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Optical solitons and quasisolitons are investigated in reference to Cherenkov radiation. It is
shown that both solitons and quasisolitons can exist, if the linear operator specifying their
asymptotic behavior at infinity is sign-definite. In particular, the application of this criterion
to stationary optical solitons shifts the soliton carrier frequency at which the first derivative of the
dielectric constant with respect to the frequency vanishes. At that point the phase and group
velocities coincide. Solitons and quasisolitons are absent, if the third-order dispersion is taken into
account. The stability of a soliton is proved for fourth order dispersion using the sign-
definiteness of the operator and integral estimates of the Sobolev type. This proof is based on the
boundedness of the Hamiltonian for a fixed value of the pulse energy. ©1998 American
Institute of Physics.@S1063-7761~98!02405-6#
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1. INTRODUCTION

Solitons in nonlinear optical fibers have been very po
lar objects of investigation since the early nineteen seven
i.e., since the structural stability of the solitons for t
Korteweg-de Vries ~KdV! equation1 and the nonlinear
Schrödinger equation2 was demonstrated and since Has
gawa and Tappert3 subsequently proposed the use of opti
solitons as data bits in fiber communications. The interes
optical solitons has increased dramatically in the last dec
due to the practical achievements from the use of soliton
modern optical communication systems.4,5 However, despite
the great practical significance of optical solitons, the the
for them is far from complete.

When reference is made to optical solitons, it is assum
that their spectrum is concentrated within a certain trans
ency window, where the linear damping is small and disp
sion effects dominate. The width of the soliton spectrumdv
is assumed to be fairly small compared with the freque
band Dv of that window, i.e.,dv!Dv. In real systems,
however, the bandDv is always narrower than the mea
frequency of the windowv̄, i.e.,Dv!v̄. Thus, we have the
following hierarchy of inverse characteristic times:

dv!Dv!v̄. ~1.1!

These criteria permit consideration of the slow (t21;dv)
dynamics of soliton propagation in terms of amplitude en
lopes. In particular, to derive a nonlinear Schro¨dinger equa-
tion ~NLSE!, i.e., the basic model for describing optical e
velope solitons, the wave number is approximated by
quadratic polynomial

dk5
1

vgr
dv2

1

2

v9

vgr
3 ~dv!2. ~1.2!

Heredk5k2k0 , dv5v2v0 , vgr5]v/]k is the group ve-
locity, andk0 andv0 are the wave number and frequency
the soliton carrier wave. However, in the frequency inter
Dv the dispersion of the wave can differ significantly fro
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the quadratic approximation~1.2!, although it remains smal
in the sense of the criterion~1.1!. It is noteworthy that the
existing experimental possibilities~see, for example, Ref. 6!
make it possible to obtain very short pulses, for whi
dv/v0,1. On the other hand, the efficiency of optical fibe
as media for transmitting information is inversely propo
tional to the soliton width. Thus, practical considerations c
for reducing the soliton width as much as possible.

In this paper we show that the properties of ‘‘short’’ an
‘‘long’’ solitons can be very different. For short solitons th
expansion~1.2! is largely incorrect and should be replace
by the more general formula

dk2
1

vgr
dv52F~dv!. ~1.3!

HereF(z) is a certain function, which should be taken fro
a microscopic treatment or extracted from experimental d
Although F(z) can be far from the parabolic dependen
~1.2!, averaging over the fast time 1/v0 can be performed,
providing a description of slow soliton dynamics by mea
of a generalized nonlinear Schro¨dinger equation~GNLSE!.
This averaging also leads to the appearance of an additi
integral of motion, viz., an adiabatic invariant, which has t
meaning of the pulse energy. Accordingly, owing to this
variant, the GNLSE allows a soliton solution for the env
lope of the electromagnetic fieldE(x,t) in the form a propa-
gating pulse with the additional phase multipliereilx:

E~x,t2x/vgr!5eilxc~ t2x/vgr1bx!, vgr
21@b.

The main result of this paper is as follows. Solitons c
exist, if L(z)5l2bz1F(z) is a positive~or negative! defi-
nite function for all z. This criterion is the basic selectio
rule for solitons. If this criterion is not satisfied, the solito
loses its energy through Cherenkov radiation and cease
exist after a certain time. This occurs, for example, ifF(z) is
a third-degree polynomial.
5 © 1998 American Institute of Physics
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Even if L(z) is positive definite and a soliton exists, th
question of its stability is far from trivial. In this paper w
establish that a soliton is stable ifL(z) is a positive definite
fourth-order polynomial. The proof of its stability is base
on the boundedness of the Hamiltonian for a fixed adiab
invariant. We assume that the same conclusion regarding
stability will be valid for any positive definite polynomia
L(z).0 of even degree. However, if we have

uF~z!u,Cuzua for uzu→` ~1.4!

anda<1/2, stability of the soliton is doubtful, and it is mor
likely unstable.

There is one more important point on which we wou
like to focus attention in this article. The objects which ha
traditionally been called solitons in nonlinear optics are
such in the strict sense of the word. They are quasisolito
i.e., approximate solutions of Maxwell’s equations, whi
depend on four parameters. Real stationary solitons, w
propagate with a constant velocity without changing th
form, are exact solutions of Maxwell’s equations, which d
pend on two parameters. The latter exist, if the dielec
constant«~v! has a maximum in the frequency range und
consideration for a focusing nonlinearity or a minimum,
the medium is defocusing. In a purely conservative medi
quasisolitons exist for a finite time owing to radiation as
result of multiphoton processes. In reality, however, this ti
is much greater than the lifetime resulting from the line
damping, and the difference between solitons and quasi
tons is insignificant.

2. STATIONARY SOLITONS

In this section we demonstrate how to find a soliton
lution directly from Maxwell’s equations. We consider
very simple model of the simultaneous propagation
pulses, assuming that the polarization is linear and that
electric fieldE(x,t) is perpendicular to the propagation d
rection. In this case Maxwell’s equations can be reduced
the wave equation for the fieldE(x,t):

]2D

]t2 2c2
]2E

]x2 50, ~2.1!

where the electric displacementD is assumed to be related t
the electric field by the expression

D~x,t !5 «̂~ t !E~x,t !1xE3~x,t !. ~2.2!

