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In this article, we report the results of our numerical simulation of a one-dimensional modified MMT model,
which includes the processes of “one-to-three” wave interactions. We show that this model, with properly cho-
sen parameters, behaves according to the weak-turbulence theory. In particular, it demonstrates the validity of
the Kolmogorov spectrum over a wide range of wave numbers. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.27.Eq; 47.35.+i
1. The problem of Kolmogorov spectra is the core of
the theory of weak wave turbulence. These spectra
appear as exact solutions of stationary kinetic equation
for mean squared wave amplitudes [1]. In our opinion,
the Kolmogorov weak-turbulence spectra should be
used for the theoretical explanation of power-law spec-
tral distributions of energy in ensembles of stochastic
nonlinearly interacting waves of any nature. Spectra of
such type are observed systematically. The most con-
spicuous example of this sort is the spectrum eω .
gv/ω4, which is routinely observed in the systems of
wind-driven gravity sea waves.

However, this viewpoint is not shared by everybody.
Moreover, the very applicability of the kinetic equation
for waves to the real situation is under discussion (see,
for instance, [2]). The derivation of the kinetic equation
from the initial dynamic equation implies the validity
of the assumption of phase randomness, which can be
destroyed by the formation of some coherent struc-
tures, like solitons or wave collapses. Actually, this crit-
icism has serious foundations. In real situations, the
coherent structures are common, but there is no reason
for complete abandonment of the weak-turbulence the-
ory. The real life is multicolor, and in many particular
situations the coherent structures coexist with weak tur-
bulence, sharing the processes of transport and dissipa-
tion of energy and other integrals of motion.

Hence, there is a strong motivation to continue the
study of weak turbulence and explore both the case
where the coherent structures are important and the
case when the influence of such structures is negligible.

2. One of the most promising approaches for the
study of weak turbulence is a direct numerical simula-
tion of nonlinear dynamic equations describing wave
systems. In many cases, these equations can be effec-

1 This article was submitted by the authors in English.
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tively solved by the use of a spectral code. Of course,
numerical simulation of the equation completely rele-
vant to the real physical situation is most preferable.
However, a considerable amount of interesting infor-
mation can be extracted from the solution of simplified,
more or less artificial models, which account for the
basic features of the real physical equations. Since the
weak turbulence is a very general theory, its main state-
ments—applicability of the kinetic equation, existence
of the Kolmogorov-type spectra and structures of high-
order correlation functions, etc.—can be properly
tested with these simple models, for which computer
simulation can be carried out more easily.

One-dimensional models are the most attractive
ones from this point of view. Even a modest modern
computer makes it possible to perform numerical sim-
ulation of a system of nonlinear waves including a
thousand modes and three decades of scaling. Histori-
cally, the first such simulation was accomplished in
1997 by the authors of [2]. They used a model which is
called now, after their names, the MMT model. The
MMT model is the generalized nonlinear Schrödinger
equation conserving not only energy and momentum
but also the wave action (number of particles).

Further simulation with the MMT model was per-
formed by the same authors in [3]. Later on, numerical
experiments with the MMT model were performed in
[4, 5]. The results of both groups basically coincide.
The MMT model demonstrates a complicated many-
variant behavior that cannot be considered as a certain
confirmation of the weak-turbulence theory. In our
opinion, this is so because of an interference of the
coherent structures, which are present in all versions of
the MMT model.

In this article, we report results of our numerical
simulation with a modified MMT model, which
includes processes “one-to-three” wave interactions
not conserving wave action. We will show that this
model, with properly chosen parameters, behaves
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according to the weak-turbulence theory. In particular,
it demonstrates the validity of the Kolmogorov spec-
trum in the range of more than two decades.

3. We study the following model:

(1)

If g = 0, this model becomes the MMT model.
Model (1) can be written as

(2)

where

(3)

(4)

Hamiltonian H describes the following four-wave pro-
cesses:

(a) scattering obeying the resonant conditions

(5)

(b) “one wave-to-three” decay and the reverse pro-
cess of gluing three waves to one wave, obeying the res-
onant conditions

(6)

Here, ωk = |k |α.
We have studied only the case α > 1. In this case,

resonant conditions (5) have only a trivial solution

(7)

while resonant conditions (6) describe 2 – D manifold
in space (k, k1, k2, k3). If a > 0 and g is small, then
Hamiltonian (4) is positively defined. This makes it
possible to get rid of any kinds of localized structures.

Under these assumptions, system (1) is described by
the kinetic equation

∂n/∂t + 2γknk + st(n, n, n), (8)
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where

(9)

By definition,

(10)

A stationary equation

st(n, n, n) = 0 (11)

has, for the proper values of α and β, a power-low solu-
tion

nk = αp1/3/kλ, (12)

(13)

This is the Kolmogorov spectrum carrying a constant
flux of energy p to the large-k region, and α is the
dimensionless Kolmogorov constant.

4. We have performed the numerical simulation of
Eq. (1) by the use of the standard spectral code. We set
α = 3/2, β = 9/4, a = 1 for different values of the dimen-
sionless parameter g = 0, 0.05, 0.1, 0.15, 0.2.

Our spectral array included 2048 modes, –1024 <
k < 1023. The system was pumped at low wave num-
bers, γk = –0.005 at 5 ≤ |k | ≤ 10. The energy sink at large
wave numbers was provided by damping, γk =
400(k/512 – 0.5)2 at |k | > 512.

In all variants of our computations, we observed a
growth and stabilization of the total energy H of the
wave system. According to the weak-turbulence theory,
the stabilization level depends drastically on the g
parameter.

Figure 1 clearly demonstrates that 1  3 pro-
cesses play the main role in establishing equilibrium.

Figure 2 displays typical stationary spectra at g =
0.15. One can see that, in the range 30 < k < 300, they
can be well approximated by the Kolmogorov exponent
λ = 5/2. A typical value of nonlinearity

e = Hint/H

is e . 0.15.
In conclusion, we would like to claim that our result

is the first clear confirmation of the validity of the
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Fig. 1. Total energy of the pumped system versus time for
different coefficients of “three-to-one” process.

Fig. 2. |ψk|2 averaged over time 100. Spectra for positive and
negative k are shown.
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weak-turbulence theory for the 1 – D case. A similar
confirmation for the 2 – D case was done in work [6].
However, in the present 1 – D case, the range of scales
where the Kolmogorov spectrum is observed is sub-
stantially larger.
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