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DESCRIPTION OF THE n-ORTHOGONAL CURVILINEAR
COORDINATE SYSTEMS AND HAMILTONIAN
INTEGRABLE SYSTEMS OF HYDRODYNAMIC TYPE, L
INTEGRATION OF THE LAME EQUATIONS

VLADIMIR E. ZAKHAROV

1. Introduction. The problem of describing n-orthogonal curvilinear coordi-
nate systems can be formulated as follows: Find in R" all the coordinate systems

u=ul(x!, ..., x"), (1.1)
ou’

satisfying the condition of orthogonality
n i A
Xﬁlfi=o, i #J. (1.3)
k=1

The problem can be formulated either locally (in the same domain ) or
globally (in the whole R"). In the latter case, one can admit that condition (1.2)
can be violated on some manifold of dimension m < n, and the system of inter-
secting hypersurfaces may have a nontrivial topology. Coordinates u’(x) are
defined up to an obvious transformation

u' =fi@). (14)

For n = 2, the problem can be solved very easily. Let us choose a function (u!,
for instance) in an arbitrary way and consider a system of its level lines on the
plane x!, x2. Then one can construct the vector field of normals to the level lines.
Integral curves of this vector field are the level lines for u?, which can be recon-
structed uniquely up to transformation (1.4).

For n > 3, the problem is much more difficult. The first nontrivial case n = 3
is known in differential geometry as the problem of triply orthogonal systems
of surfaces. It was formulated in 1810 when Dupin and Binet found a family of
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confocal quadrics satisfying condition (1.3). Since that time, the problem became
one of the classical and the most popular. The first general theorem, stating that
the intersections of two orthogonal surfaces are the lines of curvature, was ob-
tained by Dupin in 1813. During more than a century after, the problem was
attacked by many first-class mathematicians—Gauss, Lamé, Bonnet, Cayley,
and Darboux are the most famous among them. The total amount of published
materials about this topic is enormous. The articles of Bianchi alone, devoted
to the problem of triply orthogonal systems of surfaces, comprise a book of 850
pages (Volume 3 of his Opere, published in Rome in 1955 [2]). The milestone
in the history of this problem was a fundamental monography, Lecons sur les
systems orthogonaux et les cordonees curvilineare, by Darboux [5], printed in
Paris in 1910. The work is really astonishing; much of this book is exciting to a
person familiar with the modern mathematical theory of solitons.

After the First World War, the problem of n-orthogonal coordinate systems
became less popular, and temporarily lost its conspicuous status. Nevertheless,
it attracted the attention of Cartan [4] and others, most of them French mathe-
maticians (see, for instance, [3] and [1]).

Let us summarize some basic achievements of the “classical” period. First
of all, the problem of n-orthogonal systems of surfaces can be formulated as a
problem of intrinsic geometry (Gauss, Lamé). Due to (1), (2), one can resolve

x'=x'(ul,. .. u"). (1.5)
Let us denote

H? = Z(%)Z (1.6)

k

The metric tensor in R” in the coordinate system u’ is diagonal:

ds* = Z H*(du')?. (1.7)
i=1

Christoffel’s coefficients for the Levi-Civita connection are
I, =0, i#l#m,

i _ 1 OH;
il—Hi 6u”

By oy
H? ou'’

(1.8)
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The space R" is flat; hence the Riemann’s curvature tensor vanishes:
Rijm = 0. (1.10)

Because the metric tensor is diagonal, condition (1.10) is satisfied automatically
if

i#zl#j#m.
Conditions
Rim =0, 1 #m, (1.11)
impose on coefficients H; (Lamé coefficients) the following system of equations:

’H; 1 0H,0H; 0H, &H;

W=Eau_mﬁ+ﬁ;a_mau_m (1.12)
The number of equations (1.12) is n(n — 1)(n — 2)/2.
Conditions
Ryu=0 (1.13)
impose on H; another system of n(n — 1)/2 equations
e et Y e e e =0 (9

mEI£]

Systems (1.12) and (1.14) are heavily overdeterminated, but still has common
solutions. Bianchi [2] and Cartan [4] showed that a general solution of both
systems can be parametrized locally by n(n — 1)/2 arbitrary functions of two
variables.

If Lamé coefficients H; are known, one can find x'(ul,...,u") (ie., solve the
embedding problem) by solving another overdeterminated (but linear!) problem

a%x g Oxt ) axt

aubowl L4 gk T T (1.15)
%x! o 0}

W_;F"W' (1.16)

One can prove (see, for instance the book of Forsyth [10]) that the systems
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(1.15) and (1.16) are compatible in virtue to (1.12) and (1.14), and they define n-
orthogonal surfaces up to transition and orthogonal rotation in R*. (Here, only
the case n = 3 is considered, but the generalization is easy.) It is important to
mention that system (1.15) alone has many more solutions, which can be para-
metrized by arbitrary functions of one variable.

An interest in the problem of n-orthogonal surfaces was reestablished a decade
ago, when it was found that the problem has natural applications in mathe-
matical physics. In 1983, Novikov and Dubrovin [8] developed a “geometrical”
theory of quasilinear systems of hydrodynamic type in 1 + 1-dimensions. These
systems have the form

o'’ . Ouk L om
Et—_ZVk(u)E’ u=u ---u". (1.17)

Novikov and Dubrovin showed that system (1.17) is a Hamiltonian system with
a “local” Hamiltonian

Hlu] = jh(u)dx,

if the matrix ¥} can be presented in the form

. 1, 0°h 4. Oh
i__ il il Iatid
Vi= zk:<g (W) 5157 + b (w) au,). (1.18)

Here g (u) are some metrics in a flat space R", while
bil) = -3 g* T, (119
S

Here I}, are the corresponding Christoffel’s coefficients.

System (1.17) is a generalization of the Euler equations for ideal compressible
fluids (in this case, n = 2). It was known since the time of Riemann that, for
n =2, the Hamiltonian system (1.17) is integrable by the hodograph method,
and can be transformed to a diagonal form

o' .o

“Diagonal” variables u’ are called Riemann’s invariants, and the coefficients
Vi(u) are “diagonal” velocities. In 1984, Tsarev, a student of Novikov, general-
ized classical Riemann’s results to the case of arbitrary n [11]. Developing the
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ideas of Dubrovin and Novikov, he proved that the Hamiltonian system (1.17)
can be integrated by some generalization of the hodograph method, only in the
case that it can be transformed by a proper choice of variables u’ to the diagonal
form (1.20). In this case, the flat metrics g** are diagonal, and the Hamiltonian h
satisfies the system of equations

0%h ; 0h  _; oOh
P PRy P (121)
coinciding to the first half of the embedding conditions (1.15).

