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1. Introduction 

In many physical situations, the oscillations of the free surface of a fluid is are a random process in space and 
time. This is equally correct for ripples in a tea cup as well as for large ocean waves. In both cases the situation 
must be described by the averaged equations imposed on a certain set of correlation functions. The derivation 
of-such equations is not a simple problem even on a “physical” level of rigor. It is especially important to 
determine correctly the conditions of applicability for a given statistical description. For some physical reasons 
they might happen to be narrow. In this article we discuss the statistical description of potential surface waves 
on the surface of an ideal fluid of finite depth. We will show that this problem becomes nontrivial in the limit 
of long waves, i.e. in the case of “shallow water”. 

The most common tool for the statistical description of nonlinear waves is a kinetic equation for squared wave 
amplitudes. We will call it the “wave kinetic equation”. Sometimes it is called “Boltzmann’s equation”. This is 
not exactly accurate. In fact, a wave kinetic equation and Boltzmann’s equation are the opposite limiting cases of 
a more general kinetic equation for particles obeying Bose-Einstein statistics like photons in stellar atmospheres 
or phonons in liquid helium. It was derived by Peierls in 1929 and can be found now in any textbook on the 
physics of condensed matter. Both Boltzmann’s equation and the wave kinetic equation can be simply derived 
from the quantum kinetic equation. In spite of this fact, the wave kinetic equation was derived independently 
and almost simultaneously by Patric, Petchek and others (see Kadomtsev, 1965) in plasma physics and by K. 
Hasselmann (1962) for surface waves on deep water. It was done in the early sixties. Recall that Boltzmann 
derived his equation in the last century. Some authors call this equation after Hasselmann. We will use a more 
general term - “kinetic wave equation”. 

The pioneers starting from Boltzmann did not care about rigorously justifying the kinetic equation and finding 
the exact limits of its applicability. This work was done later. Boltzmann’s equation was derived in a systematic 
and self-consisted way by Bogoliubov in 1949. The quantum kinetic equation was studied systematically by the 
use of diagram technique in fifties. 

The wave kinetic equation can be derived and justified in a similar way. It is a lengthy procedure, t,hus in 
this short article we will give the final results of the diagram procedure - the kinetic equation and the limits of 
its validity. We will see that in the case of shallow water the limits are very restrictive. 

2. Hamiltonian formalism 

We will study weakly-nonlinear waves on the surface of an ideal fluid in an infinite basin of constant depth 
h. The vertical coordinate is 
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-h < z < q(f), r’= (qy). 

The fluid is incompressible, 

divV = 0 

and the velocity V is a potential field, 

v=va, 

(2.1) 

(2.2) 

(2.3) 

where the potential @ satisfies the Laplace equation 

A+=0 (2.4 

under the boundary conditions 

9),=, = *E(r’,tt) ) az(Z=-fL = 0. (2.5) 

Let us assume that the total energy of the fluid, H = T + U, has the following expressions for kinetic and 
potential energies: 

Here g is the acceleration of gravity, and u is the surface tension coefficient. 
The Dirichlet-Neumann boundary problem (2.4)-(2.5) is uniquely solvable, thus the flow is defined by fixing 

77 and K#. This pair of variables is canonical, so the equation of motion for n and 9 takes the form (Zakharov, 
1968): 

dq 6H BP 6H --. 
at=m at= 6q 

Taking their Fourier transform yields 

dq 6H -=- N!(iF) 6H 
dt 

-=--. 
m(Z)* ’ at hG)* 

Here KJ!(z) is the Fourier transform of !P(q: 

The Hamiltonian H can be expanded in Taylor series in powers of n: 

(2.8) 

(2.9) 

(2.10) 

(2.11) H=Hc,+Hl+H2+-.. 
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Omitting the procedure of calculating Hi we present the final expressions for the first three terms in this 
expansion: 

Ho = - ; Al, = k tanh(kh), Bk = g + o k2 (2.12) 

1 
HI = 

w74 s 
L(l)&, $2) Qkl !I!k2 r/k3 6(& + & + &)dk1 dkz dks, (2.13) 

1 
Hz = 

2(27r)2 .I 
L(%, 6, z33, &) *kl *kzqka qk4 ‘#l + z2 + z3 + z4) dkl dk2 dk3 dk4 

u2 -- 
S(2742 s 

(&~2)(~3~4) r]k> qk2 qka qk4 @I + 22 + i3 + i4) dkl dk2 dk3 dk4 . (2.14) 

The formulas for L(l) and Lc2) were found in 1970 by Zakharov and Kharitonov (see also Craig and Sulem 1992, 
Zakharov 1998). Here are their expressions: 

