to analyze a 100-soliton state, where every soliton
has approximately the same amplitude, is not an easy thing to analyze, since the
transmission coefficient, a, has a zero of order 100 at the pole. Another approach
for N larger than 2 or 3 is clearly needed. One way to do this is to approximate
the system as a lattice, since in general, one expects the solitons to have an almost
equally spacing (or being absent if representing a zero) and of equal amplitude.
Then it turns out that when the N-soliton system is reduced to a lattice system,
it reduces to a Complex Toda Lattice of N points, which is integrable. One now
can study the stability problem of the reduced system, the Complex Toda Lattice,
and transfer the results to the N-soliton optical pulse [55]. From this, one obtains
general criteria about how the phase of each successive soliton should be adjusted,
to maximize the stability of the pulse train, and etc.

2.10. The Fokas Method. Another new aspect of the IST has been recently
developed by Prof. Fokas [56]. There are complex practical problems requiring
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the solution of 2-dimensional, linear, constant coefficient, PDEs but with complex
boundaries, such as wedges and polygons. Before his work, there was no general
analytical technique for constructing solutions with such complicated boundaries.
However, it is a simple matter to create a Lax pair for almost any linear PDE with
constant coefficients [57]. Once this is done, one then can approach the solution
of these linear two-dimensional, boundary value problems from the IST point of
view, whereby one solves (or satisfies) both components of the Lax pair, thereby
also satisfying the integrability condition, which is just the PDE to be solved. The
method can also be extended to integrable nonlinear PDEs and evolution equations,
however the solution then frequently requires the solution of a Riemann-Hilbert
problem for the reflection coefficients.

2.11. Unsolved Problems. Now we will discuss what the hard problems are.
They are hard because they haven’t been solved. This is not a complete list, but
is the start of a list of problems in need of solutions.

Although we hae a solution for the IST of the cubic eigenvalue problem, (2.20),
there still is no equivalent of the GLM equations for this system. What we do have
is the solution of the Riemann-Hilbert problem for the eigenfunctions. What is next
needed is a representation of the eigenfunctions in terms of some transformation
kernels (like the K (z,y;t) for the KdV). Once these are known, then the equivalent
GLM equations will follow. Some progress in this direction has recently been made
by A. Parker [58].

There are still aspects of KPI and II that are of interest. Numerical simula-
tions [59] provide valuable insight into the evolution of these equations. I would also
say that there are probably still some unanswered questions about DSI and II. How-
ever, the unfortunate thing about these two equations is that potential applications
seem to be almost lacking, due to the scales involved. (Typical parameters for DS
solitons in water require meter-like distances horizontally, but only centimeter-like
water depths, and even smaller wave amplitudes.)

Questions about perturbation theory and closure relations seem to have become
quite well understood, based on the works of Gerdjikov, Ivanov and Kulish [60],
Beals and Coifman [61], and J. Yang [62]. They are also quite well understood for
the 3D3WRI and DSI, since they both use the same eigenvalue problem. However,
I know of no published work in this area.

Of the optical problems there is still interest in SHG and DTPP, and the
latter has even the direct scattering problem to be detailed, as well as the inverse
scattering problem.

I also strongly suspect that there are other integrable systems still to be found.
Here one would have to apply Painlevé analysis and see what will result.
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Application of Inverse Scattering Method to Problems of
Differential Geometry

V. Zakharov

ABSTRACT. This paper summarizes the results on application of the Inverse
Scattering Method (ISM) to classical problems of Differential Geometry. Some
results are new. The most important one is the following - each space of
diagonal curvature can be approximated by integrable spaces of flat connection.

1. Introduction

This article presents, in a brief form, the recent results on application of the
Inverse scattering method to some problems of Differential geometry. A connection
between the theory of Integrable systems and Differential geometry is not a new
concept. The Sine-Gordon equation was introduced in the theory of surfaces of
constant negative curvature around 1860. Actually, it should be called the “Bonnet
equation”. The Backlund transformations appeared in Differential geometry also
in nineteenth century.

At present, it is established that some important integrable equations, found in
the last three decades in the theory of solitons (Bullough-Dodd equation, Dawey—
Stewartson stationary equation, etc.), have a geometrical interpretation. All of the
equations mentioned above are in 1 + 1 dimensions.

In this article we explore some geometrical applications of integrable systems
in 2 + 1 dimensions. The closest relative of the famous “three-wave equation”,

ov, )
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plays the central role in our study. Equation (1.1) describes a resonant interaction
of three quasimonochromatic wave trains in a nonlinear media. This interaction
is an induced Raman scattering of the wave 1 to waves 2 and 3, and the inverse
process. There is a special reason to present this article to this particular collection
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of papers. One of the pioneers in the study of system (1.1) was David Kaup [1].
(See also [2], [3].)
In this article we study the n—dimensional overdeterminated system,

0Q;;
(1.2) WJ‘ = Qi Qj,
i k=1, .. .n, itk

This system is nontrivial if n > 3. For n = 3, equation (1.1) is a special case of (1.2),
if Q;; is a complex-valued matrix. We will study mostly the case of real-valued
Qij-
’ Equation (1.2) have appeared in Differential geometry in the middle of last
century, long before the concept of Raman scattering was formulated. It’s origin was
connected with the problem of classification of n—orthogonal curvilinear coordinate
systems in R™. This problem, which was formulated almost two hundred years
ago, was considered for a long time as one of the central in Differential geometry.
In 1910, Gaston Darboux devoted to this problem (to the case n = 3 only), the
monogragh of 546 pages [4]. If an expert on the Inverse scattering technique looks
into this book, he will be surprised: how many formulae are familiar to him!

After the First World War, the problem of n-orthogonal coordinate systems
was almost forgotten. An interest to this problem was revived ten years ago, when
Dubrovin and Novikov [5, 6], then Tzarev [7], have published their papers on inte-
grable ststems of hydrodynamic type. The complete solution of this problem was
found only in 1998 [8].

In the theory of n-orthogonal coordinate systems, equation (1.2) is considered
together with the additional constrain:
0Qi; i 0Qji

(15) R I

+ Z Qi Qjx = 0.

i#j#k
This constrain is a "reduction” imposed on (1.2). However, equation (1.2) itself
has a nice geometrical interpretation. It describes n—dimensional Riemann spaces
of diagonal curvature [9, 10].

The spaces of diagonal curvature include very interesting class of Riemann
spaces: 2 — D surfaces, spaces of constant curvature, and spaces of flat connection.
They all are defined by the reduction more complicated than (1.3). In this article we
will show how the Inverse scattering method could be implemented for description
of the spaces of flat connection. We will show also that the closure of this class
of spaces coincides with the whole class of the diagonal curvature. This question
was formulated to the author by E. Ferapontov [11]. In this article we will use the
Inverse scattering method in the form of ”dressing method” [2, 9, 12, 13].

We will discuss also one important problem. Some classes of the Einstein spaces
(solutions of Einstein equations of general relativity) belong to the class of spaces of
diagonal curvature. The Schwartzshield’s metric around a black hole is in this list.
Can one find the class of reduction, which separates the Einstein spaces from the
whole class of spaces of diagonal curvature? This extremely interesting question is
still unanswered.

2. N-orthogonal coordinate systems

The problem of classification of n-orthogonal curvilinear coordinate systems
was formulated by Dupin and Binet in 1810. The problem is the following: Find
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in R™ all coordinate systems,

(2.1) ut =ui(zt, .. 2"), i=1,...,n

(2.2)

satisfying the condition of orthogonality,
Ou® Ou? .
(2.3) E of gk =0 i# I

In virtue of (2.2) one can resolve equations (2.1),
(2.4) zt =zl .. u),

and introduce Lamé coefficients,
(25) Z(auk
In the coordinate system u* the metric tensor in R™ is diagonal,

(2.6) ds® = Zn: HE(du')?,

i=1

and Christoffel’s coefficients for the Levi-Civita connection are the following:

m = 0 (i#l#m),

; 1 OH;
(27) i T o
(28) 11 - —H_f 8ui .

One can calculate the elements of Riemann curvature tensor R;jx;. They are:

Riju = 0, i#j#k#I,

0Q; .
(2.9) Rik,jk = —HiHj ( Q; J Q’lekJ) i #JF#k,
(210) Rij,ij = —-H H; E”, ) 95],
where rotation coeflicients Q;; are

1 6H; . , .
(211) Qij = T ow # J,
and

8Qi] aQ]z

(2.12) Ey= "0+ 20+ k;] QikQjk, ©# J.

As far as R™ is flat, the Riemann curvature tensor is identically equal zero.

Q;; satisfy the following two systems of equations:

0Q;;

(2.13) Sk QikQkj>
aQi BQ i
(2.14) Eyj = 2o+ 22+ ) Qi =0.

k#4,5
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18 V. ZAKHAROV

If Q;; are known, the Lamé coefficients H; can be found as solutions of the linear

system
OH; .
(2.15) Ew QiHj, 1# ]

TWP different solutions of system (2.15), H; and H;, are Combescure equivalent,
H; < H;, at the same Q;;. The Lamé coeflicients satisfy to Gauss-Lamé equations,
O*H; 1 OH, 8H; 1 OH, 9H;
ouldu™  H; Ou™ ou! ' H,, Oul Oum’
and to the additional system,
0 OH; 0 1 0H, 1 O0H; 0H, )
B U it =0 D).
oul H, Oht * ou H; oul Z (H,,)2 Ou™ dum » @#D)
One can construct the adjoint linear system,
ov; .
8u’° = Qik\Il]m 1 7£ ka
where ¥; are adjoint Lamé coefficients. They satisfy to equation (2.16) and to the
additional system,

0 OV 0 10U 1 0w, 00,
oul U;0ut  Out U, Out - U, e out oul

(2.16)

(2.17)

(2.18)

(2.19)

Both systems (2.15), (2.18) are overdeterminated and are compatible in virtue

of (2.13).
Note that 5 5
— H V= —H,;V,,
Aui FTF T Guk
hence
oh
2.2 HY, = —-.
(2.20) kEk = gk
One can check that the potential h satisfies the system of Laplace equations,
2h 1 OHy Oh 1 OH; 0h
(2.21) _Oh __a__k__a___k_ba_’
Oukoul H;, Oul duy,,  H; Our ou!
2h 1 0V
(2.22) _Oh  _ _Qﬂ+i_&_\lﬁ?ﬁ
Oukou! U, Oul Our U, Ouk Oul

Systems (2.21), (2.22) are overdeterminated linear equations imposed on the po-
tential h. They can be treated as an analog of the ”"Lax pair” for Gauss-Lamé
equations (2.16).

Equation (2.21) can be rewritten as follow:

®h  _, On ., Ok
(2.23) Burou ~ Tpgr gy
and one can prove that functions z* = z*(u!, ..., u™) are solutions of (2.23):
92z p O , Oz
(2.24) o~ per kg
Moreover, they satisfy the equations
0%t ozt
2.25 —— = rk—_.
( ) (811,[)2 ; i Ouk
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 19

Equations (2.24), (2.25) stem from the fact that a straight line defined by conditions
x' = ¢* = const, i # 1, is the geodesic line in R™.

We see now that the problem of description of n-orthogonal coordinate systems
can be solved in the following several steps.

(1) Solve system (2.13).

(2) Find the solutions for linear system (2.15); on this stage one finds all
Combescure equivalent metrics connected with the given rotation coeffi-
cients Q;; satisfying equation (2.14).

(3) Solve the adjoint system (2.18).

(4) Integrate the relation (2.20); on this stage one finds the general solution
of Laplace equations (2.21), (2.22).

(5) Find the solutions of (2.13), satisfying additional conditions (2.11).

(6) Find z*(ul,...,u™), the array of solutions of (2.21) and (2.24) satisfying
additional conditions (2.25). In virtue of the Bonnet theorem, z¢ are
defined uniquely up to motions in R™. Note, that systems (2.24), (2.25)
are compatible only if equation (2.11) is satisfied.

The first five points of this program pertain to the intrinstic geometry of R™ in
a new curvilinear coordinate system. On this stage R™ appears as a flat Riemann
space with diagonal metric (2.6). The last point realizes embedding of this space
to Cartesian coordinate system z¢(u!,... um).

3. Spaces of diagonal curvature

In this chapter we introduce a new geometrical object - the space of diagonal
curvature. By definition, it is a Riemann space of n dimensions, G™, satisfying the
following two conditions:

Condition 1. One can introduce in G™ (in some simple-connected domain) a
diagonal coordinate system, such that the metric tensor g;x is diagonal,

(3.1) gik = HZ .

Condition 2. In this coordinate system the non-diagonal elements of Rie-
mann’s tensor are zero,

(3.2) Riju =0, i#j+#k

Note, that the diagonal coordinate system (3.1) could be introduced by many
different ways. G™ is the space of diagonal curvature if at least in one diagonal
coordinate system condition (3.2) is satisfied.

The most trivial example of the space of diagonal curvature is a flat space R™
or torus R™/Z™. In this case, description of diagonal metric tensors is exactly the
problem of classification of n-orthogonal systems in R™. One can display other
examples of the spaces of diagonal curvature.

1. Adjoint Lamé metrics.

Let H; be Lamé coefficients for an n-orthogonal curvilinear in R™ and ¥, -
adjoint Lamé coefficients. Let us consider a Riemann space with the following
metric:

(3.3) ds? = Wi(du')?.

It is a space of diagonal curvature. However, it is not flat in a general case, because
the additional constrain (2.29) imposed on ¥, is different from condition (2.17)
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20 V. ZAKHAROV

imposed on H;. Only in a very special case of ”Egorov’s metric”, when Q;; is a
symmetric matrix, Qi;x = Qk;, we will have

Oh
_ 2 _
H, =V, Hi= R

and conditions (2.16), (2.178) will coincide.

2. Spaces of constant curvature.

In the spaces of constant curvature, the Riemann’s tensor is:
(3.4) Rij 1 = €(gik g5 — 9ugjx)-
Here € is the curvature of space.

All such spaces admit diagonal metrics, g;x = H2d;x. In this case,
(35) Eij = EHiHj.
By a trivial rescaling one can get € = +1.

3. Spaces of flat connection.
Spaces of flat connection, G™¥, are generalizations of spaces of constant cur-

vature. Let Hi(k), k+1,...,N be a set of Combescure equivalent metrics, cor-
responding to the given rotation coefficients @);;. In the space of flat connection
Rij,kj = 0, and

N
(36) EU = ka Hz(k)HJ(k), € = :l:l

k=1

Spaces of flat connection appear in the following geometrical problem. Let us
consider a special class of n-orthogonal curvilinear coordinates in n+ N dimensional
Euclidean space R"*¥. Suppose, that coordinates in this space can be separated

in two classes: u',...,u" and y!,...,y"; and the metric is
n N
(3.7) ds® =" H(du')® + > (dy')>.
i=1 i=1
In this case H; are linear functions on y,
N
(3.8) H;=P;+ Y Hy",
a=1

where P;, H? are functions on coordinates u* only.
One can introduce rotation coefficients,

1 0P,
() ny_ — ~*
(3‘9) Q‘l](u "“)u ) .Pjauj’
which satisfy the system of equations
0Qi;
(3.10) 83’3 = QikQk;j-

Hence the n-dimensional Riemann space G™" with the metric

(3.11) ds? = H(du')?
i=1
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 21

is the space of diagonal curvature. Moreover, H{ satisfies the equations

OH?

Bu’z = Qi Hp.
Thus all arrays H?, H? are Combescure equivalent to each other and to P;.

One can easily check that

0Qi; | 0Qj: aga
90 T oui T > QuQik = — ZH Hj.

k#i,5

It means that G™Y is a space of flat connection.

All two-dimensional Riemannian spaces (surfaces) are spaces of flat connection.
Let I be a surface in R3. One can introduce coordinates x1, 2 on I such that both
the first and the second quadratic forms of the surface are diagonal,

(3.12)

(3.13) E; =

wi = pPdai+q?dai,
(3.14) we = pAdz?+qBdrs.

Coordinates 1,22 are defined up to the trivial transformation z; = z1(u1), 2 =
x2(uz). The coefficients of these two quadratic forms wj,ws cannot be chosen
independently. They are connected by three nonlinear PDE’s known as Gauss-
Codazzi equations (GCE). These equations can be written in a nice and compact
form after introducing new functions «, 3:

_1dp 1 9q
(3.15) =4 6:1:2 p('?xl'
Thus
op 0q
(3.16) 525 ~ %0 Bm, Bp,
then
0A 0B
(317) 8_332 = aB, axl ﬂA,
and
o8 _
(3.18) %—; + 3_331 +AB=0.

Let us embed the surface I' in R3. One can do this by constructing in vicinity
of ' a special three-orthogonal coordinate system, such that

(3.19) ds® = Hidx? + Hidx3 + Hida?,
where
(320) H, =p+Ax3, H2=q+BCE3, H3= 1.

Apparently z3 is directed along the normal vectors to I'.
One can check that rotation coefficients Q;; are:

Q31 = Q32 =0,
(3.21) Qiz=A4A, Qs =B, Qiz=a, Qa1 =0
The rotation coefficients Q;; satisfy the system (3.10), which is reduced now to
system (3.17). Thus, a two-dimensional surface is the space of diagonal curvature.

Moreover, comparing (3.16) and (3.17) one can see that A%, B2 can be treated as
elements of an orthogonal metric that is Combescure equivalent to the elements of
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22 V. ZAKHAROV

first quadratic form p?, ¢%. Hence equation (3.18) can be interpreted as a special
case of equation (3.13), and 2— D surface is the space of flat connection. In a general
case, equations (3.10), (3.12) and (3.13) can be called Gauss-Codazzi equations as
well.

4. Einstein spaces of diagonal curvature

So far we discussed Riemann spaces of signature (n,0) only, but the whole
theory can be extended to pseudo-Riemann spaces of arbitrary signature (p,q).
One has just to assume that some Lamé coefficients H; are pure imaginary. In
this chapter we will discuss spaces of diagonal curvature G*) satisfying Einstein
equations of general relativity.

These equations read:

(41) Ay = _CZ_TIiy

where k is the gravity constant, c is the light velocity, and
. 1

(4.2) w =R} — §R6,’c.
Here R} is the Ricci tensor, R is a scalar curvature, and T, % is an energy-momentum
tensor. Thereafter we will use a system of units such that k/c* = 1. Thus,

¢ = 8xT}.
We will also use the covariant version of Einstein equations,

1
(4.3) Rix — §R9ik = 87 Ti.
Due to the Bianchi identity, the Einstein’s tensor A% satisfies the condition
(4.4) ki =0.
In virtue of (4.1), the same condition is imposed on the energy—momentum tensor,
(4.5) T, = 0.

In general, (4.5) is the condition imposed on the energy-momentum spectrum.

If one interprets Einstein equations in that broad sense, any Riemann space of

signature (1,3) can be treated as a solution of Einstein equations (Einstein space)

for a proper energy-momentum tensor. Condition (4.4) is satisfied automatically.
Suppose that g is diagonal. In this case g** = 1/H?8;;, and

1
(4.6) Ry = fo‘Rki,li-
In the space of diagonal curvature the Ricci tensor is diagonal too:
(4.7) Ry = Ridu,
5 Eix
(4.8) R, = —H; Z 7
1#k
In the same way:
Ei
4.1 R = - 1k ik = )
(4.10) k #Zk Gk, Ok = P
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 23

and

(4.11) F=ARh, A=) oum, (I#im#il<m).
The energy—momentum tensor 7} is diagonal as well:

(4.12) Ti = Ty6},

and Einstein equations can be written in the form:

(4.13) Ay = 8nTy.

Here T}, are arbitrary solutions of the following equation:

(4.14) aT’“ ZTalnH’“ 0.

If Ax are components of the Einstein tensor for some space of diagonal curvature,
equations (4.14) are satisfied automatically.

Suppose that T = 0, and Einstein equations describe metrics in vacuum. In
this case:

(4.15) Qg =034 =0, Q3= =/, 014=0a3="7,

and o+ +v =0.

At the moment, one can enlist more than a dozen exact solutions of Einstein
equations with a diagonal metric tensor. It is interesting that most of them describe
spaces with a diagonal curvature. We present here a list of such spaces, that is far
from being complete.

1. ”One—dimensional” metrics
Let

(4.16) ds®> = —HZdx3 + Hidx? + Hidx3 + Hidx?,

where H; are functions on one variable only, suppose on zy. In this case the only
nontrivial rotational coefficients are

1 OH;
4.17 =t
( ) QZO Ho 81‘0
and apparently, all equations (3.10) are satisfied. In a general case, metric (4.16)
presumes existence of matter. In vacuum, it turns to the Kasner metric:

= Qio(0),

H, = -'L'gpl, Ty = xgpz, T3 = xgpa,
(4.18) Pt+pe+ps=1, pi+p3+p5=1

2. Spherically—symmetric Einstein spaces

In the theory of general relativity, this is a very important class of spaces, which
includes the Schwartzshield’s space outside of a black hole, the basic cosmological
models, and Tolman’s space describing the collapse of dust matter. In all these
cases the metric is

(4.19) ds? = —H@dz? + Hidx? + z%(dz} + sin® zodx?),

where Hy, H; are functions on zg,z; only.
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24 V. ZAKHAROV

In this case, the nonzero rotation coefficients are:

1 O0Hy, 1 0H,
QOI_F——’ Qo = Ho 92y’ Q32 = cos T,
1 1

(4.20) Q21 = —, Q31 = — sinxs.
I3

Among equations (3.10), the only one is non-trivial,

Q31

(4.21) o

- Q32 Q217

and is satisfied in virtue (4.20).
Hence all the spherically symmetric Einstein spaces, both in vacuum and in the
presence of matter, are spaces of diagonal curvature.

3. Bianchi III model
In this case,

(4.22) —ds? = —dx? + a?e” ™23 dx? + b dal 4 Pdal,

where a, b, ¢ are functions on xg only.
One can check that metric (4.22) describes the space of diagonal curvature if
c(xo) = Aa(xp), (A is constant).

4. Bianchi V model
In this model the metric has the form

(4.23) —ds® = —da? + a?e®®2 da? + b2e?*2dx3 + c2dz?,

where a, b, ¢ are functions on xg only.
This model describes the space of diagonal curvature if a = Aj¢, b = Aac (A1, Ao
are constants).

5. Bianchi VI model
Now

(4.24) —ds? = da} + a®e™ ™3 da? 4 b?e®™2dxl + Adxi (m #0,-1),

where again a, b, ¢ are functions on zg only. Like in the previous case, this model
belongs to the spaces of diagonal curvature if a = A\j¢, b= Aac.

These examples show that some important known solutions of Einstein equa-
tions are the spaces of diagonal curvature. Note, that it is not clear so far how
unique is diagonal coordinatization of Einstein spaces corresponding to the enlisted
Bianchi models. It might happen that in some other diagonal coordinate system
equations (3.10) are satisfied for a more broad class of spaces.

5. Dressing method in application to spaces of diagonal curvature

In this chapter we describe a procedure of integration of equations (3.10), a
dressing method described in 1974 [2]. We present here some important develop-
ments of this method.

Let F(s,s',u) be a matrix n x n-valued kernel of an integral operator F' act-
ing on vector—functions on the real axis —oo < s < oo, and u = u!,...,u" be
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n-dimensional parameter. One can study two simultaneous factorizations of the

operator F':
(5.1) 1+F = Q1+KH11+K),
(5.2) 1+F = 1+MYHA+M)?

Here K*, M* are triangle operators. Their kernels, K *(s,s',u) and M*(s, s, u),
satisfy the conditions:

Kt (s,s)=0, s’ <s,

(s,8)=0, s <s,

K~ (s, ) =0, s’ >s,
(5.3) M~(
Apparently,

1+ Mt =(1+K")™1,

and K+, M* are connected by the relation:

s/
(5.4) K*(s,s')+ M™*(s,s") + / K*(s,8"YM*(s",s")ds" =0
8
In a half plane s > §', following integral equations hold:
(e o)
(5.5) K+(S,s/) + F(s,sl) +/ K+(S,s") F(s”,s’)ds” =0,
s
(5.6) M~ (s,s')+ F(s,s') + F(s,s"YM~(s",s")ds” = 0.

s’

Let I; be a set of projective operators acting in n-dimensional linear space and
satisfying the conditions

(57) IzI] = Ii&j.
This set can be interpreted as a matrix,
I; = diag(0,...,10,...,0).
N
k2
One can introduce a set of differential operators,

8 OF OF
(5.8) DiF = 5 + L + 51,

and require
*(5.9) D,F =0.
We assume also that 1 + F is an invertible operator. In other words, the relation
(5.10) A+F2=0
implies Q@ = 0. If conditions (5.9), (5.10) are fulfilled, the kernels K+ and M~
satisfy equations
D;iK*=D; Kt +[I,, QKT =0,
(5.11) DiM~ =D;M~ + M~ [I;, Q] =0,
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or
oK+  OK* OK* o
ui + Ii ds + s’ Ii + [-[17 Q(S)] K (8’8 ) - O)
oM~ oM~ OM- o o
(5.12) St L+ S L= M (s,8) [ Q) = 0.

Here Q(s) = K*(s,s) = M~ (s,s). Moreover, matrix elements Q;;(s,u), (i # j)
satisfy equation (3.10),

0Q;;
(5.13) 8u;j = Qik Qkj-
We will not prove this fact, which is almost trivial. Another two points are impor-
tant:

1. Let ¢; = ¢;(s — u;) be a set of n arbitrary functions of one variable. Then
a set of functions,

(5.14) H;(s,u) = ¢; +/ K (s, 8" u;) dr(s’ — ug),

presents the set of Lamé coefficients H; at any s. In other words, the metric
n
ds®> =Y H}(du')?,
i=1

is a metric of certain space of diagonal curvature. A different choice of ¢; gives
different Combescure equivalent metrics.
2. Let the following set of functions,

(5.15) U,(s' u) = + /OO o (s’ — ur) My (s',8)ds’,

be a set of adjoint Lamé coefficients satisfying equation (2.18). Then the metric
N
ds® = " Wi(du')?
=1

presents the adjoint space of diagonal curvature. In Egorov’s case, F(s, s) satisfy
the additional constrain,

(5.16) Fip(s,8") = Fii(s', 5).
In this case H; = V,.

6. Differential reduction

Following the approach of the dressing method, we will call F'(s, s’, u), satisfying
equation (5.8), a "dressing function”. Relation (5.16) is an example of additional
constrain, which could be imposed on F' without violation of basic equation (3.10).
One can easily check that relation (5.16) implies the relation

(6.1) M~ (s,8') = [K¥(,5)]",
(6.2) M (s, ') = K;;(s', s).
In this case,

(6.3) Qii(s,u) = Qji(s,u).
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The additional relations imposed on F' can be called reductions. The key role in
the theory of n-orthogonal coordinate systems plays the differential reduction,

OF (s,s") n OF'"(s',s)

0s’ 0s B
which was introduces in [8]. One can note that this reduction leads to an algebraic
relation, which connects the kernels Kt and M ~. Also, it proves that differential

constrain (6.4) stipulates the differential relation between K+ and M ~. Omitting
a very simple proof, we will just formulate this relation:

+(s,8)\ " (s, 8
69 (FmD) + 2R M) o) - @7 ()] <o

(6.4)

0,

Using this relation one can prove that on the diagonal s = &/,

0K*(s,s') OKT(s,s) B o
(66) s’ + Os s - —Q(S) Q (S )7
and finally, that @Q;; satisfy additional equations,
0Qi; | 0Qj _
(6.7) 5t T B T k;j Qik Qjx = 0.

So, relation (6.4) is the reduction, which gives a solution for the problem of con-
struction of n-orthogonal coordinate systems.

7. One—soliton solution; a general case.

The most striking point of the dressing method is an opportunity to construct
exact solutions of integrable systems in a close form. Let us consider a general case
of spaces of diagonal curvature and suppose that the ”dressing” function F' is a
product of two matrixes:

(7.1) F(s,s',u) = A(s — u) B(s' — u).

We will call the corresponding solution of equation (3.19) as ”one-soliton solu-
tion”. In fact, this is a very complicated solution, which includes many interesting
Riemann spaces. To satisfy the basic condition (5.8) one should put

Ay = Ay(s—u),
(7.2) By = By(s'—u).
Integral equations (5.5) and (5.6) can be solved immediately:

K*(s,8") = K*(s)B(s') =
(7.3) M~ (s,s8") = A(s) M~ (s').
Here

K*(s) = —A(s) (1 + As)) 7Y,

(7.4) M~(s") = —(1+ A(s")) ! B(s)),

(75) 8u=Y [ Byl© Anle) de
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28 V. ZAKHAROV

The rotation coefficients @;; take the form
Qy = Qu(ul—s,,u"=s)=

(7.6) = Ay [0+ X)), Byl

pq

=s’

In this equation one can put s = 0. In a general case, );; is parametrized by 2n?
functions of one variable.

Let f; = fi(u' — s) be a set of arbitrary functions of one variable. All Combes-
cure equivalent metrics of spaces of diagonal curvature corresponding to the rotation
coefficients (7.6) are given as

(7.7) Hi=fi—Ap [(1+ A)—l]pq Ry,

where

(78) R=Y [ Bu@ h9de
/-0

For the given Q;;, they are parametrized by functions f,.
The adjoint Lamé coefficients ¥; are parametrized by another set of functions
on one variable, gi (u’c — 8). Now

(79) \I/z = Gg;— Tp [(1 + A)—l]pq qu,

3 / T () Arp() e,
k — 00

A general solution of the Laplace equations (2.21), (2.22) is given in the form

(7.10) T,

(7.11) h=ho—T,[(1+A)7'] Ry,
where
uk—s
(712) =3[ A© o
k — 00
Diagonal elements of the curvature tensor can be presented in the form
0Qi; | 0Qj: _
Ei; 3w " oui T Z.Qik Qjk =
k#1,j
= —A,[1+ A)_l]pq By — Ajp [(1+ A)‘l]jp B, +
(7.13) +Aip Ajk [(1 + A)_l]pl [(1 + A)_l]qm B Bk

8. One-soliton solutions; special cases.

One-soliton solutions exist for all special classes of spaces of diagonal curva-
ture. They are separated from general one-soliton solutions by imposing of some
constrain on matrixes A(s), B(s).

The most interesting case is a flat Euclidean space R™. In this case A and B
are connected:

(8.1) A=B" A or Ay; = B; Ay
Here Ax; = —Aji are constant antisymmetric matrixes. One can check directly

(while it is a hard procedure) that, if conditions (8.1) are satisfied, F;; = 0 and the
metric is flat.

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 29

The problem of embedding of the n-orthogonal metric to R™ can be solved
efficiently in the soliton case. Suppose, that the potential h satisfying the Laplace
equation (2.23), satisfy also the equation

8h x Oh
(8.2) o ;ruﬁ.

In virtue of (2.20), equation (8.2) is equivalent to the relation
oY,

(8.3) =" ZQlk Vg,
(9.’131 oy
which is compatible with the definition of ¥,
o,
4 =
(8 ) auk Qlk \IJk:;

if and only if the metric is flat and E;;, = 0.
Apparently, equation (8.4) is satisfied only for a very special choice of function
9:(€). The following theorem holds:

THEOREM 8.1. Fquations (8.3), (8.4) are satisfied if and only if g;(€) are con-
stants.

The proof of this theorem is straightforward but cumbersome. It will be pub-
lished in another article. It should be noted that solutions h in (2.23), (8.3) are
defined up to an arbitrary constant. If one takes n — 1 arbitrary common solution
of this system, equations

(8.5) Ri(ul, - u™) =¢, i=1,---,n—1,
define all possible geodesics (straight lines) in R™. By a proper orthogonalization
we could define z¢ = z(u!,--- ,u") and accomplish introducing of n-orthogonal

coordinates for the soliton case. In the same way, one can find the constrains
connecting A and B for the spaces of constant curvature and for the spaces of flat
connection.

It is a much more difficult problem to determine reductions, which separate
solutions of Einstein equations for the given equation of matter state. We discuss
here the vacuum case only. In this case one should satisfy equations (4.10), (4.15).

Let us study an infinitesimal dressing F' — 0. In this limit

(86) Q(ul_—s,-.-’u'nf—s):K(S,S):—F(s,s)’
and

(ut — J_ g AT — o ai
(8.7) _EijzaFu(U S, U s)+8FJl(u s u s).

os' Os
At s =0, E;j = E;;(u*,u?). According to (4.10) and (4.15), E;; = o;; H;H;, and
a2 = a3 =@, a3 =03 =[5, Qg = a3 =17.
As far as we have H; = H;(u'), H; = H;(u) in the linear approximation, a;; must
be constants. Finally, the dressing matrix F' should satisfy the condition
OF;j(u* — s,ul — §') N OFji(u? — &', ut — s)
s’ Js

where a;; = aj; is a symmetric constant matrix satisfying conditions (4.15).

= aij Hi(u' — s) H;(w? — ),

(8.8)
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30 V. ZAKHAROV

One must remember that conditions (8.8) are necessary. The sufficient condi-
tions, which must be imposed on F' to find the exact solution of Einstein equations
in vacuum, are unknown so far.

9. Dressing via 0—problem

The dressing procedure described above will lead to the same results, if one
performs the following replacement in (5.5), (5.6):

9.1) /:oud.s—»%(/:ouds—/;uds).

Let us indroduce:

(9.2) F(s,s") = / F(A, p) e”®s=1) dxdp,
(9.3) K*t(s,s) = /K(s,u) e dy,
(9.4) M*(s,s') = / M(A, s') e 8 d.
One can check that equations (5.5), (5.6) are equivalent to integral equations:
(95 6(s)+ / F(m, ) dn / X8 s ndgan = o
06 b0+ [ fmdn+i ’;( B U s dEdn = 0,
where
P(s,\) = K(s,))e™,
b\ s) = M(\s)e ™,
(9.7) fum) = F(m)eme.
Later on we will omit sometimes the notations s, s’. In equations (9.5), (9.6)
: 7€
9.8 —— = lim —————.
(08) n—§ 0 |n=§?+e

Taking into account (9.8), one can understand the integration performed in (9.5),
(9.6) in a more broad sense. So far, all functions are defined in the real axis
—00 < A < 00, —00 < 1 < 0o. The dressing procedure does not change if one
assumes that ¢, A are quasianalytic functions defined on the whole complex plane
C!. In this case, F(n, \) is defined on C?. One can define:

3 ¢(£ 3)

x(MA) = 1- d€ dg,
(9.9) E0Y) = 144 ‘”(’” ") dn d.
Using the standard formula,
01 -
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one obtains

10 - 108%

(9.11) oM =-— 2 AN = — 2
Quasianalytic functions y, x satisfy the equations:

o _ B e E T e 1

(912) N = - [x68 fEEMdedE,

% .

(913) K= i [ FOR 6O (D dede,

which define the dual ”non-local 9-problem”, and are accomplished by the following
normalization:
x—1, x—1 at XA —oo.

In the limit A — oo one has:

Q P R
VRN VE

(015)  Q = K*(s,s)= / K (s, ) € du = / 6(6,8) de dE,

(9.14) x = 1+ T

oK , _ _
o1e) P o= S =i fesedasd
S lo=s
In the same way,
__, . Q P
(9.17) x=1 Y + OME +
Equation (5.8) imposes on function f(A,n) the following condition:
(9.18) fum) = e F(Am) e,
(9.19) ® = s+ L'
i=1
In virtue of (9.12) and (9.13), functions y, X satisfy the linear systems:
(9.20) I (;’L‘i FidxT; — QIix) = 0, itk
o+
(9.21) (a:fi—i/\Ii)Z—f(IiQ)Ik = 0, itk
Let us expand equation (9.20) in powers of 1/i\. The first term of the expansion
reads:
(9.22) Iy gg - QLQ+ I P=0.
Multiplication by I; (j # i, k) from the right side gives
(9.23) Iy —S%Ij =L QLQI,.

This is just another notation for equation (5.13). Multiplication of (9.22) by I;
leads to definition of P,
oQ

(9.24) IkPIizleIiQIi—Ika—iIi.
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32 V. ZAKHAROV

The second term of the expansion leads to the equation:

oP
(9.25) Ik%Ii =0I,QL PI;.
Let us introduce
X = X e %= Ay

Apparently, X and Y satisfy equations

0X
(9.26) I 5o LQLX,
oYy

Suppose, that ¢; = ¢;(\, A), ¥; = ¥;(\, A) are two arbitrary sets of functions of
some complex variable, not necessary analytical one. One can see that the sets

(928) Hi(u17"'7un) = Z/X’ik(ula"'?un)fag) ¢’k(£v£) dgdg,
k

929 Wiul,...,uY) = Z/Y(ul*,...,u",&,ﬁ_)lbi(f,rf_)d&dﬁ_,

give the arrays of Lamé coefficients and adjoint Lamé coefficients.
Now the reductions are some restrictions imposed on f(A,n). The fundamental
reduction (6.4) reads:

(9.30) nE(\n) = AF"(-n,—\).