Moreover, each solution P(u) of this system generates an integral P of system
(1.17) as

P= JP(u)du,

and all of these integrals commute. So, classification of flat diagonal matrixes
ds* = szu is an important preliminary step in classification of integrable
Hamlltoman systems of hydrodynamic type. To accomplish the classification,
one must find all solutions of the system coinciding with one of the embedding
equations (1.15), (1.16). It is important to mention that the diagonal velocities
V'(u) obey the following overdeterminated system (see [13]):

d 1 ovk i 1 ovk
22
oul (VJ vk 6u1) o ( - Vk Bu‘) (122)
So, the problems of description of n-orthogonal surfaces and classification of
the Hamiltonian of hydrodynamic-type systems are almost equivalent. The core
of both problems is to find all solutions to the overdeterminated system (1.12),

(1.14). It is important that the order of these systems can be reduced to one. Let
us introduce the “rotation coefficients” (see, for instance, [2] and [5])

1 0Hy
Bu =H° ou (1.23)

From (1.12), one can find that g, satisfy the following first-order system of
equations:

0

aﬁlk ﬁtkﬂk]: (124)
aﬁl aﬂz
sut t g T D BB = (1.25)

m#i,j
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If the solution of systems (1.21) and (1.22) is known, one can find the Lamé co-
efficients by solving the linear problem

0¥ ,
o =B¥e £k (1.26)

and putting H; ='¥;. But a common solution of system (1.26) is far from being
unique. Let ¥; be another solution. Introducing

P,
V'i - Ea
we get the identities
1 oV; _0lnH;
(Vk - V,) ouk — oduk - (1.27)

So the quantities V; satisfy equations (1.22), and are diagonal velocities for some
integrable Hamiltonian system of the hydrodynamic type.

Different solutions of system (1.26), affiliated to given rotation coefficients
Bix, describe different n-orthogonal coordinate systems, related by the so-called
Combescure transformation. Suppose H; and H; are two sets of Lamé coeffi-
cients, related by the Combescure transformation. Their quotient W, = H,~/fI,~
satisfies equations (1.22). The system of hydrodynamic type

ou’ ou’

- = Wi(u)a (1.28)
is a symmetry of system (1.20). Any set W;(u) provides a solution u = u(x, t) of
(1.20) in an implicit form:

Wiu) = Vi(u)t + x. (1.29)

One purpose of this article is to show that systems (1.24) and (1.25) can be
integrated by the inverse scattering method (ISM). We use a version of ISM
known as the dressing method, formulated by Shabat and by the author of this
paper in 1974 [16] (see also [13]). The starting point of the dressing method
is construction of a certain integral equation of Marchenko type. Its solution
gives exact solutions of (1.24) and (1.25), together with a fundamental solution of
the linear system (1.26). So it becomes possible to find a set of 8, parametrized
by n(n— 1)/2 functions of two variables, and to construct, for a given f;, all
n-orthogonal systems related by a Combescure transformation. Each solution
of (1.24) and (1.25) describes a Hamiltonian system of the hydrodynamic type,
together with all its symmetries.
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Integrability of systems (1.24) and (1.25) is not an astonishing fact. In the
simplest case, n = 3, system (1.24) is nothing but a well-known “three-wave sys-
tem” (see [13]) on an algebra of real 3 x 3 matrices /3. The similiar system on the
symmetric space of complex-valued Hermitian matrices is widely used in non-
linear optics. In the general case, system (1.24) is a generalization of the three-
wave system. It was found in articles [16] and [14].

Thus, construction of the solution of system (1.24) is a relatively easy problem.
The really new and difficult problem is to separate those special solutions of sys-
tem (1.24) that satisfy system (1.25) as well. This problem is solved by imposing
on the “dressing matrix function” a certain differential relation, which connects
the dressing matrix with its transponent. We hope that invention of this new
type of reduction will allow us to find new classes of integrable equations in the
future.

Integrability of systems (1.24) and (1.25), though in a very restricted sense, was
known to the classics in a form of the so-called Ribaucour transformation (see
[2]). If a given solution of systems (1.24), (1.25), and (1.26) is known, one can find
a new solution by the formula

A ¥Y; [ 0¥,
e = B — — -—-+§ s |- 1.30
ﬂk ﬂk A (auk s#kﬂk ) ( )

Here A = ZP(‘I’,,)Z. We show that the Ribaucour transformation is a very spe-
cial case of the dressing procedure. It allows us to use for dressing a complete set
of n(n — 1)/2 arbitrary functions of two variables.

Mathematicians of the classical period found a number of special solutions of
systems (1.12), (1.14), (1.24), and (1.25). One of the most remarkable is the so-
called Egorov’s solution

w=2

P=o (1.31)

Here @ is some scalar function of u’. In this case, the matrix of rotational coeffi-
cients is symmetric,

Bix = Bii»
and system (1.22) can be reduced to the form

n
0 .,
k=1

Also, systems (1.21) and (1.22) can be reduced to an n-wave system on the alge-
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bra of real matrices in 1 + 1-dimensional space. This fact has been established by
Dubrovin [9], who also applied Egorov’s metrics to the classification of Frobe-
nius manifolds in topological quantum field theory [15]. One can check that in
Egorov’s case (1.31), formula (1.30) indeed presents a new solution of the system
(1.24)—(1.25).

In addition, we must remark that the problem of n-orthogonal surfaces can be
formulated in a loosened form. Namely, we can impose on the Lamé coefficients
only equations (1.12) and drop out equations (1.14). The obtained system
describes n-orthogonal metrics in a Riemann space of a special type, defined by
the condition of “diagonality” of the Riemann’s curvature tensor

Rijim(1 — 8110km) = 0. (1.33)

We call such Riemann spaces spaces of diagonal curvature. In hydrodynamics,
they correspond to a system of hydrodynamic type, which can be diagonal (and
hence is integrable), but has no local Hamiltonian structure. This is the semi-
Hamiltonian system. We show that constructing such systems is easier than con-
structing integrable Hamiltonian systems.

In this article, we consider construction of n-orthogonal systems as a problem
of intrinsic geometry, and basically do not touch the problem of embedding.
According to this attitude, we do not try to find Hamiltonians and conservation
laws to find systems of the hydrodynamic type. We discuss this problem in the
next article. Also we construct n-orthogonal systems locally in some domains in
R", and do not discuss so far the problem of globalization. All obtained results
can be easily expanded to the case of pseudo-Euclidean space R(P9),

2. The dressing method and the abstract n-wave system. In this section, we
describe a method of solution of system (1.12) and the equivalent systems (1.24)
and (1.25). System (1.24) is a special case of a much more general integrable sys-
tem, which can be written in a rather abstract form.