In this expression«̂ is an integral operator; the Fourier tran
form of its kernel is«~v!, i.e., the dielectric constant. Th
second term in~2.2! corresponds to the Kerr effect, andx is
the Kerr constant.

The function «~v! is analytically continuable into the
upper half-plane ofv ~see, for example, Ref. 7!. For real
values of v the magnitude of«~v! obeys the Kramers–
Kronig relations. It particular, it follows from these relation
that on the real axis the imaginary part of the dielectric c
stant«9, which is responsible for the dissipation of electr
magnetic waves, cannot be equal to zero at all frequenc
Below we shall assume that there is a certain frequency b
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Dv, within which the imaginary part of the dielectric con
stant is small enough that it can be neglected.

Let us consider the propagation of a wave packet wit
spectrum lying within this transparency window, assumi
that the frequency width of the pulse spectrum is small co
pared withDv. A solution in the form of an isolated pulse
i.e., a soliton, can be expected only under such condition

As was noted in the Introduction, two types of solito
are possible. The solitons of the first type are stationary
moving frame. They propagate with a constant velocity wi
out changing their form. A classical example of solitons
this type is provided by the solitons for the KdV equatio
which, in particular, describe solitary waves in shallow w
ter. The solitons of the other type are called quasisolito
They have internal dynamics and propagate with a cons
velocity only on the average. The classical quasisolitons
clude breezers, which are described by the sine-Gor
equation~for further information, see, for example, Refs. 8
10!.

Stationary solitons are exact solutions of Eq.~2.1!. We
shall seek these solutions in the form

E5E~x2vt !, ~2.3!

wherev is the constant velocity andE tends to zero at in-
finity. The substitution of~2.3! into ~2.1! makes it possible to
integrate the equation twice:

L̂E~x!5aE3~x!, a5xv2/c2, ~2.4!

where the operatorL̂ equals

L̂512
v2

c2 «̂. ~2.5!

In the Fourier representationL̂ is written in the form

L~v!512
v2«~v!

c2 , ~2.6!

where the frequencyv and the wave numberk are related by
the equalityv5kv. The second term in~2.6! is the square of
the ratio betweenv and the phase velocity of an electroma
netic wave of small amplitude:

vph5c/A«~v!. ~2.7!

Hence it is easily seen that the operatorL̂ becomes positive
definite if and only if

vph
2 ~v!.v2, ~2.8!

for all v, and it accordingly becomes negative definite in t
opposite case:

vph
2 ~v!,v2. ~2.9!

We now show that a soliton solution is possible only wh
condition ~2.8! or ~2.9! is satisfied. Let us assume that th
opposite is true, i.e., let the conditions~2.8! and~2.9! not be
satisfied. In this case the equation

v2«~v!

c2 51 ~2.10!
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has a solution~for simplicity we assume that it is unique
v5v0!. Then Eq.~2.3! can be rewritten in the following
manner:

E~x2vt !5E0~x2vt !1L̂21~12 P̂!aE3~x2vt !.
~2.11!

Here

E0~x2vt !5Re~A exp@2 iv0~ t2x/v !# !

is the solution of the homogeneous linear equation

L̂E050, ~2.12!

and P̂ is a projector onto the stateE0(x2vt), so that (1
2 P̂)xE3(x2vt) is orthogonal toE0 and, therefore, the op
erator L̂ is reversible in this class of functions. To find th
explicit solution of Eq.~2.11!, we can use, for example, a
iterative scheme, takingE0 as the zeroth approximation. It i
of fundamental significance that, by proceeding in this m
ner, we must arrive at nonlocalized solutions, which dep
on two parameters, viz., the imaginary and real parts of
complex amplitudeA. Hence the following conclusion ca
be drawn: the stationary equation~2.3! can have a soliton
solution if L̂ is sign-definite. If Eq.~2.12! has a nontrivial
solution, or, equivalently, if the phase velocityvph and the
velocity v are equal, i.e., if

vph5v, ~2.13!

there is no stationary soliton solution. We note that this c
clusion relies heavily on the fact that the singularity on t
right-hand side of Eq.~2.11! (E3)v /L(v) is not removable.
As will be shown below, singularities of this type can b
removed, if the matrix element of the four-wave interacti
~x in the present case! has a frequency dependence.

Equation~2.13! can also be regarded as a condition
Cherenkov radiation by a moving object. The nature of
object itself is not important here. It can be a charged p
ticle, a ship, or, for example, a soliton. In any case the m
ing object loses energy as a result of Cherenkov radiation
the case under discussion this means that if the velocity o
electromagnetic soliton satisfies the conditions~2.9!, it must
emit waves, and, therefore, such a pulse cannot exist
stationary object. Thus, we arrive at the following conditi
for the existence of solitons: a soliton solution can ex
when the equation

v~k!5kv ~2.14!

does not have a~real! solution. Herev5v(k) is the disper-
sion law. For electromagnetic wavesv(k) is determined
from the equation

v25k2c2/«~v!. ~2.15!

The relation~2.14! has a simple interpretation in thev2k
plane. The right-hand side of~2.14! corresponds to a straigh
line emerging from the origin of coordinates, and, acco
ingly, the velocityv in this plane equals the slope tanf:

v5tan f.
-
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The existence of a solution for Eq.~2.14! is indicated by the
intersection of thev5v(k) curve by the straight lines. This
assigns a complete cone of anglesV, where stationary soli-
ton solutions are impossible. ConeṼ, which is complemen-
tary to V, corresponds to possible soliton solutions. On
boundary]V between the cones the straight lines are tang
to the v5v(k) dispersion curve, and at the points of ta
gencyki the group and phase velocities coincide:

v~k!

k U
ki

5
]v~k!

]k U
ki

. ~2.16!