Let us impose a more general reduction,

(9-31) nF(A,n) = AF7(=n,=\) = €*® R(A,n) e 7%,
where

(9.32) R(A\m) = R (~1,-))

is some matrix function on C? and does not depend on u’. From (9.12) one gets:

% Xtr(—'/\a —/_\) = Wi/ftr(_é.’ _Ea _)\9 _5\) Xtr(—£7 _g—) df d€_

Using (9.12), (9.32) and (9.30) one can obtain the following bilinear identity:

(9.33)

9 - _ )
— A T\, —N\) dAd\ =
B XA A) X (=X, =)

(9.34) i / X(E,E) €62 R(E,m) e~ 3" (—, —i7) dE dE dy diy

The integral in the left part of (9.34) is proportional to the residue of A x x'" at
infinity. Using the asymptotic expansion (9.14) one gets:

(9.35) / % Ax(AA) X (=X, =X) dAdX = 2mi(P — P — QQ'™).

Suppose, that R(\,n) is presented in the form:

N
(9.36) R0 = =23 ¢ (0, ) ¢{? (=, =) (—1)°®).

k=1
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APPLICATION OF ISTM TO PROBLEMS OF DIFFERENTIAL GEOMETRY 33

Here ¢£k)()\,5\), i =1,...,N are some functions on C!, and a(k) = 0,1. Then
formula (9.34) reads:

N

(9.37) P— P —QQ'" = Z Hz'(k) H](k) (=1)=),
k+1

Here

(9:38) HE =3 xig(€,6) " Wh(€, &) de dé.

q

HF are the arrays of Combescure equivalent metrics at different k. Combining
(9.36) with (9.35), one easily obtains:

(9'39) Eij _ ZHz‘(k) Hg('k) (_l)a(k)‘
k

In other words, reduction (9.31) describes a space of flat connection. If N — oo,
one can present any matrix function R;;(\, n) in the form (9.36). That means that
the spaces of flat connection are dense in the set of all spaces of diagonal curvature.

There are some other, more sophisticated methods that allow to separate the
spaces of flat connection from the total pool of diagonal curvature spaces. One of
them is describes in [14].

Most probably, the Einstein spaces of diagonal curvature are among the spaces
of flat connection.
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Algebraic and Analytic Aspects of Soliton Type Equations

Vladimir S. Gerdjikov

ABSTRACT. This is a review of two of the fundamental tools for analysis of
soliton equations: i) the algebraic ones based on Kac-Moody algebras, their
central extensions and their dual algebras which underlie the Hamiltonian
structures of the NLEE; ii) the construction of the fundamental analytic so-
lutions (FAS) of the Lax operator and the Riemann-Hilbert problem (RHP)
which they satisfy. The fact that the inverse scattering problem for the Lax
operator can be viewed as a RHP gave rise to the dressing Zakharov-Shabat,
one of the most effective ones for constructing soliton solutions. These two
methods when combined may allow one to prove rigorously the results ob-
tained by the abstract algebraic methods. They also allow to derive spectral
decompositions for non-self-adjoint Lax operators.

1. INTRODUCTION

We start with three examples of integrable nonlinear evolution equations (NLEE).
The first one is the well known N-wave equation [49, 48, 35]:

(L) ilLQ) il Q)+ 1@ QO =0, lim_Q(z,t) =0,

where Q(z,t) is a smooth n x n matrix-valued function, Q(z,t) = —BQB and I
and J are constant diagonal matrices; B;; = d;5€¢;, €5 = £1.
The second example is the 2-dimensional affine Toda chain [41]:

2
(1.2) —g Cg: = @17k _ oQr—Qk—1 k=1,...,n,
z

where we assume that eQr+1 = @1,
The third example belongs to the same family as (1.2) and is of the form:

Oy
(13) 17 +’)’COth n Oz

Tk PYr s d
o iy k) =0, k=1...n,
p=1

and k — p is understood modulo n and ¥y = ¥, = 0.
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36 VLADIMIR S. GERDJIKOV

The integrability of these equations is based on their Lax representations. This
means that each of the NLEE (1.1)—(1.3) can be represented as the compatibility
condition

(1.4) [L(A), M(A)] =0,

of two linear matrix differential operators depending on the spectral parameter .
Below we will use as Lax operator L(A)

(15) Lo, 63) = (i +4(e.0) = AT ) ¥la 0. =0
as examples of M (\)-operators we use:
(1.6a) M(N)y = ( % + Vol(z, t) + /\I) P(z,t, A) = Mp(z,t, NI

(1.6b) Mi( ANy = z% + Vo(z,t) + AVi(z,t) + /\2V2) Y(z,t, A) = N2p(z, 8, \) VS

(16 Ma0 = (i1 +Toort) + 3Vo@n0)) ot ) = J00a 8 VS
where V@ = lim, 400 V2(,t) and V3 = limy_, 100 Vo1(z, t).

Choosing the form of L(A) in (1.5) we fixed up the gauge by assuming that J
is constant diagonal matrix and ¢(z,t) = [J, Q(z, )], i.e. g;; = 0.

The system (1.5) with ¢(x,t) and J 2 x 2-matrices (i.e., g > sl(2)) is known as
the Zakharov-Shabat (ZSs) system; the same system with n x n matrices will be
referred to below as the generalized Zakharov-Shabat system (GZSs).

The Lax representation of the N-wave equation is provided by L(\) (1.5) and
M(X) (1.6a). If the potentials in these operators are n X n-matrix ones we may
assume that the Lie algebra underlying the Lax representation is g ~ sl(n). The
set of independent fields Q;;(x,t) equals n(n — 1) and may be restricted by the
involution [49, 52, 48]:

(1.7) q(z,t) = Bq'(z,t)B™,  J=JI,

Often by N-wave equations in the literature people mean eq. (1.1) with the invo-
lution (1.7). Such systems with n = 3 and n = 4 find applications in describing
wave-wave interactions, see [48, 49, 35].

The Lax representation of the Z,-NLS eq. (1.3) is provided by (1.5) and (1.6b)
but with rather specific restrictions imposed on ¢(z,t) and J:

(18) gz, t) =1 ¢u(x,)K§,  J=co Y WV By,  Ko= > Erkia,
k=1 k=1 k=1

Here and below we will denote by Ej, the nxn-matrices equal to (Ejk)mn = 6jm0kn;
the indices should be taken modulo n, i.e. E, ,41 = E, 1 and the constant ¢y will
be defined below.

The affine Toda chain (1.2) has several equivalent Lax representations. We
mention here two of them. Their Lax operators are:

d = dQx

(1.9) Loda = i xE —— Bk +iA Z Q=R 1,

k=1
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and its gauge equivalent:

d
(1.10) Loga = i Z - % Bk + iAKo.

The corresponding M-operators are of the form (1.6c). Both choices (1.9) and
(1.10) are not of the form (1.5), but are adjusted to the grading of the Lie algebra
sl(n,C) we introduce in the next subsection, see formulae (1.20)—(1.25) below.

The operator f/Toda (1.10) after a similarity transformation with the constant
matrix ug, such that ualKouo =3 wk Eyy can be cast into the form of (1.5) in
which both ¢(x,t) and J have a special form:

(1.11) g(z,t) Z Qs WP KE J =co Zwk_1/2Ekk.

j=1

where w = exp(2mi/n). The special form of ¢(z,t) and J in both (1.8) and (1.11)
shows that both models have only n — 1 independent fields. This special form
can also be made compatible with the structure of the graded and Kac-Moody
algebras [11, 33, 31] and is best understood with the method of the reduction
group proposed by Mikhailov [41].

The idea of the ISM is based on the possibility to linearize the NLEE [53, 2,
9, 13, 49, 48, 35]. To this end we consider the solution to the NLEE g(z,t) as a
potential in L(A) (1.5). In order to solve the direct scattering problem for L()\) we
introduce the Jost solutions ¥4 (z, ¢, A) and the scattering matrix T'(), t) as follows:

(112) i (gl t) - M, t,0) =0,
(1.13) lim oy (a,t, NerT =1,
(1.14) T(A\t) = 93 Y- (z, 8, A).

The Jost solutions of L(A) are also eigenfunctions of the operator M (\). We
can use this fact to determine the t-dependence of the scattering matrix:

.dT
(1.15) iy T, T ] =0,
which can be easily solved as follows.
(1.16) T(A t) = efNT(A, 0)e~ V)t

By f(\) € h above we mean the dispersion law of the NLEE; for the N -wave
system we have fn_w(A) = AL

Thus the solution of the NLEE for a given initial condition g(z,t)|:=0 = go(z)
can be performed in three steps, see [48, 9, 13|:

(1) insert g(z,0) as a potential in L(\) and determine the corresponding scat-
tering matrix T'(}, 0);

(2) Given T'(A,0) and the dispersion law f(A) find T'(A,t) from eq. (1.16);

(3) Given T'(A,t) reconstruct the corresponding potential g(x,t) of L(A) which
will be also the solution of the NLEE.

Step 2 is trivial. Steps 1 and 3 involve solving the direct and inverse scattering
problem for (1.5) which can be reduced to linear integral equations. The most
difficult step 3 provided for the name of the method. The most effective method to
solve it for operators like L(A) is based on the equivalence to a RHP [45].
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38 VLADIMIR S. GERDJIKOV

Along with solving the inverse scattering problem in step 3) we will construct
also the minimal set of scattering data €. Indeed the scattering matrix T'(\,t)
has n? matrix elements with only one obvious constraint detT'(\,t) = 1 while
the potential ¢(x,t) has only n(n — 1) matrix elements. Therefore there must be
additional interrelations between the matrix elements of T'(A, t).

The analysis of the mapping between ¢(z,t) and ¥ allows one to interprete it
as a generalized Fourier transform [2, 36, 25, 21, 27, 28, 29, 30]. The proof of
all these facts and the effective solving of the ISP for the GZSs (1.5) is based on the
possibility to construct fundamental solutions of (1.5) which are section-analytic
functions of the spectral parameter A.

Algebraic structures: Kac-Moody and graded Lie algebras

Let us now briefly outline the first basic tool inherent in the Lax representation
— its algebraic structure. Indeed, L{\) and M(\) above are polynomial in A and/or
1/X whose coefficients take values in some simple Lie algebra g.

Let us take generic Lax operators in the form:

(1.17) LMy = (z% + Ulz, t, )\)> Yz, t,\) =0,

(1.18) M)y = (z% + V(a:,t,/\)> Y(x, t,N) = Yz, t, )V (),
(1.19) (z,t,\) ZUk z, )N, V(z,t, ) ZVk(x AR,

where the potentials U(z, t, A) and V(x,t, \) are polynomials in A and/or 1/A. Such
potentials can be viewed as elements of a Kac-Moody algebra gc. Roughly speaking
the construction of g¢ involves a simple Lie algebra g and an automorphism C of
finite order, i.e. there exist such an integer h that C* = 1. Then we can split g
into a direct sum of linear subspaces

(1.20) 9= :62(1)9(’“),

which are eigensubspaces of C, i.e. if

(1.21) X® ¢ gk & Cx®)y=whx®)

where w = exp(2wi/h). The decomposition (1.20) satisfies the grading condition:

(1.22) [X(k)’X(m)] = x(ktm) ¢ g(ktm)

where the superscript & +m in g**+™) is understood modulo h. Then the elements
of the corresponding Kac-Moody algebra gc have the form:

(1.23) X)) =Y Ax®  x® egh)
k<N

Obviously due to (1.22) the commutator of any two elements X (\), Y(A) of the
form (1.23) will also have the form (1.23).

The classification and the theory of the Kac-Moody algebras can be found in
[33, 31]. Their simplest realization can be obtained from a pair (g, C) with a few
special choices of the automorphism of finite order C, namely:
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a) C = 1; then each of the subspaces g(*¥) ~ g. This leads to a generic GZS
system if J is real and to a generic CBC system if J is complex.

b) C* = 1 where C is the Coxeter automorphism of g and & is the Coxeter num-
ber. This leads to a CBC system with Zj-reduction and will be used in analyzing
the NLEE (1.2) and (1.3).

¢) CV where V is a nontrivial external automorphism of g. Such gradings also
lead to interesting NLEE but will not be used in this paper.

The Kac-Moody algebras are obtained from the constructions a)—c) with addi-
tional central extensions; they are split into three classes: of height 1 (cases a) and
b)) and of height 2 and 3 depending on the order of V.

The potential U(z, t, A) for the N-wave equations equals [J, @(z, t)]—AJ belongs
to a Kac-Moody algebra with g ~ si(n) and C = 1. The potential U(z,t,\) =
G(z,t) — AJ of the form (1.8) and (1.11) gives rise to the NLEE (1.2) and (1.3) is
related to Kac-Moody algebra of the class b) with g ~ sl(n). The Coxeter number
then is h = n; the Coxeter automorphism can be realized as inner automorphism
of the form:

(1.24) C(X) = COXCO—17 Co = ZwkEk:ky W= e2m‘/n’
k=1

where C obviously satisfies C™ = 1. With this choice of C' we can easily check that
the linear subspaces g(*) are spanned by

(1.25) g® =lc {Ejjsx, s k=1,...,n},

and j + k is considered modulo n. Comparing (1.8), (1.10) with (1.25) below we
find that §(z,t) € g(® and J € g(V). Note that now the condition X* e g(¥)
imposes a set of nontrivial constraints on X (¥,

The idea to use finite order automorphisms for the reductions of the NLEE was
proposed first by Mikhailov [41] who introduced also the notion of the reduction
group. The Z,-reduction condition according to [41] is introduced by:

(1.26) C(U(z,t, \w)) =U(z,t,N), C(V(z,t, w)) = V(x,t,\),

where we have chosen the simplest possible realization of the Z, group on the
complex A-plane: A — A\w with w = exp(2mi/n).

The Kac-Moody algebras, like the semi-simple Lie algebras have an important
property which ensures the solvability of the inverse scattering problem for L()) and
the non-degeneracy of the Hamiltonian structures of the NLEE. While the semi-
simple Lie algebras possess just one invariant bilinear form (X,Y) = tr (ad x,ady)
the Kac-Moody algebras possess a family of invariant bilinear forms:

(1.27) (X, YN)® = Res A77HX (A, Y(V)),

for all integer values of p.
We will need also a central extension of the Kac-Moody algebras g = g & ¢
where the central element is generated by the 2-cocycle:
[ dY (z, A)\\ (P)
(1.28) wp (X (2, ), Y (2, ) = / dr((X (2, %), TN

—00
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This means that each element of g is a pair (X (x, A),cx) where cx is a constant.
The commutation relation in g is defined by:

(1.29) [(X(z,X),¢x), (Y(z,A),ev)] = ([X(2,A), Y (7, N)], wp(X (2, A), Y (2, A))) -

Important role for the Hamiltonian formulation of the NLEE is played by the
dual algebras g*, g* = g* @ c and their splittings into direct sums of Borel-like
subalgebras. These splittings for § = g4+ © g look like:

Ny -1
(1.30) g = {Zuk(m)A’“}, §-= { > uk(x)A’“},
k=0

k=—00

and for the dual g* = g% ® g*:

(1.31) gy = { Z uk(x))\k}, g = i uk(x))\k

k=—N; k=p+1

The co-adjoint orbits of g on g* in fact are isomorphic to the space of coefficients for
which the NLEE is written. Thus they are natural candidate for the phase space
of these equations. The freedom provided by the parameter p is directly related to
the existence of hierarchy of Hamiltonian structures for the NLEE.

Fundamental analytic solutions

The second important tool in this scheme is the fundamental analytic solution
(FAS) of L()\). We will see that using the FAS one is able to:

— reduce the solving of the ISP for L(A) to an equivalent Riemann-Hilbert
problem (RHP) for the FAS [45, 48, 52];

— construct the kernel of the resolvent for L(\) and derive the spectral decom-
position for L(\) [26, 18, 30];

— construct the ‘squared’ solutions of L(A) which allow the interpretation of
the ISM as a generalized Fourier transform (GFT) [2, 34, 36, 25, 28, 29, 30];

— construct the Green function for the recursion operators Ay and prove the
completeness relation for the ‘squared’ solutions. This property ensures the unique-
ness of the solution of the ISM [25, 27, 19, 30).

The existence of FAS is ensured by the analytic dependence of both U(z,t, A)
and V(z,t,A) on A. The properties of FAS depend crucially on the boundary
conditions imposed on the potential g(x,t). For simplicity here we consider the
class of potentials q(z,t) that are sufficiently smooth functions of z and tend to
zero fast enough for x — oo for any fixed value of ¢.

The FAS for the Zakharov-Shabat system (i.e. g ~ sl(2)) can easily be con-
structed due to the fact that each of the columns of the Jost solutions

(132) L(/\)@/f:l:(l', t, )\) =0, zllbr:i:noo eiJ)\zQ/):E (l‘, t, /\) =1,

allow analytic extension either for A € C; or for A € C_, see [2].

If we analyze the analyticity properties of the Jost solutions ¥4 (z,t, A) related
to algebras of higher rank one finds that only the first and the last columns of
Yi(z,t,A) allow analytic extensions off the real A-axis. An important result of
Zakharov and Manakov [49, 48] consisted in showing that a FAS for the GZS with
g ~ sl(n) and real-valued J can be constructed by taking proper linear combinations
of the columns of ¥y (z,t, ).
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The construction is more complicated for the Caudrey-Beals-Coifman (CBC)
systems when the eigenvalues of J are complex [5, 6, 8]. The generalization of this
construction for CBC systems related to any simple Lie algebra g was done in [30].

We make attempt to outline the construction and the properties of each of
these tools. Then we show how the FAS can be used to construct the kernel of
the resolvent of L(A) and to exhibit its spectral properties and the structure of its
discrete spectrum. Finally we illustrate how these tools can be used in the analysis
of the NLEE and their fundamental properties and finish with some conclusions.

Both these aspects are rather broad; they have been widely discussed in hun-
dreds of papers. Therefore inevitably the list of references consists mainly of reviews
and monographs and bears an illustrative character. The thorough reader is advised
to consult also the papers referred to in these references.

2. CONSTRUCTION OF THE FAS
Preliminaries: Jost solutions and scattering matrix

The direct and the inverse scattering problem for the Lax operator (1.5) will
be done for fixed ¢t and in most of the corresponding formulae ¢ will be omitted.
The crucial fact that determines the spectral properties of the operator L is
the choice of the class of functions where from we shall choose the potential g(z).
Below for simplicity we assume that the potential g(z) is defined on the whole axis
and satisfies the following conditions:
C.1: By g(z) € Ms we mean that q(x) possesses smooth derivatives of all
orders and falls off to zero for |z| — oo faster than any power of z:

lim lz|¥q(x) =0, Vk=0,1,2,...

C.2: ¢(z) is such that the corresponding operator L has only a finite number
of simple discrete eigenvalues.

Below we will use along with Li(x, A) = 0 also the following equivalent formu-
lations of the system (1.5):

(2.1) zg—i +q(z, t)€(z, \) = A[J,E(x,N)] =0,  £&(z,\) = ¥(z, \)e*?,

(22) %~ (@, Nl ) + M NT =0, P, ) = Wl W)
(2.3) igi— @ Nz, )+ ME@ ), J] =0, E(m,\) = e~ Nz, \).

where by ‘hat’ we denote the inverse matrix, X = X 1. The Jost solutions Ex(z, M),
X+ (z, ) and &4 (z, A) for the systems (2.1)—(2.3) can be introduced by:

T, lim (2, \) =1,
—+o00

lim &4(z,A) = 1, lim 4 (z, e
in analogy to (1.13); then their scattering matrices are:
To(N) = M2 (e (x,\) "y (z, \)e ™2 = T(N),
T3(N) = ¥4 (2, ) (@ (2, ) =T~ (N),
T4()‘) = eikjmél—(m’ ’\)(é—(z’ A))—le_i)‘Jz = T_l()‘)’
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Below we will consider two specific reductions of the Lax operator: the GZSs
with Zs-reduction:

(2.4) B(U'(x,t,eX*)) B~ =U(x,t,)), Bi=1, €=+l

The first possible choice for B = diag (€1, ...,€,), ¢ = +1 with € = 1 leads to the
classical N-wave equations [49, 48] with

(2.5) Qi (T,t) = exejgix(z,t), J =diag(as,...,as), ax = €aj,.

Since all eigenvalues of J are real (¢ = 1), or purely imaginary (¢ = —1), the Lax
operator becomes a GZSs. The second choice for B:

(2.6) B=> Ey, k=n+l-k  e=-1,
k=1

will be used in combination with the Z,-reduction:

(2.7) Co(U(x, t,wA))Cyt = U(a,t,)), C"=1.
which leads to the CBC system. For the sake of convenience in doing the spectral
problem of CBCs we choose Cyp = Y"7_, Ej k+1; then L()) has the form (1.5) with
diagonal complex-valued J given by (1.8) or (1.11) where ¢ = 1 (resp. ¢o = i) if
€ =1 (resp. € = —1). Both Lax operators will have similar spectral properties.

In solving the NLEE (1.2) and (1.3) we will need to apply both reductions
(2.4) and (2.7) simultaneously. An attempt for classification of the Zs-reductions
is made in [23].

The FAS of the GZSs with Zs;-reduction.

Let us outline without proofs the construction of the FAS for the GZSs with
real J, see [49, 48, 5, 8, 30]. For definiteness we assume that the real eigenvalues
of J are pair-wise different and ordered as follows:

(2.8) J = diag (a1, ..., an), aL>ag > > an.

PROPOSITION 2.1. Let the potential of (1.5) q(xz) € Mg satisfies conditions
(C.1), (C.2) and (2.5). Then:

a) the Jost solutions 4 (x, ) and &1 (x, ) of (2.1), (2.2) exist and are well
defined functions for \ € R; R

b) the matriz elements of the scattering matriz T'()\) and its inverse T'(\) are
Schwartz-type functions of A for A € R.

REMARK 2.2. The proposition 2.1 concerns the Jost solutions as fundamental

solutions. One can prove that the first and the last columns {E](ac, A) and ﬁli" ] (z,A)
of the Jost solutions allow analytic extension with respect to A as follows:

Column U, @ @ €@,
Analyticfor AeC. XeC; MeCy AXeC_ '’

Analogously the first and the last rows of the Jost solutions f[il] (xz,A) and éii" | (z,A)
allow analytic extension with respect to A as follows:

Row ey &l Hen e
Analyticfor AeCy, XeC. XeC_. AeC; '’

All the other columns of £+ (z, A) and rows of £+ (z,\) are defined only for A € R
and do not allow analytic extensions off the real axis.
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We start by explaining the construction of the FAS x*(x,\) or rather of the
solutions

(2.9) £ (z,\) = xE(z, \)e?=.

to equation (2.1) which allow analytic extensions for A € Cy. Skipping the details
(see [45, 48, 49]) we formulate the answer and determine £ (z, \) as the solution
of the following set of integral equations:

T h
(2.102)&5(z, A) = 85 + / dye™ Mm@ N g ()G (y, N, 02 s

—00 =1

T h
(2.10b);5 (2, A) = i / dye~ M@= EDN g ()Eh (v, A), i <

o p=1

Analogously we define £~ (x, ) as the solution of the set of integral equations:

T h
EUAE @ N =i [ dye MDY ) ), 0>

o0 p=1

x h
(211b)¢5; (2, A) = 655 +1 / dye™ Mm@ N g (e (y, ), i < s
oo =
THEOREM 2.3. Let q(z) € Mg satisfies conditions (C.1), (C.2) and let J satisfy
(2.8). Then the solution £*(z,\) of the egs. (2.10) (resp. & (z,A) of the egs.
(2.11)) exists and allows analytic extension for A € Cy (resp. for A€ C_).

REMARK 2.4. Due to the fact that in eq. (2.10) we have both co and —oo as
lower limits the equations are rather of Fredholm than of Volterra type. Therefore
we have to consider also the Fredholm alternative, i.e. there may exist finite number
of values of A = )\f € Cy for which the solutions ¢*(x, \) have zeroes and pole
singularities in A\. The points )\;c': in fact are the discrete eigenvalues of L()) in C.

The reduction condition (2.4) with e = 1 means that the FAS and the scattering
matrix T'(A) satisfy:

212)B (xT (2, A)) B = (x (z,2)7%,  B@O) B =(T0)

Each fundamental solution of the Lax operator is uniquely determined by its
asymptotic for £ — oo or £ — —oo. Therefore in order to determine the linear
relations between the FAS and the Jost solutions for A € R we need to calculate
the asymptotics of FAS for £ — +oo. Taking the limits in the right hand sides of
the integral equations (2.10) and (2.11) we get:

(213a) lim &h(z,A) = by, fori > j; lim &5 (z,A) =0, fori < j;
r——00 r— 00

(2.13b)  lim & (z,A) = dij, fori < j; lim & (z,A) =0, fori> j
T——00 T—00

This can be written in compact form using (2.9):

(2.14) xE (@, A) = - (2, \)SE(N) = ¢4 (z, NTF(A\)DE(N),
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where the matrices S*(\), D*(\) and T*()) are of the form:

184 ... 8t 1T ... T,
1 ... SH 01 ... T,
(2.15a) ST(\) = A I AL O 0 D I
00 ... 1 00 ... 1
(2.15b) D*(X) =diag(D{,D5,...,D}), D™ (A) =diag(Dy,D5,...,D;),
1 0 ...0 1 0 ...0
Sy 1 ...0 > 1 ... 0
(2.15¢) S~(\) = a A I T-(\) = = R
S S5, ... 1 T T .. 1

Let us now relate the factors T7%()\), S¥(\) and D*()) to the scattering matrix
T()A). Comparing (2.14) with (1.14) we find
(2.16) T(\) =T~ (ANDT(NST(\) =TT (\ND~ (NS~ (N,

i.e. T*()\), S¥(\) and D*()) are the factors in the Gauss decomposition of T'()).
It is well known how given T'(\) one can construct explicitly its Gauss decom-
position, see the Appendix A. Here we need only the expressions for D¥()):

my () my_ji1(A)
(2.17) Df(N) = ——=, Dj(\) =",
’ m;_1(A) ! My ()
where m;t are the principal upper and lower minors of T'(A) of order j.

COROLLARY 2.5. The upper (resp. lower) principal minors m;.t()\) (resp. mj (A)
of T(X) are analytic functions of A for A € C4 (resp. for A€ C_).

ProOF. Follows directly from theorem 2.3, from the limits:
(2.18) xllngo ;;(a:, A) = Df()\), mlin;o §;;(x,A) = Dy (N),
and from (2.15b) and (2.17). d
COROLLARY 2.6. The following relations hold:
a)AlLr{’loéi(x,A) = 1, b))‘llr{.lom;-t()\) =1

PROOF. a) follows from the integral equations (2.10), (2.11) taking into account
that the integrands in their right hand sides vanish for A — co. b) follows from a),
(2.18) and (2.15b). 0

In what follows we will also assume that the set of minors mj (\) have only
finite number of simple zeroes located at the points

(2.19) 3={X\e€Cs, j=1,...,,N}
Generically each of the /\§C can be a zero of a string of minors, e.g.:
(2.20) mf(A) = (A= XDt + 9 (A= X7)%),

for 1 < I; < Fj; < n. Let us introduce the quantities b;x as follows:
by — { 1 if X} is a zero of my (X);

(2.21) 0 if AT is not a zero of mj (A).
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and note that the reduction (2.4) means that the Gauss factors of T'(A) satisfy
(e=1):

(2.22a) B (§+(x‘))T Bl=5"(\), B (T+(A*))T B l=T"()),
(2.22b) ([)+(A*))T = D~(\).

The relations (2.22a) are strictly valid only for A € R while (2.22b) together with
(2.15b) and (2.17) leads to the following constraints on the minors mif (\):

(2.23) (mf ()" =m_ (V.

Thus if A{ is a zero of m{ (A) then A\; = (A})* is a zero of m,,_,(\).

The FAS of the CBCs with Z,-reduction.

The crucial difference with the Z,-case treated above consists in the fact that
now J is given by (1.8) or (1.11) and has complex eigenvalues. Skipping the details
(see [5, 6, 8, 30]) we just outline the procedure of constructing the FAS.

First we have to determine the regions of analyticity. For potentials ¢(z) sat-
isfying the conditions (C.1) and (C.2) and subject to the Z,-reduction (2.7) these
regions are the 2n sectors 2, separated by the rays {, on which Im A(a; —ax) = 0.
We remind that if we assume also the Zj-reduction (2.6) with ¢f = ecy then
ar = cow®~1/2. Then the rays I, are given by:

(v —1)

(2.24) l,: arg(A) = ¢o + — v=1,...,2n,

where ¢o = 7/(2n) only if e = 1 and n is odd; in all other cases ¢g = 0. Thus the
neighboring rays [, and [, .1 close angles equal to 7/n.

The next step is to construct the set of integral equations analogous to (2.10)
whose solution will be analytic in ©,. To this end we associate with each sector 2,
the relations (orderings) >V and f by:

J ImA(a; —a;) <0 for AeQ,,

i>
(2.25) ici 0 ImMa—a,) >0 forAeQ,.
v

Then the solution of the system (2.10)

T h
(2.268)€}; (2, \) = &35 + i / dye M= N " g ()eki (v, N, 0> 5
—00 v

p=1

z h
(260)es (@) =i [ dye D Y g (g0, il

(o] p=1

will be the FAS of the CBCs in the sector 2,. The asymptotics of £”(z, A) and
£~1(x, \) along the ray I, can be written in the form:

(2.27a) lim e?2¢(z, Ae)e " = SH(N), el
Tr——00
(2.27b) lim e?2e" (g, Ae™0)e™ T = S7(N),  Ael,

(2.27c) Jim eMeev(z, Me0)e” N = ToDF(N), Ael,
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(2.27d) Jim eMeev=1(z Xe™0)e” N = THFDZ(N), Aely,

where the matrices S, T, (resp. S, T, ) are upper-triangular (resp. lower-
triangular) with respect to the v-ordering. As in the previous case they provide the
Gauss decomposition of the scattering matrix with respect to the v-ordering, i.e.:

(2.28) T,(\) =T, MDF (NS =T (ND; (NS, (), Ael.

More careful analysis shows [30] that in fact T, (A) belongs to a subgroup &, of
SL(n,C). Indeed, with each ray [, one can relate a subalgebra g, C sl(n,C).

If Z,,-symmetry is present each of these subalgebras g, is a direct sum of si(2)-
subalgebras. Each such sl(2)-subalgebra can be specified by a pair of indices (%, s)
and is generated by:

(2.29) RES = By — By, B =B, B =E,  k<s.

v

Then the scattering matrix 7,,(A) will be a product of mutually commuting matrices
TS5 of the form:

(2.30) T = 14(af 1., (N) 1) Exk+ (a1, (A) = 1) Ees—b], 1o, (A) Exs+b 1 () Esk,

where k < s, with only 4 non-trivial matrix elements, just like the ZS (or AKNS)

Vks

system.
The Z,-symmetry imposes the following constraints on the FAS and on the
scattering matrix and its factors:

(2.31a)  Co€¥(z,\w)Cyt =€""%(z,)),  CoT,(\w)Cy' =T,_2(N\),

(2.31b)  CoSE(w)Cyt =S ,()),  CoDE(Mw)Cyt = DE (),

where the index v — 2 should be taken modulo 2n. Consequently we can view as
independent only the data on two of the rays, e.g. on l; and I, = lp; all the rest

will be recovered from (2.31).
If in addition we impose the Zo-symmetry (2.4), (2.6) with € = —1 then we will

have also ax = iw*~1/2 and:
(2.32)
B (z,-A)' B~ = ("7 (2, N) 7Y B(Sy(A)BTh = (SE,_, (W)

and analogous relations for T:F()\) and D ()\). Another interesting subcase takes
place for even values of n and Zy-reduction (2.4), (2.6) with € = 1; then ay = w*=1/2
and the FAS satisfy:
(2.33)

B(e" (@A) B = (€271 (2,0)7Y,  B(SE(A)B = (SF41_, ()

In both cases the rays [, are defined by (2.24) with ¢9 = 0. The pairs of indices
{k,, m,} specifying the imbeddings of the s/(2)-subalgebras related to the ray [,
are defined as follows:
a)fore=1 k,,+mu=[g]+2—v( mod n),
(2.34) b) for e = —1 k, +m, =2—v( modn),
One can prove also that D} (\) (resp. D, ()\)) allows analytic extension for

A€ Q, (resp. for A € Q,_1, compare with corollary 2.5. Another important fact is
[80] that DF (M) = D, ,()) forall A € Q,.
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The inverse scattering problem and the Riemann-Hilbert problem.

The next important step is the possibility to reduce the solution of the ISP for
the GZSs to a (local) RHP. Indeed the relation (2.14) can be rewritten as:

(2.35a) Xz, t, ) = £ (x,t,\)G(z,t, ), AER,

(2.35b) G(z,t,\) = e {AIe=F DG (N)e!AIe—f (VD)

(2.35¢) Go(A) = §~(N)ST(\) o

in other words the sewing function G(z,t, A) satisfies the equations:
(2.36) zfli—G A, (ot )] = 0, i% F PO, Gz, 0)] = 0,
Here f(A) € b determines the dispersion law of the NLEE. Together with
(2.37) Jim £*(z, ) =1,

eq. (2.35) is known as the RHP with canonical normalization.

THEOREM 2.7 ([45]). Let £t (z,t,)\) and £ (z,t,\) be solutions to the RHP
(2.85), (2.37) allowing analytic extension in A for A\ € Cy respectively. Then
xt(z,t,\) = £X(x,t,A)e*'® are fundamental analytic solutions of both operators
L and M, i.e. satisfy egs. (1.5), (1.6) with

(2.38) a(z,t) = Jim A (J — e (2, t, N JEE (x,t, A)) .

PROOF. Let us assume that ¢*(z,t, \) are regular solutions to the RHP and
let us introduce the function:

(2.39) gt \) =i 5 B8 0, 0) 4 A (0,1, ) TE (2,1, ).

If ¢*(z,t,\) are regular then nelther £%(z,t,\) nor their inverse £*(x,t,A) have
singularities in their regions of analyticity A € C+. Then the functions g*(z,t, \)
also will be regular for all A € C... Besides:

(2.40) lim g*(z,t,A\) = lim g~ (z,t,)\) = AJ.
A—o0 A—o00
The crucial step in the proof of [52] is based on the chain of relations:

23 (€ G)

g (z,t, ) GE (2,8, 0) + A~ GJIGE (z,t,\)

= i—g-(x, tA) € (i§G+AGJG‘(x,t,/\)) (z,t,))

&

= iﬂg—(x, t,A) + ATJE (2,1, 0)

(2.41) g9 (z,t, ), AeR

Thus we conclude that g*(z,t,A\) = g~ (z,t,\) is a function analytic in the whole
complex A-plane except in the vicinity of A — oo where g*(z,t,\) tends to AJ,
(2.40). Next from Liouville theorem we conclude that the difference g™ (z,t,A) — AJ
is a constant with respect to A; if we denote this ‘constant’ by —gq(z,t) we get:

(2.42) gt (z,t,\) — AT = —q(z, t).
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48 VLADIMIR S. GERDJIKOV

It remains to remember the definition of g*(z,t,)) (2.39) to find that £*(z,t,\)
satisfy (2.1), i.e. that x*(z,t,)\) is a fundamental solution to L. The relation
between q(x,t) and £%(z,t,)) (2.38) can be obtained by taking the limit of the
left-hand sides of (2.42) for A — oo.

Arguments along the same line applied to the functions h*(z,t, \)

(2.43) hE(z,t, ) = i%é*(:g, £ A) = 5 (z, 1, \) F(NEX (2,8, N),

can be used to prove that x*(z,t, ) are fundamental solutions also of the operator
M; equivalently it satisfies (V/(z,t,\) = V(z,t,A) — f(N)):
de+

(2.44) i— + Ve, NEF (2,8, X) + [F(X), €5 (2,1, M)] =0,

and one finds that h*(z,t,\) = h™(x,t, ) is a function analytic everywhere in C
except at A — oo where it has a polynomial behavior of order NV — 1. Denoting the
polynomial as V(z,t, A) we derive (2.43).