L(l)(&,ks) = -(&&) - lklllk21 tanhkrh tanhksh, (2.15) 

and 

IP)(&,Z&,3,4) = ~lklIlk21 tanhkrh tanhksh 

X 
2lhl Wzl 

-tanhkrh - tanhksh 
+&+&ltanhj& +&‘3(h 

= + Al+3 + A2+3 + A+4 + A2+4 

One can introduce the normal variables ok, u;. They can be expressed as follows: 

The transformation @k , ‘qk -+ ok is canonical. One can check that 

C$+is=O, 
k 

where the Hamiltonian H can be represented as the sum of two terms 

H = Ho + Hint. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

For the first term we have 

Ho = 
s 

wk ak a; dk, 
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where wk > 0 is defined by the formula 

wk = d&i!& = Jk tanh (kh) (g + 0 k2). 

The second term, Hint, is represented by the infinite series 

1 
Hini = - 

n!m! 

x6(& + . . ’ + Ln - in’,,1 - ’ . . - r&+m) dkl . . dk,+, 

(2.21) 

(2.22) 

In the case under consideration we have 

V(“>“)(P, Q) = V(“+)(Q, P), (2.23) 

where P = (ii,. , in) and Q = (I+, , . . . , ,&+m) are multi-indices. 
For more general Hamiltonian systems (in the presence of wind, for instance), the coefficients V(‘n,T’L)(P, Q) 

are complex, and 

V(“>“)(P, Q) = V*(“+)(Q, P). (2.24) 

The condition (2.24) guarantees that the Hamiltonian Hint is real. 
For surface waves the coefficients can be written as 

In this paper we will use only one coefficient of fourth order V( 2,2) P, Q). After a simple calculation we can ( 
obtain the following expression for this coefficient: 

v(2~2)(i&,~&) = -& { 
f,(2)(-il,-&,&,&) +~!~(~)(i~,i4,-$~,-i22) -i(“)(-~l,&-~2,i4) 

(2.27) 

where 

1 
~(2)(&,~22,~33,~4) = 4 

f&q &z & Ak, II4 
Akl Ak2 Bk, Bkq > 

L(2)(/g;,L2, i3, i4). (2.28) 
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We will not discuss the five-wave processes systematically. This makes it possible to use the following 
approximation for the Hamiltonian: 

H = 
J’ s 

m2) (Z, &) &)(a,, a;, a;, +a;ak,ak,)S(Li, -lG2)dkdlcldk2+ 

+; 
s 

V(“,3) (i, &, &) (ak ak, akz + a*k a;, a;,) S(z + & f &) dk dlcl dlca t 

.I V(“~“)(Z,&,&,2,3)a; ; a 1 akz ak3 6(2 + & - & - c3) dk dkl dk2 dk3 (2.29) 

3. Canonical Transformation 

In this chapter we will study only gravity waves and put o = 0, so that 

Wk = ~CJI? tanh(kh) . (3.1) 

The dispersion relation (3.1) is of the “non-decay type” and the equations 

wk = wkl + wk2 z = Zl + Q (3.2) 

have no real solution. This means that in the limit of small nonlinearity, the cubic terms in the Hamiltonian 
(2.11) can be excluded by a proper canonical transformation. The transformation 

(3.3) 

must transform equation (2.18) into the same equation: 

This requirement imposes the following conditions on Poisson’s brackets between ak and bk: 

{ak, ak’ ) 

{b/c, bv} 

h b;, > 

&&I 
6b;,, 
Sat, 
6b;,, 

6ak 6ap 
.-- - 

Jb;,, &k,, dk” = ’ 1 

6ak da;, 
--- 

c5b;,, 6bp 1 
dk” = 6(k - k’) 

6bl, 6bk,, --- 
da;,, 6akl I 

dk” = 0 

6bk Jb;,, --- 
da;,, dakl 

dk” = S(k - k’) 

The canonical transformation excluding cubic terms is given by the infinite series: 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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where 

(‘I ak = bk 

(1) - 
Uk - s 

I’(‘)& &, &) b/cl b,tz s(z - 6 - &) dkl dkz - 2 
s 

I+)(&‘,, i, I&) b;, bkQ b(z + & - &) dkl dka 

+ 
s 

lYc2)(i, &, &.) b& b;, 6(i + $1 + &) dkl dkz 

(2) _ 
.Uk - s 

B(lc,~~,~~,~~)b;,b~,bk,6(~+~~-~~-~~)dkldkzdka+... (3.10) 

Plugging (3.9) into (3.5)-(3.8), we obtain infinite series in powers of b, b’, which must identically cancel out at 
all orders except zero. 