For the dispersion law~2.15! this relation is written as

d«~v!

dv U
v i

50. ~2.17!

It is natural to assume that the soliton amplitude va
ishes at these critical points~since there should not be an
stationary soliton solutions outsideṼ!. As will be shown
below, the behavior of a soliton solution near these criti
points is universal. We demonstrate this fact in the case
the stationary equation~2.3!. It is, however, fundamentally
important that the result is general and can be used for o
models. This fact was first investigated for capillar
gravitational solitons in deep water.11–13 The spectrum of
capillary-gravitational waves is known to have a minimu
phase velocity for wave numbers lying in the intermedia
region between the gravitational and capillary portions of
spectrum.

For simplicity, we assume that Eq.~2.17! has only one
positive solutionv5v0 @because of the parity of«~v! there
is one more rootv52v0#, and let the cone of anglesṼ lie
below the critical velocity:

v,vcr5
c

A«~v0!
.

Thus, the function«~v! has two identical maxima at sym
metric points, and

d2«~6v0!

dv2 ,0.

In this caseL̂ is an invertible operator, and Eq.~2.4! can be
written in the form

Ev5
1

L~v!
a~E3!v . ~2.18!

Near the critical velocity (vcr2v!vcr) the plot ofL(v) as a
function of v is close to zero in small vicinities of the tw
pointsv56v0 because of its symmetry with respect tov.
Therefore, according to~2.18! the distribution ofE(v) is
determined to a considerable extent by the function 1/L(v).
Accordingly, in thet-representation the solution will be clos
to a monochromatic wave. It is important that the monoch
maticity of the wave improves asv approachesvcr . There-
fore, E(t8) (t85t2x/v) will be sought in the form of an
expansion in the harmonicsnv0 :
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E~ t !5 (
n50

`

@E2n11~t!e2 i ~2n11!v0t81c.c.#. ~2.19!

Here we have formally introduced the small parameter

e5A12v/vcr ~2.20!

and the slow timet5et8, so that theE2n11(t) are the en-
velope amplitudes of each harmonic. The representa
~2.19! means that the width of each harmonic along the f
quency scale,dv;e, is small compared with the frequenc
v0 , i.e., the Fourier spectrum~2.19! is a series of narrow
peaks. The main peaks correspond to the first harmo
Therefore, the action ofL̂ on ~2.19! can be expanded into
series in powers ofe. Assuming thatE2n11;e2n11 and sub-
stituting ~2.19! into the stationary equation~2.4!, with con-
sideration of~2.17! in the first order we arrive at a stationa
nonlinear Schro¨dinger equation:

e2E12S
]2E1

]t2 2
3

2
auE1u2E150, ~2.21!

where

S52
v2

4c2

d2e~v0!

dv2 .0. ~2.22!

Equation~2.21! has a soliton solution only ifa.0:

E1~ t8!5
2e

A3a
sechF e~ t2x/v2t0!

AS
G . ~2.23!

This solution is unique to within a constant phase multipli
It is the universal asymptote of the soliton solution. Asv
approachesvcr , its amplitude vanishes according to
square-root law;Avcr2v, and the soliton pulse widthDt
increases in inverse proportion to this factor:

Dt5AS/e.

For times greater thanDt we must take into account th
following expansion terms, particularly the third-order d
persion and the corrections to the cubic nonlinearity. In t
time range the soliton behavior is no longer universal.

It is noteworthy that Eq.~2.21! does not have solitonlike
solutions whene2512v/vcr,0.

When the tangent approaches the dispersion curve f
above,S becomes negative. For this reason solitons e
only for defocusing media (a,0).

The case where the point of tangency satisfiesv050
calls for a special treatment. Near the critical velocity t
stationary equation~2.3! does not require the expansio
~2.19!. It is sufficient to expande~v! nearv50:

«~v!5«~0!1
1

2

d2«~0!

dv2 v2.

According to this expansion, the stationary equation takes
the form

e2E2S] t
2E2

1

2
aE350, ~2.24!
n
-

ic.

.

s

m
st

n

where, as before,e, S, anda are given, respectively, by Eqs
~2.20!, ~2.22!, and ~2.4! taken atv50. The localized solu-
tion of Eq. ~2.24! has the form of a soliton for the modifie
Korteweg-de Vries~MKdV ! equation:

E~ t2x/v !5
2e

Aa
sechF e~ t2x/v2t0!

AS
G .

3. QUASISOLITONS; HIGHER-ORDER DISPERSION

In this section we discuss the difference between solit
and quasisolitons in the case of a generalized nonlin
Schrödinger equation~GNLSE!. The GNLSE has a more ex
tensive class of soliton solutions than does the original M
well equation. Unlike the stationary solitons~2.23!, these
solutions are approximate and depend on four parame
However, the mechanism for selecting the soliton solutio
remains the same as for the stationary solitons considere
the preceding section.

The transparency windowDv must be small compared
with the mean value of the frequencyv0 : v0@Dv. In this
case an envelope can be introduced for the entire region.
most convenient and systematic approach for obtaining
equation for the envelopes is based on the Hamilton
formalism.14

Let us consider Eq.~2.1!, which we present in the form
of a system of equations:

]r

]x
1

]2f

]t2 50,
]f

]x
1

1

c2 S «̂r1
4px

c2 r3D50. ~3.1!

The potentialf and the ‘‘density’’ r introduced here are
related to the electric fieldE and the magnetic fieldH by the
expressions

E5
A4p

c
r, H5A4p

]f

]t
. ~3.2!

Equations~3.1! can be written in Hamiltonian form:

]r

]x
5

dH

df
,

]f

]x
52

dH

dr
. ~3.3!

Here x plays the role of the time, and the Hamiltonian h
the form of an integral with respect to time:

H5E F1

2 S ]f

]t D 2

1
1

2c2 r«̂r1
px

c4 r4Gdt

[
1

8p E FH21E«̂E1
1

2
xE4Gdt. ~3.4!