To conclude the proof of the theorem we have to account for possible zeroes
and pole singularities of £*(z,t,)\) at the points 3 (2.19). Below we derive the
structure of these singularities which is such that they do not influence the functions
g*(x,t,\) and h*(z,t,)). The theorem is proved. O

The analyticity properties of mf()\) allow one to reconstruct them from the
sewing function G(A) (2.35¢) and from the locations of their zeroes through (see
Appendix B):

N +
1 [ du 1,2, ...,k A=A
(2.45) @k()\) = —/ —-—-h’l{ L2 ..., k}g(“) —I—ijkln)\

2mi J_oo b — A

where

_ [ Inmf(), AeCy
(2.46) Di(N) = { —lnm,_,(A), AeC._.

One can view D,(\) as generating functionals of the conserved quantities for
the related N-wave-type equations; the relevant expressions for them in terms of
the scattering data can be obtained from the right hand sides of (2.45).

Quite analogously we can treat also the CBCs with Z,-symmetry. More pre-
cisely, we have:

(2.47) & (z,t,\) = €7, t, \ )Gy (x,t, ), A€,
Go(,t,\) = e NG (N)eiMo=if Gon(N) = 87 (VST s

The collection of all relations (2.47) for v = 1,2,...,2n together with

(2.48) )\li_)rr;o & (z,t,A) =1,

can be viewed as a local RHP posed on the collection of rays ¥ = {l,}27, with

canonical normalization. Rather straightforwardly we can reformulate the results

for the GZSs for the CBCs and prove that if £/(z, A) is a solution of the RHP (2.47),
(2.48) then x”(z,\) = £ (z, \)e**’® satisfy the CBC with potential

(2.49) a(z,t) = lim (J — (2, t, N)JEY (2, t, )\)) .
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We finish this subsection by formulating the dispersion relations for the functions
In mI «(A) which allows us to reconstruct them from their analyticity properties:
(2.50)

_dp . PP AL
1 + = 1 E E 7 TGk
nm"vk(/\) 27m / { - }Gn(u) ! bk] . A=A w'7

77=1 n=1j=1

where A € €2, and the superscript 7 in the integrand shows that we should use the
ordering characteristic for the sector y,; b} ; are the analogs for by; (2.21) in Q.

Both dispersion relations (2.45) and (2.50) can be used to derive the so-called
trace identities (see [48, 13]) for the GZSs and CBCs respectively. Indeed, D ()
and In m: x(A) allow asymptotic expansions

oo

(2.51) D) =D DA, Inmi () =Y MEA.

s=1

The expansion coefficients @;Cs) and Mﬁ’slg are local integrals of motion, i.e. their
densities depend only on ¢(z,t) and its derivatives with respect to z. Their explicit
calculation is done via recurrent procedure. We illustrate it by the two first integrals
of motion of the Z,-NLS equation (1.3):

1> &

@%)MQ=Z;/dwb)wm%—)G%%p %W"ﬁ

-3 Z Yp¥rti(,t) ¢,

P+k+l n

One can also expand the right hand sides of the dispersion relations (2.45) and

(2.50) over the inverse powers of A which allows to express D;c and M (s ) also in
terms of the scattering data of GZSs and CBCs.

The dressing Zakharov-Shabat method

One of the most fruitful ideas for the explicit constructing of the NLEE’s solu-
tions is based on the possibility starting from a given regular solutions §0i (z,t, )
to the RHP to construct new singular solutions £*(x,t, A) having zeroes and pole
singularities at the prescribed points )\;.t € C4. The structure of these singularities
are determined by the dressing factor u;(z,t, A):

(2.54) £* (2,1, 2) = uy(e, t, & (2,8, My L (),
which for the SL(n)-group has a simple fraction-linear dependence on A:
A=A
(2.55) u;j(z,t,A) = 1+ (¢c;(A) — 1)Pj(z, t), cj(\) = 3 /\J_,
Y

(2.56) u;l = limuy(z, 8, ).
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50 VLADIMIR S. GERDJIKOV

Here Pj(z,t) is a projector P2 P; which for simplicity is chosen to be of rank 1;
then it can be written down as

|nj) (|

(myln;)

where the bra- and ket- eigenvectors (m;| and |n;) are the ‘left’ and ‘right’ eigen-
vectors of the projector.

From (2.54) there follows that the dressing factor u(x,t, A) satisfies the equa-
tion:

(2.57) Pj(z) =

(2.58) zg—% + q(z, t)u(x, t, A) — u(x, t, \)go(z,t) — A[J,u(z,t,A)] = 0.

The main advantage of the dressing method is in the fact that one can determine
the  and t-dependence of (m;| and |n;) through the regular solution x3 (z,t, \) as
follows:

(259)In;) = xg;(@, DInd),  (myl = (mI|xg;(x,1),  xg;(x,t) = xp (2,8, 25)
or equivalently these vectors are solutions to the equations:

dl"])

260) 1094 g0, 1,0 Ing) =0, +VO(a,t,A})[ny;) =0,

.am _ m —
(2.61)zidgci'-<mj|U<°>(x,t,Aj)=o, i <dtjl (my|lVO(z,t,A7) =0,

(2.62) UO(z,t,A) = qo(z,t) = AT, VO(z,t,)) = V(2,8, )], -

Here go(z,t) is the potential corresponding to the regular solutions Xg:(ac,t, A) to
the RHP and V(©)(z, ¢, \) is obtained from V(z,t,\) (see (3.35), (3.36)) replacing
q(z,t) by go(z,t). This construction is well defined also in the case when x& (z, )
are singular solutions to the RHP, provided they are regular for A = )\;—'.

If ¢(z, t) is the potential corresponding to the singular solution x*(z,t, A) then:

q(z,t) = qo(z,t) + )\li_’n;o AT —uj(z,t, \)Ja;(z, t, N)
(2.63) = (@) — (X = A7), By(a, )

Thus starting from a given regular solution of the RHP (and related solution
go(z,t) to the NLEE) we can construct a singular solution to the RHP and a new
solution g(z,t) of the NLEE depending on the )\;t and on the eigenvectors of P;(z).
If we start from the trivial solution go(z,t) = 0 of the NLEE then we will get the
one-soliton solution of the NLEE. Repeating the procedure N times we can get the
N-soliton solution of the NLEE.

With the explicit formulae for Pj(z) and using (2.54) we can establish the
relationship between the scattering data of the regular RHP and the corresponding
singular one. The dressing factor u;(z, ) is determined by the constant vectors
(m9] and |n?) can not be quite arbitrary. The condition that ¢(z) vanishes for
z — oo requires that if (n); = 0 for all 1 < s < I; and F; < s < n then also
(m?)S =0forall<s<I and F; < s < n. Thus we derive that:

(2.64) lim P; (.’IT) E[].]j, z—l—{rfloo Pj (.’L‘) = EFJ.Fj,

r—00

and therefore

(265)  we(N) =1+ - DB, w-(N) =1+ () = B,
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The interrelation between the Gauss factors of the corresponding scattering matri-

ces are:
(266)  S*(A) = u;-(N)SFNu; L), TH) = ujre (N Tg (N 3 (),
and
(2.67) D¥(A) = u;+ W) DENu; L ().
Comparing these last relations with (2.17) we find for the principal minors of T'(\)
and To(M):
+ A- ’\j +
(2.68a) mI(N) = T mg (), for I; <s<F;;, AeCyUR,
J
A=A

(2.68b) mI(\) =

/\_)‘_’_mg"s(}\), for n—F;<s<n-1I;, AeC_UR,
J

and m¥()\) = mgfs()\) for the other values of s. Thus the result of the dressing is
that the string of upper principle minors mf(X), I; < s < F; acquire simple zero
at A = )\;-“ while the string of lower principle minors m;(A), n — F; <s <n —1I;
acquire simple zero at A = A7

Obviously if we impose on L(\) the Zs-reduction then we should restrict also
the dressing factor by:

(2.69) B (u(z,t,eA*) B~ = u(a, t, A).
The ansatz (2.55) satisfies (2.69) if A, = 6()\;_)* and the vectors |ng;), (mo;| are
related by:
(2.70) (moj| = Bln{,).
If we impose the Z,-reduction (2.7) then u(z,t, \) must satisfy:
(2.71) Cou(z,t,wN)Cy ' = u(z, t,\).
Such conditions require generalizations of the ansatz (2.55) [41]:
n—1
(2.72) uj(z, t,\) =1+ Y (¢j(w>) — 1) C5P;(2)Cy °.
5=0

A slightly different approach treating also multi-soliton solutions of the Z,-symmetric
NLEE is given in [5].

Up to now we dealt with the algebra g ~ si(n, C). Treating the other simple Lie
algebras (orthogonal or symplectic) needs additional care especially in constructing
the dressing factors [51, 23].

In fact uj(z, ) (2.55) must be an element of the corresponding group. From
the ansatz (2.55) it follows that u;(x, A) belongs to GL(n,C), but one can always
multiply u(z,A) by an appropriate z- and t-independent scalar and to adjust its
determinant to 1. Such a multiplication goes through the whole scheme outlined
above but is adequate only for the sl(n,C) case. However the ansatz (2.55) can not
be used, e.g. for the case so(n,C). The adequate ansatz is formulated below [23].

THEOREM 2.8. Let g ~ B, or D, and let the dressing factor u(z, A) be of the
form:
(2.73) wj(z,A) = 1+ (c;(A) = 1) Pj(z) + (c; ' () —1) P_; (), P_; = SoP] 55",
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where Sy is introduced in (A.11) and Pj(x) is a rank 1 projector (2.57). Let the
constant vectors |ng) and (mg| satisfy the condition

(2.74) (mo[S|mo) = (no|S|no) = 0.

Then u;(x,\) (2.73) satisfies the equation (2.58) with a potential

(2.75) a(z) = qo(z) = (\f = A7) [p;(2)],  py(e) = Pi(z) — P—j(2).

PROOF. Due to the fact that XSE (z, \) take values in the corresponding orthog-
onal group we find that from (2.74) it follows (m|S|m) = 0, (m|JS|m) = 0 and
analogous relations for the vector |n). As a result we get that

(2.76) Pj(z)P_;(z) = P_;(z)Pj(z) =0,  Pj(2)JP_;(z) = P_;(z)JPj(z) = 0.
Let us now insert (2.73) into (2.58) and take the limit of the r.h.side of (2.58)

for A — oco. This immediately gives eq. (2.75). In order that Eq. (2.58) be satisfied

identically with respect to A we have to put to 0 also the residues of its r.h.side

at A — A;’ and A — A;. This gives us the following system of equation for the
projectors P;(z) and P_;(z):

(2.77) z% + q(x) Pj(z) — Pj(z)qo(z) — Aj [J, Pj(x)] = 0,
(2.78) idf;;j + q(z)P_;(z) — P_j(z)qo(x) — )\j [J, P_j(z)] =0,

where we have to keep in mind that ¢ is given by (2.75). Taking into account (2.76)
and the relation between Pj(z) and P_;(x) eq. (2.77) reduces to:

One can check by a direct calculation that (2.57) satisfies identically (2.79). The
theorem is proved.
O

3. THE RESOLVENT AND SPECTRAL PROPERTIES OF GZSs AND CBCs

The FAS x*(z, A) of L()) allows one to construct the resolvent of the operator L
and then to investigate its spectral properties. By resolvent of L()\) we understand
the integral operator R(\) with kernel R(z,y, A\) which satisfies

(3.1) LR f)(=z) = f(=),
where f(z) is an n-component vector function in C" with bounded norm, i.e.
JZo0 dy(FT (W) fy)) < oo

From the general theory of linear operators [4, 12, 46] we know that the point
A in the complex A-plane is a regular point if R(A) is a bounded integral operator.
In each connected subset of regular points R(\) is analytic in .

The points A which are not regular constitute the spectrum of L(A). Roughly
speaking the spectrum of L(A) consist of two types of points:

e i) the continuous spectrum of L()) consists of all points A for which R(\)
is an unbounded integral operator;

e ii) the discrete spectrum of L(\) consists of all points A for which R())
develops pole singularities.
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Let us now show how the resolvent R(\) can be expressed through the FAS of
L(A). Indeed, if we write down R(A) in the form:

(3.2) ROYI@ = [ Rz, y 0 ),

the kernel R(z,y, \) of the resolvent is given by:

_ [ Rt (z,y,A) for A € CT,
(33) R(z,y,7) = { R(z,y,\) for A\ e C",
where
(3.4) R*(z,y,)) = +ix*(z, NVO*(z — y) X (y, N,

@i(z) = 9(:':”2)1_‘[0 - 9(:*:2)(]1 - HO)) HO = ZOESSa

where kg is the number of positive eigenvalues of J; namely:
(3.5) ar > a2 > > Ak, > 0> agyr1 >0 > an.

Due to the condition trJ = Y »_; as = 0, ko is fixed up uniquely.
The next theorem establishes that R(x,y, A) is indeed the kernel of the resolvent
of L(\).

THEOREM 3.1. Let q(x) satisfy conditions (C.1) and (C.2) and let )\;t be the
simple zeroes of the minors m,f(/\). Then

(1) R*(z,y,\) is an analytic function of A for A\ € C4 having pole singulari-
ties at )\f € Cy;

(2) R*(z,y, ) is a kernel of a bounded integral operator for Im\ # 0;

(3) R(z,y, ) is uniformly bounded function for A € R and provides a kernel
of an unbounded integral operator;

(4) R*(z,y,)) satisfy the equation:

(3.6) LON)RE(z,y,\) = 16(z — y).

IDEA OF THE PROOF. (1) is obvious from the fact that x*(z, \) are the
FAS of L(\);
(2) Assume that Im A > 0 and consider the asymptotic behavior of R (z, y, \)
for x,y — co. From equations (2.9) we find that

(3.7) (z,y,\ Z& (z, Ne A EVO (z — y)Et(y,A)

Due to the fact that x*(z, ) has triangular asymptotics for z — oo
and A € C, and for the correct choice of ©F(xz — y) (3.4) we check that
the right hand side of (3.7) falls off exponentially for £ — oo and arbitrary
choice of y. All other possibilities are treated analogously.

(3) For A € R the arguments of 2) can not be applied because the exponen-
tials in the right hand side of (3.7) ImA = 0 only oscillate. Thus we
conclude that R*(x,y, ) for A € R is only a bounded function and thus
the corresponding operator R(\) is an unbounded integral operator.
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(4) The proof of eq. (3.6) follows from the fact that L(A)x*(z,A) = 0 and
dO*(z — y)

(3.8) -

= F1i(z - y).
0

PROPOSITION 3.2. Let q(x) satisfy the conditions (C.1) and (C.2), let 3 =
{)\ji,j =1,...,N} be the set of simple zeroes (2.20) of the minors mE()\) and let
I; <ko < Fj forall j =1,...,N. Then the kernel of the resolvent R*(z,y,\)
(resp. R™(x,y,A)) has simple poles for A = )\j' (resp. for A = A;°) with residues
given by:

(3:92) Res R*(z,y,) = F2iv; [nj(2)) (m3 (y)],

nt(z)) = (2 — P:(x))x, (z)Tlo|no ; mt ()] = — M)l
(3.9b) [nf (z)) = (1 — P;(2))x; (@)olno,z),  (mf(y)| TR
Inj(z))

(3.9¢) |nj (z)) = @), @) (mj (y)| = (mo,;1Moxg,; (v)(2 — Pi(y)),

where )\;t = p; +iv; and Xffj(x) = x& (a:,)\;.t) are the FAS corresponding to the
potential qo satisfying (C.1) and (C.2) and whose set of simple zeroes is 39 =
NS )

PROOF. Let x&(x,\) be the FAS of Lo(\) with potential go(z); then i (z, \)
are regular for A = )\;.t. Now we apply the dressing method choosing )\ji as the
locations of the singularities and construct the projector P;(z) using the constant
vectors |ng ;) and (mg;|. The normalizing factor uj_i()\) in the right hand side
of (2.54) is a diagonal matrix that commutes with ITp. Then we insert x*(x,\) =
uj(x, \)x& (z,\) in (3.4) and note that the pole singularity of R*(z,y, \) at A = )\;'
(resp. R™(z,y,A) at A = A7) can come up only from the factor uj_l(y, A) (resp.
u(z,A)). To derive the expressions in (3.9) one needs the explicit form of the
projectors P;(x) and P;(y) (2.57) and (2.59).

The right hand sides of (3.9) do not vanish if the following conditions

Io|no,;) # Ino,;), or  Ilplno ) #0,
<m07j|H0 75 <m0’j|, or (moyjlno # 0.
hold. In other words if (3.10) hold then the residues (3.9) do not vanish, R*(z,y, \)
have simple poles at A = )\;': and by definition /\;!E are discrete eigenvalues of L(\).
Eq. (3.10) is equivalent to the condition I; < ko < Fj. Indeed violating this
condition we get either (1 — Ilp)|ng,;) = 0 or Ig|ng ;) = 0 and as a result —
vanishing right hand sides in (3.9).

To finish the proof one must check that from the definitions (3.9b) the relations

(2.68) follow. Besides |n;t> and (m¥| satisfy:

J
d|n*
(3.11) 4 | ’>

(3.10)

d(m;.t|
dx

where g(z) is given by (2.63). d

+(g(x) = A7 ))ny) =0, i

— (m¥|(g(z) - X7) =0,

COROLLARY 3.3. The discrete spectrum of the Lax operator (1.5) consists of the
zeroes of the principal minors m;L()\) for A€ Cy and m; (A) for A € C_ provided
the conditions (3.10) are satisfied.
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\Q)
J

FIGURE 1. The contours v+ = RUv4o.

Now we can derive the completeness relation for the eigenfunctions of the Lax
operator (1.5) by applying the contour integration method (see e.g. [26, 27, 2]) to
the integral:

1 . 1 .
312 39 =gnf DR g f AR Ee),

where the contours 4 are shown on the Figure 1. Skipping the details we get:

"1 1 [> ko
5(33 - y) Z a_Ess = % / d\ {Z |X[S]+(x7 )‘)><>A([S]+(y, /\)l
s=1° - s=1
(3.13) = > M@ N EE A)!}
s=ko+1

N
+2i 3 v {[nf (@) (o (5)] =[5 (2)) (mj (v)]}-

This relation (3.13) allows one to expand any vector-function |z(z)) € C" over
the eigenfunctions of the system (1.5). Indeed, let us multiply (3.13) on the right
by J | z(y)) and integrate over y. This gives:

| 2(2)) = 5 [0, dA {82 I (@, ) - G = s X6 (@, ) - G ()

(3.14) + 30 vs (0 (@) ¢ = Inj (@) ¢),s
where the expansion coefficients are of the form:
(3.15)
GO =i [ a@ ), G =i [ demE] (@),
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REMARK 3.4. If ¢(x) ~ 0 then x*(z,\) ~ x ™ (z,\) ~ exp(—i\Jx) the set 3 is
empty and (3.14) goes into the usual Fourier transform for the space C".

REMARK 3.5. Here we used also the fact that all eigenvalues of J are non-
vanishing. In the case when one (or several) of them vanishes we can prove com-
pleteness of the eigenfunctions only in a certain subspace of C".

The resolvent for the CBCs is defined quite analogously:
R(z,y,\) = R,(z,y,\), A€y,
Ry (z,y,\) = ixu (2, \)0"(z — y)Xu (2, N),

(3.16) 0"(2) = 0(-2)II - O(=)(1 ~11y), M= 3 B,

] kO,u

<IA

where x,(z,A) = & (z,\)e*® and ko, is the number of positive eigenvalues of
Im (A\J) in the v-th ordering.
The following theorem is a specific case of one in [30].

THEOREM 3.6. Let q(z) satisfy the conditions (C.1) and (C.2) and let 3 =
Up=1 (32p—1 U 32p) where

321)—1 = {)\;l-wp—l € QZp—la J = 17 te 7N} )
(317) 32p = {)\;wp € Q2p, 1=1,.. ,N} ,

are the sets of zeroes and poles of the minors my, (\) in the sectors Q,. Then

(1) Ry(z,y,A) is an analytic function of A for A € Q,, having pole singularities
at 3u;

(2) R,(z,y,)) is a kernel of a bounded integral operator for A € Q,;

(3) For A€l,Ul,y1 R, (x,y, ) is an uniformly bounded function which is a
kernel of an unbounded integral operator;

(4) R, (z,y, ) satisfies the equation:

(3.18) LVR,(z,y,\) = 16(z — y).

The next natural step is to establish the structure of the singularities of R, (z,y, \)
at the points of 3. This is done quite analogously by using the dressing factor (2.72).
Note that in these matters the symmetry complicates the calculations.

One of the effects of the Z,-symmetry is that the sets 3, are determined
uniquely by 3; and 3q:

319) 31={) €, j=1,..,N}, 30={X; €Qa, j=1,...,N}.
The residue of R,(z,y, ) at the point A = A} can be cast into the form:
Res R (2.9, ) = ~2im X o (@) (m (@)

(3.20) Res Ron(z,y,A) = 2dm A} [n; (2))(m; (z)],

A=AT
where |n;t(:c)) and (mji(a;)| are properly normalized eigenvectors of the Lax oper-
ator corresponding to the eigenvalues A;E € Q41. The residues in the other sectors
Q, with v # 0,1( mod 2n) are evaluated from (3.20) by employing eq. (2.31).
Here we also have the analog of the condition (3.10).
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The derivation of the completeness relation of the eigenfunctions for CBCs
with Z,-reduction follows the same lines but needs some modifications. Instead of
J(z,y) (3.12) we should consider

(3.21) J(z,y) = Z(_z—,);f dAR, (z,y,N),

where the contours -, are defined by:
(322) Yov—-1 = loy_1U 733—1 U l_21/7 Yor = l_2u U l§+1 U ¥ap -

Here [, are the rays (2.24) oriented from 0 to oco; y<° is the ‘infinite’ arc Rpe®#°
with Rp > 1 and n(v —1)/n < o < mv/n; by overbar we denote the same contour
with opposite orientation. Thus all the contours vs,_1 (resp. s,) are positively
(resp. negatively) oriented.

Now we apply again the contour integration method and get two answers for
J(z,y). The first, according to Cauchy residue theorem is:

2n N
(3.23) Iy =D ( Res Bapya(2,y,0) + Res Rap(a,y, A)) .
p=1j=1 )‘_
Integration along the contours taking into account that limy_,., x¥(z,A) = 1 gives:
_ 2n (_1)1/—1
(324) 3(:1:’ y) = Z —2—/ dIE (R,,(J?, Y /\) - Ru——l(waya /\)) + Jnlé(w - y)
v=1 m L

The completeness relation follows after equating both expressions and taking into
account that (compare with (3.20) and (2.31)):

(Res  Ropia(,9,0) = —2Im A (ng® ™ (@) (™ ()],
= 4 wP
(3.25) }\_R)\G_S ., Rzp($, y,A) = 2iIm /\j_ Ingzp) (I)><m§2p) ($)|,

where |n( ) (z)), |n(2p+1)(x)> (resp. (mgzp)(a:)| , (m§2p+1) (z)|) are properly nor-
malized dlscrete elgenfunctlons of the CBCs (1.5) (resp. of the adjoint CBCs (2.2))
corresponding to the discrete eigenvalues A\; w? and A\ w?P. For the lack of space
we can not provide all the details of the calculations. The final result is similar to
the one for GZSs. Namely, any vector-function |z(z)) € C™ can be expanded over
the eigenfunctions of the CBCs as follows:

(3.26) |2(x)) =
= (__£ + "v[s] _ - v—1,,[s]
Dl AR S WA SOV CIPY R W WOV Pl CIPV)
v=1 L s§ ko,u S>V ko,
N 2n
+3 > ImAT Gy (@)Y h) = ¢ ing (@) )]
Jj=1lv=1

where the expansion coefficients are given by:

(V) = ‘i/_oo dz ("1 (@, M)|J|2(2)),
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(3.27) G =i [ " (g (@, ) 2(2),

— 00

(:j = —1 /00 dz(m (x)|J|z(z)), v =0 /00 dx(m]'f_l(:r)|J|z(x)).

- —o0

The completeness relations derived for GZSs and CBCs above can be viewed
as the spectral decompositions for the generically non-self-adjoint operators L(\).

REMARK 3.7. The special case of a CBCs with Z,-symmetry is equivalent to
n-th order scalar differential operator [11]. Indeed, one can easily check that the
system L (1.5), (1.8) can be written down as:

(3.28) Lxy=1 x(z,A) =0.

d n ) _ n
o Z Ve (2)KE + ideow™ /2 ZwkEkk
k=1 k=1

After similarity transformation with up = 377, w7 Eg; goes into:

_— 1 . o d n _.m 5
Ly= ~ug Lugy = o+ ;@(x)ESS — )\g Eqoi1| X(z,A) =0,
(3.29) ¢s(z) =Y (z)w™,  A=ikew™!?,
k=1

and can be rewritten as the scalar operator
(3.30) LWy = dpdp_y - - dadixa (z,0)) = Ax1 (2, ),

where di X (z, A) = dX/dz + ¢p(z) X (z, A). If ¢i(z) are real functions (additional
Zo-reduction of the type (2.6) ensures this) then L™ is a self-adjoint operator.

REMARK 3.8. The author is aware that these type of derivations need addi-
tional arguments to be made rigorous. One of the real difficulties is to find explicit
conditions on the potential ¢(z) that are equivalent to the condition (C.2) or equiv-
alently, to the conditions that mf()\) have only finite number of simple zeroes.
Nevertheless there are situations (e.g., the reflectionless potentials) when all these
conditions are fulfilled and all eigenfunctions of L(\) can be explicitly calculated.
Another advantage of this approach is the possibility to apply it to Lax operators
with more general dependence on A, e.g., quadratic or polynomial in A.

The ‘diagonal’ of the resolvent

By the diagonal of the resolvent one usually means R(z,y, A) evaluated at y = z.
However the definition (3.3) is not continuous for y = x and needs regularization.
The simplest possibility is to consider as the diagonal of the resolvent:

Rz, \) = % (R(z +0,2,)) + R(z,z +0,\).

In fact we will consider as the a somewhat more general expression:

(331) RP('T7)‘) = lxi(ma)‘)Pf(i(xa/\))

where P is a constant diagonal matrix. Obviously Rp(z, A) satisfies
dRp(x, A

(3.32) i——P(w—) + [qg(z) — A\J, Rp(z,\)] = [L(A), Rp(z,\)] = 0.

dx
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Thus Rp(x, \) belongs to the kernel of the operator [L()),-]. Due to the fact that
x*(x,)) is the FAS and satisfies a RHP with canonical normalization we find:

(3.33) Rp(z,\) =iP + ZR ()AF.

k=1

The coefficients Rg)(a:) can be expressed through ¢(z) using the recursion relations
generalizing the ones of AKNS (2, 18, 37, 27]. These relations are solved by the
recursion operators Ay which have the form:

(334) AiX =ad;! (ZZ—X+P0([qx) X(z)] +l[ / dyla(y) X(y)]D

where P, is the projector onto the off-diagonal part of the matrix PyX = X§, the
matrix X () in (3.34) satisfles X = PyX and

(X6)i;

ai—aj'

(adle(f))ij =

The coefficients R(k) (z) can be expressed in compact form through Ay as follows:

(3.35)  REM = ALRL = —AXad ;' [iP,q(z,t)],
(3.36) RWd — /i dy(1 — Py) ([q(y,t) <k)f])+ lim _ R¥d(2 1),

Quite naturally these coefficients, or rather the diagonal of the resolvent gen-
erates [17, 10, 18]:

~ the class of NLEE. Given the dispersion law, e.g., f(A) = AN P of the NLEE
we can write down the equation itself by:

dg (dREDN))f

(3.37) —l +1 in

— the corresponding Lax representations, or in other words, the M-operators
for each of these NLEE as follows:

+ Po(la(z,t), RY (2,1)] = 0.

N
(3.38) VI (2,0) = Y R () AN *,
k=0
— the integrals of motion of the corresponding NLEE. This follows from

THEOREM 3.9 ([18]). The guantities

k
. k
(3.39) R (@) = ix* @ VIR @, 0), - 1® =3 By - D1,
satisfy the relations
o0 d
(3.40) / dxtr (Rﬁ(k)(x,A)J - iH(k)J) = - =DV,

where CD,:f()\) is defined by (2.45).

Combined with the (3.34) we can deduce that the diagonal of the resolvent and
the recursion operator

(3.41) (Ax — M RE(z,\) = i[P,ad ;' q(z)],
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directly reproduce the generating functionals of the conserved quantities.

The termin ‘squared’ solutions and recursion operator do not reflect properly
the algebraic properties of these objects. The recursion operators A1 can be under-
stood as the Lax operator L(\) in the adjoint representation. One of the definitions
of the adjoint representation means that we should replace each element U(z, \) € g
by ad y(z,x)- = [U(x, A),]. Therefore due to (3.32) we can view the diagonal of the
resolvent R%(x,)\) as the eigenfunction of L()\) in the adjoint representation. It
remains to project out the kernel of ad ; in order to derive Ay from L(\).

The ‘squared’ solutions are eigenfunctions of AL and belong to a linear space,
which is the co-adjoint orbit of g% determined by J. The gauge covariant way to
introduce them involves the FAS of L(A) and is:

(3.42)
ez‘ij(xa )‘) =h (Xi('r’ /\)Eij)zi (Iv /\)) ) h;t(‘rv /\) =Fh (Xi(xv /\)ij(i(x, )‘))

where x*(z,)\) are the FAS of L(\) GZSs. The similarity transformation by
x*t(x,)) is the adjoint action of the group & on the algebra g; therefore eX(z, \)
and hj»: (z,)) are elements again of g. The projection Iy = ad ;'ad s is a natural
linear operator on g. Besides the ‘squared’ solutions are analytic functions of A
having both poles and zeroes at )\;-h.

More detailed analysis based on the Wronskian relations reveals several other
important aspects [36, 19, 30] of the ‘squared’ solutions of GZSs. First, the sets

{efj(x,/\),ej_i(x,/\)}, ejj;k(x),e;i;k(:c),éjj;k(:c),é;i;k(:c), t<jk=1,...N}
and

(e (@A), (@ N}, @), e (@), hn(@) (@), i <dk=1,...N}
form complete sets of functions on 9t that realize the mapping 9t < ¥. Here by
eﬁ;k(x) and é;.tz.;k(x) we have denoted:
defj(ac, A)

+ — ox + .+ _
(@) = (@A), Eiule) = —45

153k
A=2E
Second, it is possible to expand the potential [P, ad ;lq(:c,t)] and its varia-
tion ad ;15q(:r) over each of the complete sets shown above. The corresponding
expansion coefficients are expressed through ¥ and their variations. These facts
constitute the grounds on which one can show that the ISM can be understood as
a generalized Fourier transform. The important difference as compare to the stan-
dard Fourier transform is in the fact that the operator L (as well as the operators
Ay) allows for discrete eigenvalues. Therefore the completeness relations involve
both integrals along the continuous spectrum and sum over the discrete eigenvalues.
In the usual Fourier transform the discrete eigenvalues are absent.

Hamiltonian properties of the NLEE

Here we briefly formulate the Hamiltonian properties of the NLEE paying more
attention to its algebraic structure. This has been widely studied problem, see
(3, 11, 39, 14, 17, 10, 13, 48, 18, 19] and the numerous references therein.

In doing so we follow mainly the ideas of [39] with a natural generalization
from sl(2) to sl(n)-algebras. The main idea in these papers is the possibility to
write down the Lax equation (1.4) in explicitly Hamiltonian form as the co-adjoint
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action of g on its dual g*. Obviously any non-trivial grading in g (resp g, g) will
reflect into a corresponding grading of the dual algebra g* (resp. g*, §*).

Below we will need also the Cartan-Weyl basis of si(n). Choosing for definite-
ness the typical n x n representation we fix it up by:

(343) f)ElC {I{z ini— i+1,i+1> 7= 1,...,7’),—1}, {Eij, Z;é]}

As invariant bilinear form we can use (X,Y) = tr (XY). Then the commutation
relations can be written in the form:

[H;, Eji] = (ei — €it1,€; — ex) Ejg, J#Ek,
(3.44) [Ejk, Er) = ]l? (Ejk, Eij] = —Eu, L# 3,

[Ejk, Exj] = ZHS, j<k.
5=j

By er above we mean an orthonormal basis in the n-dimensional Euclidean space
with a standard scalar product: (ej,ex) = k. Those, who are familiar with Lie
algebras will recognize e; — e;41 as the simple roots of sl(n) and the set of e; — ey,
j # k as the root system of sl(n).

If C = 1 (i.e. with the trivial grading) each of the matrices Ux(x) in (1.19) is
of generic form:

(3.45) Z W H; + 3 WY B,
J#p

The coefficients u(k)(x) u(k)(z) can be viewed as linear functionals on uy(z) and
thus they belong to g*. Usmg the bilinear form (1.27) they can be interpreted as
linear functionals on g and thus as elements also of §*. The algebraic structure on
§* can be introduced in analogy with the commutation relations (3.44), namely:

R O B R I T e O L CR)
(3.46) {ulx(@).uT;0)} =l V@i -v),

{ta@ T )} = w0 @i - ),
it+k—1
{ Ez)+k(1")’ ugff—nlz,z(y)}p = Z ul(5+m—P) (117)5(1' - y) + i‘ss—f—m,pé/(w - y)

=1

The derivation of these relations follows [39] in a rather straightforward manner;
though a bit tedious, it can be generalized also to any simple Lie algebra.

Note that if p = —1 then the term with §'(x — y) disappears and the Poisson
brackets (3.46) become ultralocal. Then we can rewrite them in a compact form
using the classical r-matrix [13]:

) {VEN SV} = PO 0. 0E N 81+ 10U - 1)
)\Izou, IIp = z": E;; @ Ej;.

4,3=1

(3.48) r(—p) =
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The left hand side of (3.47) has the structure of the usual tensor product of n x n
matrices, but instead of taking the product one should rather take the Poisson
bracket between the corresponding matrix elements of U(x, \) and U(y, u).

The relations (3.47) are local in the sense that for the evaluation of the left
hand side of (3.47) we need to use only the Poisson brackets between the matrix
elements of U(x, \) and do not need the boundary conditions on the potentials.
The effectiveness of the r-matrix, when it exists, is in the possibility to evaluate
the Poisson brackets between the matrix elements of the scattering matrix T'(\).
To do this we need to ‘integrate’ (3.47) which needs to take into account also the
boundary conditions. For periodic boundary conditions on g(z) this gives:

(3.49) {Twerw} —ro-wrwerE)

-1
For vanishing boundary conditions on g(z) and J = J* the calculations need some
additional considerations with the result (see [13]):

{T08TW} == T & T() - T0) & Thr- (- ),

-1

1 n . n
(3.50) 'I‘i()\ — ,u,) = m ZEjj & Ejj F Z7T5()\ — /J,) Z Eij ® Eji.
j=1 i#j=1

From both relations (3.49) and (3.50) there follows that the principal minors m (\)
commute with respect to the Poisson brackets (3.46) [19], i.e.:

(3.51) {D4(X).D;(1)} -1 = 0.

Since Dy (\) are the generating functionals of integrals of motion Dﬁcs) (see eq.
(2.51)), then eq. (3.51) means that all these integrals are in involution with respect
to these Poisson brackets.

The Z,-symmetry may modify substantially some of the above results. Indeed,
it can be viewed as a set of constraints on the phase space 9t and on the generic
Poisson brackets (3.46). Then one should evaluate the corresponding Dirac brackets
on the reduced phase space. However in the case of the Z,-NLS equation (1.3) with
Lax operator L given by (1.5), (1.8) somewhat surprisingly the approach of [39]
gives us directly the correct answer. If we define v;(z,t) as linear functionals of
U(z,t,A\) = q(x,t) — AJ by:

1 .
(3.52) Yi(z,t) = Etr (U(z,t, ) K"7),
and make use of (1.8) then the set of Poisson brackets in (3.46) simplify to
(3.53) {5 (2, 1), ¥r(y, )} = Gk1j—nd'(z — y).

Together with the Hamiltonian H = w?M 1(21) (2.53) they provide the Hamiltonian
formulation of (1.3). Unfortunately this Poisson brackets are not ultra-local and
the corresponding Lax operator does not allow classical r-matrix of the form (3.47).