Let us assume that 

r(“)&ZJ2’,> = r(2+&,&Z2) = r(2)(i2,Z,Ll). (3.11) 

This condition guarantees that (3.11), (3.5)-(3.8) are satisfied at first order in b, b*. Substituting (3.9) into H 
we observe that the cubic terms cancel out: 

-+-+ + 
r(l)(i,il,i2) = -1 V(1T2)(k,kl,k2) 

2 (wk - Wkl - wk2) 
(3.12) 

(3.13) 

A simple method for the recurrent calculation of B($, & , iz, &) and higher terms in the expansion (3.9) was 
found by the author in the article (Zakharov, 1998). By the use of this method one can find 

(3.14) 
-rQ)(Z,i2,rE- Q)W(i3,il,i3 - il) - r(1)(il,i3,& - L3)r+)(i2,&,i2 - il) 
-rc1)(~+~l,~,~l)rc1)(~2++3,~22,~3)+r(2)(-~~~1,~,~l)r(2)(~~22~3,~2,~3) 

The series (3.10) should be at least asymptotic. Hence we require 

@‘I K IhI (3.15) 

Let us consider the limit of shallow water as kh + 0. We will assume also that the wave packet is narrow in 
angle: k, < k,. In this limit 

and 

d1’(&,~2) N -klk2, Ak 2~ hlk12, Bk N g, vc’~2)(&&,~2) ” -&kk~k2)‘~2 ($I4 . 

Denoting k, = q, k, = p and Jpl > IqI, one obtains: 

3 - 9 l/4 (wlp2)v2, 
0 47rJz h 

(3.17) 
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We will study two opposite cases - wave packets narrow in angle and broad in angle. In both cases we will look 
only for the leading order terms in l/lch. For a packet which is very narrow in angle: 

a(O) (P, 4) = b(P) S(q), dl) (P, 4) = b(l) (P> b(4) 

The condition (3.15) now reads now 

lb1 g l/4 1 
p1/2h 0 SK1 (3.19) 

Let a be a characteristic elevation of the free surface, p = (~cx)~, b = Ich. The condition (3.19) is equivalent to 

(3.20) 

N is known as “Stokes number”. 
For wave packets which are broad in angle the condition (3.15) is less restrictive. In this case the denominator 

of I’(l) (z, &, &) is small if all three vectors & &, ,I& are parallel. Let us put z = (p, q), &  = (pl, ql), z2 = 
(~2, -q2). Then I’(l)( ~,pi,p2, q) has a sharp maximum at q = 0. Performing integration over q yields 

P 

P1’2 (P - Pl) 1’2 ~(PI, 0) b(p - PI, 0)dpl 

+2 
J 

cQ l/2 
o Pl (P+Pl) “‘b*~1,0)b(p+pl,O)dpl 

The condition 

lb(l) (p, 0) 1 <( (b(O) (p, O)( 

(3.21) 

(3.22) 

now reads 

p<s4. (3.23) 

4. Effective Hamiltonian 

After performing the canonical transformation the cubic terms in the Hamiltonian cancel out. In new variables 
bk we have 

H=Ho+H2+&+..., (4.1) 

Ho = Wk lbk12dk, J (4.2) 

(4.3) 

H3 = . . 
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where 

and 

R(l)(&&,& = - 
v(o~3)(-~-~~,~,~~)v(o~3)(-~~ -/s3,&,&) 

w(-k - kl) + w(k) + w(Ic2) ’ 
(4.5) 

R(“)(z, &, a&, z3) = - 
v~l~“~(~+~~,~,~~)v(1~2)(~2++3,~2,~3) - 

W.&h - Wk - WkI 

VC’~“)(~,~3,,~-~3)V(‘~“)(~2,,~2 -&,r&) - - - 
Wk-kz -wk +Wkz Wk-kg -Wk +Wks 

v(L2)($2, i, L2 - Z) v(qG& - i3,Z3) vc’~“)(Q,~,~3-~)v(1’2)(~2,~2--~r~~) - 
b&--L -t Wk - wkz Wk3-k f wk - Wk3 

(4.6) 

In the presence of capillarity, the expression (4.6) makes sense everywhere except in the vicinity of the zeros of 
the denominators. The width of these vicinities depends on the level of nonlinearity. 