The quadratic part ofH defines a linear dispersion law fo
k5k(v), which coincides with~2.15!. We can go over to the
normal variablesav(x) using the replacements

rv5A v2

2k~v!
~av* 1a2v!,

fv52 iAk~v!

2v2 ~av* 2a2v!, ~3.5!

whererv andfv are the Fourier transforms of the densityr
and the potentialf, andk(v) is understood in these formu
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las as a positive root of the dispersion relation~2.15!. The
substitution of these relations into Eq.~3.3! gives the equa-
tions of motion in the variablesav :

]av

]x
5 i

dH

dav*
, ~3.6!

where the HamiltonianH takes the standard form~compare
Ref. 14!:

H5E k~v!uavu2dv1
1

2 E Tv1v2v3v4
av1
* av2

* av3
av4

3dv11v22v32v4
P idv i . ~3.7!

The matrix elementT appearing therein is assigned by t
formula

Tv1v2v3v4
5

3x

4pc4 F v1
2v2

2v3
2v4

2

k~v1!k~v2!k~v3!k~v4!
G1/2

. ~3.8!

If the fourth-order susceptibilityx depends on the frequen
cies, the constantx in the matrix element~3.8! is replaced by
x(v1v2v3v4) with the necessary symmetry properties~see
Refs. 7 and 15!, which ensure the following symmetry rela
tions for T:

Tv1v2v3v4
5Tv2v1v3v4

5Tv1v2v4v3
5Tv3v4v1v2

* . ~3.9!

In the Hamiltonian~3.7! we retained only the terms respo
sible for the scattering of waves, neglecting all the oth
processes, which make a contribution in the next~sixth! or-
der with respect to the amplitude of the waves for narr
wave packets.

The Hamiltonian formulation of the equations of motio
~3.6! guarantees ‘‘conservation’’~absence of a dependenc
on x! of the HamiltonianH, as well as of the ‘‘momentum’’

P5E vuavu2dv, ~3.10!

which coincides exactly with the Poynting vector integrat
over time:

P5
c

4p E
2`

`

EHdt.

Let us now proceed to the derivation of the equation
the envelopes by introducing the packet envelope amplitu

c~ t,x!5
1

A2p
E ave2 i ~v2v0!t2 ik0~v0!xdv.

Here we assume that the spectrum ofav is concentrated in a
narrow intervaldv nearv0 and thatv0@dv. Accordingly,
c(t,x) is a slow function of the coordinates and the time

Next, expandingk(v) and Tv1v2v3v4
into a series in

V5v2v0 at v0 we have

k~V!5k~v!2k~v0!5
1

vgr
V2k0SV22gV31dV41...,

~3.11!
r

r
e:

Tv1v2v3v4
5T01

]T

]v1
~V11V21V31V4!

1
1

2

]2T

]v1
2 ~V1

21V2
21V3

21V4
2!

1
]2T

]v1]v2
~V1V21V3V4!

1
]T

]v1]v3
~V1V31V1V41V2V3

1V2V4!1... . ~3.12!

In the expression fork(v) we have retained the terms up
fourth order in V, and in the matrix elementT we have
retained the terms that are quadratic inV. In expanding the
matrix element, for simplicity, we considered it to be re
and utilized its symmetry properties~3.9!. Accordingly, the
coefficients in~3.12! are

T05Tv0v0v0v0
,

]T

]v1
5

]Tv1v2v3v4

]v1
U

vk5v0

,

]2T

]v i]v j
5

]2Tv1v2v3v4

]v i]v j
U

vk5v0

.

Next, performing the inverse Fourier transformation with r
spect toV, for c we obtain the generalized nonlinear Schr¨-
dinger equation

i S ]c

]x
1

1

vgr

]c

]t D1K0Sc tt1b1ucu2c

52 igc ttt24ib2ucu2c t2dc tttt1~b32b4!@~c2c t* ! t

2~c t!
2c* #1~b31b5!c* ~c2! tt2b6ucu4c. ~3.13!

The left-hand side of this equation corresponds to the cla
cal nonlinear Schro¨dinger equation: the second term in
describes the propagation of a wave packet as a whole
therefore, can be eliminated by going over to the local co
dinate frame. The next term (;S) is responsible for qua-
dratic dispersion. Now, forde(v0)/dv050 the coefficientS
coincides with the expression in~2.22!. The last term on the
left-hand side defines a nonlinear correction to the freque
of the monochromatic wave. The first two terms on the rig
hand side are;(dv/v0)3. It is important that there are only
two such terms. In this case the coefficientb252p]T/]v is
nonzero even for a constant fourth-order susceptibilityx.
When x5const holds,b2 can vanish only ifk;v2. The
remaining terms are;(dv/v)4. Among them we took into
account the terms;ucu4c, which are of the same order o
magnitude.

The coefficientsb i appearing in Eq.~3.13! take on a
very simple form for the matrix element~3.8!:

b15
3

2
k0

2xS vph

c D 4

, b25
b1

v0
S 12

vph

2vgr
D ,
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b35b1

k1/2

v0

]2

]v0
2 S v0

k1/2D , b45b55
b1

v0
2 S 12

vph

2vgr
D 2

.

~3.14!

According to its derivation, Eq.~3.13! should be classified a
a Hamiltonian equation:

i
]c

]x
52

dH

dc*
. ~3.15!

Here the HamiltonianH can be represented in the form of
sum of Hamiltonians:

H5H11H21H31H41...,

where

H15
i

vgr
E c* c tdt, ~3.16!

H252E S k0Suc tu22
b1

2
ucu4Ddt, ~3.17!

H35E $ igc* c ttt1 ib2~c* c t2cc t* !ucu2%dt, ~3.18!

H45E H duc ttu22
b3

2
ucu2~cc tt* 1c.c.!2

b4

2
~c t

2c* 2

1c.c.!2
b5

2
c* 2] t

2c21
b6

3
ucu6J dt. ~3.19!