For the affine Toda chain (1.2) the simplest Poisson brackets are provided by:

(3.54) {d—fx—j, Qx(y, t)} = dk;0(z — y).
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The corresponding Lax operator (1.9) unlike the previous case allows classical r-
matrix satisfying (3.47) which however has more complicated dependence on A — y;
it is known as the trigonometric r-matrix [38].

Another special property of the Z,-symmetric CBCs concerns the existence
of the so-called symplectic basis [25]. The elements of these bases are special
linear combinations of the ‘squared solutions’ (3.42) which are also complete in
M and which are such that the expansion coeflicients of dq(z,t) over it produce
the variations of the action-angle variables of the corresponding set of NLEE. In
[25] this basis was worked out for the Zakharov-Shabat system related to the sl(2)
algebra. For GZSs related to algebras of higher rank such basis is yet unknown
although it must exist since the action-angle variables for them are known [40, 7].

For the Z,-symmetric CBCs the construction of the symplectic basis is very
much like the one in [25] due to the fact that the subalgebras g, related to each of
the rays I, are direct sums of sl(2) subalgebras. It is a complete set of functions on
the phase space of the corresponding Z,-symmetric NLEE (1.1) and (1.2). Skip-
ping the details we just give the explicit expressions for the set 2 of action-angle
variables of the Z,,-NLS equation in terms of the scattering data of its Lax operator.
Obviously 2 will consists of two sets of functions A = Ay U 2; each set defined on
the ray Iy and [; respectively:

Ao = {mij(N), ki (N), A€ lo, i+j=2( modn)},
A = {mi;(A), ki (A),  A€l,  i+j=1( modn)},

where
1 i b (M) b5 (\)
(3.55) mi;(A) = ——In(14pfp;), iz (M) 25’ pH(N) 0

and the coefficients afj()\), b;"j()\) were introduced in (2.30).

Quite analogous are the expressions for the action-angle variables for the two-
dimensional affine Toda chain provided we use the scattering data of the Lax op-
erator (1.10).

4. CONCLUSION

The restricted space did not allow us to give more details or explanations on
these and related problems. We only mention some of them below.

One such important to our mind result is the interpretation of the ISM as a
generalized Fourier transform. In its derivation for the GZSs and CBCs [27, 19, 30|
both algebraic methods and analytic ones were used. As a result the pair-wise
equivalence of the symplectic structures in the hierarchy becomes obvious.

The approach based on the Kac-Moody algebras is a natural basis for the
Hamiltonian hierarchies. If one can derive a bi-Hamiltonian formulation of a given
NLEE then there is a whole hierarchy of them related by a recursion operator A.
Here we mention the paper [15] where the operator A was derived as the ‘ratio’ of
two such Hamiltonian structures for the N-wave equations. The result, of course
coincides with the natural expression for A obtained with the AKNS recursion
method and whose spectral theory was constructed by other means in [27, 18].

The method based on the diagonal of the resolvent of the Lax operator started
by Gelfand and Dickey [17, 10] can be viewed also as a formal algebraic one.
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The authors studied by algebraic means the ring of operators, commuting with L.
They expressed most of the quantities, including the diagonal of the resolvent of
L, as series over fractional powers of L and did not investigate the existence and
convergence of these series. Once identified with the expression (3.31) in terms of
the FAS these problems find their natural and positive solution.

Besides the classical r-matrix corresponding to the ultralocal Poisson brackets
there exist also dynamical r-matrices depending on the fields ¢;;(z) in the NLEE.
One of the problems, that is still not solved is to find the interrelation between the
dynamical r-matrices, r and the recursion operator A.

Finally, we should mention that both approaches have been further generalized.
For example, the analytic approach was generalized from a local RHP to a nonlocal
RHP and to 0-bar problem (also local and nonlocal), see [1, 50, 37]. This allowed
to treat NLEE of soliton type in 2 4+ 1 dimensions.

Another direction is to study Lax operators with more general A-dependence
such as polynomial, or rational [51].

Obviously all results concerning spectral decompositions can be formulated in a
gauge covariant way thus allowing to treat also gauge equivalent NLEE [28, 29, 19].

The algebraic approach was also generalized to use as a basis infinite dimen-
sional algebras such as Virasoro algebra, Wi, etc. which lead to the important
construction of the Japanese 7-function and its relation to the soliton theory, see
[32, 14].

Thus we just outlined the beginning of all this and so it is time to stop.
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Appendix A. Gauss decompositions

The Gauss decompositions mentioned above have natural group-theoretical in-
terpretation and can be generalized to any semi-simple Lie algebra. It is well
known that if given group element allows Gauss decompositions then its factors are
uniquely determined. Below we write down the explicit expressions for the matrix
elements of T*()\), S¥(\), D*()) through the matrix elements of T'()\):

. )
~ R 1,2, ...,5—-1,p
(A1) ij(A)-;n*f(y){Lz,...,j—l,j} ’

T(N\)
. (=13 (1,2, ..., 5, ..., 5 1YY
(A.2) T5p(N) = 573 1. 2 b '_]_1 ’
mj_l(/\) y Ly ey Py ey ] T(\)
VP (1,2, p, ., -1\
A3 St (\) = (————{ T B T )
( ) p]( ) m;__l()\) 17 2, sy Dy ey J T(X\)
5 1 (1,2..,5-1 j}(j“”
A4 St = —— 5 I T ,
( ) JP( ) mj_(A) {17 2’ ceey J T 1’ p T(X\)
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_ (n—j+1)
(A5)  THO) = —— {’”ii ’”_i’”} |
n _’)+1(>‘) Iy J 5 N , T())
)Pt j 5 (n—3)
[ +1,...,p, ..., n
A6 Fron = DY { J AN } |
(A.6) Jp() m,, J+L5+2,...,p, ..., n )
1)pti (n—j)
(A.7) Sp_j(/\) ( {]+1 jii --‘,]3,...,71} ’
m,_ ]()\) 2y 7 o By f oy
_ (n—j+1)
(A8) Sj-p(,\):—{J,JwLi n in} ,
my_j1(A) P I+ Sn=1n a0
where
& Tiijx Tiyj, '~~Ti1jk
(A,Q) {i'la 2:27 sy 7/..k, }( ) — det Ti‘zjl Ti?jz "'.Tizjk '
J1y 32y -5 Jk T(A) : : . :
iy Tingz - T
is the minor of order k of T'((A) formed by the rows iy, i3, ..., ix and the columns
J1s J2y - -+ jk; by P we mean that p is missing.

From the formulae above we arrive to the following

COROLLARY A.1. In order that the group element T(\) € SL(n,C) allows the
first (resp. the second) Gauss decomposition (2.16) is necessary and sufficient that
all upper- (resp. lower-) principle minors mf (X) (resp. my (X)) are not vanishing.

These formulae hold true also if we need to construct the Gauss decomposition
of an element of the orthogonal SO(n) group. Here we just note that if T(\) €

SO(n) then
(A.10) So(T(N)" 85" =T (),
where
no
(A.11) So =Y (~1)*" (B i1k + Ent1-ks), if n=2no,
k=1
no
So = (=D (Ernt1-k + Eng1kk) + (=1 Engr1mer1, if n=2no+1.
k=1

One can check that if T'(\) satisfies (A.10) then each of the factors T%()), ST()\)
and D*()) also satisfy (A.10) and thus belong to the same group . In addition
we have the following interrelations between the principal minors of T'(A):

()\) m_ J()\) for SO(n),
(A.12) m;-t()\)szf_j()\), for SP(n),

Appendix B. Dispersion relations for ©,(\) and In m,':k()\)

Let us introduce the functions f,j:()\):

A-ar\
IO E RV JakA) = Re(M)m,_ (N), Ri(A) = H <)\ A7 ) ’
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which like m,f()\) are: i) analytic for A € Cy; ii) satisfy limy_, f,f()\) = 1. Besides,
f,;t()\) have no zeroes in their regions of analyticity and therefore the functions
In fr(A) are analytic for A € C1 and tend to 0 for A — oo. This allows one to apply
the Plemelji-Sokhotzky formula with the result:

(B.1) Dr(\) = 2—175/_00 Md_“)\ln (fd W fri(m)
where

~ n +
(B.2) D(N) = { l_ljlcff(i\_)k@) i c gj.

It remains to insert the above definitions of fki (A) into (B.1) and (B.2) to derive
Egs. (2.45), (2.46).
The dispersion relation (2.50) is derived analogously treating the integral

2n _ n N + ij
: (-1)r-1 dp N BN )T
B3)  IWN= - In ¢ m;, (1) — ,
1,2::1 2mi Jy A ’ EE 1= Ak

with A € Q, and the contours v; as in (3.22).

References

[1] M. J.Ablowitz, A. S. Fokas, R. Anderson. The direct linearising transform and the Benjamin—
Ono equation. Phys. Lett. 93A, n.8, 375-378, 1983.

[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur. The inverse scattering transform -
Fourier analysis for nonlinear problems. Studies in Appl. Math. 53, n. 4, 249-315, 1974.

[3] M. Adler. On a trace functional for formal pseudo-differential operators and the symplectic
structure of the Korteweg-de Vries equations. Inv. Math. 50, 219-248 (1979).

[4] N. 1. Akhiezer, I. M. Glazman. Theory of Linear operators in Hilbert space. Translated from
Russian, New York, F. Ungar (1961-1963).

[5] R. Beals, R. R. Coifman. Scattering and inverse scattering for first order systems. Commun.
Pure & Appl. Math. 37, 39 (1984).

[6] R. Beals, R. R. Coifman. Inverse scattering and evolution equations. Commun. Pure & Appl.
Math. 38, 29 (1985).

[7] R. Beals, D. H. Sattinger. On the complete integrability of completely integrable systems.
Commun. Math. Phys. 138, 409 (1991).

[8] P.J. Caudrey. The inverse problem for the third order equation ugzs+q(z)ue+r(z)u = —i¢3u.
Phys. Lett. A 7T9A, 264 (1980);
— The inverse problem for a general n X n spectral equation. Physica D D6, 56 (1982).

[9] F. Calogero, A. Degasperis. Spectral transform and solitons. Vol. I. North Holland, Amster-
dam, 1982.

[10] L. A. Dickey. Soliton equations and Hamiltonian systems. Advanced series in Math. Phys.,
12, World Scientific, (1991).

[11] V. Drinfel’d, V. V. Sokolov. Lie Algebras and equations of Korteweg - de Vries type. Sov. J.
Math. 30, 1975-2036 (1985).

[12] N. Dunford, J. T. Schwartz. Linear operators. vol. 2, Spectral theory. Self-adjoint operators
in Hilbert space. (1963), Interscience Publishers, Inc., NY.

[13] L. D. Faddeev, L. A. Takhtadjan. Hamiltonian methods in the theory of solitons. (Springer
Verlag, Berlin, 1987).

[14] H. Flaschka, A. C. Newell, T. Ratiu. Kac-Moody Lie algebras and soliton equations. II. Lax
equations associated with Agl). Physica D 9D, 300-323 (1983).

[15] A. Fokas, R. L. Andersson. On the use of isospectral eigenvalue problems for obtaining hered-
itary symmetries for Hamiltonian systems. J. Math. Phys. 23, No 6, 1066-1073 (1982).

[16] F.D. Gakhov. Boundary value problems. Translated from Russian ed. I. N. Sneddon, (Oxford,
Pergamon Press, 1966).

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



ALGEBRAIC AND ANALYTIC ASPECTS OF SOLITON TYPE EQUATIONS 67

[17] I. M. Gel’fand, L. A. Dickey. Funct. Anal. Appl. 11(2), 11 (1977) (In Russian).

(18] V. S. Gerdjikov. On the spectral theory of the integro-differential operator A, genmerating
nonlinear evolution equations. Lett. Math. Phys. 6, n. 6, 315-324, (1982).

[19] V. S. Gerdjikov. Generalized Fourier transforms for the soliton equations. Gauge covariant
formulation. Inverse Problems 2, n. 1, 51-74, 1986.
— Generating operators for the nolinear evolution equations of soliton type related to the
semisimple Lie algebras. Doctor of Sciences Thesis, 1987, JINR, Dubna, USSR, (In Russian).

[20] V. S. Gerdjikov. Zy -reductions and new integrable versions of derivative nonlinear Schro-
dinger equations. In Nonlinear evolution equations: integrability and spectral methods,
Ed. A. P. Fordy, A. Degasperis, M. Lakshmanan, Manchester University Press, (1981), p. 367—
379.

[21] V. S. Gerdjikov. Generalised Fourier transforms for the soliton equations. Gauge covariant
formulation. Inverse Problems 2, n. 1, 51-74, (1986).

[22] V. S. Gerdjikov. Complete integrability, gauge equivalence and Laz representations of the
inhomogeneous nonlinear evolution equations. Theor. Math. Phys. 92, 374-386 (1992).

[23] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov and N. A. Kostov. N-wave interactions related
to simple Lie algebras.
— Z2- reductions and soliton solutions. Inverse Problems 17, 999-1015 (2001).

[24] V. S. Gerdjikov, M. L. Ivanov. Ezpansions over the “squared” solutions and the inhomoge-
neous nonlinear Schrédinger equation. Inverse Problems 8, 831-847 (1992).

[25] V. S. Gerdjikov, E. Kh. Khristov. On the evolution equations solvable with the inverse scatter-
ing problem. I. The spectral theory. Bulgarian J. Phys. 7, No.1, 28-41, (1980). (In Russian);
— On the evolution equations solvable with the inverse scattering problem. II. Hamiltonian
structures and Backlund transformations. Bulgarian J. Phys. 7, No.2, 119-133, (1980) (In
Russian).

[26] V. S. Gerdjikov, P. P. Kulish. Complete integrable Hamiltonian systems related to the non—
self-adjoint Dirac operator. Bulgarian J. Phys. 5, No.4, 337-349, (1978), (In Russian).

[27] V. S. Gerdjikov, P. P. Kulish. The generating operator for the n X n linear system. Physica
D, 3D, n. 3, 549-564, 1981.

[28] V. S. Gerdjikov, A. B. Yanovsky. Gauge covariant formulation of the generating operator.
II. Systems on homogeneous spaces. Phys. Lett. A, 110A, n. 1, 53-58, 1985.

[29] V. S. Gerdjikov, A. B. Yanovsky. Gauge covariant formulation of the generating operator. I.
Commun. Math. Phys. 103A, n. 4, 549-568, 1986.

[30] V. S. Gerdjikov, A. B. Yanovski. Completeness of the eigenfunctions for the Caudrey—Beals—
Coifman system. J. Math. Phys. 35, no. 7, 3687-3725 (1994).

[31] S. Helgasson. Differential geometry, Lie groups and symmetric spaces. Academic Press, 1978.

[32] M. Jimbo, T. Miwa. Solitons and infinite dimensional algebras. Publications RIMS 19, 943—
1000, 1983.

[33] V. G. Kac. Infinite dimensional Lie algebras. Progress in Mathematics, vol. 44, Boston,
Birkhauser, 1983.
V.G.Kac, A. K. Raina. Bombay lectures on highest weight representations of infinite dimen-
sional Lie algebras. Advanced series in Math. Phys. vol. 2, (1987).

[34] D. J. Kaup. Closure of the squared Zakharov-Shabat eigenstates. J. Math. Annal. Appl. 54,
n. 3, 849-864, 1976.

[35] D. J. Kaup. The three-wave interaction — a non-dispersive phenomenon. Studies in Appl.
Math. 55, 9-44 (1976);
D. J. Kaup, A. Reiman, A. Bers. Rev. Mod. Phys. Space-time evolution of nonlinear three-
wave interactions. I. Interaction in a homogeneous medium. 51, 275-310 (1979).

[36] D. J. Kaup, A. C. Newell. Soliton equations, singular dispersion relations and moving eigen-
values. Adv. Math. 31, 67-100, 1979.

[37] B. G. Konopelchenko Solitons in Multidimensions. Inverse Spectral Transform Method.
World Scientific, Singapore, 1993.

[38] P. P. Kulish. Quantum difference nonlinear Schrodinger equation. Lett. Math. Phys. 5,
191-197, 1981.

[39] P. P. Kulish, A. G. Reiman Hamiltonian structure of polynomial bundles. Sci. Notes. LOMI
seminars 123 67 - 76, (1983) (In Russian); Translated in J. Sov. Math. 28, 505-513 (1985);
M. A. Semenov-Tyan-Shanskii. Classical r-matrices and the method of orbits. Sci. Notes.

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



68 VLADIMIR S. GERDJIKOV

LOMI seminars 123 77 - 91, (1983) (In Russian); Translated in J. Sov. Math. 28, 513-523
(1985).

[40] S. V. Manakov. An ezample of a completely integrable nonlinear wave field with non-trivial
dynamics (Lee model). Teor. Mat. Phys. 28, 172-179 (1976).

[41] A. V. Mikhailov The reduction problem and the inverse scattering problem. Physica D, 3D,
n. 1/2, 73-117, 1981.

[42] R. Miura, (editor). Bdcklund transformations. Lecture Notes in Math., vol. 515, Berlin,
Springer (1979).

[43] A. G. Reymann, M. A. Semenov-Tian Shanski. The jets algebra and nonlinear partial dif-
ferential equations. DAN USSR (Reports of the USSR Academy), 251, No 6, p.1310-1314,
(1980) (In Russian).

[44] G. Segal, G. Wuilson. Loop groups and equations of KdV type. Publ. IHES, vol. 61, 5-65
(1985).

[45] A. B. Shabat. The inverse scattering problem for a system of differential equations. Func-
tional Annal. & Appl. 9, n.3, 75 (1975) (In Russian);

— The inverse scattering problem. Diff. Equations 15, 1824 (1979) (In Russian).

[46] E. C. Titchmarsch. Eigenfunctions expansions associated with second order differential equa-
tions. Part I. Ezpansions over the eigenfunctions of (d/dz)? + X — g(z). (Oxford, Clarendon
Press, 1958).

[47] N. P. Vekua. Systems of singular integral equations. Translated from Russian by A. G. Gibs
and G. M. Simmons, (Gréningen, P. Noordhoff Ltd., The Netherlands, 1967).

[48] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. I. Pitaevskii. Theory of solitons: the
inverse scattering method. (Plenum, N.Y.: Consultants Bureau, 1984).

[49] V. E. Zakharov, S. V. Manakov. The theory of resonant interaction of wave packets in
nonlinear media. Sov. Phys. JETP 69, 1654 (1975) (In Russian).

[50] V. E. Zakharov, S. V. Manakov. Multidimensional nonlinear integrable systems and methods
for constructing their solutions. Sci. Notes. LOMI seminars 133 77 - 91, (1984) (In Russian);
Translated in J. Sov. Math. 31, 3307-3316 (1985).

[61] V. E. Zakharov, A. V. Mikhailov. On the integrability of classical spinor models in two—
dimensional space—time. Commun. Math. Phys. 74, n. 1, 21-40, 1980;

— Relativistically invariant two-dimensional models of field theory which are integrable by
means of the inverse scattering problem method. Zh. Eksp. Teor. Fiz. 74 1953, (1978).

[62] V. E. Zakharov, A. B. Shabat. A scheme for integrating nonlinear equations of mathematical
physics by the method of the inverse scattering transform. I. Funct. Annal. and Appl. 8, no. 3,
43-53 (1974);

— A scheme for integrating nonlinear equations of mathematical physics by the method of
the inverse scattering transform. II. Funct. Anal. Appl. 13(3) 13-23, (1979).

[63] V. E. Zakharov, A. B. Shabat. Ezact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62 (1972).

[64] S. Zhang. Classical Yang-Bazter equation and low-dimensional triangular Lie bialgebras.
Phys. Lett. A 246 71-81 (1998).

INSTITUTE FOR NUCLEAR RESEARCH AND NUCLEAR ENERGY, TZARIGRADSKO CHAUSSEE 72,
1784 SOFIA, BULGARIA

Current address: Institute for Nuclear Research and Nuclear Energy, Tzarigradsko chaussee
72, 1784 Sofia, Bulgaria
E-mail address: gerjikov@inrne.bas.bg

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



http://dx.doi.org/10.1090/conm/301/05159

Contemporary Mathematics
Volume 301, 2002

Differential Forms, Spectral Theory, and Boundary Value
Problems

A.S. Fokas

ABSTRACT. We review a new method for studying boundary value problems
for integrable PDEs in two dimensions. Examples of integrable PDEs are
linear PDEs with constant coefficients and the usual nonlinear integrable PDEs
such as the Korteweg-deVries equation. The starting point of the method is
formulating the given PDE as the condition that an appropriate differential
1-form W (z1,z2,k), k € C, is exact. The fundamental properties of an exact
form W are the existence of a 0-form, and the vanishing of the integral of W
around a closed contour. The spectral analysis of the associated 0-form gives
rise to a Riemann-Hilbert (RH) problem with explicit exponential (z1,x2)
dependence, while the vanishing of the integral of W around the boundary of
the domain gives rise to a global relation. The RH problem and the global
relation form the basis of this method. As illustrative examples, we discuss
boundary value problems for: (a) an evolution equation with third order spatial
derivative on the half-line; (b) the modified Helmholtz equation on a convex
polygon; (c) the defocusing nonlinear Schrodinger equation on the half-line.

1. Introduction

A general approach to solving boundary value problems for two-dimensional
integrable PDEs was announced in [1] and developed in several publications, see
the review [2]. Examples of integrable PDEs are linear PDEs with constant coeffi-
cients and the usual nonlinear integrable PDEs such as the nonlinear Schrédinger
equation.

This method provides a unification as well as a significant extension of the fol-
lowing topics: (a) The classical integral transform and Green’s function methods
for solving linear PDEs and several of their variants such as the Wiener-Hopf tech-
nique; (b) the integral representation of the solution of linear PDEs in terms of the
Ehrenpreis fundamental principle; (¢) the inverse scattering method for solving ini-
tial value problems for nonlinear integrable evolution equations. In addition it has
interesting implications for: (A) The numerical solution of linear elliptic PDEs; (B)
the spectral theory of linear differential operator; (C) the investigation of nonlinear
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non integrable PDEs. It has already been used by more than forty researchers for
the analysis of boundary value problems for linear evolution equations with spa-
tial derivatives of arbitrary order, for linear elliptic PDEs including the Laplace,
the bi-harmonic and the modified Helmholtz equations, and for several nonlinear
integrable PDEs. These boundary value problems are formulated either in a polyg-
onal domain or in a time dependent domain. Applications include fluid mechanics,
acoustics, elasticity, pattern formation and statistical mechanics.

We first present a brief review of the topics (a)-(c) mentioned above, then
we introduce the new method, and then discuss its relation with (a)-(c) and with
(A)-(C).

A. Transform methods for linear PDEs

The proper transform for a given boundary value problem is specified by the
PDE, by the domain, and by the boundary conditions. For some simple boundary
value problems, there exists an algorithmic procedure for deriving the associated
transform, see for example 3], [4]. This procedure is based on the analysis of either
of the two ODE’s obtained by separation of variables and it involves constructing
the Green’s function of a single eigenvalue equation and of integrating this Green’s
function in the complex k-plane, where k denotes the eigenvalue. An alternative
procedure, based on a Riemann-Hilbert (RH) or a d-bar problem, has been recently
introduced in [5].

Separation of Variables

!
2 ODEs
ODE in x1 ODE in xo
! 1
1 — trasnform 9 — transform
FiGure 1.1

For an evolution equation, the proper transform for the initial value problem on
the line is the Fourier transform. The proper transform for the Dirichlet problem
on the half-line for an evolution equation with second order spatial derivative, is
the sine transform:
ExaMPLE 1.1. Let w(k) be a polynomial of order n with real coefficients.
The solution of the initial value problem

(0 + tw(—i0;))g(z,t) =0, —oco<z <00, t>0,

(L.1) ;
q(x,0) = go(z) € H"(R),
where 7. = n/2 for n even, 7 = (n + 1)/2 for n odd, is given by
Y RN
(1.22) alart) = 5 [ TG )k,
(1.2b) Go(k) = / e~ gy (x)d.

ExAMPLE 1.2. The solution of the initial value problem
Z(It+qzw:0, 0<$<OO, t>0

(1.3) 4(2,0) = qo(x) € S(RY), ¢(0,) = go(t) € C*
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is given by

0o t
(1.4a) q(z,t) = %/ sin(kx)e“ikgt ((jo(k) + ik/ eikQTgo(T)dT> dk,
0 0

(1.4b) Go(k) = /000 sin(kz)qo(z)dz.

REMARK 1.3.

¢ Equation (1.2a) provides the spectral decomposition of g(z,t). Indeed,
this equation involves (z,t) in an explicit exponential form, and it also
involves the spectral function go(k). This is to be contrasted with equation
(1.4a) where the initial condition go(z) gives rise to the spectral function
do(k), but the boundary condition go(t) gives rise to fot exp(ik?T)go(T)dT
which is a function of both & and t.

e The explicit exponential dependence on (z,t) of equation (1.2a) implies
that it is straightforward to compute the large ¢t behavior of equation
(1.2a). The analogous computation for equation (1.4a) is less straightfor-
ward.

e For an applied mathematician, the derivation of equations (1.4), consti-
tutes the solution of the problem, but for an analyst it is just the first
step. Indeed, the rigorous investigation of the above IBV problem in-
volves the following: Given go(z) define go(k) by equation (1.4b); given
do(k) and go(t), define g(z,t) by equation (1.4a). Then prove that q(z,t)
solves equation (1.3) and that ¢(z,0) = go(z), ¢(0,t) = go(t). The proof
of the former equality is a direct consequence of the sine-transform but
the proof of the latter equality is less straightforward since the relevant
integral is not uniformly convergent at x = 0.

e The transform method has been enormously successful for solving a great
variety of initial and boundary value problems. However, for sufficiently
complicated problems the classical transforms fail. For example, there
does not exist an z-transform for solving evolution equations with a third
order derivative on the half line, such as

in this case there exists a t-transform (the Laplace transform) but it in-
volves solving a cubic algebraic equation, and also assumes boundary con-
ditions which decay as t — oo (otherwise one has to use certain causality
arguments).

Similarly there do not exist proper transforms for solving BVP’s for
elliptic equations even of second order and in simple domains. The fail-
ure of transforms led to the development of several ingenious but ad-hoc
techniques, which include conformal mappings for the Laplace and the
bi-harmonic equations, as well as the formulation of the Wiener-Hopf fac-
torization problem [6].

B. Euler-Ehrenpreis-Palamodov representations

There exist appropriate generalizations of the Fourier transform which are ca-
pable of capturing the general solution of linear PDEs in a smooth convex domain
[7], [8]. An elementary implication of this general result is that there exists a mea-
sure dp(k) such that the solution of any IBV problem of equation (1.1) on the half
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line is given by

(1.6) q(z,t):/eikz_m(k)tdp(k),
L

where L is an appropriate curve in the complex k-plane. However, in general it is
not clear how to compute dp(k), although recently some progress has been made
for some particular types of domains [9], [10].

As a verification of the above result we note that it is possible to rewrite
equation (1.4a) in the form (1.6) where dp is supported on the real axis and on the
positive imaginary axis.

C. The Inverse Scattering Transform

There exist nonlinear evolution equations, whose initial value problem on the
line can be solved by a certain nonlinear Fourier transform called the inverse scat-
tering transform [11], [12].

EXAMPLE 1.4. (The defocusing NLS)
iqt+qm—2|q|2q:0, —o<zr<oo, t>0
q(z,0) = go(x) € S(R).
This initial value problem can be solved by the inverse scattering transform pair.
However, this pair, in contrast to the Fourier transform pair, cannot be written in
terms of explicit integral representations. Instead, the map

qo(x) — do(k)
is defined via the solution of a linear Volterra integral equation, and the inverse
map,

(1.7)

qo(k) — qo(x)
is defined via the solution of a matriz RH problem [13].

Recall that the separation of variables of a linear evolution equation gives rise to
two ODE’s. The spectral analysis of the z-ODE gives rise to the Fourier transform.
The distinctive property of an integrable nonlinear PDE is that it can also be
associated with two ODE’s (called the Lax pair [14]); the spectral analysis of the
z-ODE (i.e. of the z-part of the Lax pair) gives rise to the inverse scattering
transform pair.

The evolution of §(k,t) is determined by the nonlinear PDE itself, or equiva-
lently by the t-part of the Lax pair.

REMARK 1.5.

Consider the linearized version of equation (1.7), i.e. equation (1.3). The two
ODE:s obtained by separation of variables of this equation are

2 T

o X(z,)) )2:(:2’ A AX(z,A) =0, o1, A) g;’ N _ iAT(t,A) = 0.
It turns out that equation (1.3) can also be associated with two other ODEs which,
in analogy with the nonlinear PDE (1.7), we call a Lax pair [15]

o . ou
(1.9) 5, ke=a 5
There exist two different ways of obtaining the Fourier transform. The classical
one involves analyzing equation (1.8a), while the alternative one involves analyzing
equation (1.9a) [15]. We emphasize that it is only the latter analysis that can be
generalized to the nonlinear equation (1.7). This suggests that perhaps equations

(1.8)

+ ik = iqy — kq.
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(1.9) are more fundamental than equations (1.8). It will be shown in this paper that
this is indeed the case. In this relation we note that, just like the Fourier transform,
the sine transform can also be obtained by analyzing either of equations (1.8a) or
(1.9a). However, if one wants to obtain the Ehrenpreis form of the solution of the
IBV of Example 1.2, then one must analyze both equations (1.9) simultaneously.
This suggests another reason why equations (1.9) are more fundamental than equa-
tions (1.8): They provide the appropriate framework for performing a novel type of
analysis, namely the simultaneous spectral analysis of compatible linear equations.
It turns out that differential forms provide a most convenient formalism for this
purpose.
D. A New Method

DEFINITION 1.6. An equation in two dimensions (z1,z2) is called integrable if
and only if it is equivalent to the condition that an appropriate differential 1-form
W (z1,x2, k) is closed, where k € C.

For linear PDEs with constant coefficients, W can be found algorithmically,
see Appendix A. For nonlinear integrable PDEs the existence of W is a direct
consequence of the Lax pair.

EXAMPLE 1.7. Equation (1.5) is associated with the closed form W,
(1.10) W = e thetw®t Loy — gy, + ihgs + (1 — k%)qldt}, w(k) =k — k>
Indeed, if e = exp[—ikz + jw(k)t] then
dW = (eq)edt A dz — {€[qus +ikgs + (1 — k?)q]}_ dz Adt

((eq)s + {€lgas + ikge + (1 — k*)q]} ) dt Ada

Thus dW = 0 iff ¢ satisfies equation (1.5).

The fundamental properties of an exact differential 1-form W are the existence
of a 0-form p(® (z1,z2,k), and the vanishing of the integral of W around a closed
contour. These two properties form the basis of the new method. Indeed:

(1). The spectral analysis of the associated 0-form yields the solution g(z1, z2)
in terms of the solution of either a Riemann-Hilbert problem or a d-bar problem.
These problems are formulated in the complex k-plane and are determined in terms
of a certain function of k called the spectral function and denoted by §(k). This
function in turn is defined in terms of the boundary values of g(z1,z2) and of
its derivatives. Since for a well posed boundary value problem only some of the
boundary values are prescribed as boundary conditions, part of (k) is unknown.

(2). The vanishing of the integral of W around the boundary of the given
domain gives rise to a simple global algebraic relation satisfied by the speciral func-
tion. The analysis of this relation determines the unknown part of the spectral
function in terms of the given boundary conditions. For linear PDEs, the relevant
Riemann-Hilbert and d-bar problems can be solved in closed form, thus step (1)
yields an ezplicit integral representation of q(x1,z2) in terms of the spectral func-
tion. For nonlinear integrable PDEs the investigation of the solvability of these
problems must be carried out for each equation separately.

The constructions (1) and (2) are summarized in Figure 1.2.

The most difficult step of the methodology outlined above is the analysis of the
global relation. It turns out that for linear evolution equations in {0 < z < oco,t >
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0} [16] orin {0 < = < 1,t > 0} [17], this step involves only algebraic manipulations;
for linear evolution equations in the time-dependent domain {I(t) < z < oco,t > 0}
[18], it involves solving a system of linear Volterra integral equations; for linear
elliptic equations in a polygonal domain, it involves either algebraic manipulations,
or solving an auxiliary matrix Riemann-Hilbert problem [19]-[23]; for nonlinear
integrable evolution equations in {0 < z < oo,t > 0} [24]-[25] or {0 < z < 1,¢ > 0}
[26], it involves solving a system of nonlinear Volterra integral equations.

We now discuss the relation of the new method with the three topics (a)-(c)
reviewed earlier.

Given a PDE:
Construct W(x1, za, k)

7N
dp® =w §W =0
Given a domain Q:
the spectral analysis of ;(?) $ =l

l !

q(z1,z2) in terms of G(k) algebraic relation for (k)
and Given BCs:

4(k) in terms of the 1

boundary values the unknown part of §(k)

of ¢ and its derivatives

FIGURE 1.2

(a). Suppose that q(z1,x2) satisfies a linear PDE. The existence of the differ-
ential 1-form W (x1,x2, k) is equivalent to the existence of a Lax pair. Performing
the spectral analysis of the x;-part of the Lax pair corresponds to constructing an
x1-transform, similarly performing the spectral analysis of the xo-part corresponds
to constructing a zo-transform. The advantage of the 1-form W is that it provides
the tool for performing the simultaneous spectral analysis. This gives rise to a new
transform, which in contrast to both the z; and zs-transforms is “custom made”
for the given PDE and the given domain. In this sense the new method provides
the synthesis of separation of variables.

Suppose that q(z1,x2) satisfies a linear PDE in a convex polygon. In this
case, step (1) yields for g(z1,z2) an integral representation in the complex k plane,
which has an explicit £; and x5 dependence in the form of an exponential and which
involves the spectral function §(k), k € C. This function can be computed by ana-
lyzing the global equation. For evolution equations and for elliptic equations with
simple boundary conditions, this involves the solution of a system of algebraic equa-
tions, while for elliptic equations with arbitrary boundary conditions, it involves
the solution of an auziliary Riemann-Hilbert problem. For simple polygons, this
Riemann-Hilbert problem is formulated on the infinite line, thus it is equivalent to
a Wiener-Hopf problem. This explains the central role played by the Wiener-Hopf
technique in many earlier works.

(b). For linear equations in a convex domain, the explicit x;, o dependence
of g(x1,x2) is consistent with the Ehrenpreis formulation of the solution. Thus
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this method provides the concrete implementation as well as the generalization to
concave domains of this fundamental principle.

(c) An important advantage of the new method is that it can be nonlinearized.
Indeed, the results for linear PDEs obtained by this method can be generalized to
integrable nonlinear PDEs. In the nonlinear case, the relevant RH and d-bar prob-
lems cannot be solved in closed form. However, their (z1,22) dependence is of the
same exponential form as the one occurring in the associated linear equations. In
this sense, the new method provides the nonlinearization of the Ehrenpreis princi-
ple. For the Cauchy problem, the solution representation obtained by this method
coincides with the one obtained by the inverse scattering transform.

Regarding (A)-(C) we note:

(A) A numerical method

The new method has led to the formulation of a new numerical scheme for
solving elliptic PDEs. This is based on the numerical solution of the global relation
[27]-[28].

(B) Spectral Theory

The new method has motivated the study of certain classes of linear differential
operators which in general are non-self-adjoint. In these studies the RH and the
d-bar problems play a crucial role [5].

(C) Nonlinear non-integrable PDEs

It should be emphasized that although this method is directly applicable only
to integrable PDEs, it nevertheless has important implications for non integrable
PDEs. Indeed, by formulating such equations as “forced” linear PDEs and by
combining the new method with standard PDE techniques, it is possible to prove
the well posedness of boundary value problems for a large class of nonlinear PDEs
[29].

This paper is organized as follows: In §2 we solve an initial-boundary value
problem for equation (1.5). In §3 we first present the formulae for q(z1,z2) and
for ¢(k) associated with the modified Helmholtz equation in an arbitrary convex
polygon, and then discuss boundary value problems for the semi-strip. In §4 we
discuss the defocusing nonlinear Schrédinger equation on the half-line.