Let A be an associative algebra over a field of real numbers R or complex
numbers C. Let Q be a domain in R", and let u = (u!,...,u") be coordinates in
R". Then Q(u) is an A-valued function on Q. We introduce n A-valued functions
on Q, I;(u), which commute

Ui, I) = 0, (2.1)
and obey the condition

oL _

Sx=0, %k (2.2)

So I depends only on u*. In typical cases, I are constants.
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We consider now the system of n(n — 1)(n — 2)/6 overdeterminated systems of
nonlinear equations imposed on Q:

> e (Ii%lk - IiQIjQIk) =0. (2.3)

perm
Here & is antisymmetric with respect to all permutations, and
&k = 1, i>j>k (2.4)

Summation in (2.3) goes over all possible (six) permutations. We call system (2.3)
the abstract n-wave system. It was introduced in [16] and [14] for matrix alge-
bras as a natural generalization of the well-known n-wave system.

If I; are constant in A, they are defined up to an arbitrary linear transfor-
mation

L= qulc  detlqal #0.
%

The system (2.3) is invariant with respect to the transformation

Let Ay < A be the maximum commutative subalgebra containing all I;. One can
decompose A4 in a sum of linear spaces

A=Ay + Ay

Without loss of generality, one can consider that Q € A;.

Suppose that E is the unit element in 4 and I, = E. (If the algebra 4 has no
unit element, one can interpret E as a unit operator E : A — A.) Then the system
of (n—1)(n—2)/2 equations in (2.3), associated with I,, can be written in the
form

0 d 0 0
W[IiaQ] - ﬁ[lf) Q] + Iia_g,lf - I]'a_,g,li - [[IiaQ]a [IJ" Q]] =0, (25)

for i # j # n. This is a “standard form” of the n-wave system (see, for instance,
(16]).

It is important to mention that in solving system (2.5), it is enough to solve
all other equations, including (2.3). To be sure of this, one can multiply (2.5) by
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I, k #£ i #j # n, from the left side, and do the cyclic permutation. As a result,
one achieves all remaining equations in (2.3). We proved the following simple
theorem.

THEOREM 2.1. Equations (2.3), i # j # k # n, are compatibility conditions for
equations (2.5).

In the general case, none of I are the unit in 4. But we can use the proved
theorem to construct solutions of (2.3) at arbitrary I;. We just make Q dependent
on an auxilliary variable u"t! =5, —00 < s < 00, and put I,.; = E. Then we
consider the system

0 0

0 0
ol 01 = (0,0 + L 52 by ~ [ 21— (1,0} [, 2l =0 (26)

o

We know that: Any solution of system (2.8) at any fixed s is automatically a
solution of system (2.3).

System (2.6) can be solved by the dressing method. The main tool here is the
integral equation

0

K(s, ) = F(5,5,) + | K(5,0,0)F (a5, wdg 2.7)

s

Here K,Fe A and —o0 <5< 00, —00 < §' < 00. Suppose that F(s,s',u) is a
given function satisfying the following two conditions.

(1) Equation (2.7) is uniquely resolved.

(2) F(s,s',u) obeys the set of equations

OF  9F OF

D,'F=é?+ ;-5;'4‘&—,

I=0. (2.8)

Then Q = K(s,s,u) obeys system (2.8), and consequently system (2.3).
The proof of this fact is straightforward. One can write equation (2.7) in a
symbolic form

K=F+KxF, (2.9)
and denote

oF oF OF
+Ii—+

DiF =it ligs T a9

I. (2.10)
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Applying D; to (2.10), one gets, after simple transformations,

DK = D;F + D;K x F + K x D;F, (2.11)
- 0K 0K aK
DK ==+ lim+=21; + (1, QIK. (2.12)

As far as D;F = 0, we have
DiK = Dy(K) * F. (2.13)

Then, by virtue of the unique resolvability of equation (2.7), one receives

DiK =0. (2.14)
Here,
DK = ZK +1; ‘;K + ZK, I+ [I;, QIK, (2.15)
0 = K(s,s,u).
Then we set
[D;, Dj]K = 0. (2.16)

An operator [D;, Dj] is a multiplication from the left to some element
Rij(s,u) € A. Equation (2.16) holds identically for all s’; hence one can cancel K.
We get

[, Dj] = 0. (2.17)

So operators D; commute. One can check that condition (2.17) coincides identi-
cally with (2.6).
Let ¥y be any solution of the system

6;1’9_4_11 %o

— 2 =0. (2.18)

Then ¥ (s, u) is defined as

00
¥ = Yo(s,u) + J K(s,s',u) ¥o(s',u)ds’. (2.19)

s
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A direct calculation shows that W satisfies the system

LY =0,
b 4 ¥
LY = —a-a + Ii_a; + [Ii, Q]'I’ (220)
Moreover, L; commute
[Li,Lj] =0. (2.21)

It is just another notation of identity (2.17).

The system of linear equations (2.20) is compatible. Its compatibility con-
ditions are equations (2.6). Thus, (2.20) gives a “Lax representation” for system
(2.6). One can construct the Lax representation for system (2.3) as well. It is
given by linear equations

(IiL; — LL)¥ =0 (2.22)
or

oY 6‘-1’
Ij—gu—l - ,~ = (I;,0I; — I,QI;)¥. (2.23)

The procedure for constructing the exact solution of system (2.3) is a general-
ization of the dressing method introduced in [13]. This is the simplest case of
dressing—dressing against a “trivial background.” We can essentially generalize
this procedure, considering the dressing against an arbitrary solution of equa-
tions (2.6). Let Qo(u, s) be such a solution. Suppose that K and F are connected
as before by relation (2.9), and F satisfies the system of equations

6F 6F oF

D;[Qo)F = +I, 7 6 == 1i + [1i, Qo(s, )] F — F[I;,Qo(s',u)] = (2.24)

By virtue of (2.3), this system is compatible. Applying operators D;[Qo] to equa-
tion (2.9), we get

D~![Q]K=0,
BiIIK = 38 4+ 1,25 4 08 11 11, Qo(s, WK — KL, Qo(s, 1] =0, (229)

0 =00 +K(s,s,u). (2.26)
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Equation (2.25) can be solved if one can find a fundamental solution of the
linear system

0% ik 4

Tl + I, + [Ii, Qo(s, u)|¥o = (2.27)
Then

F = Wo(s,u) Fo(s,s',u) Y5 (s, u). (2.28)

Here F) satisfies system (2.8). To find ¥, one must apply transformation (2.19) to
any solution of (2.27). Apparently

0Q(s,u) = F(s,s,u) (2.29)

at any s satisfies the linearized system (2.3)
Za,,k( 6QIk IgQOIj(SQIk—I,-éQI,-QoIk) =0, (2.30)
and the linearized system (2.6):
0 0 0 0
5ot 109092 = 55 [11,00] + [ 5001, — I =601

+ [[Ii76Q]’ [Ij, QO]] + [[Ii’ QO]’ [IJ'?aQ]] =0. (231)

Finding ¥, if Qo(s,u) is known, is a solution of “the direct scattering problem”
(in terms of the theory of solitons).