Here H2 corresponds to the classical NLSE, and the n
Hamiltonian corresponds to the complex MKdV equation
is important that each of the successive Hamiltonians
smaller than the preceding one. However, this situation
change, if any of the expansion coefficients introduces a
tional smallness. As is seen from~2.23!, the soliton width
decreases as the quadratic dispersion coefficientS decreases
Therefore, whenS is small ~such a situation arises near th
so-called zero-dispersion point!, the cubic dispersion (;g)
must be taken into account with neglect of all the high
order terms, as well as the term that is proportional tob2 . If
b1 is small, the nonlinear dispersion, which is proportion
to b2 , must be taken into account with neglect of the cu
linear dispersion.

Let us now turn to an analysis of the solitonlike solutio
for the generalized Schro¨dinger equation.

To illustrate how the mechanism~2.23! operates, we first
consider the nonlinear Schro¨dinger equation with quadrati
dispersion@which corresponds to the Hamiltonian~3.17!#:

i
]E

]x
1Ett12uEu2E50. ~3.20!

Here we have used dimensionless variables, and the no
earity is assumed to be focusing,Sa.0.

It is noteworthy that, unlike the wave equation~2.1!, a
generalized NLSE, particularly the NLSE with quadratic d
persion, has an additional symmetry, viz.,E→Eeif, which
appears as a result of the averaging of the equations of
oscillations. Therefore, the envelope soliton solutions form
more extensive class of solutions than does the wave e
tion ~2.1!. According to our definition, they should be cla
t
t
is
n
i-

-

l
c

in-

-

st
a
a-

sified as quasisolitons. To find the corresponding solutio
we should setE(x,t)5eilxc(t1bx), where c obeys the
equation1!

L~ i ] t!c[2 ibc t1lc2c tt52ucu2c. ~3.21!

In the case under consideration the conditions for Cheren
radiation~2.14! are written in the following manner:

bV5k~V! or L~V!50, ~3.22!

where the dispersion relation for Eq.~3.21! takes the form

k~V!5l1V2. ~3.23!

Hence it is seen that forl,0 the resonance condition~3.22!
is satisfied for any value of the velocity~Fig. 1!, and hence
no solitons exist in this case. This is verified directly b
solving Eq.~3.21!: for l,0 all the solutions are periodic o
quasiperiodic. Soliton solutions are possible only for posit
values of l. Their velocities lie in the range22Al<b
<2Al ~Fig. 2!. At the pointsV56Al the straight linek
5bcrV is tangent to thek5k(V) dispersion curve. Accord-
ing to the results of Sec. 2, the soliton solution should van
at these points, as follows directly from the solution of E
~3.21!:

FIG. 1. Dispersion curve~3.23! for negativel. Any straight line emerging
from the origin of coordinates intersects the dispersion curve.

FIG. 2. Dispersion curve~3.23! for positivel. The dashed lines which are
tangent to the dispersion curve correspond to the critical veloci
b562Al. These straight lines specify the boundary of the soliton cone
angles.
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E5eilx
eibt8DV

cosh~DVt8!
, DV5Al2

b2

4
. ~3.24!

Hence, the region for the existence of solitons is given by
inequality l.b2/4. The upper bound in this inequalit
specifies the critical velocity

bcr562Al.

It is important to note that the operatorL in Eq. ~3.21! is
positive definite forl.b2/4.

Let us now turn to the third-order dispersion. We a
sume, as before, that the soliton solution contains an ex
nential multiplier

E~x,t !5eilxc~ t8!, t85t1bx. ~3.25!

The corresponding operatorL( i ] t) has the form

L~V!52bV1l1SV21gV3. ~3.26!

This operator is sign-definite for any values ofl, b, S, and
gÞ0. This means that the equationL(V)50 or the equiva-
lent equation

bV5l1SV21gV3,

has at least one real solution: the dispersion curve fork(V)
5l1SV21gV3 always intersects any straight line emer
ing from the origin of coordinates. For example, forl50
andb>b052S2/(4g) all the straight linesk5bV intersect
the k5k(V) dispersion curve twice. Forb,b0 the straight
lines have one point of intersection, and forb5b0 tangency
occurs~Fig. 3!. However, one point of intersection is suffi
cient for the absence of solitons. On the other hand, the
ample of the KdV equation, which simultaneously has cu
dispersion and solitons, apparently contradicts the forego
statement. Actually, there is no contradiction here. Eve
thing is explained by the dependence of the matrix elem
on the wave vector, which provides for cancellation of t
singularity in the equation of the form~2.18!.

We can show in the example of the KdV equation

Ut1Uxxx16UUx50, ~3.27!

FIG. 3. Third-order dispersionk5SV21gV3. The dashed straight line is
tangent to the dispersion curve atV5V0 , but intersects it atV50.
e

-
o-

x-
c
g
-
nt

how cancellation of a singularity occurs. For a soliton mo
ing with the velocityv,

L~k!5 ik~v1k2!.

For v.0 the equationL(k)50 has one real rootk50. In
this case the analog of Eq.~2.18! is

Uk5
3ik~U2!k

L~k!
,

which clearly does not contain a singularity atk50. The
situation is similar for other equations of the KdV type~see,
for example, Ref. 16!.

Solutions of the soliton type were recently obtained17 for
a generalized Schro¨dinger equation, which simultaneous
takes into account the third-order dispersion and correspo
to its nonlinearity@in the present paper this corresponds
consideration of the Hamiltonians~3.17! and ~3.18!#. If the
relations betweeng andb2 are arbitrary, the soliton solution
found in Ref. 17 has a spectrum concentrated at the frequ
ciesV;1/g, 1/b2 , i.e., at frequencies comparable tov0 . In
the unique case where the relation between the coeffici
has the form

K0S

b1
5

3g

4b2
,

the soliton spectrum is displaced by a small amount. T
case is special, i.e., Eq.~3.13! ~written in dimensionless vari-
ables!,

iEx1Ett12uEu2E5 i e~Ettt16uEu2Et!, ~3.28!

allows application of the inverse scattering problem te
nique ~see, for example, Ref. 8!. In this case the Hamilto-
nians ~3.17! and ~3.18! are conserved independently. The
are both created by the same associated operator, viz.
Zakharov-Shabat operator.2 The parametere in this equation
is of orderdv/v, andE takes values of order unity. Solito
solutions for this equation were first pointed out in Ref. 1
The simplest of them is the solution

E5eim2x
m

Chm~ t2em2x!
,

which transforms into a stationary soliton of the NLS
~3.24! whene50.