2. Linear Evolution PDEs on the Half-Line

We will illustrate the three steps needed for the rigorous implementation of
the method by using equation (1.5). This equation is a particular case of equation
(1.1), where

(2.1) w(k) = k — k?.label2.1
Equation (1.1) is analyzed in [16].
THEOREM 2.1. Let q(x,t) satisfy
Gt +dz+Qeze =0 0<z <00, 0<t<T
q(z,0) = go(z) € H*(R™), q(0,t) = go(t) € H'([0,T]), q0(0) = go(0)
where T is a positive constant. The unique solution of this IBV problem is given by

1 1

_/ eikm_iw(k)téo(k)dk-l-—/ eikz—iw(k)tg(k)dk’
2 J_ o oDy

(2.2) q(z,t) = o
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where the curve 0D and the spectral function (k) = {go(k), g(k)}, are defined as

follows:
(2.3) OD; :Imw(k) =0, Imk > 0.
(2.4) Go(k) :/0 e~ * gy (z)de, Imk>0
“ _ _ 21 A v — k n k— Vg
(2.5) 9(k) = (1 = 3k%)go(k) + — do(v2) + pa—, do(v1),
T .
(26) o) = [ e gn(e)at
0

v1(k), vo(k) are the two nontrivial roots of w(k) = w(v(k)).

The rigorous investigation of the above IBV problem involves the following
steps, see [16] for details.

Step 1 Assuming existence: (a) construct the integral representations for q(z,t)
and for §(k); (b) find the global relation.

(a) For linear equations there exist several ways of obtaining the relevant rep-
resentations. The simplest one is to use the Fourier transform and contour defor-
mation, see [30] and Appendix B. Among these different approaches, the only one
which nonlinearizes is the one based on the spectral analysis of the equation

(2.7) d (e’ik’”“w(’“)tu(az,t, k)) = W(z,t,k).

This approach will be illustrated in §4 as an introduction to the analysis of the
NLS. All of these approaches imply that g(z,t) is given by equation (2.2) where
do(k) is defined by equation (2.4), while (k) is defined by

(2.8) §(k) = (1 — k?)go(k) + kg1 (k) + g2(k),
T .
(2.9) b= [ e*Wignd, =012 keC,
0
and
(2.10) 9;(t) = 814(0,1), j=0,1,2.
(b) The equation
W(z,t, k) =0,
on
where Q) is the boundary of the domain {0 < z < 00,0 < t < T} yields, see
Figure 2.1,
(2.11) Go(k) + g(k) = e e(k),
where

c(k) = / e~ *q(z, T)dz, Imk <O0.
0

Step 2. Assuming the validity of the global relation, prove existence: Namely
assume that there exist functions qo(x), {g;(t)}2, such that the functions §(k) and
(k) defined by equations (2.4), (2.8), (2.9), satisfy equation (2.11), where c(k) is
some function holomorphic for Imk < 0 and of O(1/k) as k — oco. Then prove
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FIGURE 2.1

that if q(z,t) is defined by equation (2.2), (a) q(z,t) solves equation (1.5); (b)
q(.’L‘,O) = QO(‘T); aiq(ov t) - gj(t)7 Jj=0,1,2.

The proof of (a) is a direct consequence of the exponential dependence of
(z,t). The proof of (b) follows from the fact that exp(—iw(k)t)§(k) is analytic
and bounded in Dy,

D, ={keC, Imw(k)>0, Imk >0}

The proof of (c) is based on the global relation and on appropriate contour defor-

mations.
Step 3. Given boundary conditions, analyze the global relation

Rek

A

Using the definition of §(k), the global relation (2.11) becomes
(212) oK) + (1= K*)o(k) + ikgu (k) + ga(k) = €™ Te(k), Imk < 0.

The crucial observation is that §;(k), j = 0,1,2, depend on k only through w(k).
Thus these functions are invariant if ¥ — v(k), where v(k) is defined by

w(k) = w(v(k)).

FIGURE 2.2
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This equation has two nontrivial roots: If v1 (k) € Dy then k € D, and if vy(k) €
Dy, then k € D,. Thus evaluating equation (2.12) at v4 (k) and v2(k) we find

Go(v; (k) + (1 = vF (k) go(k) + s (k)gi (k) + ga(k) =
=ev®Te(ui(k), j=1,2, ke Dy.
Solving these two equations for §;(k), g2(k) and substituting the resulting expres-
sions in equation (2.8) we find that §(k) is given by equation (2.5) plus an addi-
tional term involving )T multiplied by a certain combination of c¢(v;(k)) and
c(vo(k)). However, this additional term does not contribute to ¢(z,t). Indeed,
explikx + iw(k)(T — t)], as well as c¢(v;(k)), are bounded and analytic for k € D,
thus Cauchy’s theorem implies that this additional term vanishes.

REMARK 2.2. Let g(k,t) be defined by equation (2.5) where go(k) is replaced
by

t
go(k, t) = / ezw(k)Tgo(T)dT.
0

It is straightforward to show that ¢(z,t) is also given by an expression similar to
the rhs of equation (2.2) where §(k) is replaced by g(k,t). This is consistent with
causality.

REMARK 2.3. The representation (2.2) is very convenient for computing the
asymptotic properties of g(x,t). These include the long time asymptotics [31] as
well as the small dispersion limit [32].

3. Linear Elliptic PDEs
It is shown in appendix A that the equation

(3.1) ¢ +aq=0, z=zx+1iy, « constant
is associated with the closed differential 1-form
(3.2) Wiz, z,k) = e iRz (qzdz — %qdi) .

If equation (3.1) is valid in a convex polygon (), it is straightforward using equation
(3.2) to construct the integral representations for ¢(z, z) and for §(k) [33]. If « is
positive, the relevant contour in the complex k-plane consists of a union of rays and
of circular arches; if « is negative the contour involves only rays. For simplicity we
consider the latter case.

PrOPOSITION 3.1. Let q(z,Z) satisfy

(3.3) gz —a’q=0, z€Q

Q is a bounded convex polygon specified by z1,29, -+ , 2n:
on side (j) :

(3.4) cos B3;qs + sin Bjqn + V9 = g5,

where {8;,7;}7 are constants, {g;}1 are smooth functions; and qs, qn denote the
tangential, normal derivatives. Assume that there exists a smooth global solution.
Then q(z, ) is given by

_ 1 L i Z—iazzA dk
(3.5) 022 =5 > [ M zen
]:1 J

k
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FIGURE 3.1

where the contours {l;}7 and the spectral function §(k) = {g;}7, are defined as
follows: 1; is the ray from 0 to oo making an angle —arg(z; — zj41) with the real

k-axis;
% ; ia? 5 T
(3.6) g;(k) =/ e ikt 2 (qzdz + %qd?:) , keC.
Zj+1

Furthermore, the spectral function satisfies the global relation

(3.7) > (k) =0, keC.
j=1

The derivation of equations (3.5), (3.6), using the spectral analysis of the equa-

tion
; ia? o

(3.82a) d (e_lk”Tz,u) =W

is given in [33]. Equation (3.7) is a direct consequence of

(3.8b) W =0;

a9
an alternative derivation of equations (3.5), (3.6) is given in [34] using the funda-
mental differential form, which is a slight generalization of W.

REMARK 3.2. If Q is an unbounded polygon with 2; = 2, = oo, then the
summation in equations (3.5), (3.7) are only up to n — 1; also equation (3.7) is not
valid for all £ but only in a certain domain of the complex k-plane [33].

REMARK 3.3. The above proposition is step 1 of the new method. Step 2 is
also valid, namely it is possible to show that the global relation (3.7) is not only a
necessary but also a sufficient condition for existence [27]. However, step 3, namely
the analysis of the global relation, is now more complicated: In general it involves
the formulation of an auxiliary matrix RH problem; for some simple polygons and
for simple boundary conditions this RH problem can either be solved in closed form
or can be bypassed and §(k) can be computed via the algebraic manipulation of
the global relation.

EXAMPLE 3.4.
Let ¢(z,z) satisfy equation (3.3) in the semistrip {0 < z < 00, 0 < y < I}
depicted in Figure 3.2 with the boundary conditions (3.4) on each side. It is shown
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y
B3’ Y3
)
|32,72
X
BI,YI
FIGURE 3.2

in [22] that for arbitrary values of §;,7;, the spectral function can be computed
via a 2 x 2 matrix RH problem. However, if either of the conditions

(3.9a) (202 — 42)sin26; = (v? — 2a?) sin 203,
or
(3.9b) (2% — 42)sin 20, = (72 — 2a2)sin 2835

are valid, then the RH problem becomes triangular and can be solved in closed
form. If both equations (3.9) are valid then the part of §(k) contributing to ¢(z, Z)
can be found via the algebraic manipulation of the global relation.

The derivation of the above results can be found in [22]. Here we only note
that just as in the case of linear evolution equations, the invariant properties of the
global relation play a crucial role: Using the definition of §; (equation (3.6)), the
boundary conditions (equation (3.4)), and integration by parts, it follows that each
g; involves an unknown function. Using that on the sides (1), (2), (3), z is given
by x, iy, « + il, it follows that these unknown functions are given by

© . ia? ! o?
Uy (—ik) = / e g (2)dz,  Va(k) = / eV Vgs(y)dy,
0 0

o0 : ia2
Us3(—ik) = / etk 4o (2) dr,
0
where q1(z) = q(z,0), g2(y) = ¢(0,y), g3(x) = g(z,1). Thus the global relation (3.7)
becomes a relation with known coefficients among
(310&) \Ifl(—ik), \Ilz(k), \113(——’”(7), Imk < 0.

The complex conjugate and the transformation k¥ — k of this relation yields a
relation among

Equations (3.10) involve the unknown vector functions
{W1(=ik), O1(ik)}, {¥2(k), ¥2(k)}, {¥a(—ik), Us(ik)}.

The first and the third unknown vectors are invariant under the transformation
k — —k. Thus we supplement equations (3.10), with the equations obtained from
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(3.10) by the substitution k — —k. We denote these equations by (3.10)’. The 4
equations (3.10) and (3.10)’ are the basic equations needed for the determination
of the unknown functions ¥;.

Both equations (3.10) are valid for k£ € R; eliminating ¥s(k) from these two
equations we obtain a relationship between ¥;(+ik) and ¥3(+ik). Using the substi-
tution ¥ — —k in this equation (or equivalently eliminating ¥5(—k) from equations
(3.10)’) we obtain a second relation between W;(+ik) and ¥3(+ik). These two
relations together with the fact that {¥;(ik), ¥;(—ik)}, j = 1,3 are sectionally
holomorphic functions with a cut along the real axis, and of O(1/k) as k — o0,
define a 2 x 2 matrix RH problem.

4. Integrable Nonlinear Evolution Equations on the Half-Line

The rigorous implementation of the new method to the nonlinear Schrédinger
(NLS) equation on the half line is presented in [24]. The Korteweg-deVries (KdV)
equation with dominant surface tension, and the sine-Gordon (sG) equation in
laboratory coordinates can be treated similarly [25]. In what follows we discuss the
three steps (analogues to the three steps presented in §2) needed for the analysis of
the defocusing NLS equation on the half line:

(4.1) iqt + qee — 2|¢/%¢ =0, 0<z<o00, 0<t<T

(42) Q(l', 0) = qO(a:) € S(R+)) Q(07t) = go(t) € Cl(oa T)’ qO(O) = gO(O))
where T is a given positive constant.

Step 1. Assuming existence: (a) Construct the integral representations of
q(z,t) and of the spectral function §(k); the former involves the formulation of a
RH problem and the latter involves the solution of certain linear Volterra integral
equations. (b) Derive the global relation satisfied by G(k).

If Ais a 2 x 2 matrix, define 634 by [o3, A], o3 = diag(1, —1); then it follows
that )

€3 A = e3 Ae™ 3.

Step 1 is based on the fact that the defocusing NLS equation (4.1) is equivalent
to
(4.3) d [e(ikr“ikzﬂ&m(x, ¢, k)] =W(z,t,k), keC,
where p is a 2 X 2 matrix, and the differential 1form W is defined by

(44) W = k2% (Q(g t)u(a,t, K)do + Qla, t, k)u(a, £, k)dt)

0 q(z,t)
(4.53) Qa,t) = ( ) ) ,
q(z,t) 0

(4.5b) Q(z, t, k) = 2kQ — iQ 03 — i|g|%03.
The derivation of (a) involves the spectral analysis of equation (4.3). For pedagog-
ical reasons we first consider the spectral analysis of the equation

(4.6a) d (eikm“kzt,u(x,t, k)) = W(x,t,k), keC,
(4.6b) W(z,t, k) = e % (gdy 1 (iq, + kq)dt),
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which corresponds to the linearized version of equation (4.1), i.e. to equation
1 + gz = 0.

Performing the spectral analysis of equation (4.6a) means: Construct a function
wu(z, t, k) which for (z,t) € Q ={0 < x < o0, 0 <t < T}, is bounded in k for all
ke C.

We claim that such a p is given by

H3
Rek
4y Ky
FIGURE 4.1
pwr w<argk < 37”
(4.7) p=| pp 3 <argk<2rm
pz, Im k>0
Indeed, equation (4.6a) implies
L e
(48) eyt ) = e [ e,
(@asts)
where (z,,t,) is any point in the domain .
T
T
* (x:t)
0 3
FIGURE 4.2

The properties of u with respect to k depend on the particular choice of (zy,ty).
It was shown in [33] that if Q is a polygon there exists a canonical way of choosing
(2«,ts), namely the corners of the polygon © which we denote by (z;,t;). The
collection of the corresponding functions 4; define a function p = {u;}7 which is

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



BOUNDARY VALUE PROBLEMS 83

sectionally holomorphic in the complex k-plane. In this particular example, there
exist three corners,

(z1,t1) = (0,T), (w2,t2) = (0,0), (z3,t3) = (00,1).

Thus we define p1, po, us, and we also choose the contours shown in Figure 4.3

-
|

<———ﬂ—>

e R

M3

FIGURE 4.3

Equation (4.8) involves the exponential exp[ik(§ — x) +ik?(7 —t)]. In the case

of p1,

E—2<0 and 7—t > 0;
thus the exponential is bounded in the intersection of argk < 0 and of argk €
[0,7/2] U [m,37/2], i.e. in m < argk < 3m/2. Thus y; is bounded and analytic for
m < argk < 37/2. Similarly for ps, us.

These considerations together with the estimate p = O(1/k), k — oo (which
follows from equation (4.8)), imply that u is a sectionally holomorphic function in
C\{RU:R~}. Equation (4.8) implies that the “jumps” of u are of the “Ehrenpreis
form” exp[—ikx — ik%t|p(k). For example

/1’2(33’ i k) - :u’l(x’t’ k) = e_ikx_ik%g(k)a

g(k) = /T eik?f(iqgg(O,T) + kq(0,7))dr.
Similarly ’
p2(, 6. k) — pa(e, 1, k) = €K G (k)
(k) = | e*qle.0)de
Thus p can be expressed in terms of {Go(k), §(k)}:

L[ e—azeGo(l) 1 / —itz—uze 9(1)
) - ilx—i ] — — ilx—1
(4.9) F="5 ) € v =
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FIGURE 4.4

where L is depicted in Figure 4.4. Equation (4.9) together with

q = pg + ikp,
yield
(4.10) g= = b e—tka=iktg pygp ¢ L / e~ ke =ikt 5 dk.
21 J_o 27 Ji
We note that
(4.11) Go(k) = —p3(0,0,k),  §(k) = e Tpz(0, T, k).
We now return to the NLS equation. In analogy with equation (4.8) we now
have
] Can (z,t)
(4.12) o (2,8, k) = I e~ (Fhzt2ik7t)5s /( t )W(f,’r, k),
Lxyln

where I is the 2 x 2 identity matrix. Again associated with the three corners we
define w1, po, n3. These matrices are simply related by the matrix analogues of
Go(k) and of (k). Due to certain symmetries these matrices have the form

a(k) b(k) A(k) B(k)
(4.13) Qo(k) =1 __ (k) _
b(k) a(k) B(k) A(k)
The matrices pz(x,0,k) and po(0,t, k) satisfy linear integral equations, thus the
functions {a(k), b(k), A(k), B(k)} cannot be written in closed form. Similarly, since
[ is a 2 X 2 matrix, the associated RH problem is not a scalar RH problem, thus it
cannot be solved in closed form.

Using [, W = 0, with s = p3 in the definition of W, it is straightforward to
derive the global relation satisfied by the spectral function.

Step 2. Existence under the assumption that the spectral functions satisfy the
global relation.

Given qo(z) € S(R™), the space of Schwartz functions on the positive real axis,
define {a(k),b(k)}. Assume that there exist smooth functions go(t) and g;(t) such
that if {A(k), B(k)} are defined in terms of them, then {a(k),b(k), A(k), B(k)}
satisfy the global relation. Define g(z,t) through the solution of the RH problem
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formulated in Step 1. Then prove that: (a) g(z,t) is defined for all 0 < z < oo,
t > 0; (b) g(z,t) solves the NLS; (c) ¢q(z,0) = go(z), 0 < z < 0o and ¢(0,t) = go(t),
We give the definitions of {a(k),b(k), A(k), B(k)} and the main theorem.

Definition of a(k),b(k). Let go(z) € S(RT). The map

(4.14) S : {qo(k)} — {a(k),b(k)}
is defined as follows:
(4.15) ( ZE?) ) = ¢(0,k),

where the vector-valued function ¢(x, k) is defined in terms of go(x) by

1o 0  qo(z)
do

0<z<oo, Imk>0, Ilim p(x,k)= ( (1) )
Definition of A(k), B(k). Let {go(t), g1(t)} be smooth functions for 0 < ¢t < T.
The map
(4.17) S : {g0(t), 91(t)} — {A(k), B(k)}
is defined as follows
_e—4z'k2TB(k,)
4.18 — = (T, k),
(418) ( T (T.1)
where the vector-valued function ®(¢, k) is defined by

1 0

8, ®(t, k) + 4ik? ( ) B(t,k) = OQ(t,k)®(t,k), 0<t<T, keC,

0 0

(4.19) (0, k) = ( ) )

and Q(t, k) is given by:

- 0 go(t) . 0 gi1(t) .
Qt, k) =2k ( ) —1 ( B ) o3 — ilgo(t)|os.
go(t) O ai(t) 0

THEOREM 4.1. Given qo(z) € S(R) define {a(k),b(k)} according to the def-
inition (4.15). Suppose that there exist smooth functions {go(t),91(t)} satisfying
90(0) = go(0), g1(0) = 8.q(0), such that the functions {A(k), B(k)} which are
defined from {gi(t)}$ according to definition (4.18) satisfy the global relation

(4.20) a(k)B(k) — b(k)A(k) = e***Tc(k), Imk >0,

where c(k) is analytic and bounded for Im k > 0 and is of O(1/k), k — oo.
Define M (x,t,k) as the solution of the following 2 x 2 matriz RH problem:
M is holomorphic for k in C\L, where L is the union of the real and of the
imaginary axes of the complex k-plane.

M_(z,t,k) = My (z,t,k)J(z,t,k), keL,
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86 A. S. FOKAS

where J is defined in terms of a,b, A, B by (see Figure 4.5)

10 1 T (R)e-20
Jl = . s J3 = 3
T(k)e® 1 0 ]
P ( 1 (ke )
4 = . 5
F(k)e* 1 - |y(k)|?

B(k)
a(k)d(k)’

) = 2 b riT(k) =

<argk <m;0(z,t k) = kx + 2k*t,
a(k

N

~—

d(k) = a(k)A(k) — b(k)B(k)
M(z,t,k) =1+ O(1/k), k— .

Then M(z,t, k) exists and is unique.

FIGURE 4.5

Define q(z,t) by
q(z,t) =2 klim (kM (z,t,k))12.

Then q(z,t) solves the NLS equation with

The global relation plays a crucial role in the proof of this theorem. In-
deed, ¢(0,t) and ¢, (0,t) are defined through M(0,t, k) whose jump matrix involves
expl[4ik?t], {a(k),b(k), A(k), B(k)}. On the other hand go(t) and g;(t) are defined
through the inverse of the map S, (4.17). It can be shown that this inverse map can
be expressed in terms of a RH problem for a 2 x 2 matrix M®) (¢, k) whose jump
matrix involves exp[4ik?t] and {A(k), B(k)}. It can be shown that these two RH
problems are equivalent iff the global relation is valid.

Step 3. Analyze the Global Relation

The global relation together with the definition of {A(k), B(k)} yield a nonlin-
ear Volterra integral equation for g;(t) in terms of go(t) and qo(¢). It is shown in
[24] that this nonlinear equation has a global solution.

We recall that the analogous step for linear evolution equations was solved by
algebraic manipulations. This was based on the invariance of the global relation
under k£ — v(k). Unfortunately, the global relation now involves ®(t,k) which in
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BOUNDARY VALUE PROBLEMS 87

general breaks this invariance. However, for a particular class of boundary condi-
tions this invariance survives. This is precisely the class of “linearizable problems”,
namely a class of problems for which {A(k), B(k)} can be explicitly written in terms
of {a(k),b(k)}.

Some linearizable cases are given below: The basic RH problem has a jump
matrix which is uniquely defined in terms of the scalar functions a(k), b(k), and
I'(k), where I'(k) involves a(k),b(k), and B(k)/A(k),

PaG)
a(k) [a(k) - pb(R) 5]
The basic RH problems for the KdV with dominant surface tension and for the sine
Gordon have a similar form [25], where p = £1 for the NLS, p = 1 for the KdV,
p = —1 for the sine Gordon (sG).
In [25] the following concrete linearizable cases are solved.
NLS:

T(k) =

¢:(0,t) — xq(0,t) =0, x constant, x >0.
sG:
q(0,t) = x, x constant.
KdVv:
q(0,t) =X, qez(0,t) = x +3x>, x constant.
For each of these cases, B/A, and hence I'(k), can be explicitly given in terms of
a(k),b(k):
B(k) 2k +ix b(—k

NLS : A(k) 2k —ixa(—k)’

. Bl _ fR(K) — a(v(k)
RdV.sG: %) = FR)awm) = (k)
where for the sG, 2 i
l/(k):%, f(k):i:2t1£§_1’

while for the KdV,

2 9 1 v+k vk
vi+kv+k +4—0, f(k)_,/_k(l X).
We emphasize that since {a(k),b(k)} are determined in terms of the initial con-
ditions and since B(k)/A(k) and therefore I'(k) is explicitly written in terms of
{a(k),b(k)}, it follows that linearizable initial boundary value problems on the half
line are solved as effectively as initial value problems on the line.
REMARK 4.2. We discuss the general features of this method for an integrable
evolution equation with spatial derivatives of order n.

(1) The “jump matrices” of the relevant RH problem have explicit ,t de-
pendence of the form explif(k)x + if2(k)t], and they depend on the
calar functions {a(k), b(k), A(k), B(k)} (compare with Theorem4.1). This
means that the associated expression for ¢(z,t) provides the proper non-
linearization of the Euler-Ehrenpreis-Palamodov representation as well as
the proper spectral representation of the solution. This representation in-
volves the direct and the inverse map between the values of ¢(z,t) on
the boundary, i.e. {q(z,0),{dLq(0,t)}5~ '}, and the spectral functions
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88 A. S. FOKAS

{a(k),b(k), A(k), B(k)}. We emphasize that for a proper spectral decom-
position (since the value of g(x,t) on the boundary are functions of one
variable only) the spectral functions must be functions of only one vari-
able.

(2) Precisely because the solution is given in the above spectral representation
form,it is possible to study effectively the asymptotic properties of the
solution, such as its long t behavior. For the NLS, sG and KdV equations
on the half line this has been done in [35], [36], [37] respectively. The
relevant analysis is based on the basic RH problem and on the Deift-Zhou
method [38]. The latter method is an elegant nonlinearization of the
steepest descent method and it yields rigorous asymptotic results for RH
problems with exponential x, ¢ dependence. In our opinion this result
is one of the most important developments in the theory of integrable
systems in particular and in the theory of RH problems in general, thus it
is quite satisfying that the new method gives rise to RH problems precisely
of the type that can be analyzed by the Deift-Zhou method. We also note
that recently a highly nontrivial generalization of the Deift-Zhou method
has been developed which is able to analyze the zero-dispersion limit of
the Cauchy problem on the line [39]. Since this method is also based on
the analysis of a RH problem with exponential z,t dependence, we expect
that the method of [39] applied to our RH problem will yield an effective
description of the zero dispersion limit of initial-boundary value problems
on the half-line [32].

(3) It is the authors opinion that the most remarkable fact about boundary
value problems for integrable nonlinear PDEs is the simplicity of the global
relation. Indeed, although the relation between the initial and the bound-
ary values of ¢ is very complicated, this relation takes a simple algebraic
form in the k-space, see equation (4.20). The simplicity of the global re-
lation has two important consequences: (a) Under the assumption that
there exist spectral functions satisfying this relation, it is possible to prove
that the associated q(z,t) exists, satisfies the given nonlinear PDE, and
q(z,0) = qo(x), {0Lq(0,t) = gi(t)}5~*. (b) Given initial conditions and
a subset of {g;(t)}5~" it is possible to prove the global existence of the
remaining part of this set. We emphasize that the global relation is a
simple algebraic relation between the two components of an eigensolution
of the t-part of the Lax pair evaluated at £ = 0. Thus since the compo-
nents satisfy a linear eigenvalue equation, the derivation of appropriate
estimates for their large k behavior is based on the analysis of a linear
problem. Thus, although the global relation is a nonlinear equation its
rigorous investigation involves mostly the analysis of a linear equation.

(4) In recent years there have been important developments in the analysis
of boundary value problems of nonlinear PDEs using PDE techniques
[40], [41]. It is remarkable that some of these techniques yield global
results. It is satisfying that there exist now a rigorous theory using the
integrability machinery, so that it is possible to make comparisons between
these different approaches. Although at the moment the PDE results are
proven in less restrictive functional spaces, the advantage of our method
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is that it yields rigorous asymptotic results. We reiterate that this is a
consequence of the Deift-Zhou theory and of our simple RH problem.

Appendix A

An explicit formula for W (x1,z2, k) associated with an arbitrary two dimen-
sional linear operator with constant coefficients is given in [34]. Here we present
two examples.

EXAMPLE A.1. A closed differential 1-form associated with equation (1.1) is

(A.21) W(z,t, k) = e~ ot {qu - ‘w(k)k_+1z<(9:lax—) qdt| .
Indeed, let

W = e(qdx — Adt), e = exp|—ikz + iw(k)t].
Then

dW = [(eq)¢ + (eA).]dt A dz = —ie[(w(k) — w(—i0;))q + (k + i0;) Aldt A dz.
Hence dW = 0 provided that

_ w(k) — w(=1i0:)
A= k + i0y

We note that (k + i9;) is a factor of w(k) — w(—id,), thus A involves ¢ and its
spatial derivatives. For example, if w(k) = k — k3, then

w(k) —w(l)

1 (2 g2
=1 - (4 2+ k),

thus

EXAMPLE A.2. A closed differential 1-form associated with equation (3.1) is
given by (3.2).
Indeed, let

W = e(Adz — Bdz), e = exp[—ikz— %Z]
Then

Q

(A.22) dW =[(eA); + (eB).]dzNdz=¢e [(32 -

) A+ (0, — ik)B] dz N dz.

Writing equation (3.1) in the form

o L o
(32 - ?) q: + (0; — ik) 9= 0,
it follows that equation (A.22) can be rewritten as

dW:e{<85—%> (A—=q,) + (8, — ik) (B—%q)}dz/\dz,

which implies A = ¢, and B = iaq/k.
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Appendix B

Solving equation (1.5) with a Fourier transform we find
(B.23)

1 oo . 1 0 o
o) = g [ e oo [ e ([ 00, kar ) ak,
— o0 —00
where o (k) is defined by equation (2.4) and
(B.24) w=k—-k, §(x,t,k)=qoo+ikgz + (1 - k%)q.

The simplest way to derive equation (B.23) is to note that equation (1.5) is equiv-
alent to (compare with (1.10))

—ikz+iw(k)t — _ —tkz+iw(k)t ~
(B.25) (e q)t (e q)x
Let
(B.26) G(k,t) = / e *q(x, t)da.
0
Then

(eiw(k)t(j(k, t))t _ /0 (e—ikz+iw(k)tq(x’ t))t dr = eiw(k)t[j((), t, k‘),

where we have used (B.25) to compute the above integral. Hence

t
q(k,t) = e ™ ® gy (k) + / e~ W50, 7, k)dr,
0

and the inverse Fourier transform of equation (B.26) implies (B.23).
Equation (B.23) can be rewritten in the form

B2 t) = — ikz—iw(k)t 5 k dk zkw—zw(k)tA k t dk
®2)  awt=g [ ok + o [ g,

where 0D is defined in equation (2.3) and
(B.28) (k. t) = (1 = k*)go(k, t) + ikgr (k, ) + g2 (K, 1),

t
3y (ko) = /0 FVRTg (1)dr,  gy(t) = Blq(0,6), j=0,1,2.

FIGURE B.1
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Indeed, we write D as the union of the three contours L;, j = 1, 2, 3, depicted
in Figure B.1. The function exp[ikz — iw(k)t]§(k,t) is analytic and bounded in the
region bounded by L; and by the ray Rek € [—co, —1/+/3]. Thus the integral along
this ray can be deformed along L;. Similar considerations apply to the ray Re
ke [1/v3,00).

We note that if §(k) is defined by equation (2.8) then §(k) equals g(k,t) plus a
term involving an integral from ¢ to 7. This term is analytic and bounded in the
domain D, thus, by Cauchy’s theorem this term does not contribute to equation
(B.27). Hence q(z,t) is given by either equation (B.27) or equation (2.2).
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Chaos in Partial Differential Equations
Yanguang (Charles) Li

ABSTRACT. This is a survey on Chaos in Partial Differential Equations. First
we classify soliton equations into three categories: 1. (1+1)-dimensional soliton
equations, 2. soliton lattices, 3. (1+n)-dimensional soliton equations (n > 2).
A systematic program has been established by the author and collaborators,
for proving the existence of chaos in soliton equations under perturbations.
For each category, we pick a representative to present the results. Then we
review some initial results on 2D Euler equation.

1. Introduction

It is well-known that the theory of chaos in finite-dimensional dynamical sys-
tems has been well-developed. That includes both discrete maps and systems of
ordinary differential equations. Such theory has produced important mathematical
theorems and led to important applications in physics, chemistry, biology, and en-
gineering etc. [8] [26]. On the contrary, the theory of chaos in partial differential
equations has not been well-developed. On the other hand, the demand for such a
theory is much more stronger than for finite-dimensional systems. Mathematically,
studies on infinite-dimensional systems pose much more challenging problems. For
example, as phase spaces, Banach spaces possess much more structures than Eu-
clidean spaces. In terms of applications, most of important natural phenomena are
described by partial differential equations, nonlinear wave equations, Yang-Mills
equations, and Navier-Stokes equations, to name a few.

Nonlinear wave equations are the most important class of equations in nat-
ural sciences. They describe a wide spectrum of phenomena; motion of plasma,
nonlinear optics (laser), water waves, vortex motion, to name a few. Among these
nonlinear wave equations, there is a class of equations called soliton equations. This
class of equations describes a variety of phenomena. In particular, the same soliton
equation describes several different phenomena. For references, see for example [3]
[1]. Mathematical theories on soliton equations have been well developed. Their
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Cauchy problems are completely solved through inverse scattering transforms. Soli-
ton equations are integrable Hamiltonian partial differential equations which are the
natural counterparts of finite-dimensional integrable Hamiltonian systems.

To set up a systematic study on chaos in partial differential equations, we
started with the perturbed soliton equations. We classify the perturbed soliton
equations into three categories:

(1) Perturbed (1+1)-Dimensional Soliton Equations,
(2) Perturbed Soliton Lattices,
(3) Perturbed (1 4+ n)-Dimensional Soliton Equations (n > 2).

For each category, we chose a candidate to study. The integrable theories for every
members in the same category are parallel, and for members in different categories
are substantially different. The theorem on the existence of chaos for each candidate
can be parallelly generalized to the rest members of the same category.

e The candidate for Category 1 is the perturbed cubic focusing nonlinear
Schrédinger equation [22] [21] [14],
i0yq = 02q + 2[|q|* — w?]q + Perturbations,

under periodic and even boundary conditions ¢(z+1) = ¢(z) and ¢(—z) =
q(x), w is a real constant.

e The candidate for Category 2 is the perturbed discrete cubic focusing
nonlinear Schrédinger equation [11] [23] [24],

. 1
qn = ‘}'LE[Qn+1 - 2qn + qn—l]
+1gnl?(gny1 + gn_1) — 2wg, + Perturbations ,

under periodic and even boundary conditions ¢,+n = ¢, and g_, = gn.
e The candidate for Category 3 is the perturbed Davey-Stewartson II equa-
tions [15],

i0q = [0% — 0%)q + [2(|g|* — w?) + uy]q + Perturbations,

[02 + 8§]u = —49,|q)?,
under periodic and even boundary conditions

q(t,a: + l:cvy) = q(t,x,y) = q(t,:c, y + ly) ’
u(t,r + gy y) = ult,z,y) = u(t, 2,y + 1),
and

q(t’ —Z, y) = Q(ta Z, y) = Q(t7w7 —y> )
U(t, —Z, y) = u(t,x, y) = u(t? z, _y) .
We have established a standard program for proving the existence of chaos in per-
turbed soliton equations, with the machineries:
(1) Darboux Transformations for Soliton Equations.
(2) Isospectral Theory for Soliton Equations Under Periodic Boundary Con-
dition.
(3) Persistence of Invariant Manifolds and Fenichel Fibers.
(4) Melnikov Analysis.
(5) Smale Horseshoes and Symbolic Dynamics Construction of Conley-Moser
Type.
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CHAOS IN PARTIAL DIFFERENTIAL EQUATIONS 95

The most important implication of the theory on chaos in partial differential
equations in theoretical physics will be on the study of turbulence. For that goal, we
chose the 2D Navier-Stokes equations under periodic boundary conditions to begin
a dynamical system study on 2D turbulence. Since they possesses Lax pair [17] and
Darboux transformation [25], the 2D Euler equations are the starting point for an
analytical study. The high Reynolds number 2D Navier-Stokes equations are viewed
as a singular perturbation of the 2D Euler equations through the perturbation pa-
rameter ¢ = 1/Re which is the inverse of the Reynolds number. Corresponding
singular perturbations of nonlinear Schrodinger equation have been studied in [31]
[30] [19] [20]. We have studied the linearized 2D Euler equations and obtained a
complete spectra theorem [16]. In particular, we have identified unstable eigenval-
ues. Then we found the approximate representations of the hyperbolic structures
associated with the unstable eigenvalues through Galerkin truncations [18].

2. Existence of Chaos in Perturbed Soliton Equations

By existence of chaos, we mean that there exist a Smale horseshoe and the
Bernoulli shift dynamics for certain Poincaré map. For lower dimensional systems,
there have been a lot of theorems on the existence of chaos [8] [26]. For perturbed
soliton equations under dissipative perturbations, we first establish the existence
of a Silnikov homoclinic orbit. And then we define a Poincaré section which is
transversal to the Silnikov homoclinic orbit, and the Poincaré map on the Poincaré
section induced by the flow. Finally we construct the Smale horseshoe for the
Poincaré map. In establishing the existence of the Silnikov homoclinic orbit, we
need to build a Melnikov analysis through Darboux transformations to generate
the explicit representation for the unperturbed heteroclinic orbit, the isospectral
theory for soliton equations to generate the Melnikov vectors, and the persistence
of invariant manifolds and Fenichel fibers. We also need to utilize the properties of
the Fenichel fibers to build a second measurement inside a slow manifold, together
with normal form techniques. The Melnikov measurement and the second mea-
surement together lead to the existence of the Silnikov homoclinic orbit through
implicit function arguments. In establishing the existence of Smale horseshoes for
the Poincaré map, we first need to establish a smooth linearization in the neigh-
borhood of the saddle point (i.e. the asymptotic point of the Silnikov homoclinic
orbit). Then the dynamics in the neighborhood of the saddle point is governed by
linear partial differential equations which are explicitly solvable. The global dy-
namics in the tubular neighborhood of the Silnikov homoclinic orbit away from the
above neighborhood of the saddle point, can be approximated by linearized flow
along the Silnikov homoclinic orbit due to finiteness of the passing time. Finally we
can obtain a semi-explicit representation for the Poincaré map. Then we establish
the existence of fixed points of the Poincaré map under certain except-one-point
conditions. And we study the action of the Poincaré map in the neighborhood of
these fixed points, and verify the Conley-Moser criteria to establish the existence
of Smale horseshoes and Bernoulli shift dynamics.