~The equation of motion (3.4) in new variables takes the form 

ah 
a++iWkbk=-; 

‘J’ 
T(i, &, i2, z3) b;, bk2 bk,, 6($ + 6 - & - &) dkl dkz dks (4.7) 

The term T(& I&, $2, &) is defined on the resonance manifold 

Wk + Wkl = wkz + Wk,, it-&&+& (4.8) 

Further we will omit the wave numbers k and keep only their labels. After a series of transformations the 
four-wave interaction coefficient T can be simplified into the form 

-. T1234 = $1234 + p2134), 

Tl234 = 
1 

-- ( 
AlAzAsA4 l/4 

16n2 BlBzB3B4 > 
x [k;B1+k,2Ba+k$B3+k:Bc( wl - ~3)~ Al-3 - (WI - ~4)~ Al-4 - (WI + ~2)~ -41+2] 

1 
-I- B1-3 -4 L-l,3 L-2,4 + u-1,3 u-2,4 w;-3 - (wl _ w3)2 + 8,1_, I -4 

u-1,4 u-2,3 L-134 L-2,3 + wf-4 _ (wl - w4)2 (4’g) 

Here 

Ak = ktanh kh, Bk = g + uk2, LI,~ = -(& . i2) - A1A2, uk = dm. (4.10) 
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The expression for ~1.2 is 

Ul,Z = (& d2) )I 
B1+2 

+ B2 
- w2 kf + 

&+2 AlA 112 
-w1k,2+ - 

Bl ( > BI B2 
c-J1 w2 - wf+2)(w + w2) 

u-1,3 = -(&&) wi(1+$s)-w3(1+$s 
[ )I 

Bl-3 2 2 
--w,kl+~wlk~+(wl-W3)(wlW3+Wf~)(~)L’2 

B3 
(4.11) 

The above expression is the most general form of four-wave interaction coefficient and is applicable for gravity 
as well as for capillary waves on an arbitrary depth. It can be simplified in different limiting cases. 

In the absence of capillarity CT = 0, Bk = g and 

u-1,3 = (Wl - w3) - 2(& . i3) + ;wlw3(w:-3 - WI + w,“, (4.12) 

5. Deep water limit 

The coefficient of four-wave interaction for pure gravity waves on deep water was calculated by many authors 
since Hasselmann (1962). We present here a relatively compact expression for this coefficient. 

1 
Tl234 = -- 

1 
16x2 (klk2k3k4)l/4 

- 12klk2k3k4 - 

-2(W1 +w2)2[W3W4((& &) - klkz) +w~w@Y&) -k3k4)] $ 

-2(wl -W3)2[W2w4((h &) + klk3) +WJQ((& .z4) + k2k4)] -$ 

-2(W1 - ‘J4)2 [w2w3 ((h 24) + klk4) + wlwq ( (i2 . i3) + k2k3)] $ 

+[($I . z2) + hh.l[& * &) + kzkq] -t [-$1 . i3) + klk3][-(z2 . i4) + k2k4] 

+[-$I . c4’4) + k&q][-$2 . L3) -t k2k3] 

+4(q + wz)2 [& . ;2) - klk+<k . i*‘4) + kA1 + 4(wl _ w3)2 [(& . x3) + k1k3][(i2 &) + k2k4] 
WI+2 - (a+ w2)2 wf-3 - (WI - w3)2 

+ 4cwl _ w4)2 i& . i4) + klhl[(~~ .5) + k&3] 

wf-q - (WI - w4)2 
(5.1) 

Here wi = m. 
In spite of its complexity the expression (5.1) has an inner symmetry and beauty. It was mentioned that in 

the one dimensional case the coefficient T 1234 cancels out (Dyachenko and Zakharov, 1994). This result was 
obtained earlier by computer. We will obtain it below “by hand”. Another compact expression for T1234 was 
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found by Webb (1978). Both expressions coincide on the resonant surface (5.2), but a proof of cancellation of 
Tl234 in a one dimensional geometry is more difficult with the Webb formula. 

In the one-dimensional case the resonant conditions 

w2 t-w:! = w3 + w3 

kl + k2 = kg $ kq (5.2) 

have trivial solutions k3 = kl , k4 = k2, k3 = kz, k4 = kl describing wave scattering without momentum exchange, 
and nontrivial solutions providing the momentum exchange. 
vectors is opposite to others. For instance, we can put 

For these solutions the sign of one of the wave 

kl > 0, kz < 0, k3 > 0, kq > 0. 