One conclusion which can be drawn from the foregoi
material is that the existence of soliton solutions for t
third-order operatorsL is due to the presence of derivative
in the nonlinear term or, stated differently, the dependenc
the matrix elements on the frequency. If there is no su
dependence, or if it is insignificant, as is the case, for
ample, near the point of zero dispersion, there are no rea
for cancellation of the singularities in the equation of t
form ~2.18!. Therefore, the results in Ref. 19 of the nume
cal observation of solitons for the NLSE with cubic dispe
sion should be revised~see also Ref. 20, which was devote
to this equation!.

We shall henceforth confine ourselves to considerat
of the case where there is no dispersion of the nonlinearit
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it is insignificant. In such a situation third-order dispersi
cannot provide for the existence of solitons, i.e., the n
expansion terms must be taken into account.

For fourth-order dispersion the corresponding operatoL
has the form

L~V!52bV1l1SV21gV31dV4. ~3.29!

The sign-definiteness ofL is now determined by the sign o
d : the operator is positive definite ford.0 and negative
definite in the opposite case.

The cubic term can always be eliminated fromL by
means of an appropriate frequency shiftV→V1n. Further-
more, using simple scaling and sign reversal,L(V) can be
brought into the following two canonical forms:

L~V!52bV1k~V!52bV1l1~V22g0
2!2, ~3.30!

L~V!52bV1k~V!52bV1l1~V21n0
2!2. ~3.31!

Then, applying the criterion~3.22! to the dispersion law
~3.30! with l,0, we can easily see that the resonance c
dition ~3.22! is satisfied for all values ofb and that the ex-
istence of solitons is, therefore, impossible in this region
parameters.

For positivel5m4 solitons are possible in the regio
2bcr<b<bcr , where

bcr54V0~V0
22n0

2! and V0
25

1

6
~2n0

21A16n0
4112m4!.

~3.32!

Near the critical velocity~3.32! the dispersion is positive
therefore, localized solutions of the soliton type can ex
only for focusing (dx.0) nonlinearity, while nonlinearity
with respect to the quadratic dispersion would be defocus
The form of the soliton in this case is determined from t
equation

L~ i ] t!c52sucu2c, ~3.33!

whereL( i ] t) is given by Eq.~3.30! or ~3.31!, s5sgn(dx)
specifies the character of the nonlinear interaction: fors
51 it is attractive, and fors521 it is repulsive. Soliton
solutions are possible only for a focusing medium.

The simplest solutions of~3.33! are stationary solitons
Their form is found by integrating the equation

m4c1~] t
21n0

2!2c22ucu2c50. ~3.34!

It is significant that a moving soliton for fourth-order dispe
sion has a profile which differs from a soliton for the NLS
with quadratic dispersion. It cannot be deformed into a s
tionary soliton by simple scaling and phase transformatio

To find the solution, Eq.~3.34! must be supplemented b
the boundary conditions

c, c t→0 as t→6`.

The symmetry of Eq.~3.34! allows real symmetric~relative
to t! solutions:c(t)5c(2t)5c* (t). At infinity ( t→6`)
these solutions should decay exponentially:c;ent→0,
where the exponentn is determined from the equation

n41~n21n0
2!21m450.
t

-

f

t

g.

-
.

The roots of this equation are assigned by the expressio

n56F1

2
~Am41n0

42n0
2!G1/2

6 i F1

2
~Am41n0

42n0
2!G1/2

.

~3.35!

They are all complex. This means, in particular, that all s
tionary solitons should have an oscillating structure. Ifm
;n0 holds, the real and imaginary parts of the exponenn
are of the same order. Critical tangency occurs whenm50.
Near this point the real part ofn8 is small for a finite value of
the imaginary part:

n56m2/n06 in0 . ~3.36!

Envelope solitons of the universal form~2.23! appear in just
this limit.

For largem (m@n0) the roots have the asymptote

n5m
616 i

&

.

Figures 4–6 show the solitons for different values ofm and
n0 . In the limit m→0 ~Fig. 4! the soliton has a clearly ex
pressed envelope soliton form, and at largem (m@n0) the
soliton has only one oscillation on its scale~Fig. 6!. At large
distances~large times! the solitons for all the values ofm and
n0 have exponentially decaying, oscillating tails. As the ra
m/n0 increases, the amplitude of the soliton increases, an
width decreases. The solitons obtained here, like the

FIG. 4. Dependence of the soliton amplitude~in units ofn0
2! on the time~in

units of n0
21! for m/n051/3. The soliton envelope has the form of th

function sech to good accuracy.

FIG. 5. Form of a soliton whenm/n051. The amplitude of the soliton~in
units ofn0

2! increases, and its width~in units ofn0
21! decreases. Oscillations

are still observed on the scale of the soliton.
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solutions of Eq.~3.34!, are simultaneously solutions in th
form of stationary solitons for Eq.~2.1! with the dielectric
constant

«~v!5«02a~v22v0
2!2 and xa.0.

As for the dispersion~3.31!, here the situation is simila
to what occurs for the NLSE with quadratic dispersi
~3.20!. Solitons are possible forl.2n0

4. The only differ-
ence from quadratic dispersion is the change in the valu
the critical velocity. Near these points the structure of
solitons has the universal form~2.23!.

4. STABILITY OF SOLITONS

Let us examine the stability of the solitons obtained
the preceding section. We first show how stability can
proved for the NLSE with quadratic dispersion~3.20!. The
Hamiltonian for it has the form

H5E ~ uc tu22ucu4!dt[I 12I 2 , ~4.1!

and the soliton solution~3.24! has the form of the stationar
point of the Hamiltonian for a fixed momentum

P52 i E cc t* dt

and a fixed number of particles~energy! N5* ucu2dt:

d~H1bP1lN!50.