The dressing method gives explicit solutions of system (2.3) if the kernel F is
degenerative:

N
F =Y fols,u)gq(s',u)- (2:32)
q=1

Here f,, g, satisfy the equations
Lifs=0, L*g, =0, (2.33)

and L} is an adjoint to the L; operator

og 0
Lig=<2+ 221~ gl 0l = 0. (2.34)
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IfN=1and

F(s,s',u) =f(s,u)g(s',u), (2.35)
then

K(s,s',u) = K(s,u)g(s', u),

© -1
K(s,u) = f(s,u) [1 - [t s ds'] , (2.36)

© -1
K(s,s,u) =f(s,u) [1 - J g(s’,u) f(s' ,u)ds'] g(s,u). (2.37)

The presumed unique solvability of equation (2.9) is a guarantee that the inver-
sion in (2.36) and (2.37) is possible.

3. n-Orthogonal systems in spaces of diagonal curvature and semi-Hamiltonian
systems of hydrodynamic type. Let us show how the construction of Section 2
works for systems (1.12), (1.23), and (1.24). In this case, 4 is I,(R), which means
the algebra of n x n matrices with real coefficients. I; are diagonal matrices.
They can be choosen as

n

Iy = diag(0,...,10,...,0). (3.1)

k
Obviously,
LIr=0 (3.2)
ifi #k.
It is immediately clear that system (2.3) now has a form
%%,5 = Qi Qjk, (3.3)

which formally coincides with (1.24). Here i #j # k. In the future, we will
identify Qi = f;;. Then

0 0o 0 L
((—3;+5;7+5;) Qi — %Qikaj =0, i#]J (3.4)
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The linear equation (2.22) is simplified up to the form

oY

Ii—a—;;

=LQILY.
Let ¥; be any column in the matrix W. Equation (3.2) gives

Y, .,
Wj‘ = Qij‘Pj) 1 ?(-']

For i = j one gets, from (2.20),

Ja¥;

ov;
W+a—;+ZQik\Pk=0-

k#j
Equation (2.8) can be solved as
Fy(s,s',u) = fy(s — u',s' — /).

Here f;(&,7) are n? arbitrary functions of two variables.
Substituting (3.3) with (3.4) and (3.6) with (3.7) yields

0Q; _ 0¥; _
—0S—+DQU—O, E""D\Pl_o'
Here
n
0
D= —_—
; ouk
So

¥, =¥u! —s,...,u"—5),
Qi = Qy(u —s,...,u" —5).

In this case, dependence of the auxilliary parameter s is very simple.

117

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Now we can describe a procedure for the implementation of the dressing

method to the formulated problem. It consists of the following steps.

(1) Choose arbitrarily a real matrix function of two variable f;(&,7)’s and
solve the integral equation (2.9). The only restriction on f; is that equation (2.9)
must be uniquely resolvable for —0 < s < 00, a € Q. Any choice of f;; produces a
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one-parameter family of solutions of system (3.3) by the formula
Qyi(s,u) = Kij(s, 5,u). (3.12)

The solutions are parametrized by —o0 < s < 00. Dependence upon s, according
to (3.11), is just a shift of arguments u’ — u’ —s.

(2) Choosing arbitrarily a solution of system (2.18), one constructs one solu-
tion of system (3.6) using the dressing formula (2.19). Each column of ¥ in (2.19)
is dressed independently, so one can parametrize ¥; by an arbitrary vector solu-
tion of (2.18). In our case they have a very simple form:

®o; = ¢i(s — u). (3.13)

Here ¢,(£) is an arbitrary vector function of one variable.
(3) Now we can identify

H =9, (3.14)

We receive a solution of system (1.12) describing an intrinsic geometry of some
space of diagonal curvature. Another choice of ¢;(£) produces another solution
to (1.12), H;, related to (3.14) by a Combescure transformation. All possible
quotients

OB

(3.15)

define an integrable semi-Hamiltonian system (1.20). The other choice of H; and
H;, that is, H] and Hj, generates another semi-Hamiltonian system,

i
Wi(u) = _}T{ (3.16)
The systems
ou' o'
—5{ = Vl(u) -a;a
ou ou’

are compatible, and they are symmetries of each other. Each W;(u) generates in
implicit form an exact solution of systems (1.20) (see [12]):

Vi(u) = tWi(u) + x. (3.18)
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To accomplish this, let us write the complete set of equations imposed on Kj;:

‘ka QuKyy,  k#i#j, (3.19)
ij’ oKy -t k; QuKy =0, i#j, (3.20)
aai" + aaf I 0iK;i=0, i#], (3.21)
%Ij,'ﬁ" + a;(" oKy L ; 0uKii =0, (3.22)

a—I;'-' = 0K,  i#].

From (3.19), (3.20), one derives
agc,, +DK;=0, i#}j, (3.23)
a—fsﬂ + % + DK; = 0.

Hence
Kii(s,s',u) = Kyi(s',u' —s,...,u" —s), i#j,
Ki(s,s',u) = Ki(s' — s,u' —s,...,u" —5). (3.24)

Now we can study the dressing against an arbitrary background. Suppose one
solution Ho;(u) of (1.12) is known. Then one can find Qg;(u) by

1 0Hy

Qojj = Hy 0w’ (3.25)

and extend it for all values of s by relation (3.11):

Qoii(u', ..., u") — Qoyi(u' —s,...,u" —5) = Qo(u —s). (3.26)
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Equation (1.25) now takes the form

OF  OF OF N
et Lo+ 2o L+ (1, Qo(u — )IF — F{Ii, Qo(u — )] = 0. (3.27)

To solve this equation, one must solve equation (2.27). It is enough to find a fun-
damental solution ¥y of the system

0¥ (u)

owl 0ij Fo), i#], (3.28)

and to extend it to all s by (3.11):
Wo(ul,...,u") —» ¥o(u! —s,...,u" —5) = Po(u—s). (3.29)
Then one must use (2.28), where
Foii(s,s',u) = foy(s — u',s' — ) (3.30)

and fo;(£,7) are arbitrary. One column in the matrix ¥y is given by Hy;. All
others are connected to Hy by a Combescure transformation. So, finding all
Combescure-equivalent metrics to a given one is actually the solution of the
direct scattering problem.