In the one-dimensional case most of the terms in (5.1) cancel out, and the expression is simplified down to 
the form 

1 
Tl234 = - @ wl (wlw2w3w4)1’2 1 - 3W2W3W4 + Wz(W1 + WZ)~ - W3(W1 - W3)2 - W4(W1 - W4)2 

The-resonant conditions (5.2) can be solved by the parametrization 

(5.3) 

wl = A(1 + (+ E2), w2 = A& w3 = A(1 + I), w4 = A<(1 + E) 
kl = A”(1 + < + [2)2, ka = -A2t2, k3 = A2(1 -t c)2, k4 = A2<“(1 + o2 

By plugging the parametrization (5.4) into (5.3) we get 

Tl234 = -&W~(WIW~W~W~)~ A3<(1 -k 5) (-3[(1 -I- <) + (1 + o3 - 1 - <“) E 0 

6. Shallow water limit 

The shallow water limit takes place if kh + 0. In this limit 

Al, + k”h ‘dk + sk, s2 = gh, L12 + -(& . z2), u1,2 + s(kl + k2)(& i2), 

u-1,3 -+ -s(kl - k&& . &). 

The coefficient (4.9) can be simplified into the form 

(5.4) 

(5.5) 

(6.1) 

Tl234 = 
1 1 -- 

167r2h (k1k2k3k4)1/2 
(& . Q)(i3 . Z4) f (Zl . Q)(i2 . L4) + (ii1 . Z4)(162 . Z3) 

$1 . &)(& . &)(kl - k2)2 _ $1 . i3)(i2 . &)(kl - kd2 _ (& . i4)(;2 . &)(kl - k4)’ 
(& . c2) - klk2 (& . z3) - klk3 (& . i4) - klk4 

6.2) 

The three terms in (6.2) are singular if the vectors ki are parallel. But there is a remarkable fact: these singu- 
larities cancel and the whole expression (6.2) is a regular continuous function. The cancellation of singularities 
is a quite nontrivial circumstance. It could be checked by a straightforward calculation. 

.The singular part of pizs4 can be written as follows: 

1 
!&234 = -- k&&4 (kl + kd2 @I - k3)’ (h - kd2 

4n2h (klk2k3k4)+ k2(cos& - 1) - k3(cos43 - 1) - k4(cos& - 1) I 
(6.3) 
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Here cos& = (& . ,&)/krIci. 
The resonant conditions are: 

klfk2 = k3+k4, 

kl + kz cos $2 = kg cosqfJ3 + k4 cos44, 

Ii5 sin $2 = lcssin& + kdsin&. 

For small angles I&l < 1, we can put approximately 

cosq&-lcx-g sin$,21$, 
2’ 2 z’ 

The resonant conditions now become now 

b4; = k3& + k44:, kz42 = k343 + k444 

The most singular part of !I!1234 is 

F szng ” _ 1 (k3k3k4)1’2 
2n2h 1 k1i2 

_ (h + k2)2 + (ICI - k3)2 + (kl - k4)2 
k2& k3@ k44: 

But one can check by a direct calculation that 

(kl + w2 _ 
h4; 

(h - &I2 _ (kl - kd2 = o k34~ 
h4; 

- 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

in virtue of (6.5). Hence the singularities cancel and (6.2) is a regular function. 
We can calculate Fl234 more accurately by putting 

?I234 = --!- 1 
167r2h (klk2k3k4)1/2 

(ix)(&Q +&l&ix) + (kx)(&&) 

&&)‘,)(lc’,lc‘,>(k + W2 

- 

(Ic;@(&d)(h - W2 _ &lc;;)(&i)(kl - Jc4)2 

4+2 - (Wl + a)2 wfe3 - (WI - w3)2 wf-4 - (Wl - w4)2 
(6.8) 

Here we put 

w(k) = sk(l- ;(kh)‘) (6.9) 

Now denominators in (6.8) cannot reach zero, but for almost parallel ki they are of order (kh)2 and small if 
kh -+ 0. As a result, some terms in (6.8) are large, of order l/h3, but in fact they cancel each other. The major 
terms in (6.8) are 

T 
szng 

” 1 Pw’ch)1’2 (h + kd2 (kl - W2 (h - W2 

2r2h 1 k112 k&t; + h2(k1 + kz)“] - kg[& + h2(kl - k3)2] - k&b; + h2(k1 - kq)2] = o(6’10) 

The expression (6.10) is identically zero in virtue of (6.5). As h + 0 (6.10) goes to (6.7). 
Cancellations (6.7), (6.10) have a very deep hidden reason - they are consequencies of the integrability of the 

KP-2 equations (see Zakharov 1998). 
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The statistical description of nonlinear wave fields is realized by the correlation function 

< a;, W&Uk,+l ~“ak,+, >= J”‘“(,$ -&,ii~+l -in+m)~(~~ + ..‘t & - in’,,1 .” - &+m) 

The presence of b-functions in (7.1) is a result of spatial uniformity of the wave field. 
In the same way we can introduce correlation functions for the transformed variables bk: 

(7.1) 

< bil . . . bEn bk,+l . . . bk,+ >= InTm(& . . . zn’,, ,&,,I . . . t&+m)6(& + . . + in - zn+, . - t&+m) (7.2) 

To find the connection between J”pm and Pm one has to substitute (3.9) into (7.1) and perform the averaging. 
The following pair of correlation functions is the most important: 

Here nk and Nk are 
correlation functions. 