Following Ref. 21, we shall prove stability in the sense
Lyapunov, i.e., we shall show that the soliton has a minim
for H at fixedP andN. For this purpose, it is convenient t
representl in the form of a sum ofb2/4 and the positive
quantity m2. We next consider the functionalF5H1bP
1(b2/4)N, which, as can easily be seen, is the same Ham
tonian in a moving coordinate frame: the replacement of
wave functionc→ceitb/2 transformsF into H ~4.1!. Thus,
for stability it is sufficient to establish thatH has a minimum
in the stationary soliton.

Let us consider the integralI 25* ucu4dt. It is easy to
prove that the following chain of inequalities holds~see also
Refs. 21 and 22!:

FIG. 6. Form of a soliton whenm/n0510. The oscillating tail is scarcely
visible.
of
e

e

f

il-
e

E
2`

`

ucu4dt<max
t

ucu2E
2`

`

ucu2dt

5E
2`

tmax ducu2

dt
dtE

2`

`

ucu2dt

<2NE
2`

tmax
ucuuc tudt<2NE

2`

`

ucuuc tudt

<2N3/2F E
2`

`

uc tu2dtG1/2

. ~4.2!

This inequality can be enhanced by finding the best cons
@instead of 2 in~4.2!#. The maximum value of the functiona

G@c#5
I 2

N3/2I 1
1/2

clearly solves this problem. To find the maximum ofG@c# it
is sufficient to consider all the stationary points of this fun
tional and then to select the one which has the maxim
value ofG. All the stationary points ofG@c# are determined
from the following equation, which coincides with the equ
tion for a stationary soliton:

2m2c1c tt12ucu2c50,

wherel5m2.0. Hence it can easily be seen that the ma
mum ofG@c# is achieved in a real soliton solution, which
unique~to within a constant phase multiplier!:

cs5
m

cosh~mt !
.

After this, all the integrals inG@c# are easily calculated:

N52m, I 1s5
2

3
m3, I 2s5

4

3
m3,

and the inequality~4.2! ultimately takes the form

E
2`

`

ucu4dt<
1

)

N3/2F E
2`

`

uc tu2dtG1/2

. ~4.3!

The substitution of this inequality into~4.1! gives the follow-
ing estimate:

H>Hs1~AI 12AI 1s!
2,

whereHs522m3/3,0 is the value of the Hamiltonian in
the soliton solution. This estimate becomes exact in the s
ton solution, proving the stability of the solitons with qu
dratic dispersion in the sense of Lyapunov. We stress
this proof provides for the stability of solitons not only wit
respect to small perturbations, but also with respect to fin
perturbations.

Now let us turn to fourth-order dispersion. We represe
the corresponding functionalF5H1bP1lN in the form of
a sum of the mean value of the operatorL( i ] t) ~3.29! and the
nonlinear term:

F5E c* L~ i ] t!cdt2E ucu4dt. ~4.4!

To prove the stability of solitons, we must find the analog
the inequality~4.3! for the mean̂ L( i ] t)&.

Let L(V) be the positive definite polynomialVP
(2`,`) of degreeN52l . ThenL(V) can be expanded as
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L2l~V!5 (
p50

l

L2l 22p~Vp!)
i 51

p21

~V2V i !
2, ~4.5!

where V i and the polynomialsL2l 22p(V) are constructed
from L2l according to the following rule. LetV5V0 be the
minimum point of L2l(V): min L2l(V)5L2l(V0). The latter
allows us to writeL2l(V) in the form

L2l~V!5L2l~V0!1~V2V0!2L2l 22~V!,

whereL2l 22(V) is a nonnegative polynomial of degree 2l
22. The expansion of the polynomialL2l 22(V) gives a new
nonnegative polynomial of degree 2l 24. Further recursion
leads us to formula~4.5!. It is important that all the coeffi-
cients in this expansion are nonnegative:L2l 22p(Vp)>0. It
is also clear thatL0(V l)5C2l .

Expansion~4.5! generates the corresponding expans
for the mean value ofL2l( i ] t):

^L2l~ i ] t!&[E c* L2l~ i ] t!cdt

5L2l~V0!N01L2l 22~V1!N11...1L0~V l !Nl ,

~4.6!

where

Np5E ucpu2dt; cp5 )
q50

p21

~ i ] t1Vq!c, p>1;

c0[c.

This representation shows how the square of the norm of
positive definite polynomial operator expands in the nor
Np with the nonnegative coefficientsL2l 22p(Vp).

For the positive definite fourth-order dispersion~3.29!

L~V!5l2bV1DV21gV31V4

the expansion~4.5! reads as

L~V!5m41h2~V2V0!21~V2V0!2~V2V1!2, ~4.7!

wherem4 replacesL4(V0), andh2 replacesL2(V1). With
no loss of generality, we can setV052V15n0 in Eq. ~4.7!
~this corresponds to the replacementc→c exp$2i(V0

1V1)t/2%), so that Eq.~4.7! takes the form

L~V!5m41h2~V2n0!21~V22n0
2!2. ~4.8!

The difference between the dispersions~3.30! and ~3.31!
stems from the fact that the quantity 2n0

22h2 can be positive
or negative. For~3.30! 2n0

2.h2, and for~3.30! 2n0
2,h2. In

accordance with~4.8!, the integral expansion of the norm o
the operatorL is written as

^L~ i ] t!&5m4N1h2E u~ i ] t1n0!cu2dt

1E u~] t
21n0

2!cu2dt. ~4.9!

This representation means that a moving soliton can be
garded as a stationary point of the new Hamiltonian
n

e
s

e-

H85h2E u~ i ] t1n0!cu2dt1E u~] t
21n0

2!cu2dt2E ucu4dt

~4.10!

when the number of particlesN is fixed:

d~H81m4N!50. ~4.11!

If the HamiltonianH8 is bounded from below for a fixed
value ofN, and its lower bound corresponds to a soliton, t
soliton will be stable.