2.1. Existence of Chaos in Perturbed (1+41)-Dimensional Soliton Equa-
tions. For this category of the perturbed soliton equations, we chose the candidate
to be the perturbed cubic nonlinear Schrodinger equation. The cubic nonlinear
Schrédinger equation describes self-focusing phenomena in nonlinear optics, deep
water surface wave, vortex filament motion etc.. Recently, more and more interests
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are on perturbed nonlinear Schrédinger equations describing new nonlinear optical
effects, for example, the works of the Laser Center at Oklahoma State University.

2.1.1. Dissipative Perturbations. In a series of three papers [22] [21] [14], we
proved the existence of chaos in the cubic nonlinear Schrédinger equation under
dissipative perturbations. We study the following perturbed nonlinear Schrédinger
equation:

(2.1) iqy =qm+2[|q|2—wz}q-l—ie[—aq—kf)zq—kl"],
under even periodic boundary conditions

a(—z) =q(z), q(z+1)=q(z);
where ¢ = \/—1, ¢ is a complex-valued function of two variables (z,t), (w,a,T") are

positive constants, ¢ is the positive perturbation parameter, D?is a “regularized”
Laplacian specifically defined by

oo
D% =— Z ﬁjkz]z(jj cosk;z,

j=1
in which k; = 27y, §; is the Fourier transform of ¢, 3; = 8 for j < N, §; = a*kj-z
for j > N, B and «, are positive constants, and N is a large fixed positive integer.

THEOREM 2.1 (Homoclinic Orbit Theorem). There exists a positive number g

such that for any € € (0,q), there exists a codimension 1 hypersurface E. in the ex-
ternal parameter space {w, a, T, B3, . }. For any external parameters (w, o, T, B, o) €
E., there exists a symmetric pair of homoclinic orbits hy = hi(t,x) (k=1,2) in
H}, (the Sobolev space H' of even and periodic functions) for the PDE (2.1), which
are asymptotic to a fized point q.. The symmetry between hy and hq is reflected by
the relation that hg is a half-period translate of hy, i.e. ha(t,x) = hy(t,x + 1/2).
The hypersurface E. is a perturbation of a known surface 8 = k(w)a, where k(w)
is shown in Figure 1.

For the complete proof of the theorem, see [22] and [21]. The main argument
is a combination of a Melnikov analysis and a geometric singualr perturbation
theory for partial differential equations. The Melnikov function is evaluated on a
homoclinic orbit of the nonlinear Schrédinger equation, generated through Darboux
transformations. For more details on this, see the later section on the Darboux
transformations for the discrete nonlinear Schrédinger equation.

THEOREM 2.2 (Horseshoe Theorem). Under certain generic assumptions for
the perturbed nonlinear Schrodinger system (2.1), there exists a compact Cantor
subset A of £ (a Poincaré section transversal to the homoclinic orbit), A consists
of points, and is invariant under P (the Poincaré map induced by the flow on X).
P restricted to A, is topologically conjugate to the shift automorphism x on four
symbols 1,2, —1,—2. That is, there exists a homeomorphism

¢ Wi A
where W is the topological space of the four symbols, such that the following diagram
commutes: "
w -
do e
W — A
¢
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FIGURE 1. The curve of k = k(w).

For the complete proof of the theorem, see [14]. The construction of horseshoes
is of Conley-Moser type for partial differential equations.

2.1.2. Singular Perturbations. Recently, singular perturbation, i.e. replacing
D2?q by 824, has been studied [31] [30] [19] [20]. Consider the singularly perturbed
nonlinear Schrédinger equation,

(2.3) iqt = Gua + 2[|g)* — w?q +ie[—ag + Bgs + 17,

where ¢ = ¢(t,x) is a complex-valued function of the two real variables ¢ and z,
t represents time, and z represents space. ¢(t, ) is subject to periodic boundary
condition of period 1, and even constraint, i.e.

q(t,x+1) = q(t,z) , q(t,—z)=q(t,z) .

w is a positive constant, a > 0, 8 > 0, and I" are constants, and £ > 0 is the per-
turbation parameter. The main difficulty introduced by the singular perturbation
€02 is that it breaks the spectral gap condition of the unperturbed system. There-
fore, standard invariant manifold results will not apply. Nevertheless, it turns out
that certain invariant manifold results do hold. The regularity of such invariant
manifolds at € = 0 is controled by the regularity of 9% at e = 0.

THEOREM 2.3 (Li, [19]). There exists a e > 0, such that for any € € (0,¢9),

there exists a codimension 1 surface E. in the space of (w,a,3,T) € RT™ x Rt x
R* x R*, where w € (m,2m)/S, S is a finite subset. For any external parameters
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on the codimension-one surface, the perturbed nonlinear Schréodinger equation (2.3)
possesses a symmetric pair of homoclinic orbits hy, = hy(t,x) (k= 1,2) in CZ5,[0,1]
(the space of C* even and periodic functions on the interval [0,1]) , which is
asymptotic to a saddle fixed point q.. The symmetry between hy and hq is reflected
by the relation that ho is a half-period translate of hy, i.e. ho(t,x) = hq(t,z+1/2).
The hypersurface E. is a perturbation of a known surface f = k(w)c, where k(w)
s shown in Figure 1.

2.1.3. Hamiltonian Perturbations. The problem on the existence of chaos in the
cubic nonlinear Schrédinger equations under Hamiltonian perturbations is largely
open. The right objects to investigate should be “homoclinic tubes” rather than
“homoclinic orbits” due to the non-dissipative nature and infinite-dimensionality
of the perturbed system. Transversal homoclinic tubes are objects of large dimen-
sional generalization of transversal homoclinic orbits. As Smale’s theorem indicates,
structures in the neighborhood of a transversal homoclinic orbit are rich, structures
in the neighborhood of a transversal homoclinic tube are even richer. Especially
in high dimensions, dynamics inside each invariant tubes in the neighborhoods of
homoclinic tubes are often chaotic too. We call such chaotic dynamics “chaos in
the small’, and the symbolic dynamics of the invariant tubes “chaos in the large”.
Such cascade structures are more important than the structures in a neighborhood
of a homoclinic orbit, when high or infinite dimensional dynamical systems are
studied. Symbolic dynamics structures in the neighborhoods of homoclinic tubes
are more observable than in the neighborhoods of homoclinic orbits in numerical
and physical experiments. When studying high or infinite dimensional Hamiltonian
system (for example, the cubic nonlinear Schrédinger equation under Hamiltonian
perturbations), each invariant tube contains both KAM tori and stochastic layers
(chaos in the small). Thus, not only dynamics inside each stochastic layer is chaotic,
all these stochastic layers also move chaotically under Poincaré maps.

There have been a lot of works on the KAM theory of soliton equations under
Hamiltonian perturbations [29] [5] [9] [4] [28]. For perturbed nonlinear Schrédinger
equations, we are interested in the region of the phase space where there exist hyper-
bolic structures. Thus, the relevant KAM tori are hyperbolic. In finite dimensions,
the relevant work on such tori is that of Graff [7]. In infinite dimensions, the author
is not aware of such work yet.

In the paper [13], the author studied the cubic nonlinear Schrédinger equation
under Hamiltonian perturbations:

(2.4) 1Qt = Qg + 2[|q|2 — w2]q +elog + 2027 ,

under even periodic boundary conditions ¢(—z) = ¢(z) and g(x + 1) = g(z); where
i = +/—1, q is a complex-valued function of two variables (¢, z), (w, a1, az) are real
constants, ¢ is the perturbation parameter. The system (2.4) can be written in the
Hamiltonian form:

where H = Hy + ¢H1,

1
Ho = / llgl* = 2%q]? — |gz[?)dz,
0

H, = /0 o (g + ) + an(e + @)
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DEFINITION 2.4. Denote by W(® a normally hyperbolic center manifold, by
W) and W) the center-unstable and center-stable manifolds such that W(¢) =
Wew) N W) and by F* the evolution operator of the partial differential equa-
tion. Let H be a submanifold in the intersection between the center-unstable
and center-stable manifolds W% and W) such that for any point ¢ € H,
distance{ F*(q), W)} — 0, as |t| — co. We call H a transversal homoclinic tube
asymptotic to W () under the flow F? if the intersection between W (%) and W(es)
is transversal at H. Let ¥ be an Poincaré section which intersects H transversally,
and P is the Poincaré map induced by the flow F*; then HNY is called a transversal
homoclinic tube under the Poincaré map P.

THEOREM 2.5 (Homoclinic Tube Theorem). There exist a positive constant
g0 > 0 and a region £ for (aq,as,w), such that for any € € (—eg,€0) and any
(a1, a9,w) € &, there exists a codimension 2 transversal homoclinic tube asymptotic
to a codimension 2 center manifold W (),

For a complete proof of this theorem, see [13].

2.2. Chaos in Perturbed Soliton Lattices. For this category, we chose the
candidate to be the perturbed cubic nonlinear Schrédinger lattice.

2.2.1. Dissipative Perturbations. In a series of three papers [11] [23] [24], we
proved the existence of chaos in the discrete cubic nonlinear Schrédinger equation
under a concrete dissipative perturbation.

We study the perturbed discrete cubic nonlinear Schrodinger equation

. 1
Wqn = ﬁ I:Qn-{—l —2Qn + Gn-1| + lQn|2(Qn+1 + Qn—l) - 2“-’2‘]71
. B
(2‘5) + | —agy + 71'5((171+1 —2q, + Qn—l) + T,

under even periodic boundary conditions (gn—n, = gn) and (g,4en = ¢n) for ar-
bitrary N; where i = /—1, g,’s are complex variables, h = 1/N, (w,a, 3,T) are
positive constants, € is the positive perturbation parameter.

Denote by Xy (N > 7) the external parameter space,

s 2w
YN = {(w,a,ﬂ,l")'wE(NtanN,Ntanﬁ),

r € (0, 1)’0‘ S (0,0[0),5 € (O,ﬁO)a

where o and Gy are any fixed positive numbers.}

THEOREM 2.6. Forany N (7 < N < c0), there exists a positive number £q, such
that for any € € (0,€0), there exists a codimension 1 submanifold E. in Xy ; for any
external parameters (w,a, 3,T) on E., there exists a homoclinic orbit asymptotic to
a fized point q.. The submanifold E. is in an O(e¥) neighborhood of the hyperplane
B = Kk a, where k = k(w; N) is shown in Figures 2 and 3, v =1/2 — §p, 0 < g <
1/2.

REMARK 2.7. In the cases (3 < N < 6),  is always negative as shown in Figure
3. Since we require both dissipation parameters a and 3 to be positive, the relation
B = ko shows that the existence of homoclinic orbits violates this positivity. For
N > 7, k can be positive as shown in Figure 2. When N is even and > 7, there is
in fact a pair of homoclinic orbits asymptotic to a fixed point g. at the same values
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FIGURE 2. The curve of k = k(w; N) .
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of the external parameters; since for even N, we have the symmetry: If ¢, = f(n,t)
solves (2.5), then ¢, = f(n+ N/2,t) also solves (2.5). When N is odd and > 7, the
study can not guarantee that two homoclinic orbits exist at the same value of the
external parameters.

For the complete proof of this theorem, see [23].

THEOREM 2.8 (Horseshoe Theorem). Under certain generic assumptions for
the perturbed discrete nonlinear Schridinger system (2.5), there exists a compact
Cantor subset A of ¥ (a Poincaré section transversal to the homoclinic orbit), A
consists of points, and is invariant under P (the Poincaré map induced by the flow
on X). P restricted to A, is topologically conjugate to the shift automorphism x on
four symbols 1,2, —1,—2. That is, there erists a homeomorphism

o WA,
where W is the topological space of the four symbols, such that the following diagram
commutes: é

w — A

d e

w — A

¢
For the complete proof of the theorem, see [24].
The unperturbed homoclinic orbits for the discrete nonlinear Schrédinger equa-
tion
. 1
(2.7) Gn = 73 |:q'n+1 —2¢, + Qn—l] +1gn*(@ns1 + gn1) — 20°gn,

was constructed through the Darboux transformations which will be presented be-
low in details. The discrete nonlinear Schréodinger equation is associated with the
following discrete Zakharov-Shabat system [2]:

(2.8) i1 = Loy,
(2.9) ¢n = BPog,,
where
z ihqn,
L%Z) = ( 1hqy, 1/qz )’
Be = L ( 1— 2% + 2iAh — h2gngn—1 + wW?h? —zihgy + (1/2)ihgn-1 )
n h2 —izhdn—1 + (1/2)ihq, 1/2% — 14 2iAh + h2Gngn_1 — w?h? )’

and where 2z = exp(i\h).

Fix a solution g, (t) of the system (2.7), for which the linear operator L, has
a double point z¢ of geometric multiplicity 2, which is not on the unit circle. We
denote two linearly independent solutions (Bloch functions) of the discrete Lax pair
(2.8;2.9) at z = 2% by (¢}, ¢;). Thus, a general solution of the discrete Lax pair
(2.8;2.9) at (gn(t), 2?) is given by

Pu(t; 2%, ¢) = ¢ +coy,
where c is a complex parameter called Backlund parameter. We use ¢,, to define a
transformation matrix I',, by

r — z+(1/2)an by
n Cn ~1/2+42d, )’
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where,
24 2 d2 2
an = GI7PA, |pral” + 12%*|pn1 ||,
1
d, = TLAAL [|¢n2|2 + |Zd|2|¢n1|2]7
-1,
b, = m¢n1¢n2,
Zd 4 _ 1-
Cpn = |ZdeAn ¢n1¢n2a
1
An - _Z_d |:|¢'n1|2 + |zd|2|¢n2|2:| .
Then we define @),, and ¥,, by
7
(2.10) Qn = ﬁbnﬂ — Ap+1qn
and
(2.11) U, (t;2) =Tp(z zd;gbn)z/)n(t; z)

where 1), solves the discrete Lax pair (2.8;2.9) at (g, (¢),2). Formulas (2.10) and
(2.11) are the Bécklund-Darboux transformations for the potential and eigenfunc-
tions, respectively. We have the following theorem [11].

THEOREM 2.9 (Bécklund-Darboux Transformations). Let g,(t) denote a solu-
tion of the system (2.7), for which the linear operator L, has a double point 2 of
geometric multiplicity 2, which is not on the unit circle and which is associated with
an instability. We denote two linearly independent solutions (Bloch functions) of
the discrete Laz pair (2.8;2.9) at (qn, 2%) by (&), ¢-). We define Qn(t) and U, (t; 2)
by (2.10) and (2.11). Then

(1) Qn(t) is also a solution of the system (2.7). (The eveness of Q, can be
guaranteed by choosing the complex Bdcklund parameter c to lie on an
certain curve.)

(2) W, (t; 2) solves the discrete Lax pair (2.8;2.9) at (Qn(t), 2).

(3) A(z;Qn) = A(z;qn), for all z € C, where A is the Flogquet discriminant.

(4) Qn(t) is homoclinic to g, (t) in the sense that Q,(t) — €% g,(t), expo-
nentially as exp(—olt|) as t — *oo. Here 01 are the phase shifts, o is
a nonvanishing growth rate associated to the double point 2%, and explicit
formulas can be developed for this growth rate and for the phase shifts 0.

Next we consider a concrete example. Let
(2.12) an = q, Vn; q = aexp{—2i[(a® — w?)t] +iv},

where Ntan 3 < a < Ntannzﬁ’r for N > 3,3tan§ < a < oo for N = 3. Then Q,
defined in (2.10) has the explicit representation:

G
(213) Qn = Qults Nowvor) =a| - 1),
where,
G =1+ cos2P —isin2P tanh T,

H,=1+

sin P sech 7 cos 2n4,
cos ¥
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T =4N?\/psindy/pcos?d — 1t +r,

where 7 is a real parameter. Furthermore,

v/ pcosZd —1
Vpsing
T
As T — F00, Q, — qeT??P. Therefore, Q,, is homoclinic to the circle |¢,| = a, and
heteroclinic to points on the circle which are separated in phase of —4P.
2.2.2. Hamiltonian Perturbations. In the paper [12], the author studied the
discrete nonlinear Schrédinger equation under Hamiltonian perturbations:

P = arctan

.. 1
(2.14) i¢, = ﬁ[Qn-H —2qn + gn-1] + |9n]*(@ns1 + gn-1) — 20°qy,

+ e{[cn(qn ) + 2% + T)lgn + o1 + 2027,) 55 lnpn} :

where ¢ = /-1, ¢/,s are complex variables, n € Z, (w, a1, ag) are real constants,
¢ is the perturbation parameter, h is the step size, h = 1/N, N > 3 is an integer,
pn =1+ h%g,|% and ¢osn = qn , G—n = Gn. The system (2.14) can be written
in the Hamiltonian form:

)

dn = Pn aqnv
where H = Hy + ¢H,,

1
T2

N-1 0
Z [(jn(Qn+1 + Qn—l) - ‘}‘ﬁ(l + w2h2) lnpn],
n=0
1 N=l
=2 > lea(gn + @) + (g2 + @2)) In pn.

n=0
THEOREM 2.10 (Homoclinic Tube Theorem). There exist a positive constant
eo > 0 and a region £ for (a1, as,w), such that for any ¢ € (—eg,e0) and any
(a1, 2,w) € &, there exists a codimension 2 transversal homoclinic tube asymptotic
to a codimension 2 center manifold W),

Hy

H,

For a complete proof of this theorem, see [12].

2.3. Chaos in Perturbed (1 + n)-Dimensional Soliton Equations (n >
2). For this category of the perturbed soliton equations, we chose the candidate to
be the perturbed Davey-Stewartson II equations. The Davey-Stewartson II equa-
tions describe nearly one-dimensional water surface wave train [6]. There have been
a lot of studies on the inverse scattering transforms for this set of equations [1] [3].
The inverse scattering transforms for (14n)-dimensional soliton equations (n > 2)
are substantially different from those for (141)-dimensional soliton equations and
soliton lattices. In fact, the Davey-Stewartson II equations possess finite-time sin-
gularities [27]. For the perturbed Davey-Stewartson II equations, the theory on
chaos is largely unfinished. So far, its Melnikov theory has been successfully built.

Although the inverse spectral theory for the DSII equations is very different
from those for (141)-dimensional soliton equations and there is no Floquet spec-
tral theory, its Backlund-Darboux transformation is as simple as those for (141)-
dimensional soliton equations, e.g. the cubic nonlinear Schrédinger equation. These
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Béacklund-Darboux transformations are successfully utilized to construct hetero-
clinic orbits of Davey-Stewartson II equations through an elegant iteration of the
transformations. In [22], we successfully built Melnikov vectors for the focusing cu-
bic nonlinear Schrédinger equation with the gradients of the invariants F; defined
through the Floquet discriminants evaluated at critical spectral points. The invari-
ants F}’s Poisson commute with the Hamiltonian, and their gradients decay expo-
nentially as time approaches positive and negative infinities — these two properties
are crucial in deriving and evaluating Melnikov functions. Since there is no Floquet
discriminant for Davey-Stewartson equations (in contrast to nonlinear Schrédinger
equations [22]), the Melnikov vectors here are built with the novel idea of replacing
the gradients of Floquet discriminants by quadratic products of Bloch functions.
Such Melnikov vectors still maintain the properties of Poisson commuting with the
gradient of the Hamiltonian and exponential decay as time approaches positive
and negative infinities. This solves the problem of building Melnikov vectors for
Davey-Stewartson equations without using the gradients of Floquet discriminant.
Melnikov functions for perturbed Davey-Stewartson II equations evaluated on the
above heteroclinic orbits are built.

2.3.1. Darbouzx Transformations. First we study the Darboux transformations
for the Davey-Stewartson II (DSII) equations:

(2.15) i0,q = [0 — O3)a + [2(Iq|* — ®) +uylq

(02 + B2)u = —49,|q|* ;
under periodic boundary conditions ¢(t, x4z, y) = q(t,z,y+1y) = q(t,x,y), where
g and u are a complex-valued and a real-valued functions of three variables (¢, z,y).
To simplify the study, we may also pose even conditions in both z and y. The DSII

equations are associated with a Lax pair and a congruent Lax pair. The Lax pair
is:

(2.16) b = M,
where ¢ = (1/’1, ¢2)T7 and
D~ ¢
L= ’
T D+

(%) (L %)

Here we denote by

(2.18) Dt =ady + 0y, D™ =ady—0;.
where r = g, o = —1,
ry = %[—U—}—z’V] , T = %[U—l—iV], U =2(lg]* — w?) + uy.
The congruent Lax pair is:
(2.19) Ly = M,
(2.20) o) = Ay,
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where ¢ = (¢1,12)T, and
) -D* g
L =
r -D~

a=ib(F ) (of 0]

Let (g, = g, 1, 72) be a solution to the DSII equation, and let Ay be any value of
A. Denote by 1 = (11,%2)T the eigenfunction solving the Lax pair (2.16, 2.17) at
(g, = §,71,72; Ao). Define the matrix operator:

| AHa b
F“[ c /\+d}’

where A = a0y — A, and a, b, c, d are functions defined as:

a = %[¢2/\2"/_)2+5"‘z}1/\1¢1] )

b = %[1;2/\11/)1—1/}1 A2 2]
- B 7

¢ = 3 [1 A1 2 — b2 Aa ]

d = %[1&2 A1 + B1 Ay ]

in which Ay = a0y — Ao, A2 = a0y + Ao, and
A =—[Blp1]* + [¥]?] .

Define a transformation as follows:

{(%T:ﬂg,rl,m) — (Q,R,Ry,Ry),
¢ — o;
Q = q—2b,
R = Bg—2c,
(2.21) Ry = r+2(D%a),
Ry = r,—2(D7d),
e = I'¢g;

where ¢ is an eigenfunction solving the Lax pair (2.16, 2.17) at (q,r = q,71,72; A),
Dt and D~ are defined in (2.18),

THEOREM 2.11 ([15]). The transformation (2.21) is a Backlund-Darbouz trans-
formation. That is, the functions (Q, R = Q, R, R2) defined through the transfor-
mation (2.21) are also a solution to the Davey-Stewartson II equations. The func-
tion ® defined through the transformation (2.21) solves the Lax pair (2.16, 2.17) at

(QVR = Q? Rl, RQ)A)‘
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CHAOS IN PARTIAL DIFFERENTIAL EQUATIONS 107

A concrete example with two iterations of the Darboux transformations has
been worked out in [15].
2.3.2. Melnikov Vectors. The DSII equations can be put into the Hamiltonian

form,
(2:22) { ig, = —6H/q,
where

l, plo 1
7= [ [ 10 =1l + 502 =) la*) o dy.

Let 1 = (¥1,%2)T be an eigenfunction solving the Lax pair (2.16, 2.17), and b =
(¥1,12)T be an eigenfunction solving the corresponding congruent Lax pair (2.19,
2.20); then

LEMMA 2.12. The inner product of the vector

_ ¢2d}2 - 1#21/:)2
U= ( Y11 ) +S< P11 ) ’

where S = (1) (1) >, with the vector field JVH given by the right hand side of
(2.22) vanishes,
U, JVH)=0.
where
by ple _
(f,9) =/0 /0 {F191+ fag2} dady.
and

0 1
-(23)
Consider the perturbed DSII equations

(220 i0iq = [02 — 82]q + [2(lq|” — w?) + uylq + €if
' [02 + 02Ju = —4d, |q|

where f is the perturbation which can depend on ¢ and § and their derivatives and
t, x and y. Let G = (f, f)T. Then the Melnikov function has the expression,

M = /Oo(u,é)dt

(2.25) = 2/_0; /O’y /Olr R, {(1/’212)2)f+ (¢11/31)7} drdydt,

where the integrand is evaluated on an unperturbed heteroclinic orbit obtained
through the Bécklund-Darboux transformations given in Theorem 2.11. A concrete
example has been worked out in [15].
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3. Two-Dimensional Euler Equations

One of the most important implications of chaos theory of partial differential
equations in theoretical physics will be on the study of turbulence. For that goal, the
author choose the 2D Navier-Stokes equations under periodic boundary conditions
to begin a dynamical system study.

o0 o0 0N

(3.1) E———U%-Ua—y‘i‘S[AQ'i'f:I,
Ou v _
ox oy

under periodic boundary conditions in both x and y directions with period 2,
where (Q is vorticity, u and v are respectively velocity components along = and y
directions, ¢ = 1/Re, and f is the body force. When ¢ = 0, we have the 2D Euler

equations,
N o o
Oou Ov
—+—=0.
ox + oy

The relation between vorticity 2 and stream function ¥ is,
ooy

or Oy
where the stream function ¥ is defined by,
o _2%  _0v

oy’ oz

3.1. Lax Pair and Darboux Transformation. The main breakthrough in
this project is the discovery of the Lax pair for 2D Euler equation [17]. The
philosophical significance of the existence of a Lax pair for 2D Euler equation is
beyond the particular project undertaken here. If one defines integrability of an
equation by the existence of a Lax pair, then 2D Euler equation is integrable.
More importantly, 2D Navier-Stokes equation at high Reynolds numbers is a near
integrable system. Such a point of view changes our old ideology on Euler and
Navier-Stokes equations.

Starting from Lax pairs, homoclinic structures can be constructed through
Darboux transformations [15]. Indeed, in [25], the Darboux transformation for
the Lax pair of 2D Euler equation has been found. Our general program is to first
identify the figure eight structures of 2D Euler equation, and then study their conse-
quence in 2D Navier-Stokes equation. The high Reynolds number 2D Navier-Stokes
equation is viewed as a singular perturbation of the 2D Euler equation through
the perturbation €A, where ¢ = 1/Re is the inverse of the Reynolds number.
As mentioned above, singular perturbations have been investigated for nonlinear
Schrodinger equations.

We consider the 2D Euler equation,

onN

(3.3) e +{¥,0} =0,
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CHAOS IN PARTIAL DIFFERENTIAL EQUATIONS 109

where the bracket { , } is defined as

{f, 9} = (021)(0yg) — (0yf)(0zg) , and Q= AV .
THEOREM 3.1 ([17]). The Laz pair of the 2D Euler equation (3.3) is given as
Lo =)\p,
(3.4) {a$+22=0,
where
Lo={Q,¢}, Ap={¥,¢},
and A is a complex constant, and ¢ is a complex-valued function.

In [25], A Béacklund-Darboux transformation is found for the above Lax pair.
Consider the Lax pair (3.4) at A =0, i.e.

(3.5) {Q,p} =0,
(3.6) o +{¥,p} =0,
where we replaced the notation ¢ by p.

THEOREM 3.2. Let f = f(t,z,y) be any fized solution to the system (3.5, 3.6),
we define the Gauge transform Gy:

(37) p=Gp= g lp. ~ (Galn el
and the transforms of the potentials Q0 and V:

(3.8) V=U+F, Q=Q+AF,
where F is subject to the constraints

(3.9) {Q,AF} =0, {Q,F}=0.

Then p solves the system (3.5, 8.6) at (0, ). Thus (3.7) and (3.8) form the
Darbouz transformation for the 2D Euler equation (8.3) and its Laz pair (3.5, 3.6).

3.2. Linearized 2D Euler Equations. Under the periodic boundary condi-
tion and requiring that both u and v have means zero,

2 2 2T 27
/ / u drdy = / / v dxdy = 0,
o Jo o Jo

expanding ? into Fourier series, 2 = Zkezz/{o} wi €% X where w_p =wg , k =
(k1,k2), X = (z,y), the system (3.2) can be rewritten as the following kinetic

system,
(3.10) =Y A(P,q) wpwg »
k=p+q
where A(p, q) is given by,
1. _ _
(3.11) Ap.g) = 5lld™ = Pl 7*)(p1a2 — p2ar)
_ L2 -21| P1 Q1
= Sl =PI 0, 0 |

where |q|? = ¢ +¢2 for ¢ = (g1, g2), similarly for p. To understand the hyperbolic
structures of the 2D Euler equations, we first investigate the linearized 2D Euler
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ks
5.
(—pz,pl)T 1 k
\ T~

Py )
|1
r

D| | (Pz,—m)T
FIGURE 4. An illustration of the classes 3 i and the disk D).

equations at a stationary solution. Denote {wy}rez2/{0} by w. Consider the simple
fixed point w*:

(3.12) wp,=T, wg=0,ifk#por —p,

of the 2D Euler equation (3.10), where I' is an arbitrary complex constant. The
linearized two-dimensional Euler equation at w* is given by,

(3.13) W = A(p, k—p)T Wk—p + A(-p, k +p) r Wk4p -
DEFINITION 3.3 (Classes). For any k € Z2/{0}, we define the class ¥ to be
the subset of Z2/{0}:

T = {];; +np € Z?/{0} | n€ Z, pis specified in (3.12)}.

See Figure 4 for an illustration of the classes. According to the classification
defined in Definition 3.3, the linearized two-dimensional Euler equation (3.13) de-
couples into infinite many invariant subsystems:

Dprmp = A@E+(n—=1p) T wi, iy,
(314) + A(_pa i{: + ('Il + l)p) r wfc+('n.+1)p :

DEFINITION 3.4 (The Disk). The disk of radius |p| in Z2/ {0}, denoted by Dy,
is defined as

Dy = {ke 2240} | W <ol }.
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FIGURE 5. The spectrum of £4 in case 1.
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A
20|
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[ ] ° ° [ ]
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FIGURE 6. The spectrum of L4 in case 2.
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~ R{A}

FIGURE 7. The quaglruple of eigenvalues for the system led by the
class 3 labeled by k = (1,0)7, when p = (1,1)7.

The closure of D, denoted by D|p|, is defined as

Dy ={ke 22/ (0} | <l }.

THEOREM 3.5 (Unstable Disk Theorem). If $;N D, =0, then the invariant
subsystem (8.14) is Liapunov stable for all t € R, in fact,

Z lwk+np(t)l2 <0 Z ’wfc+np(0)

nez nez

2
‘ . VteR,

where

-1
o= [rggg{—pn}] [ggg{—pn}} , 0<o<oo.
THEOREM 3.6. The eigenvalues of the linear system (3.14) are of four types:
real pairs (c, —c), purely imaginary pairs (id, —id), quadruples (£c + id), and zero
etgenvalues.

THEOREM 3.7 (The Spectral Theorem). (1) If ¥ n Dlpl = 0, then the
entire £y spectrum of the linear operator L4 (defined by the right-hand
side of the invariant subsystem) is its continuous spectrum. See Figure 5.
(2) IfiND)y # 0, then the entire essential 5 spectrum of the linear operator
L4 is its continuous spectrum. That is, the residual spectrum of L4 is
empty, 0.(La) = 0. The point spectrum of L4 is symmetric with respect

to both real and imaginary azes. See Figure 6.
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(¢)

FIGURE 8. The heteroclinic orbits and unstable manifolds of the
Galerkin truncation.
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We can calculate the eigenvalues through continued fractions. Let p = (1,1)7,
in this case, only one class ¥; labeled by k = (1,0)T has no empty intersection
with D|p| (the other class labeled by k = (0,1)T gives the complex conjugate of

the system led by the class labeled by k = (1,0)T). For this class, there is no real
eigenvalue. Numerical calculation through continued fractions gives the eigenvalue:

A = 0.24822302478255 + ¢ 0.35172076526520 .

Thus we have a quadruple of eigenvalues, see Figure 7 for an illustration. Denote
by L the right hand side of (3.13), the spectral mapping theorem holds.

THEOREM 3.8 ([10]).
o(etr) = et ¢ £ 0.

Moreover, the number of eigenvalues has a sharp upper bound. Let ( denote
the number of points ¢ € Z?/{0} that belong to the open disk of radius |p|, and
such that ¢ is not parallel to p.

THEOREM 3.9 ([10]). The number of nonimaginary eigenvalues of L (counting
the multiplicities) does not exceed 2¢.

3.3. Approximate Explicit Representations of the Hyperbolic Struc-
tures of 2D Euler Equations. From Figure 7, we see that the simple fixed point
given by p = (1,1), has unstable eigenvalues. Our interest is to obtain represen-
tations of the correponding hyperbolic structures for 2D Euler equations. In [18],
through Galerkin truncation, we obtained the approximate explicit representation.
Figure 8 shows the heteroclinic orbits and unstable manifolds of the Galerkin trun-
cation.

4. Conclusion and Discussion

We have reported the status of chaos in nonlinear wave equations and of study
on 2D Euler equations. In particular, we have summarized the most recent results
on Lax pair and Darboux transformations for 2D Euler equations.
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Multi-Soliton Complexes

Nail N. Akhmediev, Andrey A. Sukhorukov, and Adrian Ankiewicz

ABSTRACT. This paper reviews the latest advances in the area of multi-soliton
complexes (MSCs). We present exact analytical solutions of coupled nonlinear
Schrodinger equations, which describe multi-soliton complexes and their inter-
actions on top of a background in media with self-focusing or self-defocusing
Kerr-like nonlinearities. We present numerical examples illustrating the re-
markable properties of MSCs, such as their reshaping after collisions. This
occurs because the fundamental solitons composing an MSC can acquire dif-
ferent lateral shifts. We also obtain an accurate estimate for the peak intensi-
ties of stationary and interacting MSCs, by establishing a rigorous relationship
between the eigenvalues of incoherently—coupled fundamental solitons and the
range of admissible intensities.

1. Introduction

Dynamic nonlinear systems have properties which were initially surprising to
scientists [FPU55, Fer65, AkhO1]. The concept of ‘solitons’, first introduced
in [ZK65], helped to demistify at least some of these surprises. The inverse scatter-
ing technique, developed later in a number of works  GGKM67, ZS71, AKNS74|,
gave scientists a powerful tool for understanding and for investigating the properties
of nonlinear systems with an infinite number of degrees of freedom. The theory has
far-reaching consequences which allow us not only to solve specific problems, but
also to understand the situation qualitatively. For example, this was the case with
the so called multi-soliton complexes (MSCs).

A multi-soliton complex is a self-localized state which is a nonlinear superposi-
tion of several fundamental solitons [AA0O]. In optics, it can be a single beam or
pulse created by a nonlinear superposition of fundamental solitons, where each has
the same velocity. The nonlinear superposition can be either coherent or incoherent,
in the sense that the phases of the separate solitons in the collection can be either
related or independent. The solitons in the group may be bound together, or at
least may stay close to each other, simply because they have the same initial speed.
A large class of problems involve MSCs. They arise from diverse applications in op-
tics. The first review on this subject [A A00] appeared more than a year ago. The
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present article can be considered as a continuation of [AA00] which summarizes
new material published since that time.

MSCs have common properties which are of interest in broad areas of physics.
These include systems of fermions in one space dimension in the Hartree - Fock ap-
proximation, envelope solitons of random phase waves [Has75, Has77], multicom-
ponent Bose-Einstein condensates at zero temperature [BV97], self-confinement
of optical pulses in multimode glass fibers [Has80] and short pulses in multi-core
optical fibers [BA95]. Gap solitons [dS94], Manakov solitons [Man73] and vec-
tor solitons [CJ88, TS88| are particular examples of MSCs. A similar case is
a soliton and its ‘shadow’ [Men87, Men88|. A parametric interaction between
two waves at different frequencies can result in their coupling and the formation
of a parametric soliton [KS74, KS75], which is another example of an MSC. One
more widely - explored model of nonlinear superposition of high frequency and
low frequency vibrations is that of Davydov solitons in solid state physics, molecu-
lar physics and biology [Dav91, Sco92]. Recently, it has been shown that spatial
incoherent solitons [MCSS96, SS98, CCJ97, CCMS97] can propagate in photo-
refractive materials [SSV195, DSS1t93, ICMASM*94, ZAMS96, MSAZ96|.
In many cases, multisoliton complexes appear in conservative systems which may
be Hamiltonian. However, generalization to nonconservative systems is also possi-
ble [ASCC*98].

The number of components, M, in a complex can be arbitrary, and can go up to
infinity for incoherent solitons [SM98, SA98|. We assume, throughout the rest of
this paper, that the components have independent phases. The difference between
the two types of phase relationship means that, when the interactions between the
components are phase-dependent, stationary self-trapping can occur only if the rel-
ative phases of all the components are fixed, so that the soliton solutions which form
are one-parameter families and they can be represented on plots of Hamiltonian-
versus-energy [AA97]. On the other hand, when the phases are independent, the
MSC is a multi-parameter family. In the latter case, coherent four wave mixing
(FWM) terms (which are also known as energy exchange terms) average out and
effectively disappear [KSAA96, Has80]. This is the case for spatial incoherent
solitons which can be excited in photorefractive materials [SCO1].