4. Algebraic reductions. The machinery built up in previous chapters makes
it possible to construct exact solutions of system (2.3). It is unclear so far how
dense the set of the found solution is, and how efficiently one can approximate
by this solution a generic solution of (2.3). This question is especially difficult if
the conditions of periodicity or quasi-periodicity are imposed. We do not
address this really important question here. In a sense, we constructed too many
solutions, and we concentrate our efforts in retrieving some interesting special
classes of them.

Let * mean an involution in A4,

(@) =a, abed,  (ab)"=b"a" (4.1)
If A is Iy, this involution might be
a* =R7'a"R. (4.2)

Here a is the matrix transponent to a. R is an arbitrary matrix satisfying the
condition R" = 4 R. The following theorem holds.
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THEOREM 4.1. Let F and K be connected by the relation
K=F+KXxF, (4.3)

and let &(s) be an A-valued function on s satisfying the condition &*(s) = +¢(s). Let
F(s,s)e(s") = e(s)F*(s', s). (4.4)
Then
K(s,s)e(s) = &(s)K*(s, s). (4.5)

Proof. Let us expand K in powers of F and present
0

K(s,s) = F(s,s) + J F(s,q)F(q,s)dq+---. (4.6)

s

Then

K*(s,s) = F*(s,5) + Jw F*(q,8)F*(s,q)dq +---. (4.7)

s

From (4.4), one can see that
F(s,5)e(s) = e(s)F* (s, s).

Let us multiply (4.6) by the right and (4.7) by the left to &(s), and compare the
results. Applying (4.4) to any term in expansion (4.7), one can realize that they
coincide.

Identities (4.4) and (4.5) present an algebraic reduction imposed on the Mar-
chenko equation (4.3). In the simplest case, it takes the form

F(s,s') = F*(s,s). (4.8)
Then

K(s,s) = K*(s,s). (4.9)
Let us study algebraic reduction in the abstract n-wave system. Starting from the
simplest reductions (4.8) and (4.9), we assume that the involution * leaves all I

unchanged. We have

I} =1 (4.10)
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Then constraint (4.4) is compatible with equation (2.8). Imposing this constraint
provides that, in (2.3),

Q" =0. (4.11)

This reduction defines special classes of solutions in (2.3).
To make a degenerative kernel F satisfy reduction (4.8), one must put

F=F;+F,, (4.12)
Zﬁ,(s, (s u), (4.13)
N»

F2= 3" (hls 9gy(s' ) + 0p(5, 013 (). (414)
p=1

If A =1, is defined by (3.1), one can take involution in the form (4.2), where R is
a diagonal matrix:

R = diag ¢;, & = &(u'). (4.15)

In particular, one can put

Now
_ 1 0H, 1 0H;
ik = Qui, Hi—éF = H, uk’ (4.16)
and
oA
Hf = (4.17)

Here A = A(u) is a scalar function obeying the following overdeterminated sys-
tem of third-order equations:

NN OA A 0N °A A +6A A A
ou’ 0ul Ouk duiouwour 4 \oul 0ulou’ ukoul | oul ouiou! oukduk
N *A A
Ou* dulduk 6u"8u") ' (4.18)
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It is clear that system (4.18) is compatible and integrable. Its integrating can
be done by the dressing method described in Sections 2 and 3. To provide ful-
filling of reduction (4.15), one must impose that the matrix f;; in (3.7) satisfies the
symmetry conditions

fi&m) =fi(n, &) (4.19)

Let us study what kind of general algebraic reductions (4.4) and (4.5) are pos-

sible in systems (2.3) and (2.6). Suppose that condition (4.10) is satisfied. The
reduction must be compatible with the basic equation (2.6). It is done if

[Ix, €] =0 (4.20)

and

o 0
(ﬁJr 1,.&)8 ~0. 4.21)

For the n-orthogonal systems (3.3) and (3.4), it is implied that ¢ is a diagonal
matrix

&; = diage;,

& = &(u' —s),

and

fileon) =28 £, 8). (422)
Now

0uw) =2 0., (423

It is easy to check that reduction (4.19) is compatible with system (2.3). The de-
scribed algebraic reductions are common in the theory of solitons (see, for
instance, [16] and [6]).

5. Differential reductions. In this section, we introduce a new class of reduc-
tions in integrable systems—the differential reductions. These reductions are
essential for integration of n-orthogonal curvilinear coordinate systems, and
for the theory of integrable systems of hydrodynamic type. We start with the
following theorem.
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THEOREM 5.1. Let A be an associative algebra, * be an involution in A, F(s, s') be
an A-valued function of two variables —00 < s < 00, —00 < §' < 00, and the equation

K(5,9) = Fls,s) + | K(5,0)F(@,)dg

s
be resolvable uniquely for all s. Let F satisfy the equation

0F(s,s')  OF*(s',s)

os' 0Os 0.
Then, on the diagonal s’ = s,
0K O0K* .
(5? + _Fs_) T K(s,s) K*(s, s).

Proof. Expand K(s,s’) in a series in powers of F:

o0 Q0
K(s,s') = F(s,s") +~-+J J F(s,q1)F(q1,92) - - - F(qn,s")dqs - - - dgn +

s s

Then

00 o0
K*(s',s) = F*(s,s) +---+J j/ F*(q1,5)F*(q1,92) - - - F*(gn,s')dg1 - - - d

s s

4.

(We renamed q1,...,9n — qn,.-.,q1 in (5.4).)
Let us denote

. [0K(s,s") OK*(s',s
)

Expanding R in powers of F, F*, one gets

R=Ry+---4+Ry+---,

0 © OF (qu-1,5'
n=J J F(S,ql)"'F(qn—z,qn—l)——(%s,l—)dth--'dqn~1
s

s

o) © HF* ,8) .
+J j ———‘gqs‘—)F (91,92) - F*(gn-1,5)dqy - - dqn-1.
s* s*

The first term in (5.7) drops out due to (5.2).

(5.1)

(5.2)

(5.3)

(5-4)

qn

(5.5)

(5.6)

(5.7)

(5.8)
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Now one can apply identity (5.2) to the nth term in (5.7), n — 1 times, and
perform n — 1 integrations by parts. One can see that the terms containing n — 1
integrations cancel. Terms, including n — 2 integrations, can be collected in the
sum

0 o0
R, = F(s, S)J J F*(q1,5) - F*(qn-1,5)dqa - - - dgn-1
S

s

00 00
+-- +J J F(s,q1) -+ F(qn-2,8)dq1 - - - dgn—2F*(s,5).  (5.9)

s s

Then all the sums in (5.7) present the expansion for the product K(s,s)K*(s, s).
The theorem is proved.