In terms of the new Hamiltonian the soliton solutio
obeys the equation

m4cs1h2~ i ] t1n0!2cs1~] t
21n0

2!2cs22ucsu2cs50.
~4.12!

Next, multiplying this equation bycs* and integrating overt,
we arrive at the following relation between the integrals a
pearing inH8:

m4Ns1h2E u~ i ] t1n0!csu2dt1E u~] t
21n0

2!csu2dt

22E ucsu4dt[Hs81m4Ns2E ucsu4dt50.

Another relation follows after the multiplication of~4.12! by
t] tcs* and integration:

~m41h2n0
21n0

4!Ns1~2n0
22h2!E u] tcsu2dt

23E u] t
2csu2dt2E ucsu4dt50.

Combining these two relations, we obtain

Hs85~h2n0
21n0

4!Ns1~2n0
22h2!E u] tcsu2dt

23E u] t
2csu2dt.

For both dispersions the HamiltonianHs8 is bounded from
above in the soliton solution by the number of particles m
tiplied by a certain positive factor: for~3.30!

Hs8<F 1

12
~2n0

22h2!21h2n0
21n0

4GNs ,

and for ~3.31!

Hs8<~h2n0
21n0

4!Ns .

We now prove thatH8 has a lower bound for a fixed value o
N. For this purpose we first evaluate the two integrals

J15E u~ i ] t1n0!cu2dt and J25E u~] t
21n0

2!cu2dt

in terms of two other integrals:N andI 25* ucu4dt. It is easy
to see that the estimate~4.3! is valid for the first integralJ1 :

E
2`

`

ucu4dt<
1

)

N3/2F E
2`

`

u~ i ] t1n0!cu2dtG1/2

. ~4.13!
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Using the inequality~4.3! again, we can obtain the estima
sought for J2 , if we first perform integration by parts in
* uc tu2dt using the Cauchy–Bulyakovski� inequality,

E uc tu2dt52E c* ~c tt1n0
2c!dt1E n0

2ucu2dt

<N1/2F E u~] t
21n0

2!cu2dtG1/2

1n0
2N,

and then substitute the result obtained into~4.3!:

J2>
1

N S 3I 2
2

N3 2n0
2ND 2

. ~4.14!

Using the inequalities~4.13! and ~4.14! we obtain an esti-
mate ofH8 in terms ofN and I 2 :

H8> f ~ I 2!5
3I 2

2

N3 1
1

N S 3I 2
2

N3 2n0
2ND 2

2I 2 . ~4.15!

Continuing this inequality, we obtain

f ~ I 2!>2
)I 2

N2 S 3I 2
2

N3 2n0
2ND 2I 2 .

Finally, from this we arrive at the desired inequality, i.e., t
boundedness of the Hamiltonian:

H8>2
4)N

9 F11
)N

6n0
2 G3/2

. ~4.16!

According to Lyapunov’s theorem, this proves the stabil
of the stationary point of the Hamiltonian corresponding
its minimum. This minimum point is a certain soliton sol
tion of Eq. ~4.12!. It need not be unique. It is noteworth
that, according to the estimate~4.16!, the Hamiltonian can
take negative values. If initially we haveH8,0, the maxi-
mum value ofucu2 will be bounded from below by the con
served quantity~compare Ref. 21!:

max
t

uEu2>uH8u/N.

Thus, an initially existing intensity maximum cannot vani
as the pulse propagates~asx increases!. On the other hand
small-amplitude radiation should ensure relaxation of the
tial distribution toward a certain soliton state, which is po
sible owing to the lower bound on the Hamiltonian.

To conclude this section we wish to say a few wor
about the stability of the stationary solitons~2.23!. Near the
critical velocity this question can be treated within the pa
bolic NLSE ~3.20!, for which the answer is already known
As for the stability of solitons with velocities far from th
critical value, the terms for dispersion of the next order m
be taken into account. As we saw in this section, the fou
order terms, which ensure that the corresponding operatL
is positive, also provide for the stability of solitons. We a
sume that the positive definite four-order polynomial ope
tors should ensure the stability of one-dimensional solito
It is possible that the solitons will be unstable only for o
erators which increase at infinity (uVu→`) in proportion to
AuVu.
i-
-

-

t
-

-
-
s.

5. CONCLUDING REMARKS

In conclusion, we would like to note that the selectio
rules for solitons based on the criteria~2.8! and ~2.9! are
valid for arbitrary dimensionality. It is significant that th
conditions for the existence of solitons remain unchang
the corresponding operatorL must be sign-definite. In addi
tion, the fourth-order dispersion for all physical dimensio
alities D ensures the existence of stable solitons for
GNLSE with cubic nonlinearity~with neglect of its disper-
sion!. This follows from the estimate of the dispersion ter
of the Hamiltonian in terms ofI 2 and N. In this case the
inequality ~4.3! has the form

E ucu4dDx<CF E uDcu2dDxGD/4F E ucu2dDxG22D/4

.

~5.1!

Substituting this estimate into the Hamiltonian

H5E uDcu2dDx2E ucu4dDx

gives its lower bound:

H>E uDcu2dDx2CF E uDcu2dDxGD/4F E ucu2dDxG22D/4

>2S 4

D
21D S 4

CDD 4/~D24!

N~82D !/~42D !.

Apart from soliton stability, for media with Kerr nonlin
earity this also proves that wave collapse ceases becau
fourth-order dispersion for the physical dimensionalitiesD
52,3.

One last remark: in the present work we confined o
selves to consideration of equations with only cubic nonl
earity, although in the general expansion of the electric d
placementD ~2.2! the term which is quadratic with respect
the amplitude must be taken into account. If tangency occ
at a nonzero frequency, the quadratic anharmonic terms
not resonant near the critical velocity and can be elimina
by a canonical transformation~for further details regarding
this, see the review in Ref. 14!. These terms lead to renor
malization of the four-wave matrix element~3.8!. Thus, the
universality of the behavior of solitons near the critical v
locity remains in force.
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