< a,@;, > = nk 6(/i? - k’) 
< bkb;, > = Nk d(k - k’) (7.3) 

different functions. nk is a measurable quantity, connected directly with observable 
For instance, from (2.17) we get 

1 wk 
(nk + n-k) = - - (nk + n-k) 

2 BI, (7.4 

The function Nk cannot be measured directly. It is an important auxiliary tool used in analytical constructions. 
In most articles on physical oceanography the authors make no difference between nk and Nk. This is a source 
of persistent and systematic mistakes. We will see that the difference between nk and Nk is especially important 
on shallow water. 

Plugging (3.9) into (7.3) we get: 

nk = Nk+ < a~)~~)* > f < ~f)*Ur) > + < U~)U~)* > -t- < U~'Uf'* > + < Up)*Uf) > +... (7.5) 

Terms < up) a:‘* >, < a;)* ur’ > are expressed through triple correlation functions < b* bb > and < bbb >. As 
far as the cubic terms in the effective Hamiltonian are cancelled, triple correlation is defined by the fifth-order 
correlation functions and is small and can be neglected. In fact, 1(r12) N n5. 

The next terms in (7.5) are expressed through quartic correlation. Only one quartic correlation function is 
really important 

< b; b;, bka bks >= I ‘2~2’(~,~~,~2,~~3)6(~+~~ - & -is) (7.6) 

We study only weakly nonlinear waves and can assume that the stochastic process of surface oscillations is close 
to Gaussian. Thus we can put approximately 
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By the use of (7.7) we obtain the following expression: 

Using the expression (3.14) for B and formulae (3.12), (3.13) we get the final result: 

nk = i&+l 
2 I 

(W2)(Z, Zl, #Q2 
(wk - wkl - wk2)2 

(Nk,Nk, - NkNk, - NkNk2) s(i - 21 - &) dkldk2 + 

+; Iv(1qL,zJ2)12 
2 I (wki -wk -wkz)2 

(Nk,Nk, + NkNk, - NkNkz) 6(& - ii - i2) dkldk2 + 

+L 

I 
~V(‘J)(&, z, &)I” 

2 (wkz - Wk - wk,)2 
(NklNkz + N/cNkz - NkNk,) 6(z2 - ; - f&) dkldk2 + 

1 
+s 

. ~v(“,3)(~,&,i2)(2 

I (wk + wkl + ‘dk2)2 
(NklNkz + NkNkl + NkNkz) 6(z + & f z2) dkldk2 (7.9) 

On deep water all the terms in (7.9) are of the same order, and the difference between nk and Nk is small: 

nk - Nk 
-z P 

nk 
(7.10) 

However, in shallow water, denominators in (7.9) are small, and this difference can be dangerously big. The 
integration in (7.9) for a wave distribution which is broad in angle in the perpendicular direction can be 
performed explicitly. The last, nonresonant, term in (7.9) must be neglected. It is suitable to present the result 
in polar coordinates in the k-plane. The final formula is astonishingly simple: 

n(k,8)=N(k,B)+$(~)1’2~{~k.N(k1.e)N(k-ki,B)dkl+2SrrN(k~,B)N(k+kl.B)dkl) (7.11) 
0 0 

Comparing the leading term with the next terms in (7.11) we obtain 

(7.12) 

Then the condition of applicability for a weakly-nonlinear statistical theory of waves on shallow water becomes 

p < s5 (7.13) 

For a very shallow water, kh N 0.1, this condition can practically never be satisfied. But for a moderately 
shallow water, kh N 0.3, it could be satisfied for small amplitude waves, ,LL N 10e4. In many real situations the 
corrections in (7.11) are important and cannot be neglected. Generally speaking, the weakly-nonlinear theory 
has narrow frames of applicability in shallow water. 
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8. Kinetic equation 

The function nk is usually named “wave action distribution”. There is no standard name for the function 
Nk so far. We will call it “renormalized wave action”. It is very important that the kinetic equation is imposed, 
not on the wave action nk but on the renormalized wave action Nk. 