The constraint in (5.2) is the simplest example of a differential reduction. If F
is a generative kernel, one can present it (see (4.10) and (4.12)) as

F=Fy+F, (5.10)

N1 ap(s,u)

Fy= z; qas qu(s,’ u), (5.11)
q=
Mo /0h*(s,u) g% (s, u)

Fy = Zl ( pas gp(s”u) — Pas h,,(s’,u)), (512)
p=

A= —A.

Here f, g, h, are arbitrary A-valued functions.
Theorem 5.1 can be generalized further. Let L be an A-valued differential
operator

N n /
0"F(s,s
LF = Eo ———aim )U,,(s’), (5.13)
n=

while L is the adjoint operator

. N an
LF = Z(—1)"% U,(s)F. (5.14)
n=0

Suppose that F(s,s’) satisfies the equation

LF(s,s") = LF*(s,s). (5.15)
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Applying the involution * to (5.15), and permutating s < s’, one derives

L*F(s,s') = L*F*(s, s). (5.16)
Here
* vk N *a”F*(sl7s)
L*F =ZUnT, (5.17)
n=0
T * - N an / *( ]
LF=) (-1) 757 F&) U (). (5.18)
n=0

Comparing (5.15) and (5.16), one derives

L*=+L. (5.19)

Condition (5.19) imposes n + 1 relations on coefficients of L:

U, (5) = £ Un(s),
Uy i(8) = F (Un-1 + U,(9))- (5.20)
Relation (5.15) can be called a differential reduction of the order n. Algebraic
reduction is a trivial case of differential reductions (the order of the operator L is
zero). Let us consider
(LK(s,s") — LK*(5,5))|ss- (5.21)
One can show that R can be expressed through

K(S, sl)|s=s'a K*(S', S)Is’:s’

and a finite number of derivatives

01K (s, s") 01K (s,s") 0IK*(s',s) 0IK*(s',5) (q<n)
0s4 s=s’ 6s:,q s=s’ 05" s=s'’ 0s1 s=s 1 ’

Moreover, R is a bilinear operator (linear with respect to K(s,s’) and K*(s, s),
separately).

We do not prove this fact in its general form here. We just display the two
simplest examples.
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(1) Let
Lr =0 y () 1 F(s,yv(s)
and
Ut(s) = Us),
V(s) + V*(s) = U'(s). (5.22)
Now
R = K(5, )UK (5,5, (523)

and relation (5.21) takes the form

0K (s, s")

o u(s') + % U(s)K*(s',s)| +K(s,s)V(s) — V(s)K*(s, s)

= K(s,s)U(s)K*(s, s). (5.24)

In particular, if

U=1  V*s)=-V(s), (5.25)

one derives

s'—s

lim (a—K(%ﬂ + %K;(s',s)) + K(s,s)V(s) — V(s)K*(s, s)

= K(s,5)K*(s, s). (5.26)
(2) Let us choose

_ 0*F (s,s")

LF 7572

Using the same technique of expansion in a series, one can show that in this
case, relation (5.21) becomes

(62K(s, s) 62K*(s’,s)>

38'2 052

s=s'

0K (s,s") O0K*(s, s’))

= (TK(S, s) — K(s,s) 35 (5.27)

s=s'
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Now we show how the simplest differential reductions (5.2) and (5.3) work for
the abstract n-wave system. Suppose that I} = I, and consider the identity

LDK — IiDK =0, (5.28)
which is
0K (s,s") 0K (s,s") 0K (s,s") 0K(s,s")
g oui i ow + os’ Li=1 os’' Ij
+ (I]QI, - IiQIj)K(S, Sl) =0. (529)

Applying the involution * to (5.29), and permutating s < s’, one gets

0K*(s,s") 0K (s, s) 0K*(s', 5) 0K*(s', 5)
ow Ii= oul L+ s L Os I
+ K*(S/, S)(IjQ*Ii i IiQ*Ij) =0. (530)

Adding (5.27) and (5.28), putting 5" — s, and using relation (5.3), one gets, after a
simple calculation,

99 00 00", 90", 00— L.OOI,
Ijau" I’auf+aui1’ auiIJ+IJQQ I — I,QQ"];

— ,OL,Q + I,QL,Q — Q*L,0*I; + Q*L,Q*I; = 0. (5.31)

6. n-Orthogonal coordinate systems in the flat space-dressing against a Carte-
sian background. Now we can apply the dressing method to the Lamé equa-
tions (1.12) and (1.14). Again, A4 is I,(R), and I; are given by (3.1). According to
Section 3, the dressing function F(s,s’,u) is given by expression (3.8). Let us
assume that it also satisfies the simplest differential reduction (5.2), which can be
written as follows:

OF;(s,s',u) + OF;(s',s,u)
os’' Os -

0. (6.1)

To find additional equations imposed by (6.1) on Q;;, one can use the general
formula (5.29), or just apply the involution *, and the permutation s « s’ to
equation (3.21). One can read

0K(s,s',u) + 0Kji(s',s,u) + 0K(s,s',u) + 0Kji(s',s)
ou ou? os’ os

~ Q;i(s)Kji(s, ") — Ki(s, s")Qy(s") = 0. (6.2)
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Relation (5.3) now has the form

0Kji(s,s") | 0Kji(s', 5)
( a5 T s T ZKa(s, 5)Ki(s, s). (6.3)
Putting s’ = s in (6.2) and using (6.3) yields immediately
09y | 99,
T T Q0= (6.4)

1#i,j

Equation (6.4) is identical to (1.25). (Remember that Q;; = ;;!) To resolve equa-
tions (3.8) and (6.1), one can introduce n(n — 1)/2 functions of two variables
q)l](é’”)’ i <j, and put

00;(s — ul, s’ — u)

F' — . .
lj as ’ i <]’
(s —ul s —ul

Equations (3.8) and (6.1) are satisfied now for all off-diagonal elements i # j.
To satisfy the diagonal elements, one has to introduce n diagonal, antisymmetric
functions of two variables

@;i(¢,n) = —Di(n, &)
and put

6<I)i,-(s - ui, s’ — ui)

Fi= 0s

(6.6)

We found that our solution is parametrized by n(n — 1)/2 functions of two
variables ®@;(&,#) together with n additional, antisymmetric functions ®;(&, 7).
So, the total number of functional parameters participating in the dressing pro-
cedure 'is even more than the needed number n(n — 1)/2. This means that in
reality, we constructed certain classes of equivalent dressings. This equivalence
will be considered in another article.