In general, MSCs can be described by a set of M coupled nonlinear Schrédinger
(NLS) equations. For example, evolution of spatial solitons along the propagation
direction can be modeled, in the parabolic approximation, by a system of NLS equa-
tions for the set of modes, where the equations are coupled through the change of
refractive index. In the case of (1+41)-D spatial geometry, the normalized equations
describing the propagation of M self-trapped, mutually-incoherent wave packets in
a medium with a Kerr-like nonlinearity are [SCO1]

Ouy  10%u,

(1.1) "5z T2 0a

where m = 1,2,..., M, while M is the number of modes (or components), u, is
the complex amplitude of the m-th mode, x is the transverse coordinate, z is the
coordinate along the direction of propagation, I = Z;Vil |u;|? is the total intensity,
and F(I) is the normalized change of refractive index profile created by all the
incoherent components of the light beam. The response time of the nonlinearity is
assumed to be long compared with temporal variations of the mutual phases of all
the components, so the medium responds to the average light intensity, and this is
just a simple sum of modal intensities I.

+ F()um =0,
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Ordinary solitons are known to behave like single particles. Thus, the differ-
ence between a single ordinary soliton and an incoherent soliton could be com-
pared to that between an elementary particle and a complicated structure, such
as an atom. Indeed, detailed analysis has shown that MSCs are multi-parameter
families of solutions [AKS98], as distinct from single-parameter families, such as
NLSE-solitons [A A97]. Moreover, MSCs behave like multi-particle objects in col-
lisions [AKS98]. A simple example of a one-parameter family of “optical mesons”
has been considered in [DH97].

Solitons belonging to different components can couple together through the
cross-phase modulation (XPM) effect, since the presence of one component results
in a modification of the effective refractive index for the other components according
to Eq. (1.2). The possibilities include various combinations of bright and dark
solitons [Man73, Ino76, TS88, TWWS88, ADPS88, Chr88]. For example,
a coupled dark-bright soliton pair has been observed in a self-defocusing nonlinear
medium [SB92].

Since a multi-soliton complex is, by definition, a composite structure, it can
behave in a more complicated way than a conventional one-component soliton.
For example, the MSC shape is not fixed, so it can change after collisions with
other solitons [AKS98]. In the following, we study the features of bright and
dark MSCs. These can be linked to experimental observations in electrically biased
photorefractive crystals.

Let us briefly outline some general properties of Egs. (1.1) and (1.2). The set
of equations (1.1) has M quantities

o0
Qi = / |ui|? de,
—o0
which are conserved separately from the conservation of the total energy

M
Q=> Q.
=1

This occurs because there is no energy transfer mechanism between the components.
In fact, this is the main difference from the phase-dependent components case, where
only the total energy is conserved.

We now consider the low saturation case, where the photorefractive medium
response approximately follows the Kerr-law dependence [DCDO01], and in normal-
ized units we have

(1.2) F(I) = sl,

where s = +1 in the self-focusing case and s = —1 in the defocusing case.

In some special cases, the coupled NLS equations are found to be inte-
grable [AC91, MP82, GI82, NPSSM98, KLO01]. In particular, Egs. (1.1), with
the nonlinear response function defined in Eq. (1.2), are, in fact, a generalized
Manakov set. This set of coupled equations is completely integrable by means of
the inverse scattering technique (IST). This technique was first developed for a
one-component (M = 1) NLS equation [ZS71], then extended to the case of two
(M = 2) coupled equations [Man73], and it was later demonstrated that the equa-
tions are integrable for arbitrary M [GK83, MP82]. As a consequence, any solu-
tion of Eq. (1.1) and (1.2) can be represented as a nonlinear superposition of a finite
number of solitary waves and radiation modes which correspond to the discrete and
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continuous parts of the linear (L, A) operators, respectively [Man73, ZS71]. The
soliton part of the solution accounts for wave localization, while radiation waves
appear if the background is present. The property of integrability allows a simple
qualitative approach to the problem, and we can also find exact solutions in explicit
analytical forms.

Every fundamental soliton (labeled j) is characterized by (i) a complex
wavenumber k; = r;+iu;, (ii) a shift in the coordinate plane (z;, z;), and (iii) a po-

larization vector pt%) in the function space, normalized to unity as Zf\,{:l ‘ pg)‘ =1.

The simplest bright single—soliton solution in a self-focusing medium (s = +1) can
be written as:

(1.3) Um(z,2) = p§) r; sech(B;) €,

where §; = ;(Z; — ;%) v; = piZ; + (17 — u3)z; /2, and (35, %) = (z — 25,2 — 2;)
are the shifted coordinates. The peak soliton intensity and its inverse width are
determined by the real part of the wavenumber, r;, while the imaginary part, u;,
characterizes the tangent of the inclination angle of the soliton (or the velocity in
the transverse direction). Moreover, each fundamental soliton can be “spread out”
into several incoherent components, as defined by the polarization vector. We note
that the term “polarization” is used because Egs. (1.1), in the case M = 2, can
describe coupling of two components with orthogonal polarizations of the electric
field [Man73]. However, in our case, the polarization parameters pY) are not
related to the orientation of the electric field.

The solution for a single radiation mode, in the form of a plane wave, can be
characterized by a similar set of parameters,

(1.4) Um(x, 2) = pf.,{) T et

where o; = uz; + (2577 — p3)z;/2. Such a plane wave exists for either sign of
nonlinearity, s = =*1, and it is stable in a self-defocusing medium. Moreover, an
incoherent superposition of a large number of plane waves can be stable, even in a
self-focusing medium, as was shown in Ref. [SSC100]. In the presence of solitons,
the plane waves are distorted, but due to the integrability of the original equations,
the corresponding solutions can be obtained in an explicit form, as we demonstrate
in Sec. 3 below.

2. Bright multi-soliton complexes

2.1. General solution. A stationary MSC can only be formed by incoher-
ently coupled fundamental solitons with identical angle tangents (velocities) fip,,
and radiation waves. In the framework of the integrable model given by Egs. (1.1)
and (1.2), such a structure is asymptotically unstable, since a small perturbation
can result in a change of the fundamental soliton angles. Nevertheless, the break-up
of multi-soliton complexes into individual fundamental solitons can be neglected if
we consider their propagation over finite distances, since the instability mode only
grows linearly with distance.

For multi-soliton complexes existing in photorefractive crystals, all the soli-
tons and radiation modes should have orthogonal polarization vectors, i.e.
Zn]\le p%)pgff ) = djn. Indeed, if this condition is not satisfied, an intensity profile
will experience periodic beating due to the difference in the phase velocities of the
fundamental solitons and radiation waves (see, e.g., Refs. [AA97, PS99, SA99]),
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FIGURE 1. Evolution of an MSC intensity profile with multi-scale
periodic "beating” due to internal coherent interactions.

as illustrated in Fig. 1. However, such behavior is not consistent with the fact that
the model Egs. (1.1) was introduced for time-averaged fields.

The mathematical description can be simplified in the case of orthogonal po-
larizations if we use the rotational symmetry in the functional space of the original
Egs. (1.1). Indeed, it is sufficient to find solutions u; where each fundamental non-

linear eigenmode belongs to a different component, p,(%) = 0m;j, and then the full
family of solutions can be determined using the following transformation:

M
(2.1) Um = Ziju]',
j=1

where the matrix R,,; defines a rotation in the M-dimensional space (characterized
by M — 1 angles), which preserves the MSC intensity profile ., |um|2 =3, |um|?.

Bright MSC solutions of Egs. (1.1) and (1.2), existing in the self-focusing case
(s = +1), can be found from the set of linear equations [NW76|:

ejénUm 1

(2.2) ~tou; =
1 k)j + km 27‘j J

—e;,

m=

where e; = x; exp (3; + iv;). The coefficients x; can be arbitrary, but, in order to
simplify the analysis, it is convenient to choose them in a special way [SA99],

m#j
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where bj,, = (k;j +k},)/(kj — km), and the square root value is taken on the branch
with argument in the range (—7/2,7/2].

For the particular choice of coefficients given by (2.3), it is possible to derive an
explicit analytical solution of Egs. (2.2) for the mode amplitudes in multi-soliton
complexes. Using the mathematical induction approach, we obtain the following
result [SA99]:

WET > ClFi(z,2),
(2.4) {1""7]—1y]+1,...,M}—>L
U= Z CrLFL(z,2),
{1,,M}—>L
where
Cr = Tub, Cf, = 275X Tunb,
(2.5)

Fp, = cosh(Sy), Fi = cosh(S{;).

Here L denotes sets of indices (L1, Lg), and the summation goes over all possible
permutations of soliton numbers between the two sets. Then, the variables for each
realization of L are found to be:

Tp = H Cim, Sp = Z Bm — Z Brm>

(2 6) JjE€L1; mEL2 meL, mELy
=51 Y i Y o
meL, meELjy

where ¢jm = |bjm|, ©jm = arg (1/bjm)/2, with the function arg providing an argu-
ment value in the interval [0, 27).

We note that only 3; and 7; depend on the coordinates (z,z). All the other
coeflicients are expressed in terms of the complex wave numbers k; and constant
shifts in positions (z;, z;) of M fundamental solitons. Since Egs. (1.1) possess a
translational symmetry along the x and z axes, the soliton solution can be shifted
as a whole. Therefore, the number of independent parameters controlling the mul-
tisoliton complex is 2M — 1.

2.2. Soliton interactions. Suppose we have an initial field distribution con-
sisting of fundamental solitons whose positions along the x axis are d;. We assume
that each pair of solitons (numbered j and m) are either (i) well separated, i.e.
|dj — dm| > (rj_l + rb), or (ii) compose a symmetric MSC, i.e. d; = dn, and
t; = fm. Then, the intensity profiles of all the solitons are symmetric, and the
shifts z; in the general solution, are:

(2.7 z; =d; + Z 61‘jm/2 + zj g,
m#j

where z; is an arbitrary parameter which determines the soliton phase, and

0% jm = sign(dm — dj) In(cjm) /75,

(2.8) 1, £>0,
sign(§) =4¢ 0, £=0,
-1, £<0.
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FIGURE 2. Interaction of two multisoliton complexes, resulting in
subsequent reshaping. The stationary (zero-velocity) MSC is com-
posed of four fundamental solitons with amplitudes r,,, = 1,2, 3,4
(tm = 0), while the MSC at an angle (moving MSC) consists of
two solitons with r,, = 1,2 and angle tangent (velocity) p,, = 0.5.

In general, the fundamental soliton profiles are asymmetric, and simple analytical
expressions for the shift parameters cannot be obtained.

It follows from Eq. (2.7) that, after the collisions, the fundamental solitons ac-
quire lateral shifts (i.e. shifts along the x axis). For a single soliton, the translational
shift is found to be

(29) 5$j = Z(S.’l)jm.

Here the summation involves the fundamental solitons which participate in the
collisions with the soliton number j. This result agrees with the expression found
in the M = 2 case [Man73]. According to Eq. (2.9), the shift is different for each
soliton in an MSC. As a result, the intensity profile of an MSC changes after a
collision [AKS98] (see an example in Fig. 2).

3. Multi-soliton complexes on a background

3.1. General solution. We now study the properties of MSCs existing on
top of a background which is composed of radiation modes (see Fig. 3). A simple
case with one component in the radiation field was studied in [AA99]. In general,
there can be an arbitrary number (M,) of radiation modes, and, to be specific, we
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radiation modes

7 bound states

FIGURE 3. Modal structure of an MSC on a background: (i) dis-
crete levels — fundamental solitons and (ii) continuum spectrum —
radiation waves.

assume that they belong to the components with M, +1 < m < M, 4+ M,, while
the fundamental solitons are numbered so that 1 < m < M,.

In order to reveal the basic properties of radiation modes in the presence of
an MSC, we first perform a linear analysis, assuming that the radiation wave am-
plitudes are vanishingly small, and that they do not contribute to the intensity
profile. We note that, in the limit r; — 0, Egs. (1.3) and (1.4) coincide. Therefore,
the low-amplitude radiation mode profile can be found by taking Eqgs. (2.4), which
define soliton profiles in bright MSCs, and considering the limit

(3.1) Tm — +0.

Then, the profile in component number m will approach that of a dark mode,
provided that the limiting transformation is done properly. It is now convenient to
return to the system of linear equations (2.2), and after applying the limit (3.1) we
have (up to a constant phase which can be neglected) [SA00, SAAO01]:

(32) Uy, = Tm(l + Jm)eiﬂm(im—/—tmim/Q)’
where
Ms *
ue’
3.3 Jm = ] J .
(33) — ki + ipm

This sum depends only on the amplitudes of the bright components, which in turn
are found from an independent system of M, linear equations (2.2). Note that
solution (3.2), which is valid in the limit r,, — 0, reduces to a simple plane-wave
profile given by Eq. (1.4) in the absence of bright components.

When the radiation wave amplitudes 7, are not small, both the radiation modes
and the bright soliton profiles defined by Eq. (2.2) are distorted according to the
nonlinear superposition principle. In the following, we develop a special technique
for constructing solutions for MSCs with a non-zero background. We recall that
the self-induced waveguide depends only on the mode intensities. Thus, important
information can be obtained by analyzing the normalized intensity profile of the
low-amplitude dark mode defined by Eq. (3.2), |um/rm|? = 1 + Jm + J% + |Jm|?.

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



MULTI-SOLITON COMPLEXES 125

In order to calculate this value, we multiply Egs. (2.2) by u}/(k; — in), add the
complex conjugate and sum over the fundamental soliton numbers 1 < 5 < M.
On comparing the resulting expression with Egs. (3.2) and (3.3), we obtain the
following relation:

MS 2

um -1
]

(3.4)

Tm

e k* + i
where the subscript m indicates a radiation mode. This remarkable result demon-
strates an intrinsic relation between the intensities of bright and dark solitons.
Moreover, relation (3.4) opens up an opportunity to introduce a scaling transforma-
tion and construct solutions for MSCs on a background, with the dark components
having non-zero amplitudes [SA00, SAAO01]. Indeed, let us scale the bright soliton
intensities with the following coefficients,

Ms+M,

(3.5) |Unl? = s+ Z

Pt Ik* +w [k, + ]2’

while for the radiation modes we put U,, = 1. Then, the full intensity of the
re-scaled solution, #,,, including the contribution of the finite-amplitude radiation
waves, is found to be

(3.6) I=1,+sl.

Here I is the intensity profile of the bright MSC on a zero background, and I, =
E;‘i;l\i’l r;|? is the background intensity. Quite remarkably, this procedure can be
used for both signs of nonlinearity (s = +1). We note that the nonlinearly- induced
waveguide profiles defined by Eq. (1.2) coincide for the original [F(I) = I(z, z)] and
re-scaled [F(I) = sl + I(z, z)] solutions, up to a constant background. Therefore,
the self-consistency condition is preserved, and this is the principal feature of the
introduced transformation. The presence of the background can be taken into
account by modifying the propagation constants, so that the resulting functions
satisfy the original Egs. (1.1) and (1.2). We finally obtain:

3.7 G (2, 2) = Uppe* B2, (z, 2).

At this point, the derivation of the analytical solutions for MSCs existing on top
of several radiation modes is complete, and the component profiles are defined by
Egs. (3.5) and (3.7), together with Eqs. (2.2) and (3.2). Each solution of this type
corresponds to a multi-parameter family which can be generated with the help of
the rotation transformation (2.1).

Let us now extend the analytical results to the case where the background is
composed of a continuum set of radiation modes, i.e. M, — +oo. This situation
corresponds to spatial optical solitons excited by an incoherent light source [SCO01].
Here the plane waves in the background can be characterized by an angular distri-
bution function, R(u) (> 0), so that R(u)dy is the wave intensity corresponding
to the tangents of inclination angles in the interval (u, u + du). Therefore, the full
background intensity is I, = _+:: R(u)du, and the scaling coefficients for bright
components are

2 _
(3.8) |Un|® = s-F‘/_oo e+ ip]?
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We note that, for a finite number of radiation modes, the distribution function can
be written as R(u) = Z;\/I;A"/}ﬁrl rjz.é(,u — p;), and then expression (3.8) reduces to
Eq. (3.5).

We stress that the above results are valid for both self-focusing (s = +1) and
self-defocusing (s = —1) media. As follows from Eq. (3.6), the qualitative difference
is that, in the former case we have bright complexes on a constant background while
in the latter case dark dips are formed.

3.1.1. Modulation of background components. According to the general rela-
tion (3.6), the intensity profile is uniquely determined by the eigenvalues of the
bright fundamental solitons and the background intensity I, and does not depend
on the the angular distribution of radiation waves. However, the total intensity of
the soliton components,

M,
I, = Z |Um|2|um|2a

m=1

and the intensity of the radiation modes,
M,

(3.9) L=T,= ) ([Un = 9)uml?,
m=1

both depend on the scaling coefficients U,,, defined in Eq. (3.8). As follows from
Eq. (3.9), each fundamental soliton creates a dark hole in the background, and
the corresponding modulation depth is proportional to the bright-dark coupling
coefficient, given by the value (|Un|? — s). Interestingly enough, the radiation
mode profiles are the same in self-focusing and self-defocusing media, provided the
distribution function and soliton eigenvalues remain unchanged.

However, there are some key differences between solitons in self-focusing and
self-defocusing media. In the former case, any modulation of the background is
compensated by the bright components having larger amplitudes (since |U,,|? > s,
and s = +1). On the other hand, in a self-defocusing medium, a dark soliton
creates an effective waveguide, which in turn can trap bright components. Such a
self-trapping mechanism results in the restriction that there is a minimum for the
dark soliton width. This happens because the maximum intensity contrast is limited
by the value of the background intensity. As a matter of fact, the limitation can
be even stricter, since the maximum modulation depth, M = max, (I, —I)/I, < 1,
cannot always reach the value of 1. Then, according to Eq. (1.3), the characteristic
width corresponding to one fundamental soliton cannot exceed the value (M1I}) -1/2,
The actual limit can be determined by solving the existence conditions, which follow
from the requirement that the right-hand-side of Eq. (3.8) be non-negative, since, by
definition, |U,,|? > 0. It is interesting to note that these conditions involve only the
individual wavenumbers of fundamental solitons, and that they are automatically
satisfied for interacting solitons forming MSCs.

The radiation modes are characterized by a non-trivial phase modulation. For
practical applications, it is especially important to know the phase jump, or the
additional phase shift which appears due to the presence of bright fundamental
solitons. Using Egs. (2.2) and (3.2), we find the following relation,

M iuw—k
etPn) — iy
s,
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FIGURE 4. (a) Total intensity profiles for multisoliton com-

plexes, and the corresponding decomposition between (b) bright
and (c) dark components in a self-focusing medium. Each MSC
consists of three fundamental solitons with r,, = 2,3,4; the MSC
on the right is stationary (u,, = 0), while the MSC on the left has
a non-zero (positive) incidence angle (u,, = 3). Angular width of
background distribution is p = 1.

where ¢ is the phase jump, and p defines the inclination angle of the radiation mode.
Then, the phase jump can be found as a sum over the phase shifts associated with
individual fundamental solitons,

M, M, ,
(3.10) o(p) = Z om () = Z 2 arctan ( u ) .

w = Um

We see that the absolute values of the individual phase shifts are limited to .
However, the total phase jump can become larger than =« if M > 1, i.e. if the MSC
is composed of several fundamental solitons.

3.1.2. Special case of dark-only solitons. Pure dark solitons, supported by a de-
focusing nonlinearity (s = —1), were extensively investigated earlier in one [AA97]
and two-component [SK97] cases. Our solution (3.7) can be reduced to describe
such cases, if we choose the soliton wave numbers in such a way that |U,,| = 0 in
Eq. (3.5). Then, the amplitudes of all the bright solitons reduce to zero, and the
resulting expression gives a multi-dark soliton solution. In the case of a single dark
component, the condition reduces to a simple relation [ZS71] I, = |k,|?, where
1<m < M.

3.2. General results for a Gaussian angular distribution. Let us now
analyse the features of the bright-dark decomposition for a Gaussian-type angular
distribution of the radiation waves which compose the background,

1 2 2
3.11 R(p) = I,—=e~#/P",
(3.11) (w) v

where p(> 0) is the characteristic angular width. Since the integral in Eq. (3.8)
cannot be expressed in elementary functions for arbitrary p, we first consider the
limiting cases. Specifically, for a narrow angular distribution, i.e. p < 1, we have
(|Um|? = 8) = I/ (rZ, + p2,), while for p > 1 (and p > ) we obtain (|Up|? —s) ~
Iy/7/(prm) — 0. Therefore, we expect that, for a fixed background intensity
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FIGURE 5. Intensity distributions for p = 7 in a self-focusing

medium. Parameters and notation are the same as in Fig. 4.

Iy, the modulation of the radiation waves should be reduced (i) for wider angular
distributions, i.e. larger p, and (ii) for MSCs having higher velocities |pm|.

On the other hand, since the phase jump depends on the radiation mode wave
number u, the excitation of solitons can be more difficult in cases of wider angular
spectra of radiation modes, i.e. larger p. Additionally, for an MSC at an angle,
i.e. when pu,, = const. # 0, the dependence ¢(u) becomes asymmetric, unless

R~ pim) = R(pm — p)-

3.3. Bright solitons in a self-focusing medium. For a self-focusing non-
linearity (s = +1), MSCs exist in the form of bright localized waves having higher
intensity than the background, as follows from Eq. (3.6). Examples of the total in-
tensity profiles and the bright-dark mode decomposition are shown in Figs. 4 and 5
for different values of p. The MSC on the right has zero angle (with the corre-
sponding p,, = 0), while the other MSC (on the left) has a positive angle; thus in
the latter case, the corresponding background modulation is smaller, as predicted
in Sec. 3.2.

A collision between two MSCs is illustrated in Fig. 6. This example corresponds
to the initial conditions shown in Fig. 4. A remarkable fact is that the total intensity
profile does not depend on the value of p, provided that I, is preserved. The intensity
profile for the collision will be the same for other values of p or for other distribution
functions. In these examples, the MSC actually has an intensity which is relatively
small compared with the background level.

Note that the shape of each MSC changes after the collision, for the reasons
discussed in Sec. 2.2. In particular, a symmetric MSC becomes asymmetric after a
collision. The presence of radiation does not influence this process. Another feature
of a collision is that the lateral shift of the MSCs is relatively large. For example,
it can easily be seen on the scale of Fig. 6. In contrast to single solitons, MSCs
experience larger shifts during collisions, due to the multiple contributions from all
the constituent fundamental solitons.

3.4. Dark solitons in self-defocusing medium. To describe MSCs on a
background in a self-defocusing medium (s = —1), we first have to determine the
existence conditions, as outlined in Sec. 3.1.1. By considering the case of the Gauss-
ian distribution given by Eq. (3.11), we find that, for a narrow angular spectrum,
in the lowest-order approximation, the existence condition is |k, |> = 2, + u2, < I.
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FIGURE 6. Interaction of two multisoliton complexes existing on
a multi-component background in a self-focusing medium. Input
profile corresponds to Fig. 4.

Therefore, the minimum soliton width, which is of order r..}, can be achieved if

the soliton angle is zero. In the other limit where p > 1 and p > u.,, we have
Tm < Iy\/7/p, i.e. the minimum width increases linearly with an increase in p.
Numerically-calculated existence regions are shown in Fig. 7 for two values of p in
Eq. (3.11). Figure 7(a) clearly shows that the existence region is very similar to
that in the case of a single component radiation field when p is relatively small.
However, the existence regions become visibly different when p is large, as seen in
Fig. 7(b).

The range of possible soliton widths for various p is given by the shaded region
in Fig. 8. This result shows that the distribution function for the radiation field
influences the properties of an MSC, in that it changes the limiting parameters for
the existence of the MSC, although the intensity profile of the MSC is not directly
influenced by the properties of the radiation field.

Figure 9 shows an example of the intensity distribution for a self-defocusing
medium (i.e. dark MSCs on a background). We have chosen the soliton eigenvalues
to be the same as those in Figs. 4 and 6. According to our general expression (3.6),
the total intensity profiles in self-defocusing and self-focusing media are “mirror-
images” relative to the level of the background. Even the radiation mode intensities
coincide in these two cases — cf. Figs. 4(c) and 9(c). However, the bright com-
ponent intensities are different, as is clearly seen in Fig. 4(b) and 9(b). This is a
manifestation of the nontrivial nature of the nonlinear superposition of the solitons
and the background components.
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FIGURE 7. Grey shading marks existence regions in the pa-
rameter space of fundamental soliton eigenvalues (7, im). The
angular distribution function is given by Eq. (3.11) with I, = 40
and (a) p=1 or (b) p = 7. Dashed lines correspond to the case of
a single component background, when p — 0.

Soliton width

FIGURE 8. Dependence of the range of possible soliton widths on
the parameter p for the angular distribution function of radiation
waves given by Eq. (3.11) with I, = 40.

Figure 10 shows a collision of two MSCs on a background. Again, we can
see that the nonstationary intensity profile created by the soliton interaction during
collision is the ”mirror image” of that for bright MSCs in a self-focusing medium, as
shown in Fig. 6. The symmetry relation is mathematically exact. Correspondingly,
the lateral shift is also governed by the same rules as those for a bright MSC.

An important consequence is that the change of refractive index induced by
incoherent MSCs has exactly the same pattern in cases of self-focusing and self-
defocusing media with Kerr-type nonlinearity.
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FIGURE 9. Intensity distributions in a self-defocusing medium.
Parameters and notation are the same as in Fig. 4.

4. Intensity limits in multi-soliton complexes

4.1. Estimate of the peak intensity. For a single NLS describing the evolu-
tion of a coherent field, soliton interactions are phase-sensitive, so that constructive
or destructive nonlinear interference can be observed. Since the profiles of interact-
ing solitons are distorted according to the nonlinear superposition principle, large
variations of the peak intensities can occur. Indeed, it has been demonstrated that
the peak intensity can vary by a factor of N? for N interacting solitons [AM91].
In some sense, phase sensitivity can be “amplified” due to nonlinearity, so that
it is greater than that occuring for linear interference between mutually coherent
sources. Knowledge of how the maximal beam intensity of stationary and interact-
ing MSCs changes during and after collisions can be important for the development
of switching devices based on incoherent solitons. In what follows, we derive a rig-
orous relationship between the parameters of incoherently—coupled solitons and the
range of admissible intensities for MSCs.

We perform the analysis for bright MSCs in a self-focusing medium, when the
background is absent. However, with the use of Eq. (3.6), the results can be readily
applied to bright solitons in a self-focusing medium existing on top of a background,
and also to dark solitons which can exist in media with a self-defocusing Kerr-type
nonlinearity.

Although the general solution for the MSC profile can be obtained in an ex-
plicit form (2.4), it is not possible to find an explicit analytical expression for the
maximum intensity, and it can only be determined by numerically solving transcen-
dental equations. Therefore, a different approach is needed to make an analytical
estimate for the peak intensity levels. In order to do this, we turn Eq. (3.4) into an
inequality,

M
(4.1) >

Jj=1

2
U
kS + i

<1,

which is valid for any (real) . This key result makes it possible to estimate the
limitations on the total intensity. Indeed, it follows that the upper boundary is

(4.2) Imaz(2) = max Iz, 2) < Lips = mjax[rjz- + (u5 — )3,

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



132 NAIL N. AKHMEDIEV, ANDREY A. SUKHORUKOV, AND ADRIAN ANKIEWICZ

FIGURE 10. Interaction of two multisoliton complexes existing
on a multi-component background in a self-defocusing medium.
Input profile corresponds to Fig. 9.

and p is chosen to minimize the value of Ij;;. The above estimate is invariant
relative to a change of all the fundamental soliton angle tangents (velocities) by a
constant (p; — p;+Ap). This property is due to the Galilean symmetry of original
equations (1.1) [AA97]. We shall now consider several examples illustrating the
physical meaning of Egs. (4.1) and (4.2).

4.2. Stationary solitons. Let us first analyse the properties of a single MSC,
composed of several solitons with identical angle tangents, u.,,. In such a case, the
optimal choice for the free parameter in Eq. (4.2) is 4 = pm,, and we have iy =
maxj(rjz). Note that this value can be interpreted as the minimal squared radius
of a circle which has its center at the point (0, i) in the parameter space (r, u)
and which contains all the soliton eigenvalues within it [see Fig. 11(a)]. Thus [jys is
proportional to the area (7rrj2-) of this circle. On the other hand, we note that, for a
stationary MSC, the amplitude profiles satisfy a self-consistent eigenvalue problem,
viz. d?Uy,/dx? — 12, Uy, + 21 U, = 0, where the functions Uy, = u, exp(—iv,) are
real. Then, since solutions should be localized in the transverse direction (z), we
conclude that

(4.3) Iaz(2) > Iyp = max(r?/Q).
J
This means that the variations of the peak intensity are strictly limited by the largest

eigenvalue in an MSC, as illustrated in Fig. 11. Note that I, = Iin¢ if there is
only one fundamental soliton (Fig. 11, left). The peak intensity decreases if several
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FIGURE 11. (a) Geometrical illustration of the maximum in-
tensity criterion for a stationary MSC: black dots mark the eigen-
values of fundamental solitons in the (r, u) parameter space, and
the radius of the shaded semicircle determines the maximum am-
plitude. (b) Intensity profiles corresponding to upper plots; the
shaded bands show the allowed ranges for the peak intensities.

solitons compose an MSC, but always remains above the lower limit (Fig. 11, right).
This occurs despite the fact that the individual fundamental soliton intensities are
always superimposed, i.e. destructive interference is not possible, in contrast to the
case of coherent interactions. The observed decrease of total intensity underlines the
complicated nature of the nonlinear superposition phenomenon, and occurs because
the profiles of individual solitons are strongly distorted due to the nonlinear self-
action effect.

4.3. Interacting solitons. Our general results can also be applied to the case
when solitons have different angle tangents, u,. In other words, we can estimate
the peak intensity changes during the collision of several MSCs. As follows from the
form of Eq. (4.2), the limiting value I,,s depends only on the mazimum eigenvalue
in each of the colliding MSCs. Again, Eq. (4.2) has a clear geometrical interpre-
tation: the optimal value of p in Eq. (4.2) must be chosen to minimize the area
of a semicircle which has its center at the point (0, ), and which contains all the
soliton eigenvalues. Two examples, corresponding to a collision between a single
fundamental soliton and an MSC with different angle tangents (u,,), are shown in
Fig. 12. When the relative angle is small (Fig. 12, left), the intensity at the impact
area of the collision decreases. We have already observed this effect for a stationary
MSC when the relative angle is zero. However, for larger relative angles, the peak
intensity increases (Fig. 12, right).
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FIGURE 12. (a) Geometrical illustration of the maximum in-

tensity criterion for interacting MSCs: black dots mark the eigen-
values of fundamental solitons in the (r, u) parameter space, and
radius of the shaded semicircle determines the maximum ampli-
tude. (b) Dependencies of the peak intensities, corresponding to
the upper plots, on the propagation distance; dashed line shows
the maximum possible value.

In order to understand the differences in the interaction pattern, we study the
dependence of the peak intensities on the relative angle tangent of the colliding
MSCs. To illustrate the key features, we consider interactions of two identical
MSCs with a relative angle tangent 2u; [see Fig. 13(a)]. Although Eq. (4.2) can
be used to obtain an estimate for the peak intensities, as in the previous examples,
we find that the results are not optimal for large ;. To obtain a more accurate
estimate, we recall that Eq. (4.1) is satisfied for all (real) p simultaneously. We
now choose p = %y, add the corresponding inequalities together, and obtain the
following upper limit,

_ i +4u)
(4.4) Iins mJax 7‘]2. o
We thus see that Iine(pu1 — +00) — 2max; (r?), which is a simple sum of the upper
bounds for individual MSCs. This result means that the interaction of solitons
with large relative angles is weak, and the MSC intensities are added together
similarly to the linear case. As a matter of fact, this is a general property of optical
solitons [SS99]. Results of numerical simulations for soliton collisions are presented
in Fig. 13(b). We also illustrate the evolution of the intensity profiles at small and
large relative angles in Figs. 13(c) and (d), respectively.
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FIGURE 13. (a) Location of the eigenvalues of fundamental
solitons in the (r, u) parameter space (black dots). (b) Ranges of
the peak intensity variations during the soliton collision vs. relative
angles shown with shading; dashed line gives the maximum possible
value. (c,d) Intensity profiles illustrating soliton collisions at small
(u1 = 0.5) and large (u1 = 5) relative angles.

5. Conclusions

In conclusion, we have obtained an exact solution for multisoliton complexes
on top of a multi-component background composed of radiation waves in Kerr-type
nonlinear media. We have identified similarities and differences between bright and
dark MSCs which exist in self-focusing and self-defocusing media, respectively. In
particular, we have found that the intensity profiles in these two cases are “mirror-
images” relative to the level of the background, and that they depend only on
the eigenvalues of the fundamental solitons. For example, the reshaping of MSCs
after collisions is determined by the lateral shifts of the fundamental solitons and is
not affected by the background components. On the other hand, the width of dark
solitons has a minimum, and this value depends strongly on the angular distribution
of the radiation waves. We have performed a detailed analysis of the key soliton
characteristics for the case of a Gaussian angular distribution of radiation waves,
and presented numerical examples illustrating the principal features of bright and
dark MSCs.

We have also obtained an accurate estimate for the peak intensities of multi-
soliton complexes. We have demonstrated that incoherent coupling can result in a
decrease of the peak intensity when the relative soliton angles are small (or zero)
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and nonlinear interaction is strong. On the other hand, solitons with large relative
angles can roughly be superimposed as linear waves, since the interaction is weak.
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A Unified Approach to Integrable Systems via Painlevé
Analysis

S. Roy Choudhury

ABSTRACT. We review an algorithmic procedure based on truncated Painlevé
expansions to derive various features of integrable equations, including Lax
Pairs, Hirota’s Tau Function, Darboux Transformations and multisoliton so-
lutions, and Miura Transformations to related equations.

1. Introduction

The techniques of Painlevé analysis [1] are by now well-known in the area of
testing nonlinear systems for integrability. The purpose of the present review is
to focus on one of the developments which have taken place in the field over the
past decade or so. These developments have been in several directions. Since the
objective here is to be more discursive than in regular research articles, we shall
primarily be concerned with one of these, i.e. the formulation of a technique for algo-
rithmically deriving from the Painlevé analysis all properties relevant to integrable
systems including auto-Backlund Transformations, Lax Pairs, Miura Transforma-
tions to related systems (if any), Darboux Transformations, Hirota’s Tau function,
and multisoliton solutions. In fact, the method has also been applied to the deriva-
tion of similarity reductions of nonlinear PDEs (NLPDEs), although we shall not
consider this here. It will thus be seen that the techniques of Painlevé analysis are
by now much broader than as mere tests for the integrability of a system. In fact,
the area has developed to a point where it may be considered as one which yields a
major unifying perspective on integrable systems, as well as one which complements
the perspectives afforded by other approaches.

In order to keep the treatment to a manageable length while still being reason-
ably complete, we shall concentrate on the sub-area mentioned above. However, for
the sake of readability as well as for the purpose of introducing some relevant con-
cepts and terminology, we shall briefly summarize some earlier work in the area in
Section 2. This will hopefully orient the reader better as to where the work detailed
in this paper fits within the overall field of Painlevé analysis. Some key references
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are mentioned in Section 2, although the list is not meant to be exhaustive. Follow-
ing this, we shall develop the main theme of the paper in Section 3, using integrable
(241) generalizations of NLS-type systems (and of the Kaup equation in particular)
as examples. Section 4 will develop the theme further by considering the additional
example of the well-known AKNS system(s). Finally, Section 5 summarizes the
main results of the paper. It also contains some comments on the current status
and future prospects of this particular sub-area of Painlevé analysis.

2. Background and Basic Concepts

Although not yet fully proven, the Painlevé tests [1] seem to provide extremely
useful necessary conditions for identifying the completely integrable cases of a wide
variety of families of nonlinear ordinary and partial differential equations, as well
as integrodifferential equations. Originally, Ablowitz et al. [2] conjectured that
a nonlinear partial differential equation is integrable if all its exact reductions to
ordinary differential equations have the Painlevé property. This approach poses
the obvious operational difficulty of finding all exact reductions. This difficulty was
circumvented by Weiss et al. [3] by postulating that a partial differential equation
has the Painlevé property if its solutions are single-valued about a movable singular
manifold. In this paper, we follow this latter approach to perform the Painlevé
analysis of several nonlinear evolution equations.