To derive this equation we can begin from the equation (4.7). It imposes an infinite set of relations on 
correlation functions. The statistical description means a loss of time reversibility and needs an introduction of 
negligibly small damping. It can be done by replacing in (4.7) 

Directly from (4.7) we obtain 

We will shorten the notation further. 

$11234 + (iA + r) 11234 = -f 
SC 

Tl567 &+5-6-7 1267345 -t 

+T2567 &2+5-6-7 1167345 - T3567 1125467 b3+5-6-7 - T4567 1125367 64+5-6-7 dh&tid~7 

Here 

A = Al234 = -WI - wq + ~3 + w4 

r = Yl + 72 + y3 + y4 

To make a closure in the system we perform the canonical expansion of the correlation function 

I1234 = N&(&3 + 614) + 11234 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

into 

1123456 = NlN2N3(&4&25 + 614626 + 615624 + &5626 + 616624 + &6625) + 

+N4(#2356614 + 11356624 + fl256d34) + 

+NS(f2346&5 + &346d25 + &246&35) + 

+N6(12345&6 + 11345626 + 11245636) + 1123456 (8.5) 

The formulae (8.1)-(8.4) are exact. There 11234 and 1123456 are the cumulants, irreducible parts of the correlators. 
Substituting (8.5) into (8.3) and using (8.1) we obtain 

$fl234 + (id + T)I 1234 = T1234(Nd-%N4 + NlN3N4 - NlNzN3 - NlN2N4) + iI + Q (8.6) 

Here Q is the right part of the equation (8.2) where the six-point correlator is replaced by a corresponding 
CUIIdant, for inStanCe, 1256347 + 1256347. 

d=--L;l-~2+W3+L174, (8.7) 
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where W(lc) is a renormalized dispersion relation 

iI is a linear operator: 

C-3) 

(ml234 = Ml234 + M2134 - M3412 - M4312 (8.9) 

M1z34 = -- ; N2 
s 

T1256 15634 6(1 + 2 - 5 - 6) dk5dk6 (8.10) 

-iN, 
s 

??r546 12645 6(1 + 5 - 4 - 6) dk5dk6 - iN4 
s 

Tl536 12635 6(1 + 5 - 3 - 6)&j& 

The system (8.1),(8.6) becomes closed by putting f123456 = 0. It is still very complicated. For further simplifi- 
cation one has to neglect 21. Sending I’ t 0, we finally get 

1, &234 = rT1234(N2N3N4 + N1N3N4 - NlN2N3 - Nlff2N4) d(d) (8.11) 

Substituting (8.9) into (8.1) leads to the final result 

aNk 
dt + 27/c N/s = st(N, N, N) 

st(N, N, N) = r 
J 

jT123412 (N2N3N4 + NlNsN4 - NlNd% - NN2Nd X 

x&+2-3-4 fi(til + 62 - Lj3 - 24) dk2dk3dk4 (8.12) 

Due to the inclusion of the frequency normalization, the equation (8.12) is more exact than the “common” wave 
kinetic equation. 

To get the quantum kinetic equation we can use the same procedure, assuming that ak, at are noncommu- 
tative operators of annihilation and creation of quasiparticles. 

9. Renor malized dispersion relation 

Frequency renormalization is described by the diagonal part of the four-wave interaction coefficient 

q&,&2) = T(Z~,Q,&,Q) = Tl2 (9.1) 

This “naive” formula presumes the existence of the limit: 

T(~&) = ,$yo T(il,i& +g,z2 -0 (9.2) 

This limit exists and does not depend on the direction of the vector q’only in deep water. In the general case, 
we can obtain from (4.9) 

112 

T12 

1 
zz -- 167r2 1 2k;Bl -t- 2k;Bz - (WI+ ~2)~ Al+2 - (WI - ~2)~ Al-2 1 (9.3) 
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In the absence of capillarity in deep water the expression (9.3) becomes 

1 T12 = -- 
1 

87r2 (kl k2)1P 3k?k; + 61 ’ i2)2 - 4WlW2(z.i2)(k1 + k2) + 

In the one-dimensional case the formula (9.4) becomes remarkably simple 

T12= $ 
k,2lc2 kl < k2 
klk; k,>k, (9.5) 

The function Tl2 is continuous at k = k1, but its first derivative has a jump. This result was published by the 
author in 1992 (Zakharov, 1992). At k2 = kl 

5712 -+ TII, TII = &k3. 