Expansion (5.10) now has the form

F=F® 4 FO

Ny Fi (_P) s—u .
FO =% (s — W) ADLP (S — ), (6.7)

p Js

N (oD (s—u - gV (s—ul ;
52)_2( ki (as ) (P)(s W) — ki (as )h,(q’.’)(s'—u’) )

r=1
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Here (), g(P) and h(® are arbitrary real matrix functions of one variable, while
A = -AY (68)

are arbitrary constant antisymmetric matrixes.
The simplest solution, obtained by the dressing method, appears if F(? =0,

Ny =1, fO is diagonal, and f; = £, = fi(s — h')d;.
Now

_ ofi(s — u)

E; Js

Aygi(s' =),  Ayj=—Aj. (6.9)
Assuming
Kyj = wy(s, u) fi(s' — ), (6.10)

we observe that integration in (2.7) can be done explicitly. One derives
_9 Ny T AR(T™! 6.11
wi(s,u) = 2 (s — ) 3 Aw(T )y (6.11)
k
Here T-! is the inverse matrix to
1 5
Ty =8y +5 Ay, (6.12)
Qi = wi(s,u) fi(s — w). (6.13)
Now we can put

Hi(s,u) = ¢(s — u') + ZW;’]‘(S, u) J:Oﬁ(s’ —w)g;(s' —w)ds'. (6.14)

Here ¢,(£) are n arbitrary functions of one variable. Expression (6.14) presents
the simplest explicit solution of Lamé equations, while (6.13) gives exact solu-
tions of systems (1.24) and (1.25). A different choice of ¢;(£) provides the Com-
bescure covariance.

In the simplest case n = 3,

1of; 1 ..
wl] = —Z'a% (AU +§AikAjkﬁ(2)7 k #* LJ (6.15)
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Here

1
A = det||Ty| = 1+ZZA,§.f,.2,;.2. (6.16)

i<j

Now one can change f; — Nf; and put N — co. Qj; remains finite in this limit.
Now

-1

Q; — -2% fihinAp f (; ALf? ;;.2) . (6.17)
Let us denote

W= (Audieh) ™, iEjEk i< (6.18)
Expression (6.17) can be rewritten as

2 0¥;

Q=-37-% A= > v (6.19)

14
p

Expression (6.19) can be interpreted as follows. Suppose an n-orthogonal system
is a Cartesian system of orthogonal planes. Now

Qi =0, H; = ¥;(u'),

and W, is an arbitrary function of one variable.

Comparing (6.19) to (1.30), one can see that we constructed the Ribaucour
transformation against the simplest Cartesian background. The entire procedure
described above is dressing on the Cartesian background.

Indeed, at s — oo we have Q;, — 0, and our n-orthogonal coordinate system
goes to a system of orthogonal hyperplanes.

7. Dressing on an arbitrary background. Suppose now that the array Ho;(u)
satisfies both Lamé equations (1.12) and (1.14). To realize the dressing proce-
dure, starting from this solution, one has to find Qg; by (3.25) and extend it to all
s by (3.26). According to Section 3, any solutions of system (3.27) give a solution
of (1.12). To also satisfy system (1.14), one has to find a generalization of differ-
ential reductions (5.2) and (6.1) compatible with (3.27). The answer is given by
the following theorem.

THEOREM 7.1.  The dressing function F(s,s',u), satisfying condition (3.27),

OF 0F OF o
i Tl 351+ i Q(S)IF — FILi, Qo(s)] = 0, (7.1)
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gives the solution of system (1.14) if it satisfies also the differential reduction

F ! Fir(s'
0 (‘:;:; ,u) + 0 (;s’ S, u) + F(S, s’,u)[Qo(u,s') _ Q"(u, S,)]

[Qo(u,s) — QF (u,s)| F"(s',s) = 0. (7.2)

To prove the theorem, one must first check the compatability of (3.27) and
(7.1). It is enough to apply the operator D; to (7.1) and put the result zero in
virtue of (3.27) and (7.1). It imposes on Qp the equation

090 907
auk(Qo 95) + L= 0Os Os L

= QUIOY + QolkQo — QoY I + Ik Qo0 + (QF) Ik — Q3. (7.3)

Put Qo = Qg; in (7.2). Condition (7.2) is antisymmetric and satisfied automati-
cally for i =j. Let i # j # k. Now (7.2) is satisfied due to the fact that Qg; satisfies
equation (3.3). Let i ## k = j. Then

0
gk (Qoik = — Qoi) — Y, QoiQoit + Y_ QorQori
] ]
-3 _ 0Qoki
== QuaQoi+ >, QouQui=— Y, QuaQoa+ Y pw (7.4)
1Kk 1#k#j 1#k#j 12k ¥
or
9Qoik , Qoki 0Qoki o
2 + 75 —#Zk 2l +h§;iQ0k1Qo,1—0. (7.5)
Now, using condition (3.9),
aQma 0Qoki
Z T (7.6)
one gets
9Qoik aQom
i=0. 7.7
kT ow l;;#ononu 0 (1.7)

Equation (7.3) is identical to (6.4).
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The rest of the proof is straightforward. Due to the results of Section 5, on the
diagonal s = ¢/,

+ Z(Kil(QOIj — Qojt — (Qoi — Qoi)Ki)

s=s' !

0Kj(s,s") + 0Kji(s', s
os’ Os

= Z KqKj. (7.8)
]

From (3.27), one can find that K(s,s") satisfies the equation

0K 0K 0K
7 T g gy Ui+ LiL(s w)IK = K{iQo(u, 5)] =0, (7.9)

where
Q= Qo + K(s, ).
From (7.9), one derives
0Kji(s, s") + 0Ki(s,s")

o o~ Qu(9)Ky(s, ') + ; Ki(s,5")Qoy(s") =0.  (7.10)

Permutating i « j and s < s’ in (7.10), we have

0K;i(s,s')  0Kj(s', , , ,
Jaisi ?) + Ja(: ) - Qii(s")Ki(s',5) + ;Kjl(s ,8)Qoi(s) = 0. (7.11)

Now we can put s = s’ in (7.11) and (7.10). Combining then (7.9), (7.11), (7.10),
and (7.7), after elementary calculations one receives

00y  9Q;i o
ot l;jg,,g,, =0. (7.12)

This accomplishes the proof. We mention that
F =¥ Fo¥;!

is a common solution of equations (3.27) and (7.1) if Fy realizes dressing against
a Cartesian background, ¥ is orthogonal,

-1 __ ytr
\PO —\PO’
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and

P
== (Qo - 0f)¥o. (7.13)
It is unclear if ¥, can be chosen as orthogonal for a general case.