There is now a compelling body of evidence that if an equation possesses the
Painlevé property it is likely to be integrable, i.e., the Painlevé test is a necessary
test for integrability. In the cases where the criteria for the Painlevé test are met,
the analysis may have failed to detect an essential singularity and further analysis
would be needed to rigorously prove integrability by:

(a) constructing the full set of integrals of the motion [5], or

(b) linearizing the equations, e.g., by the inverse scattering transform [6], or

(c) reducing them to one of Painlevé’s transcendental equations [1, 4, 7).

The usefulness of the Painlevé approach is not limited to integrability predic-
tion, and use of the generalized Weiss algorithm [4, 8] yields auto-Bécklund trans-
formations and Lax pairs for the integrable cases. Painlevé analysis also yields a
systematic procedure for obtaining special solutions when the equation possesses
only the conditional Painlevé property [9]-[14], when the compatibility conditions
of the Painlevé analysis result in constraint equations for the movable singular
manifold which is no longer completely arbitrary.

Weiss’ original technique [3, 8] was extensively developed by others (see [15,
16] for instance). This approach, which will be briefly reviewed in this section,
involves the Weiss strategy of truncating the Painlevé singularity expansion for
the solution of the system of NLPDEs at the constant term, thereby imposing
a specific choice of singular manifold function which has come to be called ‘the
singular manifold’. This singular manifold function and the truncated (singular
part) of the Painlevé expansion are then used to semi-algorithmically derive an auto-
Bickiund transformation between two different solutions of the NLPDE(s), and also
to derive the associated linear scattering problem or Lax Pair. The latter step is
not completely algorithmic since it involves linearizing the overdetermined system
of PDEs connecting various derivatives of the singularity manifold by employing a
‘Weiss substitution’ which may often involve prior, extraneous knowledge about the
NLPDE(s) under consideration. References 15 and 16 also discuss the connections
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between Painlevé analysis and other properties of, and approaches to, integrable
systems such as Lie symmetries and Hirota’s method. However, the original semi-
algorithmic character of the Weiss SMM persists.

A second recent approach, which has opened up a whole new sub-field, involves
making the entire process of singularity analysis invariant under the homographic
or Mobius transformation [17, 18]. This significantly simplifies the testing for inte-
grability [18], the derivation of Lax Pairs [19, 7], as well as the derivation of special
families of analytic solutions (see [21]-[24] for instance). Some of these special fam-
ilies of analytic solutions have also been employed in tandem with Melnikov theory
to analytically investigate the breakdown of coherent structure solutions and the
onset of chaos in NLPDEs under forcing [25, 26]. Note that the invariant analysis
yields a fully algorithmic procedure for finding Lax pairs,but none for auto-BTs,
tau functions, and multisoliton solutions. We shall not consider this approach at
all in this review.

A third approach [27, 28] involves significant extensions of the original Weiss
procedure to derive the ‘Weiss substitution’ and the Lax Pair completely algorith-
mically. In addition, this technique algorithmically derives many other important
features of integrable systems such as Miura Transformations, Darboux Transfor-
mations, multisoliton solutions, and Hirota’s tau function. Much of this work is
motivated by the connections sought to be made between the various properties of
integrable systems in [15] and [16]. Earlier work along these lines includes [29].
We shall develop this approach systematically in the next two sections.

There has also been other activity in the area in recent years, including inves-
tigations of why the Painlevé test works, and on higher-order truncations and so
on. We do not refer to these at all here since they do not directly impact the topic
of this article.

In the remainder of this section, we briefly review Weiss’ original approach [8]
in the context of the simplest of the many integrable systems which he considered,
viz. the KdV equation

(2.1) uy + 6u'ul, + ul,, =0

We use primed variables here for reasons which will become clear subsequently.
The behavior of the solutions of (2.1) around a movable singular manifold [1, 3, 4]
¢(z,t) = 0 is determined by a ‘leading-order analysis’ whereby one makes the ansatz

(2.2) u'(z,t) = uo(z, t)[¢(z, 1))~

and balances the most singular or dominant terms (the ones with the most negative
powers of ¢; usually the highest derivatives and some or all of the most nonlinear
terms). For (2.1), balancing the most singular parts of the nonlinear and dispersive
terms yields [1, 3, 4]

(2.3) a=2, uy=—-242

At this point, if testing for integrability [1, 3, 4], one determines the so-called
resonances or Kowaleskaya exponents or indices, and then attempts to construct a
Laurent expansion solution of the NLPDE with the full complement of arbitrary
functions. We shall instead follow what has come to be called ‘the Singular Mani-
fold Method (SMM)’ by following Weiss’ (8] original prescription of constructing an
expansion in inverse powers of ¢ and truncating it at the constant term. It should
be noted that, once this is done and in contrast to the situation while testing for
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integrability, the singular manifold is no longer an arbitrary function. Instead, it is
a well-defined function which has come to be called ‘the singular manifold’. Weiss’
original idea was that information about the integrable system was encoded in this
singular manifold. In particular, he was able to derive auto-Bécklund Transforma-
tions (auto-BTs) between two distinct solutions of the NLPDE(s), as well as the
associated Lax Pair, in a semi-algorithmic fashion from the equations satisfied by
¢ and its derivatives. Let us briefly review the steps associated with this next.

Inserting the truncated expansion (truncated at the constant term) in terms of
powers of ‘the singular manifold function’

’ _2¢g Uy (Ivt)

(2.4) u = po +T+u(:c,t)

the O(¢~*) terms yield
(2.5) Ul = 2¢zz

Note that the coefficients (ug and u; ) of the singular part of the truncated expansion
(2.4) are thus fully determined and it is necessary to ensure this before proceeding
to the next step. The reason for using the primed variables in the original equation
(2.1) should also now be apparent from inspecting (2.4).

Once the coefficients in the singular part of the truncated expansion are deter-
mined, we then re-insert the truncated expansion (2.4), together with these explicit
singular coefficients (2.5), into (2.1) to obtain the so-called Painlevé-Bécklund equa-

tions

92
(2.6a) u'(x,t) = 2@ Ing+u
(2.6b) Pedt + b2 bran — 302, + 6ups =0
(2.6d) U + 6uty + Uger =0

The first thing we note from (2.6d), and Weiss proved that this is a generic
feature, is that the final coefficient (that for the constant term) in (2.4) satisfies
the original KdV equation (2.1). Thus, (2.6a) provides an auto-BT between two
solutions »’ and u of the KdV equation. This can be used as an explicit auto-
BT if one can determine ‘the singularity manifold function’ ¢. There are several
strategies for doing this, and we shall consider one of them in the next section. Thus,
the Weiss singularity manifold method (SMM) provides an algorithmic method for
finding auto-BT’s.

Next, one might be inclined to think that the remaining Painlevé-Backlund
equations (2.6 b-d) constitute an overdetermined system of three equations for the
two variables u(x,t) and ¢(x,t). They are, however, self-consistent, with the last
one being the solvability condition for the other two. Also, they may always be lin-
earized to yield the associated linear scattering problem or Lax Pair for the system.
For (2.1), Weiss and his co-workers used two different strategies [3, 8], and other
strategies have included those in [19] and [?]. While each of the Weiss strategies
has semi-algorithmic features, neither is fully algorithmic and self-consistent in the
sense that each utilizes some a priori information about (2.1). We shall use the
simpler Weiss strategy here, and develop a more systematic and algorithmic ver-
sion of the other one in the next two sections. Utilizing the well-known AKNS-type
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substitution (Weiss et al [3] used v instead of ¢ in their original work)

(2.7) ¢z = ¥*(z,1)
transforms (2.6 b,c) into the well-known Lax Pair

(2.8a) Yoo + (u+ A)p =0
(2.8b) Yt + 4z + 66Uty + 3uzyp =0

for the KdV equation.

One might sum up the results above by saying that this original Weiss SMM
thus provided an algorithmic method for obtaining an auto-BT and semi-algorithmic
methods for obtaining the Lax Pair for integrable NLPDEs via the use of truncated
Painlevé expansions.

It should also be noted that various other aspects of the Weiss SMM have been
investigated (see [8], [19], and [20] for instance). In particular, Conte and Musette
have used the singular part of the truncated expansion in a so-called ‘singular part
transformation’ to algorithmically derive Darboux Transformations for numerous
integrable systems.

In the next two sections, we shall follow the third approach mentioned at the
beginning of this section and develop the Weiss SMM further into an algorithmic
method for deriving various properties of integrable systems. We shall illustrate
the requisite techniques using two integrable (2+1) versions of the Kaup equation
in the next section and the well-known AKNS system(s) in Section 4. We shall
notice some interesting contrasts between what the SMM yields for the systems in
Section 3 and that in Section 4.

3. Unified Treatment of Integrable (2+1)
Generalizations of the Kaup Equation

In this section, we first develop the analysis using two members of the integrable
(24+1) NLS Type systems considered by Mikhailov and his co-workers [30]-[32] as
typical examples. We choose systems in (2+1) dimensions intentionally so as to
demonstrate both the algorithmic nature of the analysis as well its direct applica-
bility to systems in more than one spatial dimension. As we shall see, the analysis
in (2+1) is, as one might expect, somewhat more involved than for (1+1) systems,
but in a fashion which may be developed algorithmically and systematically. We
shall mention appropriate references as we proceed, but two background papers of
general relevance are those by Estevez and her co-workers [27, 28].

In particular, we shall consider the following two integrable generalizations of
the Kaup equation [33]:

(3.1a) uy = ug, + 2p'ul,
(3.1b) —vp = v, — 2p'v),
(3.1¢) Py = (u+v)g

and

(3.2a) up =g, + (u? +u'v')y + ¢
(3.2b) —v) = v, — (V2 + UV )y + ¢
(320 &, = (v, '),
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3.1. Analysis of (3.1). We shall detail the calculations and the procedure
for (3.1) first, and subsequently summarize similar computations for (3.2).
As usual, we first perform the leading-order analysis as in Section 2 and assume

(3.3) U~ ugd™®, v~ g P, p ~pog .

Balancing the most singular second derivative and nonlinear terms in the first
two equations yields:

(3.4a) atpf=-2

(3.4b) y=1

(3.40) po = (a+1)¢, /2.

At this point, it is tempting to look at the apparently symmetric way in which the
variables u and v occur in (3.1) and thus assume that o = 8 = —1. However, it is

straightforward to check that this choice leads to a contradiction. One may obtain
consistent choices by a. balancing the left hand side of (3.1c) with the first term on
the right, with the other term being less singular, or by b. balancing the left side
of (3.1c¢) with the second term on the right. These correspond respectively to:

(3.5) a=1, fB=-3
or
(3.6) a=-3, pf=1.

We shall detail the case corresponding to (3.4)/(3.5) and summarize the anal-
ogous results for (3.4)/(3.6) subsequently. As discussed in Section 2, we shall next
invoke the Weiss SMM by substituting expansions for our variables truncated at
the constant term (and with coefficients of all singular terms explicity expressed
in terms of derivatives of the singular manifold function), and use the resulting
expansions to develop an algorithmic method for deriving various properties of the
integrable system (3.1). For (3.4)/(3.5), the leading order O(¢~2) terms in (3.1a,b)
yield the coefficients of the singular terms in u and p explicitly as

(3.7) up = ¢y, Po = q-

Using these, we substitute the truncated expansion

(3.8a) u = % +u
(3.8b) v =g + vt + ...
(3.8¢) p = 2;3 +p.

Substituting these in (3.1) yields equations at various orders in ¢, the Painlevé-
Bicklund equations, which are contained in Appendix A. Notice that (A9) and
(A10) show that

(39) Vg = V1 = 0

Thus, (A4) to (A6), and (A8) to (All), are identically satisfied. The only non-
trivial equations surviving are (Al) to (A3) and (A7) which are given below for

Licensed to Univ of Arizona. Prepared on Wed Jul 30 10:49:31 EDT 2014 for download from IP 128.196.226.62.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



A UNIFIED APPROACH TO INTEGRABLE SYSTEMS VIA PAINLEVE ANALYSIS 145

ease of comprehension in the following calculations:

(3.10a) ¢t — 2pdy — Pze =0
(3.10b) — @yt + 202Uz + 2PPry + Pray =0
(3.10c) Dy = Ug
(3.10d) —Ug + 2pUy + Uge = 0
Substituting (3.10c) in (3.10b) and integrating with respect to y yields
(3.11) —¢t + 2pds + Pzz = Au(w, 1)

which is the same as (3.10a) if the ‘constant’ of integration on the right is taken
to be zero. Thus, we may essentially just ignore (3.10b) since it is really the y
derivative of (3.10a).

We now work with the remaining Painlevé-Bécklund equations in (3.10) to de-
rive the so-called singular manifold equation (SME). The essential idea in deriving
the SME is to express all physical or field variables (or potentials in the language
of scattering) in terms of functions of the singularity manifold and, using these, to
derive a consistency condition on this singularity manifold which is the SME. The
motivation for this is that analysis of the SME yields an algorithmic method for
deriving the Weiss substitution and thus linearizing the Painlevé-Béacklund equa-
tions to obtain the Lax Pair. The details vary from case to case, but the essential
ideas in deriving the SME and analyzing it are common to all examples. For this
purpose, we also define the quantities [17]-[19]

(3.12a) V = duu/¢s

(3.12b) C1 = ¢1t/¢x

(3.12¢) Cs = ¢y/bs

which satisfy the compatibility conditions

(3.13a) Vi = (C1z + C1V),  (from ¢zt = ¢toc)
(3.13b) Vy = (Csc +VC3), (from ¢rey = dyaz)
(3.13c) C3; = Cry + C1C35 — C3C1;  (from ¢yy = ¢yy)

Using (3.10c) in (3.10d) yields
9 9
Ut = ‘a‘;[p +pa:]
(3.14) Uz = Py
Integrating the consistency condition u,s = us, with respect to y yields
From (3.10a) and (3.12), we have
(3.16) p=
Using this in (3.15) yields the SME

(C1-V)

DO | =

(3.17) %(Cl -V =0: [3(012 -2C,V + V2) + %(Clz - Vz)] + A(z,t)

The key to linearizing the Painlevé-Backlund equations in algorithmic fashion
is to perform a leading-order singularity analysis of the SME and the consistency
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conditions (3.13), treated as an NLPDE in C; and V in a manner analogous to
Section 2. In other words, we apply the first part of the SMM to the SME. Assuming

(3.18) C1~cox®  V ~vpx’

and balancing the most singular terms (those within the square bracket) in (3.17)
yields

(3.19) a=b=-1

and

(3.20) Co=7vp OL Cop—Vp=2Xz

Next, using (3.18)/(3.19) and balancing the most singular terms in (3.13a) yields
(3.21) Vo = Xz

which, with (3.20), implies

(3.22) co=3xz Or Cp= Xz

Once this leading-order analysis of the SME is complete, we follow an approach
due to Musette and Conte [20, 34, 35] and assign a separate singularity manifold,
i.e., two distinct x’s, to each of the two branches for C; and V in (3.18) to (3.22).
Denoting these as ¥+ and ¥~ (the connection of these to the original singularity
manifold ¢ will become apparent in the following step), (3.18) through (3.22) yield
the following leading behaviors:

(3.23) =
and

_ 30 Yy
(3.24) Gi=gt=" s

Integrating (3.23) with respect to = and using the result in (3.24) yields the con-
nection of the original singularity manifold variable ¢ to the s, i.e.

(3.25) ¢s =T~
and
(3.26) ¢ =3 + oyt

These last two equations are in fact the analogues of the Weiss substitutions. Note
that, unlike Weiss’ original procedure, they have been derived here completely
algorithmically and self-consistently from the singularity analysis. More specifi-
cally, in Weiss’ original procedure [3, 8], such substitutions were based on either
guesswork or information regarding the order of the underlying linear scattering
problem, both of which were based on extraneous knowledge about the system. As
in Section 2, these substitutions will be key to linearizing the Painlevé-Bécklund
equations (3.10a,c,d) to yield the Lax Pair for the system, and we proceed next to

this step.
Using (3.23)/(3.24) in (3.16) yields
(3.27) wt = put.
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Using (3.27) for p(z,t) in (3.10c) and interchanging the order of the derivatives,
the resulting equation may be integrated with respect to z to yield

(3.28) Py = [u—A(y, .
The last two equations comprise the spatial part of the Lax Pair for (3.1) (with
unprimed variables instead of primed ones). It is straightforward to check that the
compatibility condition for (3.27)/(3.28) yields the governing equation (3.1c) for
the system (remember that v = 0 for this branch of the analysis, as is apparent
from (3.8)/(3.9)). Next, solving for u from (3.28) and using the result in the first
term in (3.10d) yields

+
(3.29) At + % [gy:] = 2pug + Ugy.
This constitutes the temporal part of the Lax Pair and it is straightforward to verify
that the compatibility condition for (3.28) and (3.29) yields the first governing
equation (3.1a) for the system (with unprimed variables), while the compatibility
of (3.27) and (3.29) simply yields the = derivative of (3.1a).

Notice that, since (3.10b) is redundant and (3.10a) was used to obtain (3.16)
and hence (3.27), we have linearized all the Painlevé-Béacklund equations (3.10) to
obtain the Lax Pair for (3.1) (with unprimed variables). Notice too that (3.1b) is
trivially satisfied for this branch of the analysis since v = 0 by (3.8b) and (3.9).

At this point, we remind ourselves that the above branch of the singularity
analysis of (3.1) corresponds to (3.4)/(3.5). Performing an exactly analogous anal-
ysis for the other branch corresponding to (3.4)/(3.6) results in (the ¢* functions
in (3.30) to (3.37) are different from those in (3.23) to (3.29)):

a. (3.8)/(3.9) are replaced by

u =0
v = —% +v
(3.30) p = —%’” +p
b. (3.23) (3.26) are replaced by
+ —_
a3 vt
_¥E 3
(3.32) C, = e
(3.33) b = TP~
(3:34) $r = —Y3YT =3Pyt
c. the resulting Lax Pair is
(3.35) Yy = —pY~
(3.36) Yy +v=2e(y, )" =0
(3.37) Aot — % [i—{] = 2PV, — Vgq.
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Note that the consistency of the last three equations recovers the second and third
governing equations (3.1b) and (3.1c), while u = 0 for this branch of the analysis
and so (3.1a) is trivially satisfied.

Thus, the Lax system (3.27)-(3.29) recover the governing equations (3.1a,c),
while (3.35)-(3.37) recover (3.1b,c).

Once we have the Lax Pair, the next step in the analysis is to proceed to
derive Darboux Transformations [36], i.e. transformations of the potentials u,v,
and p and the eigenfunctions ¢ which leave the Lax Pair(s) invariant. Once again,
a systematic procedure may be formulated from the Weiss SMM. If non-trivial
Darboux Transformations (DTs) result, they may then be iterated [36] in the usual
manner starting from relatively simple seminal solutions of the governing PDEs
following the Crum procedure to generate more complex families of multisoliton
solutions. It is worth commenting here that, for many systems, the iteration of
DTs appears to work better than the iteration of auto-BTs where one often remains
confined to the same family of solutions after a single iteration. In addition, the
procedure for deriving DT's may be iterated to generate Hirota’s tau function. We
shall lay out the basic ideas for the derivation of DTs next.

The key idea in deriving DTs is due to Konopelchenko and Stramp [37] and
involves treating the Lax Pair itself as a system of NLPDEs in the field variables
(potentials) u,p and the is. We shall primarily follow [27, 28] here. Assuming a
singular manifold ¢, spectral parameter A; and +/- Lax Pair eigenfunctions v,
associated to starting (or seminal) solutions u, v, and p of (3.1) yields the equations:

(3'38) ¢1x = "/Ji’-'ﬁbl_
(3.39) b1t = Y07 + YT
(3.40) ¥z = pyf
(3.41) ¥, = [u— My, )7
d +
(3.42) Aie + 7 [i—?} = 2pUg + Ugy.

Here, we have used (3.25) to (3.29). New solutions ' and p’ may be constructed
using the auto-BTs (3.8a,c) (with ¢ replaced by ¢; corresponding to the seminal
solutions), and associating a singular manifold ¢4, spectral parameter Ay and +/-
Lax Pair eigenfunctions 1} to these yields the analogous equations:

(3.43) Pop = by Py
(3.44) P20 = 3oh by + Py
(3.45) o = p'yh
(3.46) Wi = [u' = Aa(y, )]s
d |v5
(3.47) Aot + = [%} = 2p'ug + g,
2

Next, following [37] and treating the Lax Pair (3.45) to (3.47) as a coupled system of
NLPDEs in v/, p’ and the s, we may apply the SMM to this system of NLPDEs
and thus add the following truncated expansion for the z/J;“L to those in (3.8a,c)
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(with ¢ replaced by ¢; for the seminal solutions) to obtain:

+
(3.48) A S A
?1
/ ¢1y
4 -
(3.49) u ™ +u
;. ¢1w
(3.50) V=52 4p

Now, for a DT, the transformation of potentials and eigenfunctions given by
(3.48) to (3.50) must preserve the Lax Pair. In other words, the original starting
solutions corresponding to u,p, and 1/); must satisfy the same Lax Pair equations
(3.45) to (3.47) for the same eigenvalue Aqg, i.e.,

(3.51) by = P3
(3.52) ¥, = [u— Aoy, )95
d +
(353) )\2t + % %] = 2pu:c + Uy

Substituting the truncated expansions (3.48) to (3.50) in (3.45) to (3.47) and us-
ing (3.38)/(3.39) and (3.51) to (3.53) yields, after some computer algebra with
MATHEMATICA, the trivial result:

(3.54) 6t =0.

Also, a leading-order singularity analysis of (3.13c), in a manner similar to that
performed on (3.13a) while analyzing the SME (3.17) to derive (3.23)/(3.24), shows
that

(3.55) ¢y = k(BYIY + vz vT)

for some arbitrary k. Using (3.38), (3.54), and (3.55) (with ¢ = ¢;) in (3.38)
to (3.50) yields the following DT under which the Lax Pair(s) are invariant (and
corresponding to v = 0 as discussed earlier)

. kBT YY)

(3.56) u = Fovordr +u
/ KLY

3.57 __"i¥

(3.57) P ToFords +p

(3.58) = yf

Note that this DT may be iterated starting from simple seminal solutions of
(3.1) (with v = 0) and using the Crum procedure [36]. In order to do this, one would
substitute the simple seminal solutions for u and p in (3.40) to (3.42) to obtain the
first iterate for 1;. This may then be substituted in (3.56)/(3.57) to yield a second
iterate for the potentials u© and p, and the process may then be iterated as long
as closed-form solutions may still be readily obtained. Before attempting this, we
make one other comment. It is possible to iterate the singular manifold function
itself to obtain Hirota’s tau function. However, (3.58) makes it apparent that, for
the present example (3.1), only trivial or identity iterates result for the 9 functions,
and hence for the ¢s (see (3.25)). We therefore postpone the discussion of Hirota’s
method to the next section, where the situation will turn out to be different from
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the one we just considered. For the same reason, we shall postpone consideration
of the iteration of DT's to Section 4.

In order to complete the treatment of (3.1), we finally turn to a discussion of the
iteration of the auto-BT (3.8) for this equation in order to derive analytic solutions
of (3.1). The relevant equations here will be (3.1), (3.8) (with vo = v; = 0), and
(3.10a,c). Starting from the simplest vacuum solutions u = p = 0 (v = 0 anyway
for the branch corresponding to (3.10)) as seminal solutions, (3.10a) yields the heat
equation (in t and x) for the first iterate of ¢. Thus,

1
(3.59) ¢(z,y,t) = \/—iﬁ e e (y) + ca(y).
Using this and the seminal solutions in (3.8) yields the next iterate for the solutions,
ie.
(3.60) o — )+ 2V (y)er
' c1(y) + 2Vt ca(y)e”/4
(361) pl Icy (y)

C —2ter(y) — AVEB ea(y)ext/at

It is straightforward to check that these are indeed solutions of (3.1) for v =0 and
arbitrary ¢;(y) and c2(y). One may try and iterate the process by using the last
two equations in (3.10a) to obtain a second iterate for ¢, but the solution becomes
complicated and so we shall stop at this point. Figures 1 to 3 show plots of the
solutions (3.60) and (3.61) for:

a. plot of p for ¢1(y) = m,ca(y) = y° at t = 1;

b. plot of u for ¢;(y) = exp(—y?/4t),ca(y) = y° at t = 1;
and

c. plot of p for c1(y) = c2(y) = exp(—y?/4t) at t = 1,

These solutions will be extensively discussed elsewhere, but note in particular the
strong = and y modulations in Figure 1, as well as the y/x modulations respectively
in Figures 2 and 3.

This concludes our treatment of (3.1), and we turn next to a relatively brief
treatment of (3.2). In order to illustrate other features of the SMM method under
consideration, we shall refer to features of (3.2) which are analogous to those seen
above for (3.1) only briefly. Our main concentration will be on features dissimilar
to those discussed for (3.1)

3.2. Brief analysis of (3.2). Attempting a leading-order analysis of (3.2) by
substituting

(362) u/ ~ u0¢—a, ’U/ ~ U0¢_B7 ql ~ QO¢_’Y

it is straighforward to check the possible consistent dominant balances and conclude
the following:

a. as for (3.1) (see (3.5)/(3.6)), consistent dominant balances exist with a and 8
having unequal values. We do not consider these cases or branches of the singularity
analysis further as they are similar to the treatment in Section 3.1 and will be
detailed elsewhere.
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and

b. unlike (3.1), (3.2) admits a consistent dominant balance with
a=0=1

(3.63) v =3.

We shall concentrate on this branch as it illustrates somewhat different features of
the analysis from those discussed in Section 3.1.
The leading-order analysis for the branch discussed in b above yields

(0,0,0)
or

(3.64) {uo,v0,0} = { (0, —¢y,0)
or
(¢4,0,0)

Using the last of these together with (3.62)/(3.62), and substituting the resulting
truncated expansions

(3.65a) u = %y +u
(3.65b) vV =v

3.65¢ S -
(3.65¢) ‘=pt,Ta

into (3.2) results in equations at different orders in powers of ¢ (analogous to those
in Appendix A for (3.1)). Solving these as in Section (3.1) yields

(3.66) v=o(y,t)

(3.67) @ =—vo]

(3.68) G2 = Pyvy + vy

together with the conditions

(3.69) —209] + ¢y — 2ud], — dydyy =0
(3.70) 20yVy + 20yy + 20Uy — Dyt + 2UPyy + Pyyy = 0.

It is straightforward to check that (3.70) is the y partial of (3.69) and this
‘apparent overdeterminedness’ might seem reminiscent of that observed in (2.6b-d)
for the KdV equation. There is however an important difference from that case.
Careful inspection of (3.66) to (3.69) (and (3.65¢c)) reveals an insufficient number
of equations to eliminate all field variables (or potentials) u, v, and ¢ and derive an
SME. In fact, this is characteristic of a singular branch of the Painlevé analysis.
Such a branch may not be used to algorithmically derive the various properties of
the integrable system (3.2) as was done using a general or regular branch of (3.1)
in the previous subsection. However, it may still be used to derive special analytic
solutions (these are usually referred to as ‘singular’ solutions, but in the sense of
solutions not contained in the general solution and not necessarily in the sense of
possessing singularities). We shall use the governing equations above for the chosen
singular branch of the Painlevé analysis to derive special analytic solutions of (3.2).
The procedure used will be iteration of the auto-BT (3.65), as was done for (3.1)
at the end of Section 3.1, and we proceed to this next.
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The relevant equations are (3.65) to (3.69). Starting with vacuum solutions
u=v=q=0of (3.2), (3.69) yields the heat equation (in t and y) for ¢. Solving
this yields

e~V /4 g, (z)

3.71 z,y,t) = +da(zx).
(3.71) o(z,y,t) N 2(z)
Using this and (3.66) to (3.68) in (3.65) yields the next iterate

 —2td; (z) — 4V/At3 dy(z)ev? /4
(3.72) ¢ =0
for solutions of (3.2). It is straightforward to check that these satisfy (3.2). A
typical plot of the solution in (3.72) is shown in Figure 4 for:
plot of u for d;(z) = exp(—2?/4t), co(x) = z° at t = 10.

This concludes our discussion of the (2 4 1) dimensional generalizations (3.1) and
(3.2) of the Kaup equation. We proceed next to a consideration of the well-known
AKNS equation(s) in the following section.

4. The AKNS Equation in (1 + 1)-dimensions

We shall use the AKNS system [38] in 1+ 1
(4.1) Mypre +4AM My + 8M My =0,

to illustrate further features of the method. This section of the review follows [27].
Some of the steps which are similar to Section 4 are omitted.
The leading-order analysis and truncation at the constant level yields

és
s

The substitution of the truncated expansion (4.2) into equation (4.1) provides
the following results (details are omitted):

e M as well as M’ should be solutions of (4.1). This means that (4.2) could be
considered as an auto-Backlund transformation between two solutions M’ and M
of the same equation.

e The solution M can be written in terms of the singular manifold in the
following way:

(4.3) M, = - G) <Vx + V; + 2)\) ,

1
(4.4) My = 5(=V, +2XCy).

(4.2) M =M+

These are the Painlevé-Béacklund equations and A is an arbitrary constant of inte-
gration that, as in Section 3, plays the role of the spectral parameter.

e The singular manifold equations. The equations that the truncation proce-
dure implies for ¢ are:

(4.5) S, = 4XCsa,
where S is the schwartzian derivative defined as [17]:
V2
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Also, the compatibility condition ¢yt = ¢ize between definitions (3.12a) and
(3.12¢) requires:

(4.7) Sy = C3zzz + 25C5, + C35;.

It is straightforward to show that the singular manifold equations are just the AKNS
system once again. In fact with the change of variables

(4.8) S = dp, + 2\,
_ by
(49) 03 - ) )

(4.5) is trivially satisfied and (4.7) yields

0= Pyzzz + 4pypa:z + 8pmpmy

which is the AKNS system once again.
As we have seen above, the singular manifold equations, written in terms of V
and Cj are (see (3.13b)):

(4.10) Vey = VVy = 4ACig,
(4.11) Vy = (Csz + C3V),
which can be considered as a new system of nonlinear equations as in Section 4. If

we apply the Painlevé analysis to this system to derive the Weiss substitution, the
leading terms are (using ¢ for the singularity manifold)

V ~ Voy?, Cs~ Cyot)’
Using these in (4.10-4.11) yields

1
a= -1, b= -2, VZ) = 2'1/)35, C'30 = _}\"‘/)x"/)y

As in Section 4, these leading terms provide the key for the linearization of the
truncated solutions (4.3-4.4). If we replace V' by its dominant term

’ %_ a _ ﬂﬂi — 2
(4.12) 5. = Vo 21/)#% (e

Thus, (4.3) becomes
(4.13) 0 =gz + (2Mz + A)Y
and from (4.12), (4.4) and (4.7) we obtain

1
2%/ = Cyu+ CsV = o (2May + Vay + 2V M, + VV,)

or (using V = Vou* = 24, /%)
(4.14) 0 =2y + My — 2M1),.

(4.13) and (4.14) are precisely the Lax pair for the AKNS system.

As in Section 4, we can consider the Lax pair itself as a pair of coupled nonlinear
equations between M and 1. Let us now explain how to proceed to find a Darboux
Transformation and Hirota’s tau function using this.

Since M’ is also a solution of (4.1), an associated singular manifold ¢, linked
to a spectral parameter Ay can be defined just by defining (from (4.12))

(4.15) P20 = V5,
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and a Lax pair for M’ can be written as (from (4.13) and (4.14))

(4.16) 0= Ppap + (2M, + A2)¥5,

(4.17) 0 = 2o, + My, by — 2M, 35,

where the notation means that 14 is an eigenfunction corresponding to M’ with

eigenvalue A\p. If we call ¢; and ¢ two singular manifolds for M attached to

spectral parameters A; and Ay respectively the corresponding eigenfunctions are
defined from (4.12) as:

(4.18) b1o = V1,

(4.19) P2z = 3.

Using (4.13)/(4.14), the Lax pairs take the form

(4.20) 0 = Y1az + (2Mz + A1)¥1,
(4.21) 0 = 2X\1%1y + Myyth1 — 2My1p1 4,
(4.22) 0 = thozz + (2My + Ag)12,
(4.23) 0 = 2X2¢p2y + Myytpo — 2Mytho,.

If we use the singular manifold ¢; to construct the truncated Painlevé expansion
(¢2 may be used with A = A, instead)
(4.24) M =M+ D
é1
and we then treat (4.16-4.17) as a system of nonlinear coupled equations, a similar
expansion should be performed for 4. In other words,
C]
(4.25) Y=o+ —.
Y1
The substitution of the truncated expansions (4.24-4.25) in (4.16)/(4.17) pro-
vides the functional form for ©. The result is

(4.26) O = —1Q(¢1,92),

where

(427) Q('l/}la'(/)?) = </\ 2\ ) (11)11/1233 - 1#21!71@).
1— A2

The expansions (4.24)/(4.25) leave invariant the Lax pair (4.13-4.14), or are
Darboux transformations. The eigenfunctions and singular manifolds are trivially
related through (4.18) and we therefore have the following: with two eigenfunctions
11 and vy for M, we can construct an eigenfunction 4 for the iterated solution
M’ using (4.25)-(4.27). Hence they provide a standard Darboux transformation.

Furthermore, (4.15) is a nonlinear equation that relates ¢4 and ¢4. This means
that the singular manifold ¢, itself could also be expanded in terms of ¢,

A
(4.28) B = dg + =

¢1
and by substituting this expansion in (4.15) and using (4.25)-(4.27), we obtain
(4.29) A = —[0(1,¥)"
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The procedure described above may be easily iterated. The singular manifold ¢5
for M’ can be used to construct a new solution

!
(4.30) M" =M + %ﬁ

2
that combined with (4.24) can be written as
(4.31) M" =M+ 222

T12

where
(432) T12 = ¢/2¢1
and by using (4.28) and (4.29)
(4.33) T12 = ¢o¢1 — [y, ¥2)]%.

Note that the function 75 for the second iteration is not a singular manifold but
it can be constructed from two singular manifolds of the first iteration. Thus, the
SMM algorithmically yields Hirota’s bilinear method [39]. It also provides the
algorithm to construct solutions for the 7-function, as we will see below.

The easiest nontrivial solutions can be obtained from the seminal solution

(4.34) M = agy

(so that M, and M, are zero in (4.20-4.23). For this solution, exponential solutions
of (4.20-4.23) are

(4.35) i = exp (kix - %y> )
where
(4.36) N = —k2
and, integrating (4.18)/(4.29) after using (4.35), the corresponding manifolds are
1
4. i = — (0 +¥2),
(437) 85 = g (0 +07)
where «; are arbitrary constants. Now, (4.27) implies
1
4. Q =
(4.38) (¥1,92) . Y192
and (4.33) also yields
2,12
4. — 2 oy iy .
( 39) T12 4k1k2 (al + wl)(aQ + "1’2) (kl + k2)2
Using (4.24) and (4.31), we can write the first and second iterates as:
(4.40) M’ = agy + 222,
¢1
(4'41) M// = apy + T12z ,
T12
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where
_ "
(4.42) ¢1 = 2k1(1 + F),
(4.43) ra = 21220 LR+ By + AP By},
4k ko
a; = exp(2k;To;),
ag
(4.44) F; = exp (2ki (a: — ﬁy — in)) ,
Ky — ko \ 2
4.45 Ap= ——7=) .
(4.45) 12 (kl " k2>

(4.40) corresponds to the one-soliton solution and (4.41) to the interaction of two
solitons for the AKNS system in 1+ 1.

5. Conclusions and Prospects

In this review, we have considered a technique which has evolved over the
last decade or so and which provides a method of algorithmically deriving various
properties of integrable systems from truncated Painleve expansions. As should be
apparent from the examples we have considered, the technique has by now evolved
to a point where it affords one form of unifying perspective on integrable systems,
and also provides an algorithmic method for investigating new integrable systems
such as new integrable hierarchies of equations.

Future work will probably seek to develop and refine the method further. In
addition, it will probably continue to be used to investigate new integrable equations
or hierarchies.
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