In the presence of capillarity 

k3 2 -uk2 
Tll = - 

4.rr2 1 - 2gk2 ’ 

For monochromatic waves we have: 

b = F6(k - ko), bw = ;TII IFI (9.8) 

In natural variables 

and 

7 = acos(kOz - wt - $), a2 = & -&iFf’ 
0 

(9.6) 

(9.7) 

6W 1 2 - gk2 
- = 

W 4 1 - 2uk2 (W2 (9.9) 

It is in agreement with the classical results of Stokes and other authors. In shallow water the limiting procedure 
(9.2) needs some accuracy and falls beyond the framework of this article. 

10. Kolmogorov spectra 

Let us look now for stationary solutions of the kinetic wave equation (8.12). They satisfy the equation 

st(iv, N, N) = 0 (10.1) 

This equation has an ample array of solutions describing direct and inverse cascades of energy, momentum, and 
wave action. A full description of these solutions has not been done so far. Only very special, isotropic solutions 
could be found analytically in the case when wk is a power function 

‘dk = alkl”, (10.2) 
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+ 4 + 

and T( ,&, Icz, Its , Icq) is a homogeneous function: 

T(EZ1,&,&,E~~) = &yi&$J&) (10.3) 

It is assumed that the function T(&, ,I&, &, /&) is invariant with respect to rotation in &pace. 
In the general case of water of finite depth wk is not a homogeneous function. As a result, all known analytical 

methods are unable to construct any nontrivial (non-thermodynamic) solution of equation (10.1). But in two 
limiting cases, deep water and very shallow water, some solutions can be found. On deep water 

wk = a, Q! = 112, (10.4) 

-+ -+ + 
and T(&, kz, Ica, Jeb) is given by the expression (5.1). Apparently, ,0 = 3. On very shallow water 

wk = sjkl, a = 1, (10.5) 

and T(&, &, ks, Icq) is given by formula (6.2). As far as singularities in (6.2) are cancelled, it is a regular 
continuous function on the resonant manifold (6.4). Now p = 2. On a flat bottom the isotropy with respect to 
rotation is satisfied. 

It is well known (see, for instance, Zakharov, Falkovich and Lvov, 1992) that under conditions (10.2), (10.3) 
the equation (10.1) has powerlike Kolmogorov solutions 

(1) = 
nk 

al p1/3 k-$-d 

(2) _ 
nk - 

u2 Q1/3 k---d (10.6) 

Here d is a spatial dimension (d = 2 in our case). 
The first one is a Kolmogorov spectrum, corresponding to a constant flux of energy P to the region of small 

scales (direct cascade of energy). The second one is a Kolmogorov spectrum, describing inverse cascade of wave 
action to large scales, and Q is the flux of action. In both cases al and us are dimensionless “Kolmogorov’s 
constants”. They depend on the detailed structure of T(k, ki, k2, k3) and are represented by some three- 
dimensional integrals. 

-It is known since 1966 (Zakharov and Filonenko, 1966) that on deep water 

nk - 
(l) - al p1/3 k-4 

For the energy spectrum 

one obtains 

I,dw = wkn;di 

I w ” pII3 w-4 

This result is supported now by many observational data as well as numerical simulations. 
In the same way on deep water (Zakharov and Zaslavsky, 1982): 

nk (2) = a2 Q l/3 k-23/6, I, N Q1/3 w-11/3. 

On a very shallow water Q = 1, p = 2, and we obtain: 

np) = Gil PI/3 k-lo/3 h2/3, I;’ N PI/3 w-4/3 

c2) 
nk - 

- G2 Q1/3 k-3 h2/3 I(2) N_ Q1/3 w-1 
7 w 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 
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Formulae (lO.ll), (10.12) are new. We must keep in mind that they are applicable only if the condition p CC d5 
is satisfied. 

11. Conclusions 

The weakly nonlinear theory of gravity waves has some window of applicability on shallow water. But this 
window shrinks dramatically when the parameter 6 = lch tends to zero. For 6 N 0.5 the window is relatively 
wide, p < lo-‘, but for b N 0.2 it barely exists, p<< 10w4. 

On deep water we can neglect the difference between the observed, nk, and renormalized, Nk, wave action. 
On shallow water the difference could be very important for correct interpretation of observed data. We have 
to remember that the kinetic equation is written not for real, but for “renormalized” wave action. 

Many problems pertaining to the statistical theory of gravity waves on shallow water are still unresolved. 
The most important problem is finding a Kolmogorov spectra for a fluid of arbitrary depth. From dimensional 
consideration we can conclude that it has the form 

Nf) = P1i3 k-4 F(kh), F -+ al, lch + cc, F + a; (kh)2/3 kh + 0 (11.1) 

The function F(c) is unknown and should be found numerically. 
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