8. Egorov’s metrics. Let us find what kind of algebraic reductions are possi-
ble in the equation describing n-orthogonal systems. According to Section 4, all
algebraic reductions in a space of diagonal curvature are given by (4.20). Sub-
stituting (4.21) to (6.4) and using (3.3) yields

E» k Qi + e (u* )au’ %, (u’) Qi+ Y QuQu

I#i,n
0 0
= (5;‘7 +eeg s )sz + &k Z Qquk
9 0 8.1
PR 6u‘ &k Z 1) Qi =0. (8.1)
Replacing i «+ k and using (4.21), we find
0 baligy LLl)e =0 (8.2)
6u' 6uk g 6u e = )

Comparing (8.1) and (8.2), we derive
& = & = const.
Then the only possible algebraic reduction is
Qi = Q- (8.3)

In this case,

Qi Qi
= =0, }l: g =0 (8.4)

Reduction (8.3) defines so-called Egorov’s metrics. In this case,

g A

i _W (85)
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and

Qi

2 -1/2
1 0°A (6A6A> (8.6)

= 20uiouk \ou ouk

Here A(u) is a scalar function, satisfying equation (4.16) together with the system
of equations (8.4). The dressing function F in Egorov’s case satisfies condition

ﬂ](é7 ﬂ) =f}'i(”a é))

6ﬁj§; n) n afjigg Q) _ 0,
or
(% + a%) fi(&n) =0. (8.7)
Finally, we have
fi=1i(&—n)
or
fy=Ji=fils =5 —u' +). (8.8)

We can assume F; = 0. So Egorov’s metrics are parametrized by n(n — 1)/2 real
functions of one variable.

In Egorov’s case, the problem of n-orthogonal coordinate systems is reduced
to the following system of first-order equations:

00,
% - 0k Qu=0u

0Qix
S =0 (8.9)

In the case n = 3, it is a system of three equations

0012 0012

i —013023,
0
_6%123 = 01202, (8.10)
002

Tl = 012Q13.
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This is the classical system of “three-waves” in the case of exact resonance (Q;
are real). It has standard solitonic solutions (see, for instance, [16]). In a general
case, (8.9) is a system of n-waves (actually n(n — 1)/2!). This fact was established
first by Dubrovin [9].

In Egorov’s case, the kernel F in the integral equation (2.7) depends only on
the difference s — s’. So it belongs to the Wiener-Hopf class, and its solution is
equivalent to the solution of a certain matrix Riemann-Hilbert’s problem. Now
Q = lim,_,¢ K(s,s’) does not depend on s.

One can use Egorov’s metrics as a background for dressing. Now Qg in (3.27)
does not depend on s, and equation (1.2) is reduced to (6.1). The result of dress-
ing is Egorov’s metrics itself if the dressing function is symmetric.

9. Pseudo-Euclidean metrics. All the results obtained above can be easily

extended to n-orthogonal, curvilinear coordinate systems in (p + q)-dimensional
flat pseudo-Euclidean space R with the metrics

ds® = Z{‘ie,-(du‘)? (9.1)
i=1

Here

g=1 i=p+1,...,p+q. 9.2)

To find the equations describing n-orthogonal metrics, one can use the follow-
ing formal trick. First we can consider H;, Ui, Q;; complex. Then we return to
real numbers, assuming

uk — ik Qup — —iQ, k=1,...,p,
uk — uk Qi — Ok, k=p+1,...,p+q.
Now
oH;
= . 9.3
Ok =& 50 (9:3)

System (3.3) is invariant with respect to transformation (9.3). System (6.4), after
the transformation, takes the form

0Q; 00
& i + si-ﬁ + 1#2,:] QuQjier = 0. (9.4)
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As far as system (3.3) is untouched, the dressing is realized by a matrix func-
tion F, satisfying equation (2.8), and having a form (3.8). The only difference with
the Euclidean case is the differential reduction. It must be taken in the form

OF(s,s") OF"(s',S) _
pw R+ RT =0. (9.5)
Here R is the diagonal matrix R = diag ;.
Indeed, from (5.24), one gets
0Kj;(s, s") aK,,(s s)
( et » Z KiK. (9.6)

Now, expressing derivatives by s’ and s in (9.7) from (3.21), we get system (9.4).
Reduction (9.4) realizes the dressing on a Cartesian background. To perform the
dressing on an arbitrary background, one must change the reduction to

aFfaZ’/sl) rR+RE (s D + F(s, ) (RQo(u, ) — 0§ (1, )R)

~ (RQo(w, ) — 0§ (u, )R)F"(s',5) = 0. 9.7)

Systems (3.3), (9.4), and (9.8) allow the algebraic reduction

RQ =Q"R
or
&Qy = &Q- (9-8)
From (9.4), now one derives
OH; _ 0H;
Hiouk — Hjou
and
oo
2 _
H; = PwE

This is Egorov’s metrics in the pseudo-Euclidean space.

10. Conclusion. We see that the Lamé equation, describing n-orthogonal,
curvilinear coordinate systems in flat Euclidian and pseudo-Euclidian spaces,
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can be solved efficiently by using the simplest known version of the dressing
method. By solving these equations, we achieve also a description of integrable
Hamiltonian systems of hydrodynamic type, together with their symmetries. So
far, the problem of embedding obtained metrics to the coordinate space (finding
x'(u)), as well as the equivalent problem of constructing Hamiltonians and con-
serving quantities for the corresponding system of hydrodynamic type, is un-
solved. We hope to solve this problem by using more sophisticated versions of
the dressing method, based on implementation of the 5-problem on the complex
plane [7]. It is a subject of part II of this paper. Here our results can be general-
ized in several natural ways. Let us outline the most obvious directions of this
generalization and the program of future research. The following problems can
be solved in the near future.

(1) The exploration of highest differential reductions, allowed by the systems
of the Lamé equation. These reductions are

0 0
L . ! — +{ tr( k X
(asl)F(s,s) L <as>F (s, 8) (10.1)
Here
N aZn +
L=Zan5@', L =L,
n=0
or
N 62n+1 .
L=Zlan5;2n—+'l', L =—L,
h=

are some operators with constant scalar coefficients. Reductions (10.1) are
further generalizations of Egorov’s reductions. They impose on Q complicated
systems of nonlinear differential relations, which deserve to be studied.

(2) The transition to other associative algebras 4. The algebra of complex-
valued matrices is the closest natural object. Other interesting objects are
infinite-dimensional algebras of integral and differential operators. Reductions
(both algebraic and differential) in such algebras can generate very interesting
new classes of integrable systems.

(3) All the developed techniques can be extended to the noncommutative
version of the Lamé equations (see [7]):

0°H; _ 0H; . _0H; 0Hy i 0H;

2uioum — sum T 2t ¥ ul Hm g (10.2)

Here H; are noncommuting matrices. The classification of reduction in system
(10.2) is especially interesting